US20060159684A1 - Compositions and methods for the threatment of sepsis - Google Patents
Compositions and methods for the threatment of sepsis Download PDFInfo
- Publication number
- US20060159684A1 US20060159684A1 US11/236,188 US23618805A US2006159684A1 US 20060159684 A1 US20060159684 A1 US 20060159684A1 US 23618805 A US23618805 A US 23618805A US 2006159684 A1 US2006159684 A1 US 2006159684A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- antibodies
- seq
- peptides
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010040047 Sepsis Diseases 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 70
- 239000000203 mixture Substances 0.000 title claims abstract description 50
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 291
- 238000011282 treatment Methods 0.000 claims abstract description 26
- 241000282414 Homo sapiens Species 0.000 claims description 87
- 230000001225 therapeutic effect Effects 0.000 claims description 31
- 230000000295 complement effect Effects 0.000 claims description 27
- 208000024891 symptom Diseases 0.000 claims description 17
- 230000002829 reductive effect Effects 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 110
- 210000004899 c-terminal region Anatomy 0.000 abstract description 106
- 241001465754 Metazoa Species 0.000 abstract description 45
- 201000010099 disease Diseases 0.000 abstract description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 10
- 239000003053 toxin Substances 0.000 abstract description 9
- 231100000765 toxin Toxicity 0.000 abstract description 9
- 108700012359 toxins Proteins 0.000 abstract description 9
- 230000002265 prevention Effects 0.000 abstract description 8
- 230000001404 mediated effect Effects 0.000 abstract description 5
- 241000700159 Rattus Species 0.000 description 65
- 210000000440 neutrophil Anatomy 0.000 description 63
- 210000004027 cell Anatomy 0.000 description 39
- 150000001413 amino acids Chemical class 0.000 description 33
- 210000004369 blood Anatomy 0.000 description 30
- 239000008280 blood Substances 0.000 description 30
- 108090000623 proteins and genes Proteins 0.000 description 28
- 239000000306 component Substances 0.000 description 27
- 229940024606 amino acid Drugs 0.000 description 25
- 235000001014 amino acid Nutrition 0.000 description 25
- 230000027455 binding Effects 0.000 description 24
- 208000015181 infectious disease Diseases 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 18
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 16
- 230000035605 chemotaxis Effects 0.000 description 15
- 230000002163 immunogen Effects 0.000 description 15
- 210000004897 n-terminal region Anatomy 0.000 description 15
- 241000282412 Homo Species 0.000 description 14
- 230000004927 fusion Effects 0.000 description 13
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 13
- 238000012216 screening Methods 0.000 description 13
- 208000031729 Bacteremia Diseases 0.000 description 12
- 208000014674 injury Diseases 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000001356 surgical procedure Methods 0.000 description 12
- 230000004083 survival effect Effects 0.000 description 12
- 201000009906 Meningitis Diseases 0.000 description 11
- 239000002671 adjuvant Substances 0.000 description 11
- 239000000427 antigen Substances 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 208000013223 septicemia Diseases 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 10
- 239000002158 endotoxin Substances 0.000 description 10
- 108020001507 fusion proteins Proteins 0.000 description 10
- 102000037865 fusion proteins Human genes 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000001154 acute effect Effects 0.000 description 8
- 239000003242 anti bacterial agent Substances 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 230000003115 biocidal effect Effects 0.000 description 8
- 230000003399 chemotactic effect Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 230000008733 trauma Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 229940088710 antibiotic agent Drugs 0.000 description 7
- 230000004154 complement system Effects 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 230000003053 immunization Effects 0.000 description 7
- 108010004093 retinal S antigen peptide M Proteins 0.000 description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 108010005636 polypeptide C Proteins 0.000 description 6
- 238000011321 prophylaxis Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000009640 blood culture Methods 0.000 description 5
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000000224 granular leucocyte Anatomy 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 108010091748 peptide A Proteins 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 102000005720 Glutathione transferase Human genes 0.000 description 4
- 108010070675 Glutathione transferase Proteins 0.000 description 4
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 230000003187 abdominal effect Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 241001148470 aerobic bacillus Species 0.000 description 4
- 210000000628 antibody-producing cell Anatomy 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 210000002969 egg yolk Anatomy 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229960000310 isoleucine Drugs 0.000 description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 4
- 102000005590 Anaphylatoxin C5a Receptor Human genes 0.000 description 3
- 108010059426 Anaphylatoxin C5a Receptor Proteins 0.000 description 3
- 206010009192 Circulatory collapse Diseases 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 208000037487 Endotoxemia Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 206010017523 Fungaemia Diseases 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- 206010027202 Meningitis bacterial Diseases 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- 206010037660 Pyrexia Diseases 0.000 description 3
- 206010040070 Septic Shock Diseases 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229940009098 aspartate Drugs 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 201000009904 bacterial meningitis Diseases 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000004534 cecum Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000000546 chi-square test Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000024203 complement activation Effects 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000013345 egg yolk Nutrition 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000863 peptide conjugate Substances 0.000 description 3
- 230000036581 peripheral resistance Effects 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000036303 septic shock Effects 0.000 description 3
- 201000009890 sinusitis Diseases 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000010444 Acidosis Diseases 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 108010089414 Anaphylatoxins Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 206010004053 Bacterial toxaemia Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108010075254 C-Peptide Proteins 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- 102100029727 Enteropeptidase Human genes 0.000 description 2
- 108010013369 Enteropeptidase Proteins 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 241000606768 Haemophilus influenzae Species 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 206010027417 Metabolic acidosis Diseases 0.000 description 2
- 208000034486 Multi-organ failure Diseases 0.000 description 2
- 208000010718 Multiple Organ Failure Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 241000588650 Neisseria meningitidis Species 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 208000009182 Parasitemia Diseases 0.000 description 2
- 208000030852 Parasitic disease Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 241000193998 Streptococcus pneumoniae Species 0.000 description 2
- 208000013222 Toxemia Diseases 0.000 description 2
- 206010058874 Viraemia Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- -1 aromatic amino acids Chemical class 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000006161 blood agar Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002820 chemotaxin Substances 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 239000000562 conjugate Substances 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000002949 hemolytic effect Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 229960001340 histamine Drugs 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 244000000040 protozoan parasite Species 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000007560 sedimentation technique Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 2
- 208000008203 tachypnea Diseases 0.000 description 2
- 206010043089 tachypnoea Diseases 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- HVAUUPRFYPCOCA-AREMUKBSSA-N 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C HVAUUPRFYPCOCA-AREMUKBSSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 208000018680 Abdominal injury Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010003598 Atelectasis Diseases 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 101710091342 Chemotactic peptide Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 101710172562 Cobra venom factor Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 208000028771 Facial injury Diseases 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010017964 Gastrointestinal infection Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000023329 Gun shot wound Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001132113 Homo sapiens Peroxisomal testis-specific protein 1 Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 101000872804 Megathura crenulata Hemocyanin 1 Proteins 0.000 description 1
- 208000004221 Multiple Trauma Diseases 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 102400000569 Myeloperoxidase Human genes 0.000 description 1
- 108090000235 Myeloperoxidases Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000002565 Open Fractures Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100034529 Peroxisomal testis-specific protein 1 Human genes 0.000 description 1
- 108010003541 Platelet Activating Factor Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010053879 Sepsis syndrome Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000295644 Staphylococcaceae Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 206010058041 Wound sepsis Diseases 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001986 anti-endotoxic effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 201000005008 bacterial sepsis Diseases 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000002192 cholecystectomy Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000007646 directional migration Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 244000000059 gram-positive pathogen Species 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 238000009802 hysterectomy Methods 0.000 description 1
- 210000003767 ileocecal valve Anatomy 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 208000003669 immune deficiency disease Diseases 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000002134 immunopathologic effect Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000015095 lager Nutrition 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 208000018773 low birth weight Diseases 0.000 description 1
- 231100000533 low birth weight Toxicity 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012543 microbiological analysis Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000006548 oncogenic transformation Effects 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 229940116357 potassium thiocyanate Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000001533 respiratory mucosa Anatomy 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008718 systemic inflammatory response Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000014723 transformation of host cell by virus Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 208000019206 urinary tract infection Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 230000004218 vascular function Effects 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/36—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/472—Complement proteins, e.g. anaphylatoxin, C3a, C5a
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
Definitions
- the present invention relates to compositions and methods for the prevention and treatment of blood-borne and toxin-mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis in humans as well as other animals.
- Sepsis is a major cause of morbidity and mortality in humans and other animals. It is estimated that 400,000-500,000 episodes of sepsis resulted in 100,000-175,000 human deaths in the U.S. alone in 1991. Sepsis has become the leading cause of death in intensive care units among patients with non-traumatic illnesses. [G. W. Machiedo et al., Surg. Gyn. & Obstet. 152:757-759 (1981).] It is also the leading cause of death in young livestock, affecting 7.5-29% of neonatal calves [D. D. Morris et al., Am. J. Vet. Res. 47:2554-2565 (1986)], and is a common medical problem in neonatal foals. [A. M.
- Sepsis is a systemic reaction characterized by arterial hypotension, metabolic acidosis, decreased systemic vascular resistance, tachypnea and organ dysfunction. Sepsis can result from septicemia (i.e., organisms, their metabolic end-products or toxins in the blood stream), including bacteremia (i.e., bacteria in the blood), as well as toxemia (i.e., toxins in the blood), including endotoxemia (i.e., endotoxin in the blood).
- bacteremia includes occult bacteremia observed in young febrile children with no apparent foci of infection.
- fungemia i.e., fungi in the blood
- viremia i.e., viruses or virus particles in the blood
- parasitemia i.e., helminthic or protozoan parasites in the blood.
- microorganisms The systemic invasion of microorganisms presents two distinct problems. First, the growth of the microorganisms can directly damage tissues, organs, and vascular function. Second, toxic components of the microorganisms can lead to rapid systemic inflammatory responses that can quickly damage vital organs and lead to circulatory collapse (i.e., septic shock) and oftentimes, death.
- Gram-negative sepsis is the most common and has a case fatality rate of about 35%. The majority of these infections are caused by Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Gram-positive pathogens such as the Staphylococci and Streptococci are the second major cause of sepsis.
- the third major group includes fungi, with fungal infections causing a relatively small percentage of sepsis cases, but with a high mortality rate.
- anti-endotoxin antibody treatment administered after sepsis is established may yield little benefit because these antibodies cannot reverse the inflammatory cascade initiated by endotoxin.
- the high cost of each antibody could limit physicians' use of a product where no clear benefit has been demonstrated. [K. A. Schulman et al., JAMA 266:3466-3471 (1991).]
- these endotoxin antibodies only target gram-negative sepsis, and no equivalent antibodies exist for the array of gram-positive organisms and fungi.
- the present invention relates to compositions and methods for the prevention and treatment of blood-borne and toxin mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis in humans as well as other animals.
- the present invention provides a composition comprising antibody specific for complement component C5a peptide.
- the composition comprises antibody which is specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and the antibody is not reactive with the C-terminal region.
- the antibody is specific for the N-terminal region of complement component C5a peptide.
- the antibody is also not reactive with complement component C5 protein.
- the present invention be limited to antibodies specific for C5a peptides from certain animals.
- the antibody is specific for rat C5a peptide.
- the antibody is specific for bovine C5a peptide.
- the antibody is specific for porcine C5a peptide.
- the antibody is specific for human C5a peptide.
- the present invention be limited to antibodies generated in a particular animal.
- a variety of animals are useful for generating the antibodies of the present invention.
- the antibody is generated in an animal selected from a mouse, a rat, a horse, a goat, a chicken, and a rabbit.
- the antibodies are collected from the blood of the animal.
- the animal generating the antibodies is a bird, and the antibodies are collected from egg yolk.
- the antibodies are monoclonal. In another embodiment, the antibodies are humanized. In other embodiments, the antibodies are chimaeric. In a preferred embodiment, the antibodies are polyclonal.
- the present invention also provides a method of producing polyclonal antibody.
- the method comprises, providing; an animal and an immunogenic composition, wherein the composition comprises C-terminal truncated C5a peptides; and immunizing the animal with the immunogenic composition in order to generate antibodies.
- the immunogenic composition comprises adjuvant.
- antibodies are collected from the animal.
- the present invention be limited to antibodies specific for C5a peptides from any particular animal.
- the antibody is specific for rat C5a peptide.
- the antibody is specific for bovine C5a peptide.
- the antibody is specific for porcine C5a peptide.
- the antibody is specific for human C5a peptide.
- the present invention be limited to particular C-terminal truncated peptides.
- a variety of C-terminal truncated peptides are contemplated.
- the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide.
- the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide and a portion of the C-terminal region.
- the C-terminal truncated peptide is a fragment or portion of the N-terminal region of C5a peptide.
- the C-terminal truncated C5a peptide is between approximately 5 and 50 amino acids in length. In some embodiments, the C-terminal truncated peptide is approximately fifty amino acids in length. In other embodiments, the C-terminal truncated peptide is approximately five amino acids in length. In preferred embodiments, the C-terminal truncated peptides are 20 amino acids in length. In certain embodiments, the C-terminal truncated peptides are selected from SEQ ID NOS:2, 4, 5, 14, 15, and 16.
- the present invention also provides a method of treating a subject with the antibodies of the present invention.
- the method comprises; providing; a subject, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and wherein the antibody is not reactive with the C-terminal region; and administering the therapeutic composition to the subject.
- the antibody is specific for the N-terminal region of complement component C5a peptide.
- the present invention provides a method comprising; providing; a subject, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and wherein the antibody is not reactive with the C-terminal region; and administering the therapeutic composition to the subject.
- administering the therapeutic composition reduces the binding of complement component C5a peptide to one or more neutrophils of the subject.
- administering the therapeutic composition reduces bacteremia in the subject.
- administering the therapeutic composition increases the H 2 O 2 production of neutrophils of the subject.
- administering the therapeutic composition reduces the symptoms of sepsis.
- the therapeutic method of the present invention be limited to particular subjects.
- a variety of subjects are contemplated.
- the subject is selected from a pig, a rat, a cow, a horse, and a human.
- the therapeutic composition is administered to a subject suffering from symptoms of sepsis.
- the therapeutic composition is administered prophylactically to a subject at risk for sepsis, including new born humans and animals.
- the therapeutic method of the present invention be limited to certain modes of administration.
- a variety of modes of administering the therapeutic composition are contemplated.
- the therapeutic composition is administered by a mode selected from intravenously, intra-muscularly, subcutaneously, intradermally, intrapenrtoneally, intrapleurally, intrathecally, and topically.
- the present invention be limited to a particular therapeutic composition.
- a variety of compositions are contemplated.
- the therapeutic composition comprises a soluble mixture of anti-C5a antibodies.
- the anti-C5a antibodies are provided together with physiologically tolerable liquid, gels, solid carriers, diluents, adjuvants or excipients, and combinations thereof.
- the therapeutic composition comprises anti-C5a antibodies and other therapeutic agents (e.g. other immunoglobulins or antibiotics).
- the present invention also provides a method for screening C-terminal truncated C5a peptides to identify immunogens for the production of anti-C5a antibodies.
- the method comprises, providing a C-terminal truncated C5a peptide, modifying the amino acid sequence of said C-terminal truncated C5a peptide, and screening said C-terminal truncated C5a peptide to identify immunogens for the production of anti-C5a antibodies.
- the C-terminal truncated C5a peptide which is provided is selected from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16.
- the screening step involves a chemotaxis assay (See e.g. Examples 7, 8 and 11).
- the screening step involves a competitive binding assay (See e.g. Examples 10 and 11).
- the screening step involves administering the C-terminal truncated peptides to septic animals (See e.g. Example 11).
- FIG. 1 shows survival curves of septic rats with and without the administration of anti-C5a antibodies.
- FIG. 2 shows a graph demonstrating the ability of anti-C5a antibodies to reduce bacteria blood of septic rats.
- FIG. 3 shows a graph demonstrating the ability of anti-C5a antibodies to reduce bacteria in the organs of septic rats.
- FIG. 4 shows a graph demonstrating the ability of anti-C5a antibodies to increase the level of H 2 O 2 production in neutrophils of septic rats.
- FIG. 5 shows a graph demonstrating the ability of synthetic peptides to reduce human C5a-induced chemotaxis of neutrophils.
- FIG. 6 shows the chemotactic activity of KLH-linked synthetic peptides of human C5a peptide.
- FIG. 7 shows polyclonal rabbit anti-human C5a reactivity with regions of human C5a peptide.
- FIG. 8 shows the amino acid sequence of human C5a peptide and various smaller portions of the human C5a peptide.
- FIG. 9 shows a graph demonstrating the ability of certain synthetic peptides to inhibit the binding of human C5a peptide to human neutrophils.
- symptoms of sepsis refers to any symptoms characteristic of a subject with sepsis including but not limited to, arterial hypotension, metabolic acidosis, fever, decreased systemic vascular resistance, tachypnea and organ dysfunction.
- Sepsis can result from septicemia (i.e., organisms, their metabolic end-products or toxins in the blood stream), including bacteremia (i.e., bacteria in the blood), as well as toxemia (i.e., toxins in the blood), including endotoxemia (i.e., endotoxin in the blood).
- fungemia i.e., fungi in the blood
- viremia i.e., viruses or virus particles in the blood
- parasitemia i.e., helminthic or protozoan parasites in the blood.
- the phrase “reduces the symptoms of sepsis” refers to a qualitative or quantitative reduction in detectable symptoms, including but not limited to a detectable impact on the rate of recovery from disease.
- the phrase “at risk for sepsis” in reference to a subject is herein defined as a subject predisposed to the development of sepsis by virtue of the subject's medical status, including but not limited to such factors as infection, trauma (e.g., abdominal perforation, such as by a gun shot wound), surgery (e.g., intestinal surgery), and invasive procedures (e.g., placement of a catheter, etc.) and the like.
