US20060165553A1 - Ni base alloy - Google Patents

Ni base alloy Download PDF

Info

Publication number
US20060165553A1
US20060165553A1 US10/546,130 US54613005A US2006165553A1 US 20060165553 A1 US20060165553 A1 US 20060165553A1 US 54613005 A US54613005 A US 54613005A US 2006165553 A1 US2006165553 A1 US 2006165553A1
Authority
US
United States
Prior art keywords
nickel
polymer electrolyte
electrolyte fuel
fuel cell
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/546,130
Inventor
Katsuo Sugahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003044417A external-priority patent/JP4174715B2/en
Priority claimed from JP2004027444A external-priority patent/JP4174722B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Assigned to MITSUBISHI MATERIALS CORPORATION reassignment MITSUBISHI MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUGAHARA, KATSUO
Publication of US20060165553A1 publication Critical patent/US20060165553A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/052Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to nickel-base alloys.
  • Priority is claimed on Japanese Patent Application No. 2003-44416, Japanese Patent Application No. 2003-44417 and Japanese Patent Application No. 2004-27444, the contents of which are incorporated herein by reference.
  • FIG. 1 schematically shows the construction of such a polymer electrolyte fuel cell, which includes hydrogen electrodes 1 , oxygen electrodes 2 , first platinum catalysts 3 and second platinum catalysts 3 ′, solid electrolyte membranes (proton exchange membrane) 4 , and unit cells 5 .
  • Each unit cell 5 has a solid electrolyte membrane 4 , on either side of which is provided a first platinum catalyst 3 and a second platinum catalyst 3 ′.
  • a hydrogen electrode 1 is provided outside of the first platinum catalyst 3
  • an oxygen electrode 2 is provided outside of the second platinum catalyst 3 ′.
  • a plurality of unit cells 5 are stacked with separators 6 therebetween by using at least two support plates 7 and fasteners 8 such as bolts and nuts.
  • Power generation principle within a unit cell 5 of the polymer electrolyte fuel cell having this type of construction takes place as follows. Hydrogen obtained from natural gas, methanol or the like is supplied to the hydrogen electrode 1 , where the first platinum catalyst 3 on the hydrogen electrode 1 side is used to decompose the hydrogen into hydrogen ions and electrons. The electrons are led out as electricity to the exterior, flow through an external load circuit (not shown), and reach the oxygen electrode 2 .
  • the hydrogen ions pass through a solid electrolyte membrane 4 composed of a polymer electrolyte-type ion-exchange membrane that allows only hydrogen ions to pass through, and migrate to the oxygen electrode 2 side.
  • the hydrogen ions, electrons and oxygen react under the influence of the second platinum catalyst 3 ′ to form water.
  • the role of the solid electrolyte membrane 4 is to allow hydrogen gas to pass through as hydrogen ions, for which it needs to be wet. Because the hydrogen ions, electrons and oxygen react to form water on the oxygen electrode 2 side, keeping the solid electrolyte membrane 4 wet is not a problem. However, the hydrogen electrode 1 side which is separated from the oxygen electrode 2 side by the solid electrolyte membrane 4 is not in this way supplied with water and thus ends up dry.
  • water 9 discharged from the oxygen electrode 2 side is received by a manifold 10 , passed through a pipe 11 , and supplied with the aid of a pump 12 to the solid electrolyte membrane 4 on the hydrogen electrode 1 side.
  • the water 9 discharged from the oxygen electrode 2 side is received by the manifold 10 , passed through the pipe 11 , and fed by means of a pump 12 to the solid electrolyte membrane 4 on the hydrogen electrode 1 side, thereby ensuring the wetness of the solid electrolyte membrane 4 on the hydrogen electrode 1 side.
  • the solid electrolyte membrane 4 used in polymer electrolyte fuel cells generally has been administered sulfonation treatment, the water 9 discharged from the oxygen electrode 2 side has sulfonic acid acidity and is thus mildly corrosive.
  • the manifolds 10 and pipes 11 which receive water 9 to be corrosion resistant.
  • the solid electrolyte membranes used in polymer electrolyte fuel cells have been subjected to fluorination rather that sulfonation treatment.
  • the water 9 discharged from the oxygen electrode 2 side will as a result have hydrofluoric acid acidity.
  • throughholes are provided in the hydrogen electrode 1 and the oxygen electrode 2 .
  • the sulfonic acid acidic or hydrofluoric acid acidic water 9 that is discharged from the oxygen electrode 2 side passes through the throughholes (not shown) and comes into contact with the separator 6 .
  • the sulfonic acid acidic or hydrofluoric acid acidic water 9 that is discharged from the oxygen electrode 2 side, recirculated, and reaches the hydrogen electrode 1 side also passes through the throughholes (not shown) and comes into contact with the separator 6 .
  • corrosion resistance is required also of the separators 6 .
  • These components such as manifolds 10 , pipes 11 and separators 6 that require corrosion resistance are generally made of a stainless steel such as SUS316L.
  • the sulfuric acid acidic or hydrofluoric acid acidic water produced on the oxygen electrode 2 side disperses and settles on the support plates 7 , fasteners 8 such as bolts and nuts, and the like, corrode these as well. Therefore, stainless steels such as SUS316L are also used in the support plates 7 and fasteners 8 such as bolts and nuts.
  • structural members excluding unit cells 5 , for assembling polymer electrolyte fuel cells, such as support plates 7 , fasteners 8 , manifolds 10 , pipes 11 and separators 6 (collectively referred to hereinafter as “structural members for polymer electrolyte fuel cells”) (see, for example, JP-A No. 2001-6714, JP-A No. 2000-299121, JP-A No. 2000-331696 and the like).
  • Another object of this invention is to provide structural members for forming polymer electrolyte fuel cells, which structural members are composed of a nickel-base alloy that undergoes very little leaching of ions in the polymer electrolyte fuel cell environment wherein the environment is used when stacking unit cells of the polymer electrolyte fuel cells for forming assembly.
  • nickel-base alloys which include at least 29% but less than 42% (all percentages here and below are by weight) of chromium.
  • the nickel-base alloys include more than 1% and not more than 3% of tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, and furthermore optionally may include one or more from among 0.1 to 2% molybdenum, 0.05 to 1.0% iron and 0.01 to 0.1% silicon.
  • the balance of the nickel-base alloys are nickel and unavoidable inadvertent impurities.
  • the nickel-base alloys which have a composition wherein the carbon contained as inadvertent impurities is set to 0.05% or less, have a corrosion rate of less than 0.1 mm/year in the environment for forming a polymer electrolyte fuel cell. Furthermore, the nickel-base alloys achieve very little leaching of ions in the environment for forming a polymer electrolyte fuel cell. We have thus learned that these nickel-base alloys have effects, in structural members for forming the polymer electrolyte fuel cells, that are even better than those of prior-art materials such as stainless steels.
  • nickel-base alloys which include at least 43% and not more than 50% of chromium.
  • the nickel-base alloys include 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, and which optionally may include one or both 0.05 to 1.0% iron and 0.01 to 0.1% silicon.
  • the balance of the nickel-base alloys is nickel and unavoidable inadvertent impurities.
  • the nickel-base alloys which moreover have a composition wherein the carbon contained as inadvertent impurities is set to 0.05% or less have a corrosion rate of less than 0.1 mm/year in the environment for forming a polymer electrolyte fuel cell.
  • the nickel-base alloys achieve very little leaching of ions in the environment for forming a polymer electrolyte fuel cell. We have thus learned that these nickel-base alloy have effects, in structural members for forming the polymer electrolyte fuel cells, that are even better than those of prior-art materials such as stainless steels.