- trauma e.g., abdominal perforation, such as by a gun shot wound
- surgery e.g., intestinal surgery
- invasive procedures e.g., placement of a catheter, etc.
- the term “antigen” refers to any agent (e.g., any substance, compound, molecule [including macromolecules], or other moiety), that is recognized by an antibody, while the term “immunogen” refers to any agent (e.g., any substance, compound, molecule [including macromolecules], or other moiety) that can elicit an immunological response in an individual. These terms may be used to refer to an individual macromolecule or to a homogeneous or heterogeneous population of antigenic macromolecules. It-is intended that the term encompasses protein and peptide molecules or at least one portion of a protein or peptide molecule, which contains one or more epitopes.
- antigens are also immunogens, thus the term “antigen” is often used interchangeably with the term “immunogen.”
- the substance may then be used as an antigen in an assay to detect the presence of appropriate antibodies in the serum of the immunized animal.
- the term “specific for” when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general (i.e. non-specific or background binding).
- not reactive with when used in reference to the potential interaction of an antibody and a protein or peptide means that the antibody does not recognize or bind specifically to that particular protein (i.e. binding is at background levels).
- control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence.
- the control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression
- anti-C5a antibody refers to antibodies which are specific for complement component C5a peptide, or portions thereof.
- adjuvant is defined as a substance known to increase the immune response to other antigens when administered with other antigens. If adjuvant is used, it is not intended that the present invention be limited to any particular type of adjuvant—or that the same adjuvant, once used, be used all the time. It is contemplated that adjuvants may be used either separately or in combination.
- the present invention contemplates all types of adjuvant, including but not limited to agar beads, aluminum hydroxide or phosphate (alum), Incomplete Freund's Adjuvant, as well as Quil A adjuvant commercially available from Accurate Chemical and Scientific Corporation, Gerbu adjuvant also commercially available (GmDP; C.C. Biotech Corp.), and bacterin (i.e., killed preparations of bacterial cells).
- N-terminal region of C5a peptide refers to the N-terminal 50% of the complement component C5a peptide.
- C-terminal region of C5a peptide refers to the C-terminal 30% of the complement component C5a peptide.
- the term “wherein said antibody is not reactive with the C-terminal of C5a region” refers to antibodies that do not recognize or bind to the C-terminal 30% of the C5a peptide.
- C-terminal truncated C5a peptides refers to peptides of varying lengths derived from the N-terminal 70% of the C5a peptide, wlhiclh do not include amino acid sequences from the C-terminal 30% of the C5a peptide.
- these peptides include, but are not limited to, SEQ ID NO:2 (from Rat C5a peptide), and SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16 (from Human C5a peptide).
- C5a peptide As used herein, the terms “C5a peptide”, “C5a protein”, and “complement component C5a peptide” all refer to the complement component peptide in animals which is cleaved from the amino terminus of complement component C5 when the complement system is activated. Examples of animals with this protein include, but are not limited to, mice, rats, cows, pigs, and humans. This definition also includes peptides with synthetic sequences which share substantial homology to naturally occurring C5a peptides. An example of this type of sequence, includes, but is not limited to, the sequence disclosed in Mandecki W, et al., Proc Natl Acad Sci USA. June;82(11):3543-7(1985).
- modifying the amino acid sequence” of said C-terminal truncated C5a peptide refers to the addition, deletion, or substitution of one or more amino acids to create a variant or modified C-terminal truncated C5a peptide (See section II.b, below). Examples of such variants or modified sequences are listed in Table 3 below.
- a “variant” of a C5a peptide is defined as an amino acid sequence which differs by one or more amino acids from the C5a peptide (or C-terminal truncated C5a peptide) sequence.
- the variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g. replacement of leucine with isoleucine. More rarely, a variant may have “nonconservative” changes, e.g. replacement of glycine with a tryptophan.
- a variant may be an epitope as short as four amino acids in length, and as long as a modified full-lenth C5a peptide. More preferably, a variant is greater than five amino acids in length, and less than twenty-five amino acids in length. Variants may also contain a fusion protein. In such cases, the variant may have more amino acids than the natural, full-lenght C5a peptide.
- the present invention relates to compositions and methods for the prevention treatment of blood-borne and toxin mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis caused by various types of organisms in humans as well as other animals. It is contemplated that the present invention finds use in the treatment of gram-negative and gram-positive sepsis. Although the invention may be used for treatment of sepsis due to an individual organism, it may also be used to treat sepsis caused by multiple organisms (e.g., sepsis and/or bacteremia due to gram-negative and gram-positive organisms).
- the complement system is a complex group of proteins present in body fluids that, working together with antibodies or other factors, plays an important role as mediators of immune, allergic, immunochemical and immunopathological reactions. Activation of the complement system can result in a wide range of reactions such as lysis of various kinds of cells, bacteria and protozoa, inactivation of viruses, and the direct mediation of inflammatory processes. Through the hormone-like activity of several of its components, the complement system can recruit and enlist the participation of other humoral and cellular effector systems. These in turn can induce directed migration of leukocytes, trigger histamine release from mast cells, and stimulate the release of lysosomal constituents from phagocytes.
- the complement system consists of at least twenty distinct plasma proteins capable of interacting with each other, with antibodies, and with cell membranes. Many of these proteins, when activated, combine with still others to form enzymes that cleave and activate still other proteins in the system. The sequential activation of these proteins follows two main pathways, the classical pathway and the alternative pathway, Both pathways use a common terminal trunk that leads to cell lysis or virus inactivation.
- the classical pathway can be activated by antigen-antibody complexes, aggregated immunoglobulins and non-immunological substances such as DNA and trypsin-like enzymes.
- the classical pathway includes activation of C1, C4, C2 and C3. These components can be grouped into two functional units: C1 or recognition unit; and C4, C2 and C3 or activation unit. Five additional components denominated C5, C6, C7, C8, and C9 define the membrane attack unit forming the terminal trunk common to both pathways.
- C5a peptide also called anaphylatoxin, is a complement component peptide which is cleaved from the amino terminus of component C5 when the complement system is activated.
- C5a peptide has been shown to stimulate contraction of smooth muscle, enhance vascular permeability, promote the synthesis and release of other mediators including leukotrienes, prostaglandins, platelet-activating factor, and histamine.
- C5a peptide results in the accumulation of polymorphonuclear leukocytes (PMN) (i.e. neutrophils) and marcrophages at the site of inflammation, one of the hallmark events of an acute inflammatory response.
- PMN polymorphonuclear leukocytes
- marcrophages one of the hallmark events of an acute inflammatory response.
- C5a peptide is a potent chemotaxin for leukocytes, most notably PMN and macrophages, and it activates PMN causing them to release a variety of hydrolytic enzymes and to generate oxygen radicals. These latter-phenomena are thought to be responsible not only for the killing of microorganisms but for much of the tissue destruction that takes place in inflammatory situations.
- C5aR C5a receptor
- Neutrophils stimulated with C5a peptide become refractory (“deactivated”) to further stimulation with this peptide; following exposure to high doses of C5a peptide, global deactivation to chemotactic peptides occurs [Ward, P. A. & Becker, E. L., J. Exp. Med. 127:693-709 (1968)].
- the present invention contemplates antibodies specific for complement component C5a peptides and methods of using these antibodies to treat sepsis.
- these antibodies are specific for complement component C5a peptide, wherein said C5a peptide has a C-terminal region and an N-terminal region, and wherein said antibody is not reactive with said C-terminal region.
- the present invention contemplates monoclonal, polyclonal, and humanized antibodies to C5a peptides.
- the antibodies are specific for complement component C5a peptide, wherein said C5a peptide has a C-terminal region and an N-terminal region, and said antibody is not reactive with said C-terminal region.
- Monoclonal antibodies useful in this invention are obtained, for example, by well known hybridoma methods.
- an animal is immunized with a preparation containing C-terminal truncated peptides.
- a fused cell hybrid is then formed between antibody-producing cells from the immunized animal and an immortalizing cell such as a myeloma.
- antibodies of the present invention are produced by murine hybridomas formed by fusion of mouse myeloma or hybridoma which does not secrete antibody with murine spleen cells which secrete antibodies obtained from mice immunized against C-terminal truncated C5a peptides.
- mice are immunized with a primary injection of C-terminal truncated C5a peptides, followed by a number of boosting injections.
- sera of the mice may be screened to identify mice in which a substantial immune response to the C-terminal truncated C5a peptides has been evoked.
- spleen cells are obtained and fusions are performed. Suitable fusion techniques include, but are not limited to, the Sendai virus technique [Kohler, G. and Milstein, C., Nature 256:495 (1975)] or the polyethylene glycol method [Kennet, R. H., “Monoclonal Antibodies, Hybridoma—A New Dimension in Biological Analysis,” Plenum Press, NY (1980)].
- the hybridomas are then screened for production of anti-C5a antibodies.
- Suitable screening techniques include, but are not limited to, solid phase radioimmunoassay.
- a solid phase immunoadsorbent is prepared by coupling C5a peptides to an insoluble matrix. The immunoadsorbent is brought into contact with culture supernatants of hybridomas. After a period of incubation, the solid phase is separated from the supernatants, then contacted with a labelled antibody against murine immunoglobulin. Label associated with the immunoadsorbent indicates the presence of hybridoma products reactive with C5a peptides.
- the monoclonal anti-C5a antibodies are produced in large quantities by injecting anti-C5a antibody producing hybridoma cells into the peritoneal cavity of mice and, after an appropriate time, harvesting acites fluid from the mice which yield a high titer of homogenous antibody.
- the monoclonal antibodies are isolated therefrom.
- the antibodies are produced by culturing anti-C5a antibody producing cells in vitro and isolating secreted monoclonal anti-C5a antibodies from the cell culture medium directly.
- Another method of forming antibody-producing cells is by viral or oncogenic transformation.
- a B-lymphocyte which produces anti-C5a specific antibody is infected and transformed with a virus, such as the Epstein-Barr virus, to give an immortal antibody-producing cell [Kozbon and Roder, Immunol. Today 4:72-79 (1983)].
- the present invention also contemplates anti-C5a polyclonal antibodies.
- Polyclonal antibodies can be prepared by immunizing an animal with a crude preparation of C-terminal truncated C5a peptides, or purified C-terminal truncated C5a peptides. The animal is maintained under conditions whereby antibodies reactive with the components of the peptides are produced. [See e.g. Elzaim, et al., Infect. Immun. May;66(5):2170-9 (1998)]. Typically the animal is “boosted” by additional immunizations to increase the antibody titer. In one method, blood is collected from the animal upon reaching a desired titer of antibodies.
- the serum containing the polyclonal antibodies is separated from the other blood components.
- the polyclonal antibody-containing serum may be further separated into fractions of particular types of antibodies (e.g. IgG or IgM) or monospecific antibodies can be affinity purified from polyclonal antibody containing serum.
- the immunized animal is a bird.
- antibodies (IgY) are collected from egg yolks.
- the egg yolk is separated from the yolk lipid and non-antibody proteinaceous matter, recovering the IgY anti-C5a antibodies in purified form (see e.g. U.S. Pat. 4,357,272 to Polson and U.S. Pat. No. 5,904,922 to Carroll).
- the present invention also contemplates humanized antibodies (i.e. substantially non-immunogenic antibodies). Such antibodies are particularly useful in treating human subjects.
- Chimeric and ‘reshaped’ humanized anti-C5a antibodies may be produced according to techniques known in the art (see e.g. U.S. Pat. No. 5,585,089 to Queen et al., and Kettleborough, et al., Protein Engineering, vol. 4, no. 7, pp 773-783, 1991).
- humanized anti-C5a chimeric antiboides are produced using a combinatorial approach (see e.g. U.S. Pat. No. 5,565,332 to Hoogenboom et al. and U.S. Pat. No.
- the present invention also contemplates single polypeptide chain binding molecules which have binding specificity and affinity subtantially similar to the binding specificity and affinity of the light and heavy chain aggregate variable region of an anti-C5a antibody (see e.g. U.S. Pat. No. 5,260,203 to Ladner et al.).
- the present invention provides various C5a peptide immunogens.
- the C5a peptides can be from various animals (e.g. human, rat, pig, and cow).
- the amino acid sequence of these C5a peptides are described in the literature [see Rothermel et al., Biochim. Biophys. Acta 1351 (1-2), 9-12, (1997) ⁇ rat ⁇ ; Babkina, I. N., et al., Bioorg Khim, May;21(5):359-64, (1995) ⁇ human ⁇ ; Gerard, C. et al., J. Biol. Chem.
- the C5a immunogen may be the full length C5a peptide, or various peptides derived from the full length C5a peptide.
- the peptides are C-terminal truncated peptides (e.g. SEQ ID NOS:2, 4, 5, 14, 15 and 16). Representative sequences are listed in, Table 1.
- Variants of the C-terminal truncated C5a peptides are contemplated as useful immunogens (See e.g. Table 3). For example, it is contemplated that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains.
- Genetically encoded amino acids can be divided into four families: (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine, histidine); (3) nonpolar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); and (4) uncharged polar (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine). Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids.
- amino acid repertoire can be grouped as (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine histidine), (3) aliphatic (glycine, alanine, valine, leucine, isoleucine, serine, threonine), with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic (phenylalanine, tyrosine, tryptophan); (5) amide (asparagine, glutamine); and (6) sulfur -containing (cysteine and methionine) (See e.g., Stryer ed., Biochemistry, 2nd ed, WH Freeman and Co.[1981]).
- modifications of the C-terminal truncated C5a peptides are contemplated by the present invention. Similar minor variations may also include amino acid deletions or insertions (i.e. additions), or both. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNAStar software or GCG (Univ. of Wisconsin).
- Whether a change in the amino acid sequence of a C-terminal truncated C5a peptide results in a useful immunogen for producing the anti-C5a antibodies of the present invention can be readily determined.
- One method involves screening the C-terminal truncated C5a peptides for the ability to inhibit the chemotaxis of neutrophils.
- Useful immunogens are identified by the ability to induce cheimotaxis (See e.g. Examples 7, 8 and 11).
- Another indication of a useful immunogen is the ability of the C-terminal truncated C5a peptide to inhibit chemotaxis when combined with C5a peptide (See e.g. Examples 7, 8, and 11).
- Another method involves screening the C-terminal truncated C5a peptides for the ability to antagonize the binding of labelled C5a peptides to neutrophils in a competitive assay (See e.g. Examples 10 and 11). Yet another method involves administering the C-terminal truncated C5a peptides to CLP sepsis induced rats, and monitoring their response over a given time period. Useful immunogens are identified by the ability to reduce the symptoms of sepsis, and/or increase survival times of the rats (See e.g. Example 11).
- the C-terminal truncated C5a peptides employed in the present invention may also comprise a fusion partner.
- fusion partners include Protein A, ABP, GST, poly histidine, HA, KLH, and MBP.
- Other fusion partners are well known in the art. (See Nilsson et al., Prot. Expr. Purif., 11(1):1-16 [(1997]).
- the fusion partner may serve various functions, including, but not limited to, enhancement of the solubility of the C-terminal truncated C5a peptides, as well as providing an “affinity tag” to allow the purification of the recombinant fusion C-terminal truncated C5a peptide from the host cell or culture supernatant, or both.
- the exogenous protein fragment may be removed from the peptide of interest prior to immunization by a variety of enzymatic or chemical means known in the art.
- nucleic acid sequences corresponding to these various C-terminal truncated C5a peptides are used to generate recombinant DNA molecules that direct the expression of the C-terminal truncated C5a peptides in appropriate host cells, which are then purified and used as immunogens to generate the antibodies of the present invention.
- These DNA sequences may be included in any one of a variety of expression vectors for expressing C-terminal truncated C5a peptides in various hosts.
- vectors include, but are not limited to, chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies, and the like. Any vector may be used as long as it is replicable and viable in the host.
- vectors include, but are not limited to, the following: 1) Bacterial—pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, phagescript, psiX174, pbluescript SK, pBSKS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); and 2) Eukaryotic—pWLNEO, pSV2CAT, pOG44, PXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).
- mammalian expression vectors comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences.
- DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- the DNA sequence in the expression vector may be operably linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis.
- Promoters useful in the present invention include, but are not limited to, the LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda PL and PR, T3 and T7 promoters, and the CMV immediate early, HSV thymidine kinase, and mouse metallothionein-I promoters and other promoters known to control expression of peptides in prokaryotic or eukaryotic cells or their viruses.
- Recombinant expression vectors generally include origins of replication and selectable markers permitting transformation of the host cell (e.g., dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli ).
- origins of replication e.g., dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
- Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Enhancers useful in the present invention include, but are not limited to, the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- the expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator.
- Suitable host cells may be employed to recombinantly express the C-terminal truncated C5a peptides.
- Suitable host cells are higher eukaryotic cells (e.g., a mammalian or insect cell), lower eukaryotic cells (e.g., a yeast cell), and prokaryotic cells (e.g., a bacterial cell).
- host cells include, but are not limited to, Escherichia coli, Salmonella typhimurium, Bacillus subtilis, and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, as well as, Saccharomycees cerivisiae, Schizosaccharomycees pombe, Drosophila S2 cells, Spodoptera Sf9 cells, Chinese Hamster Ovary (CHO) cells, COS-7 lines of monkey kidney fibroblasts, (Gluzman, Cell, 23:175 [1981]), C127, 3T3, HeLa and BHK cell lines.