  • the first to sixth aspects of the invention are based on these findings.
  • the invention provides:
  • a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the invention provides:
  • a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese and 0.1 to 2% molybdenum, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the invention provides:
  • a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the invention provides:
  • a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, 0.1 to 2% molybdenum, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a structural member for a polymer electrolyte fuel cell.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a manifold member for a polymer electrolyte fuel cell.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a pipe member for a polymer electrolyte fuel cell.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a fastener member for a polymer electrolyte fuel cell.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a support plate member for a polymer electrolyte fuel cell.
  • the nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a separator member for a polymer electrolyte fuel cell.
  • the invention provides (11) a nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the invention provides (12) a nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • the nickel-base alloys of the fifth and sixth aspects undergo very little leaching of ions in the environment for forming a polymer electrolyte fuel cell, they are particularly effective as structural members for the assembly of polymer electrolyte fuel cell, such as support plates 7 , fasteners 8 , manifolds 10 , pipes 11 and separators 6 . Accordingly, the following inventions are also provided.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a structural member for a polymer electrolyte fuel cell.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a manifold member for a polymer electrolyte fuel cell.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a pipe member for a polymer electrolyte fuel cell.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a fastener member for a polymer electrolyte fuel cell.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a support plate member for a polymer electrolyte fuel cell.
  • the nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a separator member for a polymer electrolyte fuel cell.
  • FIG. 1 is a schematic view showing the construction of a polymer electrolyte fuel cell.
  • the presence of both chromium and tantalum dramatically increases corrosion resistance. At least 29% chromium must be present in such cases. However, the presence of 42% or more chromium, in combination with tantalum, makes the formation of a single phase difficult to achieve and increases the amount of metal ions that leach out, which is undesirable. Hence, the chromium content has been set to at least 29% but less than 42%. A chromium content of 35 to 41% is preferred.
  • the tantalum content must be more than 1%.
  • a tantalum content of at least 1.1 but less than 2.5% is preferred.
  • nitrogen, manganese and magnesium serves to improve the phase stability. That is, nitrogen, manganese and magnesium stabilize the Ni-fcc phase which is the matrix, thus promoting the entry of chromium into a solid solution and discouraging the deposition of a second phase.
  • nitrogen content at a nitrogen content of less than 0.001%, there is no phase stabilizing effect.
  • nitrogen content has been set at 0.001 to 0.04%, and preferably 0.005 to 0.03%.
  • the manganese content has been set at 0.05 to 0.5%, and preferably 0.1 to 0.4%.
  • the magnesium content has been set at 0.001 to 0.05%, and preferably 0.002 to 0.04%.
  • Molybdenum has the effect in particular of suppressing an increase in the leaching of metal ions when the sulfuric acid concentration rises within an environment for forming a polymer electrolyte fuel cell containing a trace amount of sulfuric acid. Molybdenum is thus added as an optional ingredient. It is effective at a concentration of at least 0.1%, but if more than 2% is present, the phase stability deteriorates, discouraging entry of the Cr-bcc phase into a solid solution. As a result, microcells form between the Ni-fcc phase serving as the matrix and the Cr-bcc phase, which has the undesirable effect of increasing the leaching of metal ions. Accordingly, the level of molybdenum included in the nickel-base alloy of this invention has been set at 0.1 to 2%. A range of more than 0.1 but less than 0.5% is preferred.
  • Iron and silicon have strength-enhancing effects and are thus added as optional ingredients. Iron is effective at a content of 0.05% or more, but when present at above 1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the iron content has been set at 0.05 to 1%, and preferably at least 0.1% but less than 0.5%.
  • silicon is effective at a content of 0.01% or more, but when present at above 0.1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases.
  • the silicon content has been set at 0.01 to 0.1%, and preferably 0.02 to 0.05%.
  • Carbon is present as an inadvertent impurity.
  • the presence of a large amount of carbon results in the formation of a carbide with chromium in the vicinity of crystal grain boundaries, increasing the leaching of metal ions. Therefore, the lower the carbon content the better.
  • the upper limit in the carbon content present among inadvertent impurities has been set at 0.05%.
  • a carbon content of 0% is preferred.
  • the carbon content may be substantially from 0.001 to 0.05%.
  • chromium is effective for suppressing the leaching of metal ions.
  • the presence of more than 43% is required, but machining becomes difficult at a level of more than 50%.
  • the chromium present in the nickel-base alloy of this invention has been set to more than 43% and not more than 50%.
  • a chromium content of 43.1 to 47% is preferred.
  • Molybdenum has the effect in particular of suppressing an increase in the leaching of metal ions when the sulfuric acid concentration rises within an environment for forming a polymer electrolyte fuel cell containing a trace amount of sulfuric acid. It is effective when present in a concentration of at least 0.1%, but at a concentration of more than 2%, the phase stability deteriorates, discouraging entry of the Cr-bcc phase into solid solution. As a result, microcells form between the Ni-fcc phase serving as the parent phase and the Cr-bcc phase, resulting in an increase in the leaching of metal ions. Accordingly, the molybdenum content in the nickel-base alloy of this invention has been set at 0.1 to 2%. A range of more than 0.1% but less than 0.5% is preferred.
  • nitrogen, manganese and magnesium serves to improve the phase stability. That is, nitrogen, manganese and magnesium stabilize the Ni-fcc phase which is the matrix, thus promoting the entry of chromium into a solid solution and discouraging the deposition of a second phase.
  • nitrogen content at a nitrogen content of less than 0.001%, there is no phase stabilizing effect.
  • the nitrogen content has been set at 0.001 to 0.04%, and preferably 0.005 to 0.03%.
  • the manganese content has been set at 0.05 to 0.5%, and preferably 0.1 to 0.4%.
  • the magnesium content has been set at 0.001 to 0.05%, and preferably 0.002 to 0.04%.
  • Iron and silicon have strength-enhancing effects and are thus added as optional ingredients. Iron is effective at a content of 0.05% or more, but when present at above 1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the iron content has been set at 0.05 to 1%, and preferably at least 0.1% but less than 0.5%.
  • silicon is effective at a content of 0.01% or more, but when present at above 0.1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases.
  • the silicon content has been set at 0.01 to 0.1%, and preferably 0.02 to 0.05%.
  • Carbon is present as an inadvertent impurity. Carbon forms a carbide with chromium in the vicinity of crystal grain boundaries, increasing the leaching of metal ions. Therefore, the lower the carbon content the better. Hence, the upper limit in the carbon content present among inadvertent impurities has been set at 0.05%. A carbon content of 0% is preferred. The carbon content may be substantially from 0.001 to 0.05%.
  • low carbon-content starting materials were prepared. These starting materials were melted and cast in an ordinary high-frequency melting furnace to produce nickel-base alloy ingots having a thickness of 12 mm. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours. Next, while maintaining the temperature within a range of 1000 to 1230° C., the ingots were reduced to a final thickness of 5 mm by hot rolling at a thickness reduction rate of 1 mm per pass. The resulting plates were then subjected to solid solution treatment in which they were held at 1200° C. for 30 minutes then water quenched. Next, the surfaces were buffed, giving nickel-base alloy plates 1 to 20 according to the invention (Examples 1 to 20) and comparative nickel-base alloy plates 1 to 10 (Comparative Examples 1 to 10).
  • a prior-art alloy plate 1 (Prior-Art Example 1) made of SUS304 stainless steel and having a thickness of 5 mm and a prior-art alloy plate 2 (Prior-Art Example 2) made of SUS316L stainless steel and of the same thickness were also prepared.
  • nickel-base alloy plates 1 to 21 (Examples), comparative nickel-base alloy plates 1-10 (Comparative Examples) and prior-art alloy plates 1 and 2 (Prior-Art Examples) were each cut into test pieces having a length of 10 mm and a width of 50 mm.
  • the test pieces were surface polished by finishing with waterproof emery paper #400, following which they were ultrasonically degreased in acetone for five minutes.
  • a 1,000 ppm H 2 SO 4 solution and a 500 ppm H 2 SO 4 solution were prepared as test solutions which simulate the sulfuric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell.
  • a 500 ppm HF solution and a 50 ppm HF solution were also prepared as test solutions which simulate the hydrofluoric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell.
  • polypropylene test containers were prepared for use.
  • test pieces from nickel-base alloy plates 1 to 21 (Examples), comparative nickel-base alloy plates 1 to 10 (Comparative Examples) and prior-art alloy plates 1 and 2 (Prior-Art Examples) were individually placed, together with 200 ml portions of the test solutions prepared above, in the polypropylene test containers. These were then vacuum degassed in a glove box, and sealed by closure with a lid within a hydrogen atmosphere. The sealed polypropylene test containers were placed in a test chamber set at 80° C. and held therein for 500 hours.
  • the polypropylene test containers were subsequently removed and cooled, following which the elements that leached out into the H 2 SO 4 solutions and the HF solutions were quantitatively determined by inductively coupled plasma emission spectroscopy, and the total amount of metal ions that leached from each test piece was measured. This total amount of leached metal ions was divided by the surface area of the test piece to give the amount of leached metal ions per unit surface area. The results are shown in Tables 3 and 4.
  • Example 1 1.01 0.19 0.42 0.18
  • Example 2 1.18 0.19 0.41 0.21
  • Example 3 0.30 0.08 0.24 0.05
  • Example 4 0.42 0.11 0.31 0.07
  • Example 5 0.86 0.10 0.24 0.15
  • Example 6 0.49 0.12 0.28 0.09
  • Example 7 0.77 0.12 0.27 0.13
  • Example 8 0.74 0.12 0.26 0.13
  • Example 9 0.60 0.12 0.27 0.10
  • Example 10 0.67 0.13 0.28 0.12
  • Example 11 0.72 0.11 0.25 0.12
  • Example 12 0.74 0.15 0.34 0.13
  • Example 13 0.69 0.13 0.29 0.12
  • Example 14 0.70 0.15 0.33 0.12
  • the nickel-base alloy plates in Examples 1 to 21 according to the first to fourth aspects of the invention have much lower amounts of metal ions leached per unit surface area of the test pieces than the alloy plates 1 and 2 in Prior-Art Examples 1 and 2.
  • low carbon-content starting materials were prepared. These starting materials were melted and cast in an ordinary high-frequency induction furnace, thereby producing 12 mm thick ingots of the ingredient compositions shown in Tables 5 to 7. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours. Next, while maintaining the temperature within a range of 1000 to 1230° C., the ingots were reduced to a final thickness of 5 mm by hot rolling at a thickness reduction rate of 1 mm per pass. The resulting plates were then subjected to solution heat treatment in which they were held at 1200° C. for 30 minutes then water quenched. Next, the surfaces were buffed, giving nickel-base alloy plates 22 to 41 according to the invention (Examples) and comparative nickel-base alloy plates 11 to 20 (Comparative Examples) having the ingredient compositions shown in Tables 5 to 7.
  • a prior-art alloy plate 3 made of SUS304 stainless steel and having a thickness of 5 mm and a prior-art alloy plate 4 (Prior-Art Example) made of SUS316L stainless steel and of the same thickness were also prepared.
  • inventive nickel-base alloy plates 22 to 41 (Examples), comparative nickel-base alloy plates 11-20 (Comparative Examples) and prior-art alloy plates 3 and 4 (Prior-Art Examples) were each cut into test pieces having a length of 10 mm and a width of 50 mm.
  • the test pieces were surface polished by finishing with waterproof emery paper #400, following which they were ultrasonically degreased in acetone for five minutes.
  • a 1,000 ppm H 2 SO 4 solution and a 500 ppm H 2 SO 4 solution were prepared as test solutions which simulate the sulfuric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell.
  • a 500 ppm HF solution and a 50 ppm HF solution were also prepared as test solutions which simulate the hydrofluoric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell.
  • polypropylene test containers were prepared for use.
  • test pieces from inventive nickel-base alloy plates 22 to 41 (Examples), comparative nickel-base alloy plates 11 to 20 (Comparative Examples) and prior-art alloy plates 3 and 4 (Prior-Art Examples) were individually placed, together with 200 ml portions of the test solutions prepared above, in the polypropylene test containers. These were then vacuum degassed in a glove box, and sealed by closure with a lid within a hydrogen atmosphere. These sealed polypropylene test containers were placed in a test chamber set at 80° C. and held therein for 500 hours.
  • the polypropylene test containers were subsequently removed and cooled, following which the elements that leached out into the H 2 SO 4 solutions and the HF solutions were quantitatively determined by inductively coupled plasma emission spectroscopy, and the total amount of metal ions that leached from each test piece was measured. This total amount of leached metal ions was divided by the surface area of the test piece to give the amount of leached metal ions per unit surface area. The results are shown in Tables 5 to 7.
  • Amount of Amount of metal ions metal ions Amount of Amount of leached by leached by metal ion metal ion Ingredient composition (wt %) 1,000 ppm 500 ppm leached by leached by Ni and H 2 SO 4 H 2 SO 4 500 ppm HF 50 ppm HF Ni-base inadvertent solution solution solution solution alloy Cr Mo Mg N Mn Fe Si C# impurities (ppm/cm 2 ) (ppm/cm 2 ) (ppm/cm 2 ) (ppm/cm 2 ) EX 36 43.1 0.42 0.036 0.027 0.14 — — 0.03 balance 0.32 0.12 1.22 0.42 EX 37 46.3 0.34 0.026 0.010 0.26 — — 0.02 balance 0.16 0.06 0.60 0.20 EX 38 44.1 0.42 0.008 0.016 0.22 0.18 0.04 0.02 balance 0.24 0.09 0.93 0.31 EX 39 46.0 0.42 0.034 0.005 0.21 0.11 0.05 0.
  • the nickel-base alloy plates in Examples 22 to 42 according to the fifth and sixth aspects of the invention have much lower amounts of metal ion leached per unit surface area of the test pieces than the alloy plates 3 and 4 in Prior-Art Examples 3 and 4.
  • the nickel-base alloys of the invention undergo very little leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Therefore, by assembling polymer electrolyte fuel cells using components made of the nickel-base alloys of the invention, deterioration of the solid electrolyte membrane can be suppressed, enabling polymer electrolyte fuel cells with a longer lifetime to be achieved. This invention will thus be of great industrial benefit.
  • the nickel-base alloys of the invention are most effective when used in an environment for forming a polymer electrolyte fuel cell containing sulfuric acid or hydrofluoric acid.
  • these nickel-base alloys are not limited only to use under such circumstances, and also undergo very little leaching of metal ions in an environment for forming a polymer electrolyte fuel cell containing formic acid.
  • the inventive metal-base alloys can also be used to make components for drug manufacturing equipment from which the leaching of metal ions cannot be tolerated.