- Escherichia coli Salmonella typhimurium
- Bacillus subtilis and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus
- Saccharomycees cerivisiae Schizosaccharomycees pombe
- Drosophila S2 cells Spodopter
- the constructs in host cells can be used in a conventional manner to produce the C-terminal truncated C5a peptides encoded by the recombinant sequences.
- introduction of the construct into the host cell is effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation [Davis et al., Basic Methods in Molecular Biology, (1986)].
- the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
- appropriate means e.g., temperature shift or chemical induction
- Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- Methods for recovering and purifying C-terminal truncated C5a peptides from recombinant cell culture include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. High performance liquid chromatography (HPLC) can also be employed for final purification steps.
- HPLC high performance liquid chromatography
- DNA sequences having coding sequences e.g., SEQ ID NOS:10, 11, 13, 17, 18, and 19 fused in frame to a marker sequence allow for purification of the C-terminal truncated C5a peptide.
- a histidine tag which may be supplied by a vector (e.g., a pQE-9 vector) which provides for purification of the polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host (e.g., COS-7 cells) is used.
- the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, et al., Cell, 37:767 [1984]).
- the coding sequences for the C-terminal truncated C5a peptides can also be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide.
- One example employs the VP6 capsid protein of rotavirus used as an immunologic carrier protein for the C-terminal truncated C ⁇ a peptides, either in the monomeric form or in the form of a viral particle.
- the nucleic acid sequences corresponding to the various C5a peptides to which antibodies are to be raised can be incorporated into a fusion gene construct which includes coding sequences for a late vaccinia virus structural protein to produce a set of recombinant viruses expressing fusion proteins comprising C-terminal truncated C5a peptides as part of the virion. It has been demonstrated with the use of immunogenic fusion proteins utilizing the Hepatitis B surface antigen fusion proteins that recombinant Hepatitis B virions can be utilized in this role as well.
- chimeric constructs coding for fusion proteins containing C-terminal truncated C5a peptides and the poliovirus capsid protein are created to enhance immunogenicity of the set of polypeptide antigens [see e.g., EP Publication No. 025949; and Evans et al., Nature 339:385 (1989); Huang et al., J. Virol. 62:3855 (1988); and Schlienger et al., J. Virol. 66:2 (1992)].
- the Multiple Antigen Peptide system for peptide-based immunization can also be utilized, wherein a desired C-terminal truncated C5a peptide sequence is obtained directly from organo-chemical synthesis of the peptide onto an oligomeric branching lysine core [see e.g., Posnett et al., JBC 263:1719 (1988) and Nardelli et al., J. Immunol. 148:914 (1992)].
- C-terminal truncated C5a peptides can also be expressed and presented by bacterial cells in order to generate the antibodies of the present invention.
- fusion proteins can also facilitate the purification of proteins.
- the C5a peptides can be generated as a glutathione-S-transferase (GST) fusion protein.
- GST fusion proteins enable easy purification of the C5a peptides, such as by the use of glutathione-derivatized matrices [see e.g, Current Protocols in Molecular Biology, Eds. Ausabel et al., N.Y.: John Wiley & Sons, (1991)].
- a fusion gene coding for a purification leader sequence such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired C-terminal truncated C5a peptide, can allow purification of the expressed C-terminal truncated C5a fusion protein by affinity chromatography using, for example, a Ni2+ metal resin.
- the purification leader sequence can then be subsequently removed by treatment with enterokinase [see e.g., Hochuli et al., J. Chromatography 411:177 (1987)].
- fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional molecular biology techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
- the fusion gene is synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which is subsequently annealed to generate a chimeric gene sequence [see e.g., Current Protocols in Molecular Biology, Eds. Ausubel et al., Joln Wiley & Sons (1992)].
- the C-terminal truncated C5a peptide sequences may be synthesized, whole or in part, using chemical methods well known in the art [see e.g., Caruthers et al., Nuc. Acids Res. Symp. Ser. 7:215-233 (1980); Crea and Horn, Nuc. Acids Res. 9:2331 (1980); Matteucci and Caruthers, Tetrahedron Lett 21:719 (1980); and Chow and Kempe, Nuc. Acids Res. 9:2807-2817 (1981)].
- C-terminal truncated C5a peptides can be synthesized by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography [see e.g., Creighton (1983) Proteins Structures And Molecular Principles, W H Freeman and Co, New York N.Y.].
- the composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (see e.g., Creighton, supra).
- Direct peptide synthesis can be performed using various solid-phase techniques [Roberge et al., Science 269:202-204 (1995)] and automated synthesis may be achieved, for example, using ABI 431A Peptide Synthesizer (Perkin Elmer, Norwalk Conn.) in accordance with the instructions provided by the manufacturer. Additionally the amino acid sequence of the C-terminal truncated C5a peptide sequences may be altered during direct synthesis yielding various C-terminal truncated C5a peptides which are used to generate the anti-C5a antibodies of the present invention.
- SEQ ID NO:4 MLQKKIEEIAAKYKHSVVKK Human C5a (res. 21-40) SEQ ID NO:5 CCYDGASVNNDETCEQRAAR Human C5a (res. 55-74) SEQ ID NO:6 CVVASQLRANISHKDMQLGR Human C5a (res. 12-20) SEQ ID NO:14 KYKHSVVKK Human C5a (res. 28-33) SEQ ID NO:15 VNNDET Human C5a (res.
- SEQ ID NO:16 AARISLGPR Bovine C5a (full seq.) SEQ ID NO:7 MILKKKIEEEAAKYRNAWVKKC CYDGAHRNDDETCEERAARIAI GPECIKAFKSCCAIASQFRADE HHKNMQLGR Porcine C5a (full seq.) SEQ ID NO:8 MLQKKIEEEAAKYKYAMLKKC CYDGAYRNDDETCEERAARIK IGPKCVKAFKDCCYIANQVRA EQSHKNIQLGR
- the present invention contemplates a method of producing polygonal antibodies, comprising; providing an animal and an immunogenic composition, wherein the composition comprises C-terminal truncated C5a peptides; and immunizing the animal with the immunogenic composition in order to generate antibodies. It is not intended that the present invention be limited to particular C-terminal truncated peptides. A variety of C-terminal truncated peptides are contemplated. In one embodiment, the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide. In another embodiment, the C-terminal truncated peptide is a fragment or portion of the N-terminal region of C5a peptide.
- the fragment or portion of the N-terminal region of C5a peptide is between approximately 5 and approximately 50 amino acids in length. In some embodiments, the C-terminal truncated peptide is fifty amino acids in length. In other embodiments, the C-terminal truncated peptides are approximately five amino acids in length. In preferred embodiments, the C-terminal truncated peptides are approximately 20 amino acids in length. In especially preferred embodiments, the C-terminal truncated peptides are selected from SEQ ID NOS:2, 4, and 5.
- the present invention contemplates the use of anti-C5a antibodies in humans prior to the onset of symptoms (e.g., prophylactically).
- the present invention contemplates the use of anti-C5a antibodies as prophylactic treatment in patients at high risk for infection, as well as sepsis.
- Trauma patients are particularly difficult to examine because of the multitude of invasive procedures that they have undergone. Trauma patients are also typically hooked up to a number of devices, including intravascular lines, mechanical ventilators and Foley catheters. While ever) attempt is made to change intravascular lines, this is frequently impossible because of the extent of trauma and the lack of venous accessibility. [E. S. Caplan and N. Hoyt, Ann. J. Med. 70:638-640 (1981)].
- Burn patients have many problems with respect to the diagnosis and therapy for infection. Since the magnitude of thermal injury is related to the level of trauma in a burn victim, this becomes even more of a problem with acute cases. It is reported that septicemia appears in the blood cultures of burn patients almost four days after a septic state. [M. Meek et al., J. Burn Care Rehab. 12:564-568 (1991)]. Consequently, therapy with the antibodies of the present invention is particularly appropriate immediately after the burn injury as a means of preventing a septic reaction. Furthermore, in severe cases, consideration should be given to the topical administration of the antibodies of the present invention to prevent wound sepsis.
- Continuance of antibiotic prophylaxis beyond 24 hours is an added expense, particularly when using an antibiotic with short serum and tissue half-lives. Most importantly, continuation of antibiotic prophylaxis also runs an excessive risk of drug toxicity and emergence of resistant strains. As such, the present invention contemplates the use of anti-C5a antibodies to help reduce the need for antibiotics, and reduce the risk of sepsis.
- the present invention contemplates a method comprising; providing; a subject at risk for sepsis, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, and prophylactically administering said therapeutic composition to the subject.
- administering the composition prevents the onset of symptoms of sepsis.
- the present invention also contemplates the use of anti-C5a antibodies in a therapeutic preparation for acute treatment.
- treatment involves administration of the antibodies after infection is detected and/or sepsis is suspected.
- Evidence suggestive of infection includes the following: (1) core temperature higher than 38° C. or lower than 35° C.; (2) peripheral blood leukocyte count greater than 12 ⁇ 10 9 /L or less than 3 ⁇ 10 9 /L (not due to chemotherapy), or at least 20% immature forms; (3) growth of gram-negative organisms from a blood culture drawn within the preceding 48 hours; or (4) documented or suspected site of gram-negative infection.
- the anti-C5a antibodies of the present invention should ideally be used prior to a systemic infection, if possible.
- the antibodies are administered immediately after bacteremia or fungemia is detected.
- antibodies can be administered where there is an obvious sign of infection at a particular site (e.g., wounds, sinusitis, meningitis, respiratory, gastrointestinal, or urinary tract infections, etc.).
- Primary bacteremia is typically defined as two or more blood cultures with the same bacterial organism occurring in a patient with no other obvious site of infection.
- Sinusitis is diagnosed in a patient who has at least two of the following: purulent nasal discharge, roentgenographic evidence of sinusitis or purulent material aspirated from the sinuses.
- the lower respiratory tract is a common site of infection.
- Pneumonia in the intubated patient is diagnosed in a patient when there is fever, leukocytosis and a Gram stain with many polymorphonuclear leukocytes. Pneumonia may also be diagnosed in a patient with a new infiltrate that has not cleared with intensive physical therapy (this last criterion helps rule out atelectasis).
- the C5a peptide has been implicated in the pathogenesis of bacterial meningitis [Stahel, et al., J. Immunol. July 15;159(2):861-9 (1997)]. As such, treatment of acute meningitis with the anti-C5a antibodies of the present invention is contemplated.
- N. meningitidis is responsible for an estimated 24-25% of meningitis in children one month of age through 15 years; for adults, the figure is 10-35%.
- H. influenzae is responsible for an estimated 40-60% of meningitis cases in children one month of age through 15 years, while S. pneumoniae is responsible for 10-20% of meningitis cases in the same age group, as well as 30-50% of cases in adults (over 15 years).
- the blood-brain barrier represents a significant obstacle to treatment of meningitis, especially prophylactically.
- the barrier is designed to prevent invasion of organisms and uptake of compounds (e.g., antimicrobials), intravenous antimicrobial administration is not always sufficient.
- compounds e.g., antimicrobials
- intravenous antimicrobial administration is not always sufficient.
- drug concentrations in the cerebrospinal fluid and brain are approximately 1/200 to 1/500 of those in serum.
- gram-positive organisms e.g., Streptococcus pneumoniae
- endotoxin Ironically, release of endotoxin is aggravated by antimicrobial treatment. Indeed, it is believed that aggressive antibiotic treatment can be life-threatening. This is due to the increased burden of endotoxin present in the blood and CSF which results when a large number of organisms are simultaneously killed by the antibiotic. This increased endotoxin burden results in the pathology associated with fatal meningitis and is a significant problem facing clinicians who must treat a seriously ill patient within the first few hours of disease.
- the present invention contemplates treating acute septic conditions with anti-C5a antibodies. It is contemplated that these antibodies be administered alone, or in combination with other therapeutic preparations.
- the present invention provides a method comprising; providing; a subject suffering from symptoms of sepsis, a therapeutic composition comprising an antibody specific for complement component C5a peptide, and administering the therapeutic composition to the subject.
- Septicemia and sepsis are by no means limited to human beings. Infection by gram-negative bacteria accounts for significant morbidity and mortality in neonatal livestock, such as calves. [D. D. Morris et al., Am. J. Vet. Res. 47:2554-2565 (1986).] Interestingly, humoral immune status is again related to susceptibility to sepsis and this is largely dependent on passive transfer from colostrum. For this reason, in some embodiments the present invention contemplates determining the immune status of the animal prior to administration of the anti-C5a antibodies. This determination can be made by screening neonatal calves for total circulating serum immunoglobulin (e.g., by ELISA).
- the antibodies of the present invention should be used prophylactically. Where the animal's immune status is healthy, use of the antibodies may be needed for acute therapy of grain-negative bacterial sepsis, which remains prevalent in neonatal calves even with high natural antibody levels.
- the present invention contemplates the treatment of other animals as well.
- sepsis is the most serious problem.
- Symptoms highly indicative of sepsis risk include weakness, metabolic disturbance and dehydration.
- the invention contemplates using antibodies for prophylactic treatment of foals less than 10 days of age having these indicators, or those at risk of infection.
- the present invention therefore contemplates using anti-C5a antibodies for acute treatment of any animal with evidence of septicemia, with or without culture-proven cases.
- the present invention contemplates using therapeutic compositions of soluble anti-C5a antibodies. It is not intended that the present invention be limited by the particular nature of the therapeutic composition.
- such compositions can be provided together with physiologically tolerable liquids, gels, solid carriers, diluents, adjuvants and excipients (and combinations thereof).
- anti-C5a antibodies may be used together with other therapeutic agents, including other immunoglobulins or antibiotics.
- these therapeutic compositions can be administered to mammals for veterinary use, such as with domestic animals, and clinical use in humans in a manner similar to other therapeutic agents.
- dosage required for therapeutic efficacy varies according to the type of use and mode of administration, as well as the particularized requirements of individual hosts.
- the attending medical professional is capable of determining the therapeutically effective dosage based on the characteristics of the subject (e.g. gender, age, weight, etc.)
- the antibodies are administered intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, intrapleurally, intrathecally, or topically.
- formulations for such administrations may comprise an effective amount of anti-C5a antibodies in sterile water or physiological saline.
- formulations may contain such normally employed additives as binders, fillers, carriers, preservatives, stabilizing agents, emulsifiers, buffers and excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like.
- binders such normally employed additives as binders, fillers, carriers, preservatives, stabilizing agents, emulsifiers, buffers and excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like.
- binders such normally employed additives as binders, fillers, carriers, preservatives, stabilizing agents, emulsifiers, buffers and excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbon
- compositions are preferably prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared.
- the antibodies of the present invention are often mixed with diluents or excipients which are compatible and physiologically tolerable. Suitable diluents and excipients are, for example, water, saline, dextrose, glycerol, or the like, and combinations thereof.
- the compositions may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, stabilizing or pH buffering agents.
- N normal
- M molar
- mM millimolar
- ⁇ M micromolar
- mol molecular weight
- mmol millimoles
- ⁇ mol micromoles
- mnol nanomoles
- pmol picomoles
- g grams); mg (milligrams); ⁇ g (micrograms); ng (nanograms); 1 or L (liters); ml (milliliters); ⁇ l (microliters); cm (centimeters); mm (millimeters); ⁇ m (micrometers); nm (nanometers); ° C. (degrees Centigrade); Sigma (Sigma Chemical Co., St. Louis, Mo.).
- CLP Cecal Ligation Puncture
- Rat C5a peptide with the sequence KHRVPKKCCYDGARENKYET (SEQ ID NO:2) was obtained from Research Genetics (Huntsville Ala.) and coupled to keyhole limpet hemocyanin (KLH).
- KLH keyhole limpet hemocyanin
- This 20-mer rat C-terminal truncated C5a peptide corresponds to amino acid residues 17-36 of the full length rat C5a peptide [Rothermel, E. et al., Biochimica. et Biophysica. Acta. 1351:9-12, (1997)], which is listed as SEQ ID NO:1.
- the coupled peptide was used as an antigen to immunize rabbits.
- the antibody was affinity purified using the synthetic 20-mer peptide coupled to beads. Immunoprecipitation with activated rat serum using beads coupled with this antibody yielded a single band with a 14 kDa position in Western blot analysis, characteristic of rat C5a peptide [See, Ward, P. A. and Becker, E. L., J. Exp. Med. 127:693-709 (1968)].
- This Example describes the treatment of sepsis.
- CLP-induced sepsis was generated in three different groups of rats according to the procedure of Example I above.
- Anti-Rat C5a Antibodies Reduce Bacteremia in Septic Rats
- This Example describes the in vitro detection and reduction of bacteremia in septic rats.
- CLP-induced sepsis was generated in two different groups of rats according to the procedure of Example I above.
- CLP-induced sepsis in rats is known to be associated with the development of bacteremia involving the presence of both aerobic and anaerobic bacteria in the blood [Deitch, E. A. Schock 9:1-11, (1997)].
- Blood samples were obtained from these three groups 36 hours after sham surgery or induction of CLP. This was done by drawing blood via the posterior vena cava after topical treatment of the puncture site with iodine swabsticks (Professional Disposables, Inc., Orangeburg, N.Y.).
- This Example describes the binding of C5a peptide to neutrophils in the blood of septic rats, and ability of anti-rat C5a antibodies to reduce this binding.
- Blood neutrophils were obtained from both sham and CLP treated rats, which received either preimmune IgG or anti-C5a antibodies (prepared according to Example 2) at 12, 24 and 36 hours after CLP.
- Neutrophils were evaluated in flow cytometry for the surface content of C5a peptide using the procedure described below.
- the cells were incubated at 5° C. for 30 minutes. Cells were washed once and red blood cells lysed with FACS solution (Becton Dickinson, San Jose, Calif.). Cells were then washed and incubated with phycoerythrin labeled anti-rabbit IgG (Sigma Chemical Co., St. Louis, Mo.). Cells were washed twice and suspended in 400 ⁇ l PBS containing 2% paraformaldehyde.
- Phycoerytlirin intensity of gated populations was measured on a FACScan Flow Cytometry System (Becton Dickinson) in which 10,000 cells per gate were counted and the amount of phycoerythrin analyzed using PC-LYSYS software (Becton Dickson).
- Anti-Rat C5a Antibody Preserves H 2 O 2 Production in Septic Rat Neutrophils
- This Example describes the ability of anti-rat C5a antibody to preserve the H 2 O 2 production of neutrophils from septic rats.
- Blood neutrophils were obtained from both sham and CLP treated rats, which received 400 ⁇ g of either preimmune IgG or anti-C5a antibodies (prepared according to Example 2) 36 hours after CLP or sham surgery. Neutrophil generation of H 2 O 2 was assayed using the procedure described below.
- Neutrophils were isolated from blood using dextran sedimentation and hypotonic red blood cell lysis. 7.5 ⁇ 10 5 cells were suspended in Hank's balanced salt solution (in a final volume of 1.0 ml) in the presence or absence of catalase (100 units/ml) in a final volume of 1.0 ml. Neutrophils were then stimulated for I hour at 37° with phorbol myristate acetate (PMA) at a concentration of 100 ng/ml. Stimulation was terminated by addition of 10% (vol/vol) trichloroacetic acid.
- PMA phorbol myristate acetate
- FIG. 4 The data collected from this procedure is shown in FIG. 4 .
- Very little H 2 O 2 (circa 0.1 nmol) was produced in unstimulated blood neutrophils obtained from sham rats or from CLP rats pre-treated with preimmune IgG or anti-C5a IgG.
- neutrophils from sham rats produced 3.1 ⁇ 0.75 umol H 2 O 2 .
- H 2 O 2 production of PMA-stimulated neutrophils was reduced by nearly 62%, to 1.25 ⁇ 0.50 nmol.
- This Example describes the ability of certain synthetic peptides representative of regions of human C5a peptide to reduce the chemotactic response of human neutrophils to human C5a peptide.
- Human neutrophils were isolated from human blood by traditional Ficoll-Hypaque sedimentation techniques. Using standardized methodology, neutrophils (5 ⁇ 10 6 /ml) labeled with 1 ⁇ g/ml BCECF [2′,7′-(2 carboxyethyl)-5-(and-6)-carboxyfluroscein, acetoxymethy ester) at 37° C.
- Peptide A represents residues 1-20 of human C5a peptide
- peptide M represents residues 21-40 of human C5a peptide
- peptide C represents residues 55-74 of human C5a peptide.
- This Example describes neutrophil chemotactic activity of peptides A, M, and C linked to keyholelimpet hemocyanin (KLH) employing the chemotactic assay described in Example 7.
- the peptide:KLH molar ratios employed were approximately 3:1.
- the chemotactic responses of neutrophils was evaluated to medium alone, to 10 nM recombinant C5a peptide (SEQ ID NO:3), and to the KLH-A, M, or C conjugates (SEQ ID NOS:4, 5, and 6 respectively), at the calculated synthetic peptide concentrations of 100 nM.
- the data collected in this Example is shown in FIG. 6 .
- the A peptide KLH conjugate was the most chemotactically active compound when compared to C5a peptide, while the C peptide conjugate was almost as active.
- the M peptide conjugate revealed no chemotactic activity.
- Example epitopes in human C5a peptide were evaluated for reactivity with commercially available rabbit polyclonal anti-human C5a antibodies (purchased from Calbiochem-Novabiochem Corp., San Diego, Calif.). Thirty-four (34) ⁇ g of this polyclonal anti-human C5a IgQ was incubated with 20 ⁇ g KLH peptide conjugates (A, M, C, as described in Example 8) for 18 hours at 4° C. Treated and untreated antibodies were then evaluated for their ability to react with recombinant human C5a peptide by Western blot analysis. Fifty (50) ng C5a peptide was added to each lane, and electrophoresis was carried out. As shown in FIG.
- peptide A represents residues 1-20 of human C5a peptide
- peptide M represents residues 21-40 of human C5a peptide
- peptide C represents residues 55-74 of human C5a peptide.
- Human peripheral blood neutrophils (1 ⁇ 10 7 cells/ml) were incubated in Hank's buffered saline plus 0.1% bovine serum albumin with both 125 I-labelled hC5a peptide (300 ⁇ Ci/mmol) and either peptide A, M, or C, in a final volume of 200 ⁇ l in a microfuge tube.
- the ratio of the shorter peptides (A, M, or C) to 125 I-labelled hC5a peptide was 10:1.
- cell suspension were layered over a 20% sucrose gradient and were sedimented by centrifugation at 11,000 g. The tubes were then frozen on dry ice, followed by cutting the tips containing the pellet. Cell-bound label was then determined by placing the tips in a gamma counter.
- peptides A and M were significantly (p ⁇ 0.05) competitive in reducing the binding of hC5a peptide, whereas the C terminal peptide (peptide C) showed no statistically significant interference.
- This Example describes three methods which are employed in screening candidate C-terminal truncated C5a peptides for useful immunogens (i.e. which can be used to produce the anti-C5a antibodies of the present invention).
- One method involves screening C-terminal truncated C5a peptides which inhibit the chemotaxis of neutrophils.
- Another method involves screening peptides for the ability to antagonize the binding of C5a peptides to neutrophils.
- a third method involves administering candidate C-terminal truncated C5a peptides to septic animals and monitoring their response.
- the first method is used to screen candidate C-terminal truncated C5a peptides which inhibit the chemotaxis of neutrophils.
- human neutrophils are isolated from human blood by traditional Ficoll-Hypaque sedimentation techniques.
- neutrophils are applied to the upper compartments of chemotactic chambers and evaluated for their motility responses to 10 nM human C5a peptide (SEQ ID NO:3) added to the lower compartments.
- the two compartments are separated by a membrane with pore sizes of 3 ⁇ m. Neutrophil chemotactic responses are quantitated by cytofluorometry.
- the chemotactic response of the neutrophils is then quantitated by cytofluorometry.
- One indication of a useful immunogen is if the candidate C-terminal truncated C5a peptide induces chemotaxis of the neutrophils as compared to human C5a peptide alone.
- Another indication of a useful immunogen is if the candidate C-terminal truncated C5a peptide inhibits chemotaxis of neutrophils when combined with human C5a peptide, as compared to human C5a peptide alone.
- a second method, as described in Example 10, is used to screen candidate C-terminal truncated C5a peptides which antagonize the binding of 125 I-C5a peptide to neutrophils.
- human neutrophils are incubated with human 125 I-C5a peptide and the candidate C-terminal truncated C5a peptide.
- Inhibition of 125 I-C5a peptide binding to the neutrophils by the candidate C-terminal truncated peptide indicates a potentially useful immunogen for the production of anti-C5a antibodies.
- a third method employs the septic rats described in Example 1.
- one group of CLP sepsis induced rats is administered 50 mg/kg of a candidate C-terminal C5a truncated peptide intravenously immediately after the CLP procedure, while a second group of CLP rats is used as a control. Survival rates and symptoms of sepsis are recorded over a ten day period.
- Candidate C-terminal truncated C5a peptides which reduce the symptoms of sepsis, and/or increase survival times as compared to the control group are considered potential immunogens for producing anti-C5a antibodies.
- This Example describes the effect of human C5a peptide, and certain shorter synthetic human C5a peptides A, M, or C, to inhibit the H 2 O 2 production of human neutrophils stimulated by phorbol myristate acetate (PMA).
- peptide A represents residues 1-20 of human C5a peptide
- peptide M represents residues 21-40 of human C5a peptide
- peptide C represents residues 55-74 of human C5a peptide.
- Human neutrophils were isolated and then pretreated with C5a peptide or one of the shorter synthetic peptides (A, M, or C). Cells were then stimulated with PMA and the production of H 2 O 2 was measured.
- This Example describes the production of anti-human C5a antibodies.
- a short human C5a peptide with the sequence CCYDGASVNNDETCEQRAAR (peptide M, SEQ ID NO:5) was obtained from Research Genetics (Huntsville Ala.) and coupled to keyhole limpet hemocyanin (KLH). The coupled peptide was used as an antigen to immunize rabbits. After several injections, the antibody was recovered by affinity purification.
- a Western Blot was then used to demonstrate that these anti-human C5a antibodies are specific for human C5a peptide, and not rat C5a peptide. Briefly, recombinant human and rat C5a peptide were run in parallel on a gel, and transferred to a filter. The filter was blocked, and then probed with the anti-human C5a antibody. The resulting signal revealed that the anti-human C5a antibody was only able to recongnize human C5a peptide, and not rat C5a peptide (See FIG. 11 ).
- Anti-C5a antibodies may be used prophylactically or therapeutically to treat sepsis in humans. Individuals at risk of contracting sepsis, particularly patients undergoing surgery, or those with sepsis may be administered an effective amount of anti-C5a antibodies to prevent or reduce the severity of the disease.
- a typical treatment regimen would consist of administering 5-10 mg of antibody per kilogram of patient body weight. Prophylactically the dose would be given just prior to surgery, and repeated at least once immediately thereafter. Therapeutically the dose would be given every 24-48 hours until remission of the disease is apparent. The initial therapeutic dose would be 25 mg per kilogram of patient body weight, and then reduced to 5-10 mg per kilogram.
- the antibody may be administered by any number of routes, but the preferred route of administration is intravenously.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to compositions and methods for the prevention and treatment of blood-borne and toxin mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis in humans as well as other animals. The present invention also relates to methods of generating anti-C5a antibodies employing C-terminal truncated C5a peptides.
Description
- This invention was made with Government support under the National Institutes of Health (NIH) awarded by contract GM29507 and HL31963. The government has certain rights in this invention.
- The present invention relates to compositions and methods for the prevention and treatment of blood-borne and toxin-mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis in humans as well as other animals.
- Sepsis is a major cause of morbidity and mortality in humans and other animals. It is estimated that 400,000-500,000 episodes of sepsis resulted in 100,000-175,000 human deaths in the U.S. alone in 1991. Sepsis has become the leading cause of death in intensive care units among patients with non-traumatic illnesses. [G. W. Machiedo et al., Surg. Gyn. & Obstet. 152:757-759 (1981).] It is also the leading cause of death in young livestock, affecting 7.5-29% of neonatal calves [D. D. Morris et al., Am. J. Vet. Res. 47:2554-2565 (1986)], and is a common medical problem in neonatal foals. [A. M. Hoffman et al., J. Vet. Int. Med. 6:89-95 (1992).] Despite the major advances of the past several decades in the treatment of serious infections, the incidence and mortality due to sepsis continues to rise. [S. M. Wolff, New Eng. J. Med. 324:486-488 (1991).]
- Sepsis is a systemic reaction characterized by arterial hypotension, metabolic acidosis, decreased systemic vascular resistance, tachypnea and organ dysfunction. Sepsis can result from septicemia (i.e., organisms, their metabolic end-products or toxins in the blood stream), including bacteremia (i.e., bacteria in the blood), as well as toxemia (i.e., toxins in the blood), including endotoxemia (i.e., endotoxin in the blood). The term “bacteremia” includes occult bacteremia observed in young febrile children with no apparent foci of infection. The term “sepsis” also encompasses fungemia (i.e., fungi in the blood), viremia (i.e., viruses or virus particles in the blood), and parasitemia (i.e., helminthic or protozoan parasites in the blood). Thus, septicemia and septic shock (acute circulatory failure resulting from septicemia often associated with multiple organ failure and a high mortality rate) may be caused by a number of organisms.
- The systemic invasion of microorganisms presents two distinct problems. First, the growth of the microorganisms can directly damage tissues, organs, and vascular function. Second, toxic components of the microorganisms can lead to rapid systemic inflammatory responses that can quickly damage vital organs and lead to circulatory collapse (i.e., septic shock) and oftentimes, death.
- There are three major types of sepsis characterized by the type of infecting organism. Gram-negative sepsis is the most common and has a case fatality rate of about 35%. The majority of these infections are caused by Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Gram-positive pathogens such as the Staphylococci and Streptococci are the second major cause of sepsis. The third major group includes fungi, with fungal infections causing a relatively small percentage of sepsis cases, but with a high mortality rate.
- Many of these infections are acquired in a hospital setting and can result from certain types of surgery (e.g., abdominal procedures), immune suppression due to cancer or transplantation therapy, immune deficiency diseases, and exposure through intravenous catheters. Sepsis is also commonly caused by trauma, difficult newborn deliveries, and intestinal torsion (especially in dogs and horses).
- Many patients with septicemia or suspected septicemia exhibit a rapid decline over a 24-48 hour period. Thus, rapid methods of diagnosis and treatment delivery are essential for effective patient care. Unfortunately, a confirmed diagnosis as to the type of infection traditionally requires microbiological analysis involving inoculation of blood cultures, incubation for 18-24 hours, plating the causative organism on solid media, another incubation period, and final identification 1-2 days later. Therefore, therapy must be initiated without any knowledge of the type and species of the pathogen, and with no means of knowing the extent of the infection.
- It is widely believed that anti-endotoxin antibody treatment administered after sepsis is established may yield little benefit because these antibodies cannot reverse the inflammatory cascade initiated by endotoxin. In addition, the high cost of each antibody could limit physicians' use of a product where no clear benefit has been demonstrated. [K. A. Schulman et al., JAMA 266:3466-3471 (1991).] Furthermore, these endotoxin antibodies only target gram-negative sepsis, and no equivalent antibodies exist for the array of gram-positive organisms and fungi.
- Clearly, there is a great need for agents capable of preventing and treating sepsis. It would be desirable if such agents could be administered in a cost-effective fashion. Furthermore, approaches are needed to combat all forms of sepsis.
- The present invention relates to compositions and methods for the prevention and treatment of blood-borne and toxin mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis in humans as well as other animals.
- The present invention provides a composition comprising antibody specific for complement component C5a peptide. In another embodiment, the composition comprises antibody which is specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and the antibody is not reactive with the C-terminal region. In further embodiments, the antibody is specific for the N-terminal region of complement component C5a peptide. In an additional embodiment, the antibody is also not reactive with complement component C5 protein.
- It is not intended that the present invention be limited to antibodies specific for C5a peptides from certain animals. In certain embodiments, the antibody is specific for rat C5a peptide. In other embodiments, the antibody is specific for bovine C5a peptide. In still other embodiments, the antibody is specific for porcine C5a peptide. In a preferred embodiment, the antibody is specific for human C5a peptide.
- It is also not intended that the present invention be limited to antibodies generated in a particular animal. A variety of animals are useful for generating the antibodies of the present invention. In one embodiment, the antibody is generated in an animal selected from a mouse, a rat, a horse, a goat, a chicken, and a rabbit. In some embodiments, the antibodies are collected from the blood of the animal. In other embodiments, the animal generating the antibodies is a bird, and the antibodies are collected from egg yolk.
- It is not intended that the present invention be limited to the nature of the antibodies, as a variety of antibody types are contemplated. In one embodiment, the antibodies are monoclonal. In another embodiment, the antibodies are humanized. In other embodiments, the antibodies are chimaeric. In a preferred embodiment, the antibodies are polyclonal.
- The present invention also provides a method of producing polyclonal antibody. In one embodiment, the method comprises, providing; an animal and an immunogenic composition, wherein the composition comprises C-terminal truncated C5a peptides; and immunizing the animal with the immunogenic composition in order to generate antibodies. In some embodiments, the immunogenic composition comprises adjuvant. In a further embodiment, antibodies are collected from the animal.
- It is not intended that the present invention be limited to antibodies specific for C5a peptides from any particular animal. In certain embodiments, the antibody is specific for rat C5a peptide. In other embodiments, the antibody is specific for bovine C5a peptide. In still other embodiments, the antibody is specific for porcine C5a peptide. In a preferred embodiment, the antibody is specific for human C5a peptide.
- It is not intended that the present invention be limited to particular C-terminal truncated peptides. A variety of C-terminal truncated peptides are contemplated. In one embodiment, the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide. In another embodiment, the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide and a portion of the C-terminal region. In another embodiment, the C-terminal truncated peptide is a fragment or portion of the N-terminal region of C5a peptide. In another embodiment, the C-terminal truncated C5a peptide is between approximately 5 and 50 amino acids in length. In some embodiments, the C-terminal truncated peptide is approximately fifty amino acids in length. In other embodiments, the C-terminal truncated peptide is approximately five amino acids in length. In preferred embodiments, the C-terminal truncated peptides are 20 amino acids in length. In certain embodiments, the C-terminal truncated peptides are selected from SEQ ID NOS:2, 4, 5, 14, 15, and 16.
- The present invention also provides a method of treating a subject with the antibodies of the present invention. In one embodiment, the method comprises; providing; a subject, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and wherein the antibody is not reactive with the C-terminal region; and administering the therapeutic composition to the subject. In another embodiment, the antibody is specific for the N-terminal region of complement component C5a peptide.
- In one embodiment, the present invention provides a method comprising; providing; a subject, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, wherein the C5a peptide has a C-terminal region and an N-terminal region, and wherein the antibody is not reactive with the C-terminal region; and administering the therapeutic composition to the subject. In another embodiment, administering the therapeutic composition reduces the binding of complement component C5a peptide to one or more neutrophils of the subject. In a certain embodiment, administering the therapeutic composition reduces bacteremia in the subject. In yet another embodiment, administering the therapeutic composition increases the H2O2 production of neutrophils of the subject. In a preferred embodiment, administering the therapeutic composition reduces the symptoms of sepsis.