Abstract

A nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1 and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities. A nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities. The amount of carbon included as inadvertent impurities is not more than 0.05%.

Description

    TECHNICAL FIELD
  • 1. Field of the Invention
  • The present invention relates to nickel-base alloys. Priority is claimed on Japanese Patent Application No. 2003-44416, Japanese Patent Application No. 2003-44417 and Japanese Patent Application No. 2004-27444, the contents of which are incorporated herein by reference.
  • 2. Background Art
  • Polymer electrolyte fuel cells which operate at low temperatures ranging from room temperature to 80° C. can be built to compact dimensions and thus are expected to be used in automotive and portable fields. Development work on such fuel cells is proceeding rapidly. FIG. 1 schematically shows the construction of such a polymer electrolyte fuel cell, which includes hydrogen electrodes 1, oxygen electrodes 2, first platinum catalysts 3 and second platinum catalysts 3′, solid electrolyte membranes (proton exchange membrane) 4, and unit cells 5. Each unit cell 5 has a solid electrolyte membrane 4, on either side of which is provided a first platinum catalyst 3 and a second platinum catalyst 3′. A hydrogen electrode 1 is provided outside of the first platinum catalyst 3, and an oxygen electrode 2 is provided outside of the second platinum catalyst 3′. In order to stack these unit cells 5 together with intervening separators 6 to form the polymer electrolyte fuel cell, a plurality of unit cells 5 are stacked with separators 6 therebetween by using at least two support plates 7 and fasteners 8 such as bolts and nuts.
  • Power generation principle within a unit cell 5 of the polymer electrolyte fuel cell having this type of construction takes place as follows. Hydrogen obtained from natural gas, methanol or the like is supplied to the hydrogen electrode 1, where the first platinum catalyst 3 on the hydrogen electrode 1 side is used to decompose the hydrogen into hydrogen ions and electrons. The electrons are led out as electricity to the exterior, flow through an external load circuit (not shown), and reach the oxygen electrode 2. The hydrogen ions pass through a solid electrolyte membrane 4 composed of a polymer electrolyte-type ion-exchange membrane that allows only hydrogen ions to pass through, and migrate to the oxygen electrode 2 side. On the oxygen electrode 2 side, the hydrogen ions, electrons and oxygen react under the influence of the second platinum catalyst 3′ to form water. The role of the solid electrolyte membrane 4 is to allow hydrogen gas to pass through as hydrogen ions, for which it needs to be wet. Because the hydrogen ions, electrons and oxygen react to form water on the oxygen electrode 2 side, keeping the solid electrolyte membrane 4 wet is not a problem. However, the hydrogen electrode 1 side which is separated from the oxygen electrode 2 side by the solid electrolyte membrane 4 is not in this way supplied with water and thus ends up dry. Hence, to ensure the wetness of the solid electrolyte membrane 4 on the hydrogen electrode 1 side, water 9 discharged from the oxygen electrode 2 side is received by a manifold 10, passed through a pipe 11, and supplied with the aid of a pump 12 to the solid electrolyte membrane 4 on the hydrogen electrode 1 side.
  • As just described, the water 9 discharged from the oxygen electrode 2 side is received by the manifold 10, passed through the pipe 11, and fed by means of a pump 12 to the solid electrolyte membrane 4 on the hydrogen electrode 1 side, thereby ensuring the wetness of the solid electrolyte membrane 4 on the hydrogen electrode 1 side. However, because the solid electrolyte membrane 4 used in polymer electrolyte fuel cells generally has been administered sulfonation treatment, the water 9 discharged from the oxygen electrode 2 side has sulfonic acid acidity and is thus mildly corrosive. Hence, there is a need for the manifolds 10 and pipes 11 which receive water 9 to be corrosion resistant.
  • In some cases, the solid electrolyte membranes used in polymer electrolyte fuel cells have been subjected to fluorination rather that sulfonation treatment. The water 9 discharged from the oxygen electrode 2 side will as a result have hydrofluoric acid acidity. In such cases, there will similarly be a need for the manifolds 10 and pipes 11 which receive water 9 to be corrosion resistant.
  • In addition, throughholes (not shown) are provided in the hydrogen electrode 1 and the oxygen electrode 2. The sulfonic acid acidic or hydrofluoric acid acidic water 9 that is discharged from the oxygen electrode 2 side passes through the throughholes (not shown) and comes into contact with the separator 6. Moreover, the sulfonic acid acidic or hydrofluoric acid acidic water 9 that is discharged from the oxygen electrode 2 side, recirculated, and reaches the hydrogen electrode 1 side also passes through the throughholes (not shown) and comes into contact with the separator 6. Hence, corrosion resistance is required also of the separators 6.
  • These components such as manifolds 10, pipes 11 and separators 6 that require corrosion resistance are generally made of a stainless steel such as SUS316L. In addition, the sulfuric acid acidic or hydrofluoric acid acidic water produced on the oxygen electrode 2 side disperses and settles on the support plates 7, fasteners 8 such as bolts and nuts, and the like, corrode these as well. Therefore, stainless steels such as SUS316L are also used in the support plates 7 and fasteners 8 such as bolts and nuts. That is, stainless steels such as SUS316L are known to be used in the structural members, excluding unit cells 5, for assembling polymer electrolyte fuel cells, such as support plates 7, fasteners 8, manifolds 10, pipes 11 and separators 6 (collectively referred to hereinafter as “structural members for polymer electrolyte fuel cells”) (see, for example, JP-A No. 2001-6714, JP-A No. 2000-299121, JP-A No. 2000-331696 and the like).
  • At a corrosion rate of less than 0.1 mm/year, structural members for polymer electrolyte fuel cells are generally rated as “excellent” and the corrosion resistance of the stainless steel is also generally rated as “excellent.” However, a elution amount of metal ions from stainless steel is large. Such metal ions that have leached from the stainless steel degrade the solid electrolyte membrane, which can dramatically shorten the life of the polymer electrolyte fuel cell. Accordingly, there has existed a desire for the development of metal materials that undergo very little leaching of metal ions.
  • DISCLOSURE OF INVENTION
  • It is therefore an object of the present invention to provide a nickel-base alloy which achieves very little elution amount of ions in the environment wherein the polymer electrolyte fuel cell is formed. Another object of this invention is to provide structural members for forming polymer electrolyte fuel cells, which structural members are composed of a nickel-base alloy that undergoes very little leaching of ions in the polymer electrolyte fuel cell environment wherein the environment is used when stacking unit cells of the polymer electrolyte fuel cells for forming assembly.
  • As a result of extensive investigations conducted on ways of obtaining metal materials that undergo very little leaching of metal ions in an environment for forming a polymer electrolyte fuel cell, we have found that nickel-base alloys which include at least 29% but less than 42% (all percentages here and below are by weight) of chromium. The nickel-base alloys include more than 1% and not more than 3% of tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, and furthermore optionally may include one or more from among 0.1 to 2% molybdenum, 0.05 to 1.0% iron and 0.01 to 0.1% silicon. The balance of the nickel-base alloys are nickel and unavoidable inadvertent impurities. The nickel-base alloys, which have a composition wherein the carbon contained as inadvertent impurities is set to 0.05% or less, have a corrosion rate of less than 0.1 mm/year in the environment for forming a polymer electrolyte fuel cell. Furthermore, the nickel-base alloys achieve very little leaching of ions in the environment for forming a polymer electrolyte fuel cell. We have thus learned that these nickel-base alloys have effects, in structural members for forming the polymer electrolyte fuel cells, that are even better than those of prior-art materials such as stainless steels.
  • We have also discovered that nickel-base alloys which include at least 43% and not more than 50% of chromium. The nickel-base alloys include 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, and which optionally may include one or both 0.05 to 1.0% iron and 0.01 to 0.1% silicon. The balance of the nickel-base alloys is nickel and unavoidable inadvertent impurities. The nickel-base alloys which moreover have a composition wherein the carbon contained as inadvertent impurities is set to 0.05% or less have a corrosion rate of less than 0.1 mm/year in the environment for forming a polymer electrolyte fuel cell. The nickel-base alloys achieve very little leaching of ions in the environment for forming a polymer electrolyte fuel cell. We have thus learned that these nickel-base alloy have effects, in structural members for forming the polymer electrolyte fuel cells, that are even better than those of prior-art materials such as stainless steels.
  • The first to sixth aspects of the invention are based on these findings.
  • In a first aspect, the invention provides:
  • (1) a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • In a second aspect, the invention provides:
  • (2) a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese and 0.1 to 2% molybdenum, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • In a third aspect, the invention provides:
  • (3) a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • In a fourth aspect, the invention provides:
  • (4) a nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, 0.1 to 2% molybdenum, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • (5) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a structural member for a polymer electrolyte fuel cell.
  • (6) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a manifold member for a polymer electrolyte fuel cell.
  • (7) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a pipe member for a polymer electrolyte fuel cell.
  • (8) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a fastener member for a polymer electrolyte fuel cell.
  • (9) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a support plate member for a polymer electrolyte fuel cell.
  • (10) The nickel-base alloy of the above first, second, third or fourth aspect may be included in, or make up all of, a separator member for a polymer electrolyte fuel cell.
  • In a fifth aspect, the invention provides (11) a nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • In a sixth aspect, the invention provides (12) a nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
  • Because the nickel-base alloys of the fifth and sixth aspects undergo very little leaching of ions in the environment for forming a polymer electrolyte fuel cell, they are particularly effective as structural members for the assembly of polymer electrolyte fuel cell, such as support plates 7, fasteners 8, manifolds 10, pipes 11 and separators 6. Accordingly, the following inventions are also provided.
  • (13) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a structural member for a polymer electrolyte fuel cell.
  • (14) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a manifold member for a polymer electrolyte fuel cell.
  • (15) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a pipe member for a polymer electrolyte fuel cell.
  • (16) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a fastener member for a polymer electrolyte fuel cell.
  • (17) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a support plate member for a polymer electrolyte fuel cell.
  • (18) The nickel-based alloy of the above fifth or sixth aspect may be included in, or make up all of, a separator member for a polymer electrolyte fuel cell.
  • BRIEF DESCRIPTION OF THE DIAGRAMS
  • FIG. 1 is a schematic view showing the construction of a polymer electrolyte fuel cell.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Limits for each element in the compositions of the nickel-base alloys according to the first to fourth aspects which undergo very little leaching of ions in the environment for forming a polymer electrolyte fuel cell are explained below in detail.
  • Chromium and Tantalum:
  • In an environment for forming a polymer electrolyte fuel cell containing a trace amount of hydrofluoric acid, the presence of both chromium and tantalum dramatically increases corrosion resistance. At least 29% chromium must be present in such cases. However, the presence of 42% or more chromium, in combination with tantalum, makes the formation of a single phase difficult to achieve and increases the amount of metal ions that leach out, which is undesirable. Hence, the chromium content has been set to at least 29% but less than 42%. A chromium content of 35 to 41% is preferred.
  • Similarly, the tantalum content must be more than 1%. However, the presence of more than 3% tantalum, in combination with chromium, compromises the phase stability and increases the amount of metal ions that leach out, which is undesirable. Accordingly, the tantalum content has been set to more than 1% and not more than 3%. A tantalum content of at least 1.1 but less than 2.5% is preferred.
  • Nitrogen, Manganese and Magnesium:
  • The presence of nitrogen, manganese and magnesium serves to improve the phase stability. That is, nitrogen, manganese and magnesium stabilize the Ni-fcc phase which is the matrix, thus promoting the entry of chromium into a solid solution and discouraging the deposition of a second phase. However, at a nitrogen content of less than 0.001%, there is no phase stabilizing effect. On the other hand, when more than 0.04% nitrogen is present, nitrides form and the leaching of metal ions in the environment for forming a polymer electrolyte fuel cell increases. Hence, the nitrogen content has been set at 0.001 to 0.04%, and preferably 0.005 to 0.03%.
  • Likewise, at a manganese content of less than 0.05%, there is no phase stabilizing effect, whereas the presence of more than 0.5% increases the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Hence, the manganese content has been set at 0.05 to 0.5%, and preferably 0.1 to 0.4%.
  • Similarly, at a magnesium content of less than 0.001%, there is no phase stabilizing effect, whereas the presence of more than 0.05% increases the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Hence, the magnesium content has been set at 0.001 to 0.05%, and preferably 0.002 to 0.04%.
  • Molybdenum:
  • Molybdenum has the effect in particular of suppressing an increase in the leaching of metal ions when the sulfuric acid concentration rises within an environment for forming a polymer electrolyte fuel cell containing a trace amount of sulfuric acid. Molybdenum is thus added as an optional ingredient. It is effective at a concentration of at least 0.1%, but if more than 2% is present, the phase stability deteriorates, discouraging entry of the Cr-bcc phase into a solid solution. As a result, microcells form between the Ni-fcc phase serving as the matrix and the Cr-bcc phase, which has the undesirable effect of increasing the leaching of metal ions. Accordingly, the level of molybdenum included in the nickel-base alloy of this invention has been set at 0.1 to 2%. A range of more than 0.1 but less than 0.5% is preferred.
  • Iron and Silicon:
  • Iron and silicon have strength-enhancing effects and are thus added as optional ingredients. Iron is effective at a content of 0.05% or more, but when present at above 1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the iron content has been set at 0.05 to 1%, and preferably at least 0.1% but less than 0.5%.
  • Similarly, silicon is effective at a content of 0.01% or more, but when present at above 0.1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the silicon content has been set at 0.01 to 0.1%, and preferably 0.02 to 0.05%.
  • Carbon:
  • Carbon is present as an inadvertent impurity. The presence of a large amount of carbon results in the formation of a carbide with chromium in the vicinity of crystal grain boundaries, increasing the leaching of metal ions. Therefore, the lower the carbon content the better. Hence, the upper limit in the carbon content present among inadvertent impurities has been set at 0.05%. A carbon content of 0% is preferred. The carbon content may be substantially from 0.001 to 0.05%.
  • Next, limits for each element in the compositions of the nickel-base alloys according to the fifth and sixth aspects which undergo very little leaching of ions in the environment for forming a polymer electrolyte fuel cell are explained below in detail.
  • Chromium:
  • In an environment for forming a polymer electrolyte fuel cell containing a trace amount of sulfuric acid, chromium is effective for suppressing the leaching of metal ions. In such cases, the presence of more than 43% is required, but machining becomes difficult at a level of more than 50%. Accordingly, the chromium present in the nickel-base alloy of this invention has been set to more than 43% and not more than 50%. A chromium content of 43.1 to 47% is preferred.
  • Molybdenum:
  • Molybdenum has the effect in particular of suppressing an increase in the leaching of metal ions when the sulfuric acid concentration rises within an environment for forming a polymer electrolyte fuel cell containing a trace amount of sulfuric acid. It is effective when present in a concentration of at least 0.1%, but at a concentration of more than 2%, the phase stability deteriorates, discouraging entry of the Cr-bcc phase into solid solution. As a result, microcells form between the Ni-fcc phase serving as the parent phase and the Cr-bcc phase, resulting in an increase in the leaching of metal ions. Accordingly, the molybdenum content in the nickel-base alloy of this invention has been set at 0.1 to 2%. A range of more than 0.1% but less than 0.5% is preferred.
  • Nitrogen, Manganese and Magnesium:
  • The presence of nitrogen, manganese and magnesium serves to improve the phase stability. That is, nitrogen, manganese and magnesium stabilize the Ni-fcc phase which is the matrix, thus promoting the entry of chromium into a solid solution and discouraging the deposition of a second phase. However, at a nitrogen content of less than 0.001%, there is no phase stabilizing effect. On the other hand, when more than 0.04% is present, nitrides form and the leaching of metal ions in the environment for forming a polymer electrolyte fuel cell increases. Hence, the nitrogen content has been set at 0.001 to 0.04%, and preferably 0.005 to 0.03%.
  • Likewise, at a manganese content of less than 0.05%, there is no phase stabilizing effect, whereas the presence of more than 0.5% increases the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Hence, the manganese content has been set at 0.05 to 0.5%, and preferably 0.1 to 0.4%.
  • Similarly, at a magnesium content of less than 0.001%, there is no phase stabilizing effect, whereas the presence of more than 0.05% increases the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Hence, the magnesium content has been set at 0.001 to 0.05%, and preferably 0.002 to 0.04%.
  • Iron and Silicon:
  • Iron and silicon have strength-enhancing effects and are thus added as optional ingredients. Iron is effective at a content of 0.05% or more, but when present at above 1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the iron content has been set at 0.05 to 1%, and preferably at least 0.1% but less than 0.5%.
  • Similarly, silicon is effective at a content of 0.01% or more, but when present at above 0.1%, the leaching of metal ions in an environment for forming a polymer electrolyte fuel cell increases. Hence, the silicon content has been set at 0.01 to 0.1%, and preferably 0.02 to 0.05%.
  • Carbon:
  • Carbon is present as an inadvertent impurity. Carbon forms a carbide with chromium in the vicinity of crystal grain boundaries, increasing the leaching of metal ions. Therefore, the lower the carbon content the better. Hence, the upper limit in the carbon content present among inadvertent impurities has been set at 0.05%. A carbon content of 0% is preferred. The carbon content may be substantially from 0.001 to 0.05%.
  • EXAMPLES Experiment 1 First to Fourth Aspects of the Invention
  • In each example, low carbon-content starting materials were prepared. These starting materials were melted and cast in an ordinary high-frequency melting furnace to produce nickel-base alloy ingots having a thickness of 12 mm. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours. Next, while maintaining the temperature within a range of 1000 to 1230° C., the ingots were reduced to a final thickness of 5 mm by hot rolling at a thickness reduction rate of 1 mm per pass. The resulting plates were then subjected to solid solution treatment in which they were held at 1200° C. for 30 minutes then water quenched. Next, the surfaces were buffed, giving nickel-base alloy plates 1 to 20 according to the invention (Examples 1 to 20) and comparative nickel-base alloy plates 1 to 10 (Comparative Examples 1 to 10).
  • In a similar process, low carbon-content starting materials were melted and cast in an ordinary high-frequency melting furnace, thereby producing nickel-base alloy precision-cast ingots having a thickness of 5 mm. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours, then were water quenched. This procedure yielded a nickel-base alloy plate 21 according to the invention (Example 21) having the ingredient composition shown in Table 2.
  • A prior-art alloy plate 1 (Prior-Art Example 1) made of SUS304 stainless steel and having a thickness of 5 mm and a prior-art alloy plate 2 (Prior-Art Example 2) made of SUS316L stainless steel and of the same thickness were also prepared.
  • These nickel-base alloy plates 1 to 21 (Examples), comparative nickel-base alloy plates 1-10 (Comparative Examples) and prior-art alloy plates 1 and 2 (Prior-Art Examples) were each cut into test pieces having a length of 10 mm and a width of 50 mm. The test pieces were surface polished by finishing with waterproof emery paper #400, following which they were ultrasonically degreased in acetone for five minutes.
  • A 1,000 ppm H2SO4 solution and a 500 ppm H2SO4 solution were prepared as test solutions which simulate the sulfuric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell. A 500 ppm HF solution and a 50 ppm HF solution were also prepared as test solutions which simulate the hydrofluoric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell. In addition, polypropylene test containers were prepared for use.
  • The test pieces from nickel-base alloy plates 1 to 21 (Examples), comparative nickel-base alloy plates 1 to 10 (Comparative Examples) and prior-art alloy plates 1 and 2 (Prior-Art Examples) were individually placed, together with 200 ml portions of the test solutions prepared above, in the polypropylene test containers. These were then vacuum degassed in a glove box, and sealed by closure with a lid within a hydrogen atmosphere. The sealed polypropylene test containers were placed in a test chamber set at 80° C. and held therein for 500 hours.
  • The polypropylene test containers were subsequently removed and cooled, following which the elements that leached out into the H2SO4 solutions and the HF solutions were quantitatively determined by inductively coupled plasma emission spectroscopy, and the total amount of metal ions that leached from each test piece was measured. This total amount of leached metal ions was divided by the surface area of the test piece to give the amount of leached metal ions per unit surface area. The results are shown in Tables 3 and 4.
    TABLE 1
    Ni- Ingredient composition (wt %)
    base Ni and
    alloy inadvertent
    plate Cr Ta Mg N Mn Mo Fe Si C# impurities
    EX 1 30.7 2.01 0.016 0.012 0.18 0.12 0.021 0.02 balance
    EX
    2 29.3 2.41 0.014 0.008 0.24 0.02 balance
    EX
    3 41.6 1.01 0.019 0.011 0.14 0.01 balance
    EX
    4 37.6 1.11 0.011 0.021 0.29 0.02 balance
    EX
    5 33.4 2.96 0.012 0.013 0.14 0.02 balance
    EX
    6 37.6 1.48 0.001 0.014 0.19 0.02 balance
    EX
    7 34.2 2.36 0.049 0.007 0.16 0.02 balance
    EX 8 34.7 2.34 0.016 0.002 0.17 0.01 balance
    EX
    9 36.4 1.87 0.023 0.039 0.11 0.02 balance
    EX
    10 35.2 1.96 0.026 0.025 0.05 0.02 balance
    EX
    11 35.3 2.38 0.021 0.018 0.49 0.02 balance
    EX
    12 33.6 1.77 0.018 0.029 0.24 0.11 0.02 balance
    EX 13 34.8 1.98 0.015 0.020 0.16 1.98 0.02 balance
    EX 14 34.1 1.76 0.033 0.025 0.11 0.5 0.02 balance
    EX 15 33.7 1.87 0.031 0.030 0.16 0.99 0.02 balance
    EX 16 34.8 2.34 0.026 0.017 0.38 0.01 0.02 balance
    EX 17 34.8 2.17 0.028 0.021 0.18 0.09 0.03 balance