- It is not intended that the therapeutic method of the present invention be limited to particular subjects. A variety of subjects are contemplated. In one embodiment the subject is selected from a pig, a rat, a cow, a horse, and a human. In one embodiment, the therapeutic composition is administered to a subject suffering from symptoms of sepsis. In another embodiment, the therapeutic composition is administered prophylactically to a subject at risk for sepsis, including new born humans and animals.
- It is not intended that the therapeutic method of the present invention be limited to certain modes of administration. A variety of modes of administering the therapeutic composition are contemplated. In one embodiment, the therapeutic composition is administered by a mode selected from intravenously, intra-muscularly, subcutaneously, intradermally, intrapenrtoneally, intrapleurally, intrathecally, and topically.
- It is not intended that the present invention be limited to a particular therapeutic composition. A variety of compositions are contemplated. In one embodiment the therapeutic composition comprises a soluble mixture of anti-C5a antibodies. In another embodiment, the anti-C5a antibodies are provided together with physiologically tolerable liquid, gels, solid carriers, diluents, adjuvants or excipients, and combinations thereof. In other embodiments, the therapeutic composition comprises anti-C5a antibodies and other therapeutic agents (e.g. other immunoglobulins or antibiotics).
- The present invention also provides a method for screening C-terminal truncated C5a peptides to identify immunogens for the production of anti-C5a antibodies. In one embodiment, the method comprises, providing a C-terminal truncated C5a peptide, modifying the amino acid sequence of said C-terminal truncated C5a peptide, and screening said C-terminal truncated C5a peptide to identify immunogens for the production of anti-C5a antibodies. In one embodiment, the C-terminal truncated C5a peptide which is provided is selected from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16. In other embodiments, the screening step involves a chemotaxis assay (See e.g. Examples 7, 8 and 11). In a different embodiment, the screening step involves a competitive binding assay (See e.g. Examples 10 and 11). In an additional embodiment, the screening step involves administering the C-terminal truncated peptides to septic animals (See e.g. Example 11).
-
FIG. 1 shows survival curves of septic rats with and without the administration of anti-C5a antibodies. -
FIG. 2 shows a graph demonstrating the ability of anti-C5a antibodies to reduce bacteria blood of septic rats. -
FIG. 3 shows a graph demonstrating the ability of anti-C5a antibodies to reduce bacteria in the organs of septic rats. -
FIG. 4 shows a graph demonstrating the ability of anti-C5a antibodies to increase the level of H2O2 production in neutrophils of septic rats. -
FIG. 5 shows a graph demonstrating the ability of synthetic peptides to reduce human C5a-induced chemotaxis of neutrophils. -
FIG. 6 shows the chemotactic activity of KLH-linked synthetic peptides of human C5a peptide. -
FIG. 7 shows polyclonal rabbit anti-human C5a reactivity with regions of human C5a peptide. -
FIG. 8 shows the amino acid sequence of human C5a peptide and various smaller portions of the human C5a peptide. -
FIG. 9 shows a graph demonstrating the ability of certain synthetic peptides to inhibit the binding of human C5a peptide to human neutrophils. - The phrase “symptoms of sepsis” refers to any symptoms characteristic of a subject with sepsis including but not limited to, arterial hypotension, metabolic acidosis, fever, decreased systemic vascular resistance, tachypnea and organ dysfunction. Sepsis can result from septicemia (i.e., organisms, their metabolic end-products or toxins in the blood stream), including bacteremia (i.e., bacteria in the blood), as well as toxemia (i.e., toxins in the blood), including endotoxemia (i.e., endotoxin in the blood). The term “sepsis” also encompasses fungemia (i.e., fungi in the blood), viremia (i.e., viruses or virus particles in the blood), and parasitemia (i.e., helminthic or protozoan parasites in the blood). Thus, phenotypes associated with septicemia and septic shock (acute circulatory failure resulting from septicemia often associated with multiple organ failure and a high mortality rate) are symptoms of sepsis.
- The phrase “reduces the symptoms of sepsis” refers to a qualitative or quantitative reduction in detectable symptoms, including but not limited to a detectable impact on the rate of recovery from disease.
- The phrase “at risk for sepsis” in reference to a subject is herein defined as a subject predisposed to the development of sepsis by virtue of the subject's medical status, including but not limited to such factors as infection, trauma (e.g., abdominal perforation, such as by a gun shot wound), surgery (e.g., intestinal surgery), and invasive procedures (e.g., placement of a catheter, etc.) and the like.
- As used herein, the term “antigen” refers to any agent (e.g., any substance, compound, molecule [including macromolecules], or other moiety), that is recognized by an antibody, while the term “immunogen” refers to any agent (e.g., any substance, compound, molecule [including macromolecules], or other moiety) that can elicit an immunological response in an individual. These terms may be used to refer to an individual macromolecule or to a homogeneous or heterogeneous population of antigenic macromolecules. It-is intended that the term encompasses protein and peptide molecules or at least one portion of a protein or peptide molecule, which contains one or more epitopes. In many cases, antigens are also immunogens, thus the term “antigen” is often used interchangeably with the term “immunogen.” The substance may then be used as an antigen in an assay to detect the presence of appropriate antibodies in the serum of the immunized animal.
- The term “specific for” when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general (i.e. non-specific or background binding).
- The term “not reactive with” when used in reference to the potential interaction of an antibody and a protein or peptide means that the antibody does not recognize or bind specifically to that particular protein (i.e. binding is at background levels).
- The term “operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression As used herein, the phrase “anti-C5a antibody” refers to antibodies which are specific for complement component C5a peptide, or portions thereof.
- As used herein, the term “adjuvant” is defined as a substance known to increase the immune response to other antigens when administered with other antigens. If adjuvant is used, it is not intended that the present invention be limited to any particular type of adjuvant—or that the same adjuvant, once used, be used all the time. It is contemplated that adjuvants may be used either separately or in combination. The present invention contemplates all types of adjuvant, including but not limited to agar beads, aluminum hydroxide or phosphate (alum), Incomplete Freund's Adjuvant, as well as Quil A adjuvant commercially available from Accurate Chemical and Scientific Corporation, Gerbu adjuvant also commercially available (GmDP; C.C. Biotech Corp.), and bacterin (i.e., killed preparations of bacterial cells).
- As used herein, the term “N-terminal region of C5a peptide” refers to the N-terminal 50% of the complement component C5a peptide.
- As used herein, the term “C-terminal region of C5a peptide” refers to the C-terminal 30% of the complement component C5a peptide.
- As used herein, the term “wherein said antibody is not reactive with the C-terminal of C5a region” refers to antibodies that do not recognize or bind to the C-terminal 30% of the C5a peptide.
- As used herein, the term “C-terminal truncated C5a peptides” refers to peptides of varying lengths derived from the N-terminal 70% of the C5a peptide, wlhiclh do not include amino acid sequences from the C-terminal 30% of the C5a peptide. Examples of these peptides include, but are not limited to, SEQ ID NO:2 (from Rat C5a peptide), and SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16 (from Human C5a peptide).
- As used herein, the terms “C5a peptide”, “C5a protein”, and “complement component C5a peptide” all refer to the complement component peptide in animals which is cleaved from the amino terminus of complement component C5 when the complement system is activated. Examples of animals with this protein include, but are not limited to, mice, rats, cows, pigs, and humans. This definition also includes peptides with synthetic sequences which share substantial homology to naturally occurring C5a peptides. An example of this type of sequence, includes, but is not limited to, the sequence disclosed in Mandecki W, et al., Proc Natl Acad Sci USA. June;82(11):3543-7(1985).
- As used herein, the term “modifying the amino acid sequence” of said C-terminal truncated C5a peptide refers to the addition, deletion, or substitution of one or more amino acids to create a variant or modified C-terminal truncated C5a peptide (See section II.b, below). Examples of such variants or modified sequences are listed in Table 3 below.
- A “variant” of a C5a peptide (or C-terminal truncated CSapeptide) is defined as an amino acid sequence which differs by one or more amino acids from the C5a peptide (or C-terminal truncated C5a peptide) sequence. The variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g. replacement of leucine with isoleucine. More rarely, a variant may have “nonconservative” changes, e.g. replacement of glycine with a tryptophan.
- Similar minor variations may also include amino acid deletions or insertions (i.e., additions), or both. A variant may be an epitope as short as four amino acids in length, and as long as a modified full-lenth C5a peptide. More preferably, a variant is greater than five amino acids in length, and less than twenty-five amino acids in length. Variants may also contain a fusion protein. In such cases, the variant may have more amino acids than the natural, full-lenght C5a peptide.
- The present invention relates to compositions and methods for the prevention treatment of blood-borne and toxin mediated diseases, and in particular anti-C5a antibodies for the prevention and treatment of sepsis caused by various types of organisms in humans as well as other animals. It is contemplated that the present invention finds use in the treatment of gram-negative and gram-positive sepsis. Although the invention may be used for treatment of sepsis due to an individual organism, it may also be used to treat sepsis caused by multiple organisms (e.g., sepsis and/or bacteremia due to gram-negative and gram-positive organisms).
- I. The C5a Peptide and Sepsis
- The complement system is a complex group of proteins present in body fluids that, working together with antibodies or other factors, plays an important role as mediators of immune, allergic, immunochemical and immunopathological reactions. Activation of the complement system can result in a wide range of reactions such as lysis of various kinds of cells, bacteria and protozoa, inactivation of viruses, and the direct mediation of inflammatory processes. Through the hormone-like activity of several of its components, the complement system can recruit and enlist the participation of other humoral and cellular effector systems. These in turn can induce directed migration of leukocytes, trigger histamine release from mast cells, and stimulate the release of lysosomal constituents from phagocytes.
- The complement system consists of at least twenty distinct plasma proteins capable of interacting with each other, with antibodies, and with cell membranes. Many of these proteins, when activated, combine with still others to form enzymes that cleave and activate still other proteins in the system. The sequential activation of these proteins follows two main pathways, the classical pathway and the alternative pathway, Both pathways use a common terminal trunk that leads to cell lysis or virus inactivation.
- The classical pathway can be activated by antigen-antibody complexes, aggregated immunoglobulins and non-immunological substances such as DNA and trypsin-like enzymes. The classical pathway includes activation of C1, C4, C2 and C3. These components can be grouped into two functional units: C1 or recognition unit; and C4, C2 and C3 or activation unit. Five additional components denominated C5, C6, C7, C8, and C9 define the membrane attack unit forming the terminal trunk common to both pathways.
- C5a peptide, also called anaphylatoxin, is a complement component peptide which is cleaved from the amino terminus of component C5 when the complement system is activated. C5a peptide has been shown to stimulate contraction of smooth muscle, enhance vascular permeability, promote the synthesis and release of other mediators including leukotrienes, prostaglandins, platelet-activating factor, and histamine. In vivo, C5a peptide results in the accumulation of polymorphonuclear leukocytes (PMN) (i.e. neutrophils) and marcrophages at the site of inflammation, one of the hallmark events of an acute inflammatory response. In vitro, C5a peptide is a potent chemotaxin for leukocytes, most notably PMN and macrophages, and it activates PMN causing them to release a variety of hydrolytic enzymes and to generate oxygen radicals. These latter-phenomena are thought to be responsible not only for the killing of microorganisms but for much of the tissue destruction that takes place in inflammatory situations.
- There is abundant evidence that in sepsis, complement activation, production of cytokines, and unregulated inflammatory responses occurs. It is well established in humans with sepsis that complement activation and complement consumption have occurred, as defined by loss of whole hemolytic activity of serum complement (CH50) and the presence of C5a peptide in serum [Koehl, J., Bitter-Suermann, D., Anaphylatoxins. Complement in health and disease., Edited by Whaley, K., Loos, M., Weiler, J. M., Kluwer Academic publishers, pp 299-324, (1993), and Solomkin, et al., Surgery 90:319-327, (1981)].
- It is well established from in vitro studies that interaction of C5a peptide with C5a receptor (C5aR) leads to phosphorylation of serine residues of the receptor, followed by rapid internalization of the receptor-ligand complex, dephosphorylation of the receptor and its recycling back to the surface of the cell. All of this occurs fairly rapidly. Furthermore, the maximal C5a-induced H2O2 response of the neutrophil requires that only a fraction of C5aR be occupied with ligand [Van Epps, et al., J. Immunol. 150:246-252 (1993)]. Neutrophils stimulated with C5a peptide become refractory (“deactivated”) to further stimulation with this peptide; following exposure to high doses of C5a peptide, global deactivation to chemotactic peptides occurs [Ward, P. A. & Becker, E. L., J. Exp. Med. 127:693-709 (1968)]. There is clinical evidence that blood neutrophils from humans with early sepsis lose functional responsiveness to C5a peptide and in the latter phases of sepsis lose responsiveness to structurally different chemotaxins such as the bacterial chemotactic factor [Solomkin, J. S., et al., Surgery 90:319-327 (1981)]. It has also been reported that C5 deficient mice demonstrate somewhat prolonged survival times when sepsis is induced, but ultimately all animals succumbed to the sepsis syndrome [Olson, L. M., et al., Ann. Surg. 202:771-776 (1985)].
- It is not necessary to the successful practice the present invention that one understand the precise mechanism by which a therapeutic benefit is achieved, nor is the present invention limited to any particular mechanistic explanation. However, it is believed that sepsis results in excessive production of C5a peptides, which leads to deactivation of neutrophils, compromising the respiratory burst (H2O2 production) of these cells and the closely linked bactericidal function, which is dependent upon H2O2 generation and participation of myeloperoxidase. The anti-C5a antibodies of the present invention, therefore, are believed to prevent the deactivation of neutrophils caused by sepsis, thus preserving the bactercidial function of the neutrophils. In this regard, the present invention contemplates antibodies specific for complement component C5a peptides and methods of using these antibodies to treat sepsis. In some embodiments, these antibodies are specific for complement component C5a peptide, wherein said C5a peptide has a C-terminal region and an N-terminal region, and wherein said antibody is not reactive with said C-terminal region.
- II. Generating Antibodies to C5a Peptides
- a. Antibodies
- The present invention contemplates monoclonal, polyclonal, and humanized antibodies to C5a peptides. In some embodiments, the antibodies are specific for complement component C5a peptide, wherein said C5a peptide has a C-terminal region and an N-terminal region, and said antibody is not reactive with said C-terminal region.
- Monoclonal antibodies useful in this invention are obtained, for example, by well known hybridoma methods. In one embodiment, an animal is immunized with a preparation containing C-terminal truncated peptides. A fused cell hybrid is then formed between antibody-producing cells from the immunized animal and an immortalizing cell such as a myeloma. In one embodiment, antibodies of the present invention are produced by murine hybridomas formed by fusion of mouse myeloma or hybridoma which does not secrete antibody with murine spleen cells which secrete antibodies obtained from mice immunized against C-terminal truncated C5a peptides.
- In some embodiments, mice are immunized with a primary injection of C-terminal truncated C5a peptides, followed by a number of boosting injections. During or after the immunization procedure, sera of the mice may be screened to identify mice in which a substantial immune response to the C-terminal truncated C5a peptides has been evoked. From the selected mice, spleen cells are obtained and fusions are performed. Suitable fusion techniques include, but are not limited to, the Sendai virus technique [Kohler, G. and Milstein, C., Nature 256:495 (1975)] or the polyethylene glycol method [Kennet, R. H., “Monoclonal Antibodies, Hybridoma—A New Dimension in Biological Analysis,” Plenum Press, NY (1980)].
- The hybridomas are then screened for production of anti-C5a antibodies. Suitable screening techniques include, but are not limited to, solid phase radioimmunoassay. A solid phase immunoadsorbent is prepared by coupling C5a peptides to an insoluble matrix. The immunoadsorbent is brought into contact with culture supernatants of hybridomas. After a period of incubation, the solid phase is separated from the supernatants, then contacted with a labelled antibody against murine immunoglobulin. Label associated with the immunoadsorbent indicates the presence of hybridoma products reactive with C5a peptides.
- In preferred embodiments the monoclonal anti-C5a antibodies are produced in large quantities by injecting anti-C5a antibody producing hybridoma cells into the peritoneal cavity of mice and, after an appropriate time, harvesting acites fluid from the mice which yield a high titer of homogenous antibody. The monoclonal antibodies are isolated therefrom. Alternatively, the antibodies are produced by culturing anti-C5a antibody producing cells in vitro and isolating secreted monoclonal anti-C5a antibodies from the cell culture medium directly.
- Another method of forming antibody-producing cells is by viral or oncogenic transformation. For example, a B-lymphocyte which produces anti-C5a specific antibody is infected and transformed with a virus, such as the Epstein-Barr virus, to give an immortal antibody-producing cell [Kozbon and Roder, Immunol. Today 4:72-79 (1983)].
- The present invention also contemplates anti-C5a polyclonal antibodies. Polyclonal antibodies can be prepared by immunizing an animal with a crude preparation of C-terminal truncated C5a peptides, or purified C-terminal truncated C5a peptides. The animal is maintained under conditions whereby antibodies reactive with the components of the peptides are produced. [See e.g. Elzaim, et al., Infect. Immun. May;66(5):2170-9 (1998)]. Typically the animal is “boosted” by additional immunizations to increase the antibody titer. In one method, blood is collected from the animal upon reaching a desired titer of antibodies. The serum containing the polyclonal antibodies (antisera) is separated from the other blood components. The polyclonal antibody-containing serum may be further separated into fractions of particular types of antibodies (e.g. IgG or IgM) or monospecific antibodies can be affinity purified from polyclonal antibody containing serum. In another method, the immunized animal is a bird. In this method antibodies (IgY) are collected from egg yolks. The egg yolk is separated from the yolk lipid and non-antibody proteinaceous matter, recovering the IgY anti-C5a antibodies in purified form (see e.g. U.S. Pat. 4,357,272 to Polson and U.S. Pat. No. 5,904,922 to Carroll).
- The present invention also contemplates humanized antibodies (i.e. substantially non-immunogenic antibodies). Such antibodies are particularly useful in treating human subjects. Chimeric and ‘reshaped’ humanized anti-C5a antibodies may be produced according to techniques known in the art (see e.g. U.S. Pat. No. 5,585,089 to Queen et al., and Kettleborough, et al., Protein Engineering, vol. 4, no. 7, pp 773-783, 1991). In one embodiment, humanized anti-C5a chimeric antiboides are produced using a combinatorial approach (see e.g. U.S. Pat. No. 5,565,332 to Hoogenboom et al. and U.S. Pat. No. 5,658,727 to Barbas et al.). The present invention also contemplates single polypeptide chain binding molecules which have binding specificity and affinity subtantially similar to the binding specificity and affinity of the light and heavy chain aggregate variable region of an anti-C5a antibody (see e.g. U.S. Pat. No. 5,260,203 to Ladner et al.).
- b. C5a Peptide Immunogens
- The present invention provides various C5a peptide immunogens. For example, the C5a peptides can be from various animals (e.g. human, rat, pig, and cow). The amino acid sequence of these C5a peptides are described in the literature [see Rothermel et al., Biochim. Biophys. Acta 1351 (1-2), 9-12, (1997){rat}; Babkina, I. N., et al., Bioorg Khim, May;21(5):359-64, (1995){human}; Gerard, C. et al., J. Biol. Chem. 255(10), 4710-4715, (1980){pig}; and Zarbock, J., et al., FEBS Lett. 238(2), 289-294, (1988){cow}]. The C5a immunogen may be the full length C5a peptide, or various peptides derived from the full length C5a peptide. In particular embodiments, the peptides are C-terminal truncated peptides (e.g. SEQ ID NOS:2, 4, 5, 14, 15 and 16). Representative sequences are listed in, Table 1. Representative human and rat DNA sequences which are used to generate various C-terminal truncated C5a peptides are listed in Table 2, along with the full human and full rat C5a DNA sequences. Modifications of these sequences (i.e. longer/shorter sequence, from various regions) are contemplated by the present invention. Generation of these various C-terminal truncated C5a peptide immunogens are described below.
- Variants of the C-terminal truncated C5a peptides are contemplated as useful immunogens (See e.g. Table 3). For example, it is contemplated that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids can be divided into four families: (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine, histidine); (3) nonpolar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); and (4) uncharged polar (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine). Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In similar fashion, the amino acid repertoire can be grouped as (1) acidic (aspartate, glutamate); (2) basic (lysine, arginine histidine), (3) aliphatic (glycine, alanine, valine, leucine, isoleucine, serine, threonine), with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic (phenylalanine, tyrosine, tryptophan); (5) amide (asparagine, glutamine); and (6) sulfur -containing (cysteine and methionine) (See e.g., Stryer ed., Biochemistry, 2nd ed, WH Freeman and Co.[1981]).
- Thus, in certain embodiments, modifications of the C-terminal truncated C5a peptides are contemplated by the present invention. Similar minor variations may also include amino acid deletions or insertions (i.e. additions), or both. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNAStar software or GCG (Univ. of Wisconsin).
- Whether a change in the amino acid sequence of a C-terminal truncated C5a peptide results in a useful immunogen for producing the anti-C5a antibodies of the present invention can be readily determined. One method involves screening the C-terminal truncated C5a peptides for the ability to inhibit the chemotaxis of neutrophils. Useful immunogens are identified by the ability to induce cheimotaxis (See e.g. Examples 7, 8 and 11). Another indication of a useful immunogen is the ability of the C-terminal truncated C5a peptide to inhibit chemotaxis when combined with C5a peptide (See e.g. Examples 7, 8, and 11). Another method involves screening the C-terminal truncated C5a peptides for the ability to antagonize the binding of labelled C5a peptides to neutrophils in a competitive assay (See e.g. Examples 10 and 11). Yet another method involves administering the C-terminal truncated C5a peptides to CLP sepsis induced rats, and monitoring their response over a given time period. Useful immunogens are identified by the ability to reduce the symptoms of sepsis, and/or increase survival times of the rats (See e.g. Example 11).
- The C-terminal truncated C5a peptides employed in the present invention may also comprise a fusion partner. Examples of fusion partners include Protein A, ABP, GST, poly histidine, HA, KLH, and MBP. Other fusion partners /are well known in the art. (See Nilsson et al., Prot. Expr. Purif., 11(1):1-16 [(1997]). The fusion partner may serve various functions, including, but not limited to, enhancement of the solubility of the C-terminal truncated C5a peptides, as well as providing an “affinity tag” to allow the purification of the recombinant fusion C-terminal truncated C5a peptide from the host cell or culture supernatant, or both. If desired, the exogenous protein fragment may be removed from the peptide of interest prior to immunization by a variety of enzymatic or chemical means known in the art.
- In some embodiments, nucleic acid sequences corresponding to these various C-terminal truncated C5a peptides (e.g., SEQ ID NOS:10, 11, 13, 17, 18, and 19) are used to generate recombinant DNA molecules that direct the expression of the C-terminal truncated C5a peptides in appropriate host cells, which are then purified and used as immunogens to generate the antibodies of the present invention. These DNA sequences may be included in any one of a variety of expression vectors for expressing C-terminal truncated C5a peptides in various hosts. Examples of vectors include, but are not limited to, chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies, and the like. Any vector may be used as long as it is replicable and viable in the host.
- Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. Such vectors include, but are not limited to, the following: 1) Bacterial—pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, phagescript, psiX174, pbluescript SK, pBSKS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); and 2) Eukaryotic—pWLNEO, pSV2CAT, pOG44, PXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). In general, mammalian expression vectors comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- The DNA sequence in the expression vector may be operably linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Promoters useful in the present invention include, but are not limited to, the LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda PL and PR, T3 and T7 promoters, and the CMV immediate early, HSV thymidine kinase, and mouse metallothionein-I promoters and other promoters known to control expression of peptides in prokaryotic or eukaryotic cells or their viruses. Recombinant expression vectors generally include origins of replication and selectable markers permitting transformation of the host cell (e.g., dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli).
- Transcription of the DNA encoding the C-terminal truncated C5a peptides of the present invention is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Enhancers useful in the present invention include, but are not limited to, the SV40 enhancer on the late side of the
replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The expression vector may also contain a ribosome binding site for translation initiation and a transcription terminator. - Various host cells may be employed to recombinantly express the C-terminal truncated C5a peptides. Suitable host cells are higher eukaryotic cells (e.g., a mammalian or insect cell), lower eukaryotic cells (e.g., a yeast cell), and prokaryotic cells (e.g., a bacterial cell). Specific examples of host cells include, but are not limited to, Escherichia coli, Salmonella typhimurium, Bacillus subtilis, and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, as well as, Saccharomycees cerivisiae, Schizosaccharomycees pombe, Drosophila S2 cells, Spodoptera Sf9 cells, Chinese Hamster Ovary (CHO) cells, COS-7 lines of monkey kidney fibroblasts, (Gluzman, Cell, 23:175 [1981]), C127, 3T3, HeLa and BHK cell lines.
- The constructs in host cells can be used in a conventional manner to produce the C-terminal truncated C5a peptides encoded by the recombinant sequences. In some embodiments, introduction of the construct into the host cell is effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation [Davis et al., Basic Methods in Molecular Biology, (1986)].
- Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- Methods for recovering and purifying C-terminal truncated C5a peptides from recombinant cell culture include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. High performance liquid chromatography (HPLC) can also be employed for final purification steps.
- DNA sequences having coding sequences (e.g., SEQ ID NOS:10, 11, 13, 17, 18, and 19) fused in frame to a marker sequence allow for purification of the C-terminal truncated C5a peptide. One example is a histidine tag which may be supplied by a vector (e.g., a pQE-9 vector) which provides for purification of the polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host (e.g., COS-7 cells) is used. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, et al., Cell, 37:767 [1984]).
- The coding sequences for the C-terminal truncated C5a peptides can also be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. One example employs the VP6 capsid protein of rotavirus used as an immunologic carrier protein for the C-terminal truncated C~a peptides, either in the monomeric form or in the form of a viral particle. The nucleic acid sequences corresponding to the various C5a peptides to which antibodies are to be raised can be incorporated into a fusion gene construct which includes coding sequences for a late vaccinia virus structural protein to produce a set of recombinant viruses expressing fusion proteins comprising C-terminal truncated C5a peptides as part of the virion. It has been demonstrated with the use of immunogenic fusion proteins utilizing the Hepatitis B surface antigen fusion proteins that recombinant Hepatitis B virions can be utilized in this role as well. Similarly chimeric constructs coding for fusion proteins containing C-terminal truncated C5a peptides and the poliovirus capsid protein are created to enhance immunogenicity of the set of polypeptide antigens [see e.g., EP Publication No. 025949; and Evans et al., Nature 339:385 (1989); Huang et al., J. Virol. 62:3855 (1988); and Schlienger et al., J. Virol. 66:2 (1992)]. The Multiple Antigen Peptide system for peptide-based immunization can also be utilized, wherein a desired C-terminal truncated C5a peptide sequence is obtained directly from organo-chemical synthesis of the peptide onto an oligomeric branching lysine core [see e.g., Posnett et al., JBC 263:1719 (1988) and Nardelli et al., J. Immunol. 148:914 (1992)]. C-terminal truncated C5a peptides can also be expressed and presented by bacterial cells in order to generate the antibodies of the present invention.
- In addition to utilizing fusion proteins to enhance immunogenicity, fusion proteins can also facilitate the purification of proteins. Accordingly, the C5a peptides can be generated as a glutathione-S-transferase (GST) fusion protein. Such GST fusion proteins enable easy purification of the C5a peptides, such as by the use of glutathione-derivatized matrices [see e.g, Current Protocols in Molecular Biology, Eds. Ausabel et al., N.Y.: John Wiley & Sons, (1991)]. Also, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired C-terminal truncated C5a peptide, can allow purification of the expressed C-terminal truncated C5a fusion protein by affinity chromatography using, for example, a Ni2+ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase [see e.g., Hochuli et al., J. Chromatography 411:177 (1987)].
- Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional molecular biology techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. The fusion gene is synthesized by conventional techniques including automated DNA synthesizers. Alternatively, in other embodiments of the present invention, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which is subsequently annealed to generate a chimeric gene sequence [see e.g., Current Protocols in Molecular Biology, Eds. Ausubel et al., Joln Wiley & Sons (1992)].
- The C-terminal truncated C5a peptide sequences may be synthesized, whole or in part, using chemical methods well known in the art [see e.g., Caruthers et al., Nuc. Acids Res. Symp. Ser. 7:215-233 (1980); Crea and Horn, Nuc. Acids Res. 9:2331 (1980); Matteucci and Caruthers, Tetrahedron Lett 21:719 (1980); and Chow and Kempe, Nuc. Acids Res. 9:2807-2817 (1981)]. For example, C-terminal truncated C5a peptides can be synthesized by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography [see e.g., Creighton (1983) Proteins Structures And Molecular Principles, W H Freeman and Co, New York N.Y.]. In other embodiments of the present invention, the composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (see e.g., Creighton, supra).
- Direct peptide synthesis can be performed using various solid-phase techniques [Roberge et al., Science 269:202-204 (1995)] and automated synthesis may be achieved, for example, using ABI 431A Peptide Synthesizer (Perkin Elmer, Norwalk Conn.) in accordance with the instructions provided by the manufacturer. Additionally the amino acid sequence of the C-terminal truncated C5a peptide sequences may be altered during direct synthesis yielding various C-terminal truncated C5a peptides which are used to generate the anti-C5a antibodies of the present invention.
- Compounds mimicking the necessary conformation for generating the antibodies of the present invention are also contemplated as within the scope of the invention. For example, mimetics of the C-terminal truncated C5a peptides are contemplated. A variety of designs for such mimetics are possible. For example, cyclic C-terminal truncated C5a peptides, in which the necessary conformation for immunogenicity is stabilized by non-peptides, are specifically contemplated (See e.g. U.S. Pat. No. 5,192,746 to Lobl, et al., U.S. Pat. No. 5,169,862 to Burke, Jr., et al., U.S. Pat. No. 5,539,085 to Bischoff, et al., U.S. Pat. No. 5,576,423 to Aversa et al., U.S. Pat. No. 5,051,448 to Shashoua, and U.S. Pat. No. 5,559,103 to Gaeta et al., all of which describe muliple methods for creating such compounds). The present invention also contemplates non peptide compounds that mimic C-terminal truncated C5a peptides, as well as multimeric compounds that repeat the relevant peptide sequences.
TABLE 1 C5a Sequences and Peptides Useful in Generating Antibodies Species SEQ ID NO: Amino Acid Sequence Rat C5a (full seq.) SEQ ID NO:1 DLQLLHQKVEEQAAKYKHRVP KKCCYDGARENKYETCEQRVA RVTIGPHCIRAFNECCTIADK IRKESHHKGMLLGR Rat C5a (residues 17-36) SEQ ID NO:2 KHRVPKKCCYDGARENKYET Human C5a (full seq.) SEQ ID NO:3 MLQKKIEEIAAKYKHSVVKKCC YDGASVNNDETCEQRAARISLG PRCIKAFTECCVVASQLRANIS HKDMQLGR Human C5a (res. 1-20) SEQ ID NO:4 MLQKKIEEIAAKYKHSVVKK Human C5a (res. 21-40) SEQ ID NO:5 CCYDGASVNNDETCEQRAAR Human C5a (res. 55-74) SEQ ID NO:6 CVVASQLRANISHKDMQLGR Human C5a (res. 12-20) SEQ ID NO:14 KYKHSVVKK Human C5a (res. 28-33) SEQ ID NO:15 VNNDET Human C5a (res. 38-46) SEQ ID NO:16 AARISLGPR Bovine C5a (full seq.) SEQ ID NO:7 MILKKKIEEEAAKYRNAWVKKC CYDGAHRNDDETCEERAARIAI GPECIKAFKSCCAIASQFRADE HHKNMQLGR Porcine C5a (full seq.) SEQ ID NO:8 MLQKKIEEEAAKYKYAMLKKC CYDGAYRNDDETCEERAARIK IGPKCVKAFKDCCYIANQVRA EQSHKNIQLGR -
TABLE 2 Rat and Human C5a Polynucleotide Sequences Useful in Generating C5a Peptides Species SEQ ID NO: Polynucleotide Sequence Human C5a (full seq.) SEQ ID NO:9 GATCCAGTATGTTGCAAAAAA AAATTGAAGAAATTGCTGCTA AATATAAACATTCTGTTGTTA AAAAATGTTGTTATGATGGAG CTTCTGTTAATAATGATGAAA CCTGCGAACAACGCGCTGCTA GAATTTCTTTGGGACCTAGAT GTATTAAAGCATTTACAGAAT GTTGTGTTGTTGCTTCTCAAT TGAGGCGAATATTTCTCATAA AGATATGCAATTGGGAAGATA GGATCCGTCGA Human C5a (for res. 1-20) SEQ ID NO:10 ATGTTGCAAAAAAAAATTG AAGAAATTGCTGCTAAATA TAAACATTCTGTTGTTAAA AAA Human C5a (for res. 21-40) SEQ ID NO:11 TGTTGTTATGATGGAGCTTC TGTTAATAATGATGAAACCT GCGAACAACGCGCTGCTAGA Human C5a (for res. 12-20) SEQ ID NO:17 TTGCTGCTAAATATAAACAT TCTGTTG Human C5a (for res. 28-33) SEQ ID NO:18 GAGCTTCTGTTAATAATG Human C5a (for res. 38-46) SEQ ID NO:19 AACAACGCGCTGCTAGAATT TCTTTGG Rat C5a (full seq.) SEQ ID NO:12 GACCTGCAGCTCCTGCATCAG AAAGTGGAAGAACAAGCTGCT AAATACAAACACCGTGTGCCC AAGAAATGCTGTTATGATGGA GCCCGAGAAAACAAATACGAA ACCTGTGAGCAGCGAGTTGCC CGGGTGACCATAGGCCCACAC TGCATCAGGGCCTTCAACGAG TGTTGTACTATTGCGGATAAG ATCCGAAAAGAAAGCCACCAC AAAGGCATGCTGTTGGGAAGG Rat C5a (for res. 17-36) SEQ ID NO:13 AAACACCGTGTGCCCAAGAAA TGCTGTTATGATGGAGCCCGA GAAAACAAATACGAAACC -
TABLE 3 C-Terminal Truncated C5a Peptide Sequences SEQ ID NO: Amino Acid Sequence SEQ ID NO:20 KYKHTVVKK SEQ ID NO:21 KYKHSAVKK SEQ ID NO:22 KYKHSAAKK SEQ ID NO:23 KYKHSVAKK SEQ ID NO:24 VNNQET SEQ ID NO:25 VNNDES SEQ ID NO:26 VNNQES SEQ ID NO:27 ANNDET SEQ ID NO:28 AARISIGPR SEQ ID NO:29 AARISVGPR SEQ ID NO:30 AARITLGPR SEQ ID NO:31 AVRISLGPR SEQ ID NO:32 VARISLGPR SEQ ID NO:33 VVRISLGPR SEQ ID NO:34 MLQKKIEEIAAKYKHSVVK SEQ ID NO:35 MLQKKIEEIAAKYKHSVV SEQ ID NO:36 MLQKKIEEIAAKYKHSV SEQ ID NO:37 MLQKKIEEIAAKYKHS SEQ ID NO:38 MLQKKIEEIAAKYKH SEQ ID NO:39 LQKKIEEIAAKYKHSVVKK SEQ ID NO:40 QKKIEEIAAKYKHSVVKK SEQ ID NO:41 KKIEEIAAKYKHSVVKK SEQ ID NO:42 KIEEIAAKYKHSVVKK SEQ ID NO:43 IEEIAAKYKHSVVKK SEQ ID NO:44 MIQKKIEEIAAKYKHSVVKK SEQ ID NO:45 MVQKKIEEIAAKYKHSVVKK SEQ ID NO:46 MLDKKIEEIAAKYKHSVVKK SEQ ID NO:47 MLQKKIEEIAAKYKHTVVKK SEQ ID NO:48 MLQKKIEEIVAKYKHSVVKK SEQ ID NO:49 MLQKKIEEIVVKYKHSVVKK SEQ ID NO:50 MLQKKIEEIAAKYKHSVAKK SEQ ID NO:51 MLQKKIEEIAAKYKHSAAKK SEQ ID NO:52 MLQKKIEEIAAKYKHSAVKK SEQ ID NO:53 MLQKKIEEIAVKYKHSVVKK SEQ ID NO:54 CCYDGASVNNDETCEQRAA SEQ ID NO:55 CCYDGASVNNDETCEQRA SEQ ID NO:56 CCYDGASVNNDETCEQR SEQ ID NO:57 CCYDGASVNNDETCEQ SEQ ID NO:58 CCYDGASVNNDETCE SEQ ID NO:59 CYDGASVNNDETCEQRAAR SEQ ID NO:60 YDGASVNNDETCEQRAAR SEQ ID NO:61 DGASVNNDETCEQRAAR SEQ ID NO:62 GASVNNDETCEQRAAR SEQ ID NO:63 ASVNNDETCEQRAAR SEQ ID NO:64 CCYQGASVNNDETCEQRAAR SEQ ID NO:65 CCYDGASVNNQETCEQRAAR SEQ ID NO:66 CCYQGASVNNQETCEQRAAR SEQ ID NO:67 CCYDGASVNNDESCEQRAAR SEQ ID NO:68 CCYDGATVNNDETCEQRAAR SEQ ID NO:69 CCYDGVSVNNDETCEQRAAR SEQ ID NO:70 CCYDGASANNDETCEQRAAR SEQ ID NO:71 CCYDGASVNNDETCEQRVAR SEQ ID NO:72 CCYDGASVNNDETCEQRVVR SEQ ID NO:73 CCYDGASVNNDETCEQRAVR SEQ ID NO:74 CCYDGVSANNDETCEQRVVR - In one embodiment, the present invention contemplates a method of producing polygonal antibodies, comprising; providing an animal and an immunogenic composition, wherein the composition comprises C-terminal truncated C5a peptides; and immunizing the animal with the immunogenic composition in order to generate antibodies. It is not intended that the present invention be limited to particular C-terminal truncated peptides. A variety of C-terminal truncated peptides are contemplated. In one embodiment, the C-terminal truncated peptide corresponds to the entire N-terminal region of C5a peptide. In another embodiment, the C-terminal truncated peptide is a fragment or portion of the N-terminal region of C5a peptide. In another embodiment, the fragment or portion of the N-terminal region of C5a peptide is between approximately 5 and approximately 50 amino acids in length. In some embodiments, the C-terminal truncated peptide is fifty amino acids in length. In other embodiments, the C-terminal truncated peptides are approximately five amino acids in length. In preferred embodiments, the C-terminal truncated peptides are approximately 20 amino acids in length. In especially preferred embodiments, the C-terminal truncated peptides are selected from SEQ ID NOS:2, 4, and 5.