    C# indicates the amount of carbon included as inadvertent impurities.
  • TABLE 2
    Ingredient composition (wt %)
    Ni-base Ni and
    alloy inadvertent
    plate Cr Ta Mg N Mn Mo Fe Si C# impurities
    EX 18 32.5 2.27 0.030 0.006 0.26 0.21 0.14 0.02 balance
    EX 19 35.1 1.75 0.032 0.028 0.23 0.33 0.06 0.01 balance
    EX 20 34.1 1.69 0.021 0.013 0.11 0.22 0.04 0.02 balance
    EX 21 34.7 1.76 0.023 0.027 0.39 0.31 0.24 0.03 0.01 balance
    CE 1 28.5* 1.56 0.018 0.032 0.24 0.02 balance
    CE
    2 43.5* 1.86 0.015 0.035 0.21 0.02 balance
    CE
    3 32.5 0.9* 0.014 0.034 0.13 0.02 balance
    CE
    4 35.0 3.30* 0.017 0.022 0.27 0.01 balance
    CE
    5 36.2 1.83 —* 0.012 0.38 0.02 balance
    CE
    6 35.4 1.62 0.055* 0.015 0.22 0.02 balance
    CE
    7 35.7 1.45 0.022 —* 0.09 0.02 balance
    CE 8 34.8 1.67 0.024 0.045* 0.37 0.01 balance
    CE
    9 36.1 1.45 0.016 0.019 0.04* 0.01 balance
    CE
    10 34.2 1.57 0.017 0.028 0.55* 0.02 balance
    Prior-Art SUS304
    Example 1
    Prior Art SUS316L
    Example 2

    *An asterisk indicates a value outside the compositional range of the invention.