- III. Antibody Applications
- A. Prophylactic Use In Humans
- The diagnosis of sepsis is problematic. First, the development of sepsis does not require the persistent release of toxin(s), nor the presence of organisms, in the circulation. Thus, many patients who die of sepsis are never shown to be bactermic. [R. C. Bone, Ann. Intern. Med. 115:457-469 (1991)]. Second, even if bacteria are detected, the amount of time needed for this detection is often too great to be practical.
- For these reasons and others, the present invention contemplates the use of anti-C5a antibodies in humans prior to the onset of symptoms (e.g., prophylactically). In particular, the present invention contemplates the use of anti-C5a antibodies as prophylactic treatment in patients at high risk for infection, as well as sepsis.
- High risk patients include surgical patients (particularly the elderly), low birth weight infants, bum victims and trauma patients. Trauma patients are particularly difficult to examine because of the multitude of invasive procedures that they have undergone. Trauma patients are also typically hooked up to a number of devices, including intravascular lines, mechanical ventilators and Foley catheters. While ever) attempt is made to change intravascular lines, this is frequently impossible because of the extent of trauma and the lack of venous accessibility. [E. S. Caplan and N. Hoyt, Ann. J. Med. 70:638-640 (1981)].
- Most patients with multiple trauma have fever, as well as increased white cell counts due to the stress of the trauma itself. The classic indicators of infection, therefore, may or may not reflect an ongoing infection.
- Because of this, current clinical practice involves treating patients with antibiotics only for specific indications, and for as short a period of time as possible. Generally, the average course for any documented infection is seven to ten days. Prophylactic antibiotics are used in only three instances: open fractures, penetrating abdominal injuries and penetrating facial injuries in which there is injury to the respiratory mucosa. Even in these situations, antibiotics are used for only three to five days, depending on the injury.
- Burn patients have many problems with respect to the diagnosis and therapy for infection. Since the magnitude of thermal injury is related to the level of trauma in a burn victim, this becomes even more of a problem with acute cases. It is reported that septicemia appears in the blood cultures of burn patients almost four days after a septic state. [M. Meek et al., J. Burn Care Rehab. 12:564-568 (1991)]. Consequently, therapy with the antibodies of the present invention is particularly appropriate immediately after the burn injury as a means of preventing a septic reaction. Furthermore, in severe cases, consideration should be given to the topical administration of the antibodies of the present invention to prevent wound sepsis.
- Finally, surgical patients also represent a risk group where the antibodies of the present invention can be used successfully. Current practice involves the prophylactic use of antibiotics in a very narrow category of cases (e.g., elective colorectal procedures, cholecystectomy, hysterectomy and Caesarean sections). [R. L. Nichols in Decision Making in Surgical Sepsis, B. C. Decker, Inc., Philadelphia, pp. 20-21 (1991)]. One to two grams of a broad-spectrum antibiotic are administered intravenously at the induction of anesthesia. An additional dose may be given during an extensive procedure or post-operatively but prophylaxis beyond 24 hours is not indicated. Twenty-four hours of antibiotic prophylaxis is considered to be sufficient to control contamination. Continuance of antibiotic prophylaxis beyond 24 hours is an added expense, particularly when using an antibiotic with short serum and tissue half-lives. Most importantly, continuation of antibiotic prophylaxis also runs an excessive risk of drug toxicity and emergence of resistant strains. As such, the present invention contemplates the use of anti-C5a antibodies to help reduce the need for antibiotics, and reduce the risk of sepsis.
- In this regard, the present invention contemplates a method comprising; providing; a subject at risk for sepsis, and a therapeutic composition comprising an antibody specific for complement component C5a peptide, and prophylactically administering said therapeutic composition to the subject. In some embodiments administering the composition prevents the onset of symptoms of sepsis.
- B. Acute Therapy In Humans
- The present invention also contemplates the use of anti-C5a antibodies in a therapeutic preparation for acute treatment. In this case, treatment involves administration of the antibodies after infection is detected and/or sepsis is suspected.
- Evidence suggestive of infection includes the following: (1) core temperature higher than 38° C. or lower than 35° C.; (2) peripheral blood leukocyte count greater than 12×109/L or less than 3×109/L (not due to chemotherapy), or at least 20% immature forms; (3) growth of gram-negative organisms from a blood culture drawn within the preceding 48 hours; or (4) documented or suspected site of gram-negative infection.
- A systemic septic reaction is characterized by at least one of the following:
- arterial hypotension (systolic blood pressure <90 mm Hg or an acute drop of 30 mm Hg); metabolic acidosis (base deficit >5 mEq/L); decreased systemic vascular resistance (systemic vascular resistance <800 dynes/s·cm5); tachypnea (respiratory rate >20/min or ventilation >10 L/min if mechanically ventilated); or otherwise unexplained dysfunction of the kidney (urine output <30 ml/h), or lungs.
- It must be stressed that the anti-C5a antibodies of the present invention should ideally be used prior to a systemic infection, if possible. For example, the antibodies are administered immediately after bacteremia or fungemia is detected. Similarly, antibodies can be administered where there is an obvious sign of infection at a particular site (e.g., wounds, sinusitis, meningitis, respiratory, gastrointestinal, or urinary tract infections, etc.).
- Primary bacteremia is typically defined as two or more blood cultures with the same bacterial organism occurring in a patient with no other obvious site of infection. Sinusitis is diagnosed in a patient who has at least two of the following: purulent nasal discharge, roentgenographic evidence of sinusitis or purulent material aspirated from the sinuses.
- The lower respiratory tract is a common site of infection. Pneumonia in the intubated patient is diagnosed in a patient when there is fever, leukocytosis and a Gram stain with many polymorphonuclear leukocytes. Pneumonia may also be diagnosed in a patient with a new infiltrate that has not cleared with intensive physical therapy (this last criterion helps rule out atelectasis).
- The C5a peptide has been implicated in the pathogenesis of bacterial meningitis [Stahel, et al., J. Immunol. July 15;159(2):861-9 (1997)]. As such, treatment of acute meningitis with the anti-C5a antibodies of the present invention is contemplated.
- Among the bacterial causes of meningitis, two gram-negative organisms (Neisseria meningitidis and Haemophilus influenzae), and one gram-positive organism (Streptococcus pneumoniae), are the major culprits. N. meningitidis is responsible for an estimated 24-25% of meningitis in children one month of age through 15 years; for adults, the figure is 10-35%. H. influenzae is responsible for an estimated 40-60% of meningitis cases in children one month of age through 15 years, while S. pneumoniae is responsible for 10-20% of meningitis cases in the same age group, as well as 30-50% of cases in adults (over 15 years). [W. K. Joklik et al. (eds.), Zinsser Microbiology, 18th ed., p. 485, Appleton-Century-Crofts, Norwalk, Conn. (1984).] Other organismis such as Streptococcus spp. in groups A and B, Staphylococcus aureus, Listeria mollocytogenes, and various gram-negative bacilli (e.g., enterics such as E. coli) are responsible for sporadic cases. Untreated, bacterial meningitis is fatal in 70-100% of patients, and infected neonates may have motor or intellectual impairment related to their infection. [J. M. Slack and I. S. Snyder, Bacteria and Human Disease, pp. 128-133, Yearbook Medical Publishers (1978).]
- The blood-brain barrier represents a significant obstacle to treatment of meningitis, especially prophylactically. As the barrier is designed to prevent invasion of organisms and uptake of compounds (e.g., antimicrobials), intravenous antimicrobial administration is not always sufficient. For example, estimates provided in experimental studies indicate that drug concentrations in the cerebrospinal fluid and brain are approximately 1/200 to 1/500 of those in serum. [G. P. Youmans et al., Biologic and Clinical Basis of Infectious Diseases, 3d ed., p. 553, W. B. Saunders Co., (1985).] Even with the inflammatory changes associated with an intensity characteristic of bacterial meningitis, passage of antimicrobials is hindered by the barrier. [Id.]
- Endotoxemia due to the release of endotoxins from dividing organisms and the presence of endotoxin in the cerebrospinal fluid (CSF) present serious complications during sepsis and meningitis. Endotoxin is detectable in the plasma and CSF of patients with meningitis due to gram-negative bacteria. (Awad et-al., supra at 560.) Perhaps due to increased permeability of the bowel mucosa, endotoxin may also be found in the plasma of patients with meningitis due to gram-positive organisms (e.g., Streptococcus pneumoniae).
- Ironically, release of endotoxin is aggravated by antimicrobial treatment. Indeed, it is believed that aggressive antibiotic treatment can be life-threatening. This is due to the increased burden of endotoxin present in the blood and CSF which results when a large number of organisms are simultaneously killed by the antibiotic. This increased endotoxin burden results in the pathology associated with fatal meningitis and is a significant problem facing clinicians who must treat a seriously ill patient within the first few hours of disease.
- Therefore, the present invention contemplates treating acute septic conditions with anti-C5a antibodies. It is contemplated that these antibodies be administered alone, or in combination with other therapeutic preparations. In preferred embodiments, the present invention provides a method comprising; providing; a subject suffering from symptoms of sepsis, a therapeutic composition comprising an antibody specific for complement component C5a peptide, and administering the therapeutic composition to the subject.
- C. Veterinary Care
- Septicemia and sepsis are by no means limited to human beings. Infection by gram-negative bacteria accounts for significant morbidity and mortality in neonatal livestock, such as calves. [D. D. Morris et al., Am. J. Vet. Res. 47:2554-2565 (1986).] Interestingly, humoral immune status is again related to susceptibility to sepsis and this is largely dependent on passive transfer from colostrum. For this reason, in some embodiments the present invention contemplates determining the immune status of the animal prior to administration of the anti-C5a antibodies. This determination can be made by screening neonatal calves for total circulating serum immunoglobulin (e.g., by ELISA).
- Where the immune status is poor (e.g., low total IgG levels), the antibodies of the present invention should be used prophylactically. Where the animal's immune status is healthy, use of the antibodies may be needed for acute therapy of grain-negative bacterial sepsis, which remains prevalent in neonatal calves even with high natural antibody levels.
- The present invention contemplates the treatment of other animals as well. For example, among foals less than 10 days of age in critical distress, sepsis is the most serious problem. [A. M. Hoffman et al., J. Vet. Int. Med. 6:89-95 (1992).] Symptoms highly indicative of sepsis risk include weakness, metabolic disturbance and dehydration. In one embodiment, the invention contemplates using antibodies for prophylactic treatment of foals less than 10 days of age having these indicators, or those at risk of infection.
- While positive blood cultures are found in less than half of the cases, those animals found positive have a very poor chance of survival. The present invention therefore contemplates using anti-C5a antibodies for acute treatment of any animal with evidence of septicemia, with or without culture-proven cases.
- IV. Therapeutic Preparations and Combinations
- In some embodiments, the present invention contemplates using therapeutic compositions of soluble anti-C5a antibodies. It is not intended that the present invention be limited by the particular nature of the therapeutic composition. For example, such compositions can be provided together with physiologically tolerable liquids, gels, solid carriers, diluents, adjuvants and excipients (and combinations thereof). In addition, anti-C5a antibodies may be used together with other therapeutic agents, including other immunoglobulins or antibiotics.
- As noted above, these therapeutic compositions can be administered to mammals for veterinary use, such as with domestic animals, and clinical use in humans in a manner similar to other therapeutic agents. In general, the dosage required for therapeutic efficacy varies according to the type of use and mode of administration, as well as the particularized requirements of individual hosts. The attending medical professional is capable of determining the therapeutically effective dosage based on the characteristics of the subject (e.g. gender, age, weight, etc.)
- With respect to the mode of administration, in some embodiments the antibodies are administered intravenously, intramuscularly, subcutaneously, intradermally, intraperitoneally, intrapleurally, intrathecally, or topically. In some embodiments, formulations for such administrations may comprise an effective amount of anti-C5a antibodies in sterile water or physiological saline.
- On the other hand, formulations may contain such normally employed additives as binders, fillers, carriers, preservatives, stabilizing agents, emulsifiers, buffers and excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. These compositions typically contain 1%-95% of active ingredient, preferably 2%-70%.
- The compositions are preferably prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared.
- The antibodies of the present invention are often mixed with diluents or excipients which are compatible and physiologically tolerable. Suitable diluents and excipients are, for example, water, saline, dextrose, glycerol, or the like, and combinations thereof. In addition, if desired, the compositions may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, stabilizing or pH buffering agents.
- Where repeated administrations are required, it may be beneficial to first clear any anti-hapten antibodies by administering free antibiotic. This can then be followed by administration of the anti-C5a antibodies of the present invention.
- Experimental
- The following examples are provided in order to demonstrate and further illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.
- In the experimental disclosure which follows, the following abbreviations apply: N (normal); M (molar); mM (millimolar); μM (micromolar); mol (moles); mmol (millimoles); μmol (micromoles); mnol (nanomoles); pmol (picomoles); g (grams); mg (milligrams); μg (micrograms); ng (nanograms); 1 or L (liters); ml (milliliters); μl (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); ° C. (degrees Centigrade); Sigma (Sigma Chemical Co., St. Louis, Mo.).
- This Examples describes the induction of sepsis by Cecal Ligation Puncture (CLP) in Male Long-Evans specific pathogen-free rats (275-300 mg) obtained from Harlan, Inc., Indianapolis, Ind. Anesthesia was induced by intraperitoneal administration of ketamine (20 mg/100 mg body weight). Through a 2 cm abdominal midline incision the cecum was ligated below the ileocecal valve without obstructing the ileum or colon. The cecum was then subjected to a single “through and through” perforation with a 21-gauge needle. After repositioning the bowel, the abdominal incision was closed in lagers with plain gut surgical suture 4-0 (Ethicon, Inc., Somerville, N.J.) and metallic clips. Sham animals underwent the same procedure except for ligation and puncture of the cecum.
- This Example describes the preparation and characterization of anti-rat C5a antibodies. Rat C5a peptide with the sequence KHRVPKKCCYDGARENKYET (SEQ ID NO:2) was obtained from Research Genetics (Huntsville Ala.) and coupled to keyhole limpet hemocyanin (KLH). This 20-mer rat C-terminal truncated C5a peptide corresponds to amino acid residues 17-36 of the full length rat C5a peptide [Rothermel, E. et al., Biochimica. et Biophysica. Acta. 1351:9-12, (1997)], which is listed as SEQ ID NO:1. The coupled peptide was used as an antigen to immunize rabbits. After several injections, the antibody was affinity purified using the synthetic 20-mer peptide coupled to beads. Immunoprecipitation with activated rat serum using beads coupled with this antibody yielded a single band with a 14 kDa position in Western blot analysis, characteristic of rat C5a peptide [See, Ward, P. A. and Becker, E. L., J. Exp. Med. 127:693-709 (1968)].
- When added at a concentration of 100 μg/ml, the antibody did not affect whole hemolytic complement activity (CH50) of fresh rat serum. Addition of 0, 10, 20, 40, 80 micrograms of anti-C5a Ab yielded CH50 values of 99, 94, 91, 93, and 94 units/ml. Therefore, the fact that CH50 levels are not affected by the anti-C5a antibodies indicates that the anti-C5a antibodies are effective without compromising the entire complement system (including the classical and alternate pathways).
- This Example describes the treatment of sepsis. CLP-induced sepsis was generated in three different groups of rats according to the procedure of Example I above. The first group (n=21) was treated intravenously with 400 μg of preimmune IgG (in a volume of 300 μg) immediately after the CLP procedure. The second group (n=10) was treated intravenously with 400 μg of anti-C5a IgG prepared according to Example 2 above (in a volume of 300 μg) immediately after the CLP procedure. The third group (n=12) was depleted of C3 by four intraperitoneal injections of purified cobra venom factor (25 units per injection at 12 hour intervals) during the 48 hour period prior to induction of CLP. This protocol has been shown to reduce serum C3 levels to less than 3% of normal and to suppress whole complement hemolytic activity (CH50) to undetectable levels [Hill, J. H. and Ward, P. A., J. Exp. Med. 133:885-900, (1971)].
- Survival rates for the three groups of rats were determined over a ten-day period, with assessment every 6 hours. A sham operated group of rats (n=10) in which no cecal puncture was performed, were also included in this study and all survived during the 10 day period.
- All animals had unlimited access to food and water, both pre- and postoperatively. Survival data for the three CLP treated groups is depicted in
FIG. 1 . In the CLP group receiving preimmune IgG, survival was 66.7% (14/21) 24 hours after CLP, diminishing progressively each day untilday 8, at which time only 9.5% (2/21) were alive. In the C3 depleted group, the survival time was greatly reduced, with all animals dead before day 4.5. When this group was compared to the CLP group receiving preimmune IgG, the outcomes were statistically different (p=0.01 by the Chi square test). In the CLP group receiving anti-C5a antibodies, survival times were dramatically improved. Byday - This Example describes the in vitro detection and reduction of bacteremia in septic rats. CLP-induced sepsis was generated in two different groups of rats according to the procedure of Example I above. One group (n=5) was treated intravenously with 400 μg of preimmune IgG, which was infused immediately after surgery. The second group (n=5) was treated intravenously with 400 μg of anti-C5a IgG (prepared according to Example 2), which was infused immediately after surgery. A third group of sham operated rats (n=5) in which no cecal puncture was performed, were also included.
- CLP-induced sepsis in rats is known to be associated with the development of bacteremia involving the presence of both aerobic and anaerobic bacteria in the blood [Deitch, E. A. Schock 9:1-11, (1997)]. Blood samples were obtained from these three
groups 36 hours after sham surgery or induction of CLP. This was done by drawing blood via the posterior vena cava after topical treatment of the puncture site with iodine swabsticks (Professional Disposables, Inc., Orangeburg, N.Y.). Blood samples were placed in Isolator Microbial Tubes (Wampole, Inc.) and cultured on chocolate sheep blood agar plates (incubated aerobically in 5% CO2) or on lysed blood agar plates (incubated anaerobically). All plates were incubated for 96 hours prior to determination of colony counts (cfu). The presence of aerobic and anaerobic bacteria in blood was measured -as cfu is shown inFIG. 2 . - In the sham operated group at 36 hours, cfu were not detectable. In the CLP group receiving preimmune IgG, the cfu value (x±SEM) was 740±328, while in the CLP group treated with anti-C5a antibodies, the cfu value was profoundly reduced, by 98% (p<0.05), to 18±10 cfu. When subcultures of mixed aerobic or anaerobic bacteria obtained from the blood of CLP rats incubated in the presence of either preimmune IgG or anti-C5a IgG (each at 100 μg/ml), no reduction in cfu values were found, indicating that anti-C5a antibodies are not directly bacteriostatic.
- Bacteremia was also assayed in the organs of both sham and CLP treated rats, which received either preimmune IgG or anti-C5a antibodies (prepared according to Example 2). Livers and spleens were obtained from these
rats 36 hours after surgery. These tissues were homogenized and cfu/g of tissue was determined using procedures similar to those used for the blood samples described above. The data is shown inFIG. 3 , in which the cfu values for aerobic and anaerobic bacteria were arbitrarily aggregated. In all cases, there was a 1:1 ratio of these two classes of bacteria. In sham animals and in CLP animals treated with anti-C5a IgG, the cfu values were low in both liver and spleen. Between these two groups and in both organs, there were no statistically significant differences in cfu values. In marked contrast, CLP rats treated with preimmune IgG had very high cfu values (3-11×106/g tissue). - This Example describes the binding of C5a peptide to neutrophils in the blood of septic rats, and ability of anti-rat C5a antibodies to reduce this binding. Blood neutrophils were obtained from both sham and CLP treated rats, which received either preimmune IgG or anti-C5a antibodies (prepared according to Example 2) at 12, 24 and 36 hours after CLP. Neutrophils were evaluated in flow cytometry for the surface content of C5a peptide using the procedure described below.
- Whole blood was recovered from these rats, being drawn into syringes containing the anticoagulant ACD (Baxter Health Care Corp., Deerfield, Ill.). Duplicate aliquots (250 μl) of cells were incubated with an equal volume of phosphate buffered saline. The phosphate buffer, pH 7.4, was made up with heat inactivated 1% fetal bovine serum and 0.1% NaN3, containing 10 μg/ml of either anti-rat C5a polyclonal antibody (as used in Mulligan, M. S. et al., J. Clin. Invest. 98:503-512, 1996) or irrelevant rabbit IgG control antibody (Jackson Laboratories, Ban Harbor, Me.). The cells were incubated at 5° C. for 30 minutes. Cells were washed once and red blood cells lysed with FACS solution (Becton Dickinson, San Jose, Calif.). Cells were then washed and incubated with phycoerythrin labeled anti-rabbit IgG (Sigma Chemical Co., St. Louis, Mo.). Cells were washed twice and suspended in 400 μl PBS containing 2% paraformaldehyde. Phycoerytlirin intensity of gated populations (identified as forward versus side scatter light) was measured on a FACScan Flow Cytometry System (Becton Dickinson) in which 10,000 cells per gate were counted and the amount of phycoerythrin analyzed using PC-LYSYS software (Becton Dickson).
- The data collected from this procedure is shown in Table 3. Mean channel fluorescence (MCF) values for neutrophils obtained from sham operated rats or from CLP rats at 12 hours showed very low MCF values for C5a peptide. By 24 and 48 hours, neutrophils from CLP animals showed nearly 4 fold increases in binding of anti-C5a IgG, suggesting that these cells contained substantial amounts of C5a on their surfaces. Binding of preimmune IgG to neutrophils from CLP rats at 24 and 36 hours was very low (less than 10 MCF units). Thus, during CLP induced sepsis, blood neutrophils acquire C5a peptides on their surfaces. When C5a peptide content was evaluated on blood neutrophils obtained from CLP rats pre-treated with 400 μg anti-C5a, there were consistent reductions in C5a content at 24 and 36. hours when compared to neutrophils from CLP rats pre-treated with preimmune IgG.
TABLE 3 Detection by Flow Cytometry of C5a Peptides on Blood Neutrophils During Sepsis Mean Channel Fluorescence (mean ± SEM) Group 0 hour 12 hour 24 hour 36 hour Sham 12.8 ± 1.48* CLP + 11.9 ± 0.54 43.5 ± 1.42 45.6 ± 0.64 preimmune IgG (400 μg) CLP + 10.6 ± 0.37 32.6 ± 0.34 32.3 ± 2.74 anti-C5a IgG (400 μg)
*All displayed binding values represent results with rabbit anti-C5a IgG as detected with phycoerythrin labeled anti-rabbit IgG. The binding value of preimmune IgG was 4.45 ± 0.16. For each data point, n = 4 and all samples were analyzed in quadruplicate.
- This Example describes the ability of anti-rat C5a antibody to preserve the H2O2 production of neutrophils from septic rats. Blood neutrophils were obtained from both sham and CLP treated rats, which received 400 μg of either preimmune IgG or anti-C5a antibodies (prepared according to Example 2) 36 hours after CLP or sham surgery. Neutrophil generation of H2O2 was assayed using the procedure described below.
- Neutrophils were isolated from blood using dextran sedimentation and hypotonic red blood cell lysis. 7.5×105 cells were suspended in Hank's balanced salt solution (in a final volume of 1.0 ml) in the presence or absence of catalase (100 units/ml) in a final volume of 1.0 ml. Neutrophils were then stimulated for I hour at 37° with phorbol myristate acetate (PMA) at a concentration of 100 ng/ml. Stimulation was terminated by addition of 10% (vol/vol) trichloroacetic acid. After removing precipitated protein by centrifugation (10 minutes at 500×g), 10 mM ferrous ammonium sulfate (0.2 ml) and 2.5 M potassium thiocyanate (0.1 ml) were added to the sample. The presence of the ferrithiocyanate complex formed in the presence of peroxide was measured at 480 nm and compared to a standard curve generated using dilutions of stock H2O2.
- The data collected from this procedure is shown in
FIG. 4 . Very little H2O2 (circa 0.1 nmol) was produced in unstimulated blood neutrophils obtained from sham rats or from CLP rats pre-treated with preimmune IgG or anti-C5a IgG. After PMA stimulation, neutrophils from sham rats produced 3.1±0.75 umol H2O2. In CLP rats treated with preimmune fgG, H2O2 production of PMA-stimulated neutrophils was reduced by nearly 62%, to 1.25±0.50 nmol. In striking contrast, blood neutrophils from CLP animals treated with anti-C5a demonstrated full H2O2 generation, 3.58±0.67 nmol after iii vitro stimulation with PMA, indicating that treatment with anti-C5a antibodies preserved this response in neutrophils from CLP rats. - This Example describes the ability of certain synthetic peptides representative of regions of human C5a peptide to reduce the chemotactic response of human neutrophils to human C5a peptide. Human neutrophils were isolated from human blood by traditional Ficoll-Hypaque sedimentation techniques. Using standardized methodology, neutrophils (5×106/ml) labeled with 1 μg/ml BCECF [2′,7′-(2 carboxyethyl)-5-(and-6)-carboxyfluroscein, acetoxymethy ester) at 37° C. for 30 min, were applied to the upper compartments of chemotactic chambers and evaluated for their motility responses to 10 nM human C5a peptide (SEQ ID NO:3) added to the lower compartments. The two compartments were separated by a membrane with pore sizes of 3 μm. Neutrophil chemotactic responses were quantitated by cytofluorometry.
- Three different peptides, labelled A, M, and C, were also added separately to the lower compartments, at a concentration of 1 μM, in medium alone or together with 10 nM human recombinant C5a peptide. Peptide A (SEQ ID NO:4) represents residues 1-20 of human C5a peptide, peptide M (SEQ ID NO: 5) represents residues 21-40 of human C5a peptide, and peptide C (SEQ ID NO:6) represents residues 55-74 of human C5a peptide. As shown in
FIG. 5 , the presence of 1 μM from regions A, M, or C, did not per se induce any chemotactic responses. However, the presence of 1 μM of any of these three peptides with 10 μM human C5a resulted in significant reduction (approximately 20%) in the clhemotactic responses of nieutrophils. This data suggests that peptides from the N-terminal, mid-portion, and C-terminal regions of human C5a have the ability to compete functionally with intact C5a peptide, while demonstrating no intrinsic chemotactic activity. - This Example describes neutrophil chemotactic activity of peptides A, M, and C linked to keyholelimpet hemocyanin (KLH) employing the chemotactic assay described in Example 7. The peptide:KLH molar ratios employed were approximately 3:1. The chemotactic responses of neutrophils was evaluated to medium alone, to 10 nM recombinant C5a peptide (SEQ ID NO:3), and to the KLH-A, M, or C conjugates (SEQ ID NOS:4, 5, and 6 respectively), at the calculated synthetic peptide concentrations of 100 nM.
- The data collected in this Example is shown in
FIG. 6 . The A peptide KLH conjugate was the most chemotactically active compound when compared to C5a peptide, while the C peptide conjugate was almost as active. The M peptide conjugate revealed no chemotactic activity. - In this Example epitopes in human C5a peptide were evaluated for reactivity with commercially available rabbit polyclonal anti-human C5a antibodies (purchased from Calbiochem-Novabiochem Corp., San Diego, Calif.). Thirty-four (34) μg of this polyclonal anti-human C5a IgQ was incubated with 20 μg KLH peptide conjugates (A, M, C, as described in Example 8) for 18 hours at 4° C. Treated and untreated antibodies were then evaluated for their ability to react with recombinant human C5a peptide by Western blot analysis. Fifty (50) ng C5a peptide was added to each lane, and electrophoresis was carried out. As shown in
FIG. 7 , two banding patterns (one between the 6.5 and 14.3 kDa markers and the other near the 21.4 kDa marker) were found by Western blot analysis. When anti-C5a antibody was incubated with human recombinant C5a peptide, both bands disappeared in Western blots. Preabsorption of the antibody with C peptide abolished the slower band and nearly abolished the faster migrating band. Absorption with M peptide greatly diminished the intensity of both bands, while preabsorption with A peptide showed little evidence of removal of reactivity of the antibody with C5a peptide. This data suggests that the commercially available polyclonal rabbit antibody to human C5a peptide is most reactive with the C terminal region of C5a peptide (represented by peptide C), less reactive with the mid-region of C5a (represented by peptide M), and little, if at all, reactive with the N terminal region of human C5a (represented by peptide A). - This Examples describes certain peptides which are able to antagonize the ability of human C5a peptide to bind to human neutrophils. Three different peptides, labelled A, M, and C, were used to antagonize the binding of 125I-hC5a peptide to human neutrophils. Again, peptide A (SEQ ID NO:4) represents residues 1-20 of human C5a peptide, peptide M (SEQ ID NO: 5) represents residues 21-40 of human C5a peptide, and peptide C (SEQ ID NO:6) represents residues 55-74 of human C5a peptide.
- Human peripheral blood neutrophils (1×107 cells/ml) were incubated in Hank's buffered saline plus 0.1% bovine serum albumin with both 125I-labelled hC5a peptide (300 μCi/mmol) and either peptide A, M, or C, in a final volume of 200 μl in a microfuge tube. The ratio of the shorter peptides (A, M, or C) to 125I-labelled hC5a peptide was 10:1. After incubation, cell suspension were layered over a 20% sucrose gradient and were sedimented by centrifugation at 11,000 g. The tubes were then frozen on dry ice, followed by cutting the tips containing the pellet. Cell-bound label was then determined by placing the tips in a gamma counter.
- As shown in
FIG. 9 , peptides A and M were significantly (p<0.05) competitive in reducing the binding of hC5a peptide, whereas the C terminal peptide (peptide C) showed no statistically significant interference. - This Example describes three methods which are employed in screening candidate C-terminal truncated C5a peptides for useful immunogens (i.e. which can be used to produce the anti-C5a antibodies of the present invention). One method involves screening C-terminal truncated C5a peptides which inhibit the chemotaxis of neutrophils. Another method involves screening peptides for the ability to antagonize the binding of C5a peptides to neutrophils. A third method involves administering candidate C-terminal truncated C5a peptides to septic animals and monitoring their response.
- The first method, as described in Examples 7 and 8, is used to screen candidate C-terminal truncated C5a peptides which inhibit the chemotaxis of neutrophils. With this method, human neutrophils are isolated from human blood by traditional Ficoll-Hypaque sedimentation techniques. Using standardized methodology, neutrophils are applied to the upper compartments of chemotactic chambers and evaluated for their motility responses to 10 nM human C5a peptide (SEQ ID NO:3) added to the lower compartments. The two compartments are separated by a membrane with pore sizes of 3 μm. Neutrophil chemotactic responses are quantitated by cytofluorometry.
- A candidate C-terminal truncated peptide (μM), which may be linked to KLH, is added to the lower compartments in medium alone or together with 10 nM human recombinant C5a peptide. The chemotactic response of the neutrophils is then quantitated by cytofluorometry. One indication of a useful immunogen is if the candidate C-terminal truncated C5a peptide induces chemotaxis of the neutrophils as compared to human C5a peptide alone. Another indication of a useful immunogen is if the candidate C-terminal truncated C5a peptide inhibits chemotaxis of neutrophils when combined with human C5a peptide, as compared to human C5a peptide alone.
- A second method, as described in Example 10, is used to screen candidate C-terminal truncated C5a peptides which antagonize the binding of 125I-C5a peptide to neutrophils. In this Example, human neutrophils are incubated with human 125I-C5a peptide and the candidate C-terminal truncated C5a peptide. Inhibition of 125I-C5a peptide binding to the neutrophils by the