    C# indicates the amount of carbon included as inadvertent impurities.
  • TABLE 3
    Amount of Amount of
    metal ions metal ions Amount of Amount of
    leached by leached by metal ions metal ions
    1,000 ppm 500 ppm leached by leached by
    H2SO4 H2SO4 500 ppm HF 50 ppm HF
    Ni-base solution solution solution solution
    alloy (ppm/cm2) (ppm/cm2) (ppm/cm2) (ppm/cm2)
    Example 1 1.01 0.19 0.42 0.18
    Example 2 1.18 0.19 0.41 0.21
    Example 3 0.30 0.08 0.24 0.05
    Example 4 0.42 0.11 0.31 0.07
    Example 5 0.86 0.10 0.24 0.15
    Example 6 0.49 0.12 0.28 0.09
    Example 7 0.77 0.12 0.27 0.13
    Example 8 0.74 0.12 0.26 0.13
    Example 9 0.60 0.12 0.27 0.10
    Example 10 0.67 0.13 0.28 0.12
    Example 11 0.72 0.11 0.25 0.12
    Example 12 0.74 0.15 0.34 0.13
    Example 13 0.69 0.13 0.29 0.12
    Example 14 0.70 0.15 0.33 0.12
    Example 15 0.74 0.15 0.33 0.13
    Example 16 0.74 0.12 0.26 0.13
    Example 17 0.72 0.13 0.27 0.12
    Example 18 0.87 0.15 0.32 0.15
    Example 19 0.65 0.14 0.31 0.11
    Example 20 0.69 0.15 0.34 0.12
    Example 21 0.67 0.14 0.31 0.12
  • TABLE 4
    Amount of Amount of
    metal ions metal ions Amount of Amount of
    leached by leached by metal ions metal ions
    1,000 ppm 500 ppm leached by leached by
    H2SO4 H2SO4 500 ppm HF 50 ppm HF
    Ni-base solution solution solution solution
    alloy (ppm/cm2) (ppm/cm2) (ppm/cm2) (ppm/cm2)
    Comp. Ex. 1 3.65 1.98 3.88 2.12
    Comp. Ex. 2 2.01 0.96 2.45 1.02
    Comp. Ex. 3 2.63 1.56 1.36 0.99
    Comp. Ex. 4 1.98 1.05 1.88 0.87
    Comp. Ex. 5 cracks arose during test piece fabrication
    Comp. Ex. 6 2.12 0.98 2.19 0.87
    Comp. Ex. 7 cracks arose during test piece fabrication
    Comp. Ex. 8 3.36 1.12 2.45 1.14
    Comp. Ex. 9 cracks arose during test piece fabrication
    Comp. Ex. 10 2.31 1.12 3.20 1.26
    Prior-Art 56.2 19.8 72.1 18.8
    Example 1
    Prior-Art 33.3 10.2 36.8 9.4
    Example 2
  • As is apparent from the results shown in Tables 1 to 4, the nickel-base alloy plates in Examples 1 to 21 according to the first to fourth aspects of the invention have much lower amounts of metal ions leached per unit surface area of the test pieces than the alloy plates 1 and 2 in Prior-Art Examples 1 and 2. The test pieces from the nickel-base alloy plates in Comparative Examples 10 to 10, which fall outside the scope of this invention, either had somewhat high amounts of metal ions leached or gave rise to cracks during machining of the test plates.
  • Experiment 2 Fifth and Sixth Aspects of the Invention
  • In each example, low carbon-content starting materials were prepared. These starting materials were melted and cast in an ordinary high-frequency induction furnace, thereby producing 12 mm thick ingots of the ingredient compositions shown in Tables 5 to 7. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours. Next, while maintaining the temperature within a range of 1000 to 1230° C., the ingots were reduced to a final thickness of 5 mm by hot rolling at a thickness reduction rate of 1 mm per pass. The resulting plates were then subjected to solution heat treatment in which they were held at 1200° C. for 30 minutes then water quenched. Next, the surfaces were buffed, giving nickel-base alloy plates 22 to 41 according to the invention (Examples) and comparative nickel-base alloy plates 11 to 20 (Comparative Examples) having the ingredient compositions shown in Tables 5 to 7.
  • In a similar process, low carbon-content starting materials were melted and cast in an ordinary high-frequency melting furnace, thereby producing 5 mm thick precision-cast ingots of the ingredient compositions shown in Table 6. These ingots were subjected to homogenizing heat treatment at 1230° C. for 10 hours, then were water quenched. This procedure yielded a nickel-base alloy plate 42 according to the invention (Example).
  • A prior-art alloy plate 3 (Prior-Art Example) made of SUS304 stainless steel and having a thickness of 5 mm and a prior-art alloy plate 4 (Prior-Art Example) made of SUS316L stainless steel and of the same thickness were also prepared.
  • These inventive nickel-base alloy plates 22 to 41 (Examples), comparative nickel-base alloy plates 11-20 (Comparative Examples) and prior-art alloy plates 3 and 4 (Prior-Art Examples) were each cut into test pieces having a length of 10 mm and a width of 50 mm. The test pieces were surface polished by finishing with waterproof emery paper #400, following which they were ultrasonically degreased in acetone for five minutes.
  • A 1,000 ppm H2SO4 solution and a 500 ppm H2SO4 solution were prepared as test solutions which simulate the sulfuric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell. A 500 ppm HF solution and a 50 ppm HF solution were also prepared as test solutions which simulate the hydrofluoric acid acidic water that forms in the environment for forming a polymer electrolyte fuel cell. In addition, polypropylene test containers were prepared for use.
  • The test pieces from inventive nickel-base alloy plates 22 to 41 (Examples), comparative nickel-base alloy plates 11 to 20 (Comparative Examples) and prior-art alloy plates 3 and 4 (Prior-Art Examples) were individually placed, together with 200 ml portions of the test solutions prepared above, in the polypropylene test containers. These were then vacuum degassed in a glove box, and sealed by closure with a lid within a hydrogen atmosphere. These sealed polypropylene test containers were placed in a test chamber set at 80° C. and held therein for 500 hours.
  • The polypropylene test containers were subsequently removed and cooled, following which the elements that leached out into the H2SO4 solutions and the HF solutions were quantitatively determined by inductively coupled plasma emission spectroscopy, and the total amount of metal ions that leached from each test piece was measured. This total amount of leached metal ions was divided by the surface area of the test piece to give the amount of leached metal ions per unit surface area. The results are shown in Tables 5 to 7.
    TABLE 5
    Amount of Amount of
    metal ions metal ions Amount of Amount of
    leached by leached by metal ion metal ion
    Ingredient composition (wt %) 1,000 ppm 500 ppm leached by leached by
    Ni and H2SO4 H2SO4 500 ppm HF 50 ppm HF
    Ni-base inadvertent solution solution solution solution
    alloy Cr Mo Mg N Mn Fe Si C# impurities (ppm/cm2) (ppm/cm2) (ppm/cm2) (ppm/cm2)
    EX 22 44.0 0.90 0.011 0.017 0.06 0.10 0.04 0.02 balance 0.25 0.09 0.90 0.32
    EX 23 43.2 0.28 0.039 0.006 0.18 0.02 balance 0.31 0.11 1.12 0.40
    EX 24 49.8 0.41 0.030 0.009 0.10 0.03 balance 0.10 0.07 0.37 0.13
    EX 25 45.1 0.11 0.022 0.017 0.22 0.02 balance 0.20 0.06 0.71 0.25
    EX 26 43.1 1.99 0.026 0.010 0.08 0.02 balance 0.34 0.12 1.17 0.42
    EX 27 45.1 0.41 0.034 0.011 0.07 0.01 balance 0.20 0.06 0.72 0.25
    EX 28 43.5 0.32 0.038 0.002 0.11 0.02 balance 0.29 0.10 1.05 0.37
    EX 29 44.1 0.32 0.037 0.038 0.10 0.02 balance 0.25 0.09 0.90 0.31
    EX 30 46.0 0.42 0.002 0.018 0.05 0.02 balance 0.16 0.12 0.62 0.21
    EX 31 44.6 0.44 0.049 0.020 0.48 0.01 balance 0.23 0.09 0.81 0.28
    EX 32 45.1 0.43 0.034 0.014 0.10 0.05 0.02 balance 0.20 0.06 0.73 0.25
    EX 33 42.9 0.42 0.014 0.007 0.19 0.99 0.02 balance 0.34 0.12 1.29 0.44
    EX 34 44.0 0.43 0.015 0.018 0.14 0.01 0.02 balance 0.25 0.09 0.94 0.32
    EX 35 43.7 0.41 0.027 0.018 0.09 0.09 0.02 balance 0.27 0.10 1.02 0.35

    C# indicates the amount of carbon included as inadvertent impurities.
  • TABLE 6
    Amount of Amount of
    metal ions metal ions Amount of Amount of
    leached by leached by metal ion metal ion
    Ingredient composition (wt %) 1,000 ppm 500 ppm leached by leached by
    Ni and H2SO4 H2SO4 500 ppm HF 50 ppm HF
    Ni-base inadvertent solution solution solution solution
    alloy Cr Mo Mg N Mn Fe Si C# impurities (ppm/cm2) (ppm/cm2) (ppm/cm2) (ppm/cm2)
    EX 36 43.1 0.42 0.036 0.027 0.14 0.03 balance 0.32 0.12 1.22 0.42
    EX 37 46.3 0.34 0.026 0.010 0.26 0.02 balance 0.16 0.06 0.60 0.20
    EX 38 44.1 0.42 0.008 0.016 0.22 0.18 0.04 0.02 balance 0.24 0.09 0.93 0.31
    EX 39 46.0 0.42 0.034 0.005 0.21 0.11 0.05 0.02 balance 0.18 0.07 0.64 0.21
    EX 40 44.6 0.32 0.029 0.022 0.18 0.26 0.03 0.02 balance 0.25 0.08 0.83 0.28
    EX 41 43.5 0.44 0.005 0.021 0.09 0.13 0.02 0.02 balance 0.29 0.10 1.10 0.38
    EX 42 44.4 0.43 0.023 0.022 0.31 0.01 balance 0.22 0.08 0.88 0.29
    CE 11 42.5* 0.51 0.014 0.031 0.22 0.02 balance 4.11 1.45 3.04 1.12
    CE 12 50.4* 0.54 0.033 0.034 0.27 0.02 balance cracks arose during test piece fabrication
    CE 13 44.4 —* 0.026 0.033 0.32 0.02 balance 3.21 0.55 3.25 0.16
    CE 14 44.8 2.3* 0.034 0.024 0.25 0.03 balance cracks arose during test piece fabrication
    CE 15 45.6 0.85 —* 0.013 0.27 0.02 balance cracks arose during test piece fabrication
    CE 16 45.4 0.61 0.058* 0.015 0.20 0.02 balance 3.33 1.23 3.72 1.23
    CE 17 45.3 0.44 0.037 —* 0.07 0.02 balance cracks arose during test piece fabrication

    *An asterisk indicates a value outside the compositional range of the invention.

    C# indicates the amount of carbon included as inadvertent impurities.
  • TABLE 7
    Amount of Amount of
    metal ions metal ions Amount of Amount of
    leached by leached by metal ion metal ion
    Ingredient composition (wt %) 1,000 ppm 500 ppm leached by leached by
    Ni and H2SO4 H2SO4 500 ppm HF 50 ppm HF
    Ni-base inadvertent solution solution solution solution
    alloy Cr Mo Mg N Mn Fe Si C# impurities (ppm/cm2) (ppm/cm2) (ppm/cm2) (ppm/cm2)
    CE 18 44.2 0.68 0.032 0.045* 0.16 0.02 balance 3.26 1.56 3.01 1.05
    CE 19 46.1 0.46 0.035 0.019 0.04* 0.01 balance cracks arose during test piece fabrication
    CE 20 44.7 0.59 0.034 0.026 0.55* 0.02 balance 3.42 1.84 3.45 1.88
    Prior-Art SUS304 56.2 19.8 72.1 18.8
    Example 3
    Prior-Art SUS316L 33.3 10.2 36.8 9.4
    Example 4

    *An asterisk indicates a value outside the compositional range of the invention.

    C# indicates the amount of carbon included as inadvertent impurities.
  • As is apparent from the results shown in Tables 5 to 7, the nickel-base alloy plates in Examples 22 to 42 according to the fifth and sixth aspects of the invention have much lower amounts of metal ion leached per unit surface area of the test pieces than the alloy plates 3 and 4 in Prior-Art Examples 3 and 4. The test pieces from the nickel-base alloy plates in Comparative Examples 11 to 20, which fall outside the scope of this invention, either had somewhat high amounts of metal ions leached or gave rise in most cases to cracks during machining of the test plates.
  • INDUSTRIAL APPLICABILITY
  • The nickel-base alloys of the invention undergo very little leaching of metal ions in an environment for forming a polymer electrolyte fuel cell. Therefore, by assembling polymer electrolyte fuel cells using components made of the nickel-base alloys of the invention, deterioration of the solid electrolyte membrane can be suppressed, enabling polymer electrolyte fuel cells with a longer lifetime to be achieved. This invention will thus be of great industrial benefit.
  • As noted above, the nickel-base alloys of the invention are most effective when used in an environment for forming a polymer electrolyte fuel cell containing sulfuric acid or hydrofluoric acid. However, these nickel-base alloys are not limited only to use under such circumstances, and also undergo very little leaching of metal ions in an environment for forming a polymer electrolyte fuel cell containing formic acid. Furthermore, in addition to use in polymer electrolyte fuel cells, the inventive metal-base alloys can also be used to make components for drug manufacturing equipment from which the leaching of metal ions cannot be tolerated.

Claims (42)

1. A nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
2. A nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese and 0.1 to 2% molybdenum, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
3. A nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
4. A nickel-base alloy comprising, by mass, at least 29% but less than 42% chromium, more than 1% and not more than 3% tantalum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, 0.1 to 2% molybdenum, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
5. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
6. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
7. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
8. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
9. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
10. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 1.
11. A nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, and 0.05 to 0.5% manganese, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
12. A nickel-base alloy comprising, by mass, more than 43% and not more than 50% chromium, 0.1 to 2% molybdenum, 0.001 to 0.05% magnesium, 0.001 to 0.04% nitrogen, 0.05 to 0.5% manganese, and one or both of 0.05 to 1.0% iron and 0.01 to 0.1% silicon, with the balance being nickel and inadvertent impurities, the amount of carbon included in the alloy as inadvertent impurities being not more than 0.05%.
13. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
14. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
15. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
16. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
17. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
18. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 11.
19. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
20. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
21. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
22. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
23. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
24. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
25. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
26. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
27. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
28. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
29. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
30. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
31. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
32. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
33. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
34. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 2.
35. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 3.
36. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 4.
37. A structural member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
38. A manifold member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
39. A pipe member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
40. A fastener member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
41. A support plate member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
42. A separator member for a polymer electrolyte fuel cell, which member is made of the nickel-base alloy according to claim 12.
US10/546,130 2003-02-21 2004-02-20 Ni base alloy Abandoned US20060165553A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2003-44416 2003-02-21
JP2003044417A JP4174715B2 (en) 2003-02-21 2003-02-21 Ni-based alloy with extremely low ion elution in a polymer electrolyte fuel cell environment
JP2003044416 2003-02-21
JP2003-44417 2003-02-21
JP2004027444A JP4174722B2 (en) 2003-02-21 2004-02-04 Ni-based alloy with extremely low ion elution in a polymer electrolyte fuel cell environment
JP2004-27444 2004-02-04
PCT/JP2004/001995 WO2004074528A1 (en) 2003-02-21 2004-02-20 Ni BASE ALLOY

Publications (1)

Publication Number Publication Date
US20060165553A1 true US20060165553A1 (en) 2006-07-27

Family

ID=32912840

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/546,130 Abandoned US20060165553A1 (en) 2003-02-21 2004-02-20 Ni base alloy

Country Status (3)

Country Link
US (1) US20060165553A1 (en)
EP (2) EP1908854B1 (en)
WO (1) WO2004074528A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018139A1 (en) * 2000-01-24 2001-08-30 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
US20020172849A1 (en) * 2001-04-06 2002-11-21 Qinbai Fan Low cost metal bipolar plates and current collectors for polymer electrolyte membrane fuel cells
US20030068523A1 (en) * 2001-02-28 2003-04-10 Yasushi Kaneta Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
US20030134174A1 (en) * 2000-12-28 2003-07-17 Jun Akikusa Fuel cell module and structure for gas supply to fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311386A (en) * 1992-05-08 1993-11-22 Kobe Steel Ltd Powdery material for thermal spraying excellent in corrosion resistance and erosion resistance at high temperature
JPH0790440A (en) * 1993-09-20 1995-04-04 Sumitomo Special Metals Co Ltd Metallic material for fused carbonate type fuel cell
JPH09256087A (en) * 1996-03-18 1997-09-30 Mitsubishi Materials Corp Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance
JP4719948B2 (en) * 1999-06-16 2011-07-06 住友電気工業株式会社 Separator for polymer electrolyte fuel cell
JP3864771B2 (en) * 2001-12-05 2007-01-10 三菱マテリアル株式会社 Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned
CN100338247C (en) * 2002-01-08 2007-09-19 三菱麻铁里亚尔株式会社 Nickel-based alloy with excellent corrosion resistance in inorganic-acid-containing supercritical water environment
JP2005317479A (en) * 2004-04-30 2005-11-10 Daido Steel Co Ltd Metal separator for fuel cell, its manufacturing method, metallic material for fuel cell and fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018139A1 (en) * 2000-01-24 2001-08-30 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
US20030134174A1 (en) * 2000-12-28 2003-07-17 Jun Akikusa Fuel cell module and structure for gas supply to fuel cell
US20030068523A1 (en) * 2001-02-28 2003-04-10 Yasushi Kaneta Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
US20020172849A1 (en) * 2001-04-06 2002-11-21 Qinbai Fan Low cost metal bipolar plates and current collectors for polymer electrolyte membrane fuel cells

Also Published As

Publication number Publication date
EP1908854A1 (en) 2008-04-09
EP1595963A4 (en) 2006-06-14
EP1908854B1 (en) 2011-10-19
EP1595963A1 (en) 2005-11-16
WO2004074528A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
EP1235290B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
EP1717329A1 (en) Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell
WO2011013832A1 (en) Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
CN103882266A (en) Nickel-based alloy for fused salt reactor and preparation method of nickel-based alloy
JP3397169B2 (en) Austenitic stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator
JP2000294255A (en) Solid high polymer fuel cell
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
WO2006012129A2 (en) Stainless steel alloy and bipolar plates
US20060165553A1 (en) Ni base alloy
JP4174722B2 (en) Ni-based alloy with extremely low ion elution in a polymer electrolyte fuel cell environment
JP2007191763A (en) Austenitic stainless steel for separator of polymer-electrolyte fuel cell, and separator of fuel cell
JP5217755B2 (en) Stainless steel for fuel cell separator and fuel cell separator
JP4174715B2 (en) Ni-based alloy with extremely low ion elution in a polymer electrolyte fuel cell environment
JP2000303151A (en) Ferritic stainless steel for conducting electrical parts, solid high polymer type fuel battery separator and solid high polymer type fuel battery
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP2000328205A (en) Ferritic stainless steel for conductive electric parts and fuel cell
US7014938B2 (en) Separator for fuel cell
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator
JP2020111806A (en) Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
KR102497442B1 (en) Austenitic stainless steel for polymer fuel cell separator with improved contact resistance and manufacturing method thereof
CN110212210B (en) Stainless steel base material, separator for fuel cell, and fuel cell
US20230032485A1 (en) Stainless steel for separator of polymer fuel cell having excellent corrosion resistance
JP6308330B2 (en) Titanium alloy, titanium material, separator, cell, and polymer electrolyte fuel cell
KR101819697B1 (en) Austenitic stainless steel having excellent corrosion resistance at welded part and high-temperature creep resistance and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI MATERIALS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUGAHARA, KATSUO;REEL/FRAME:017688/0570

Effective date: 20050630

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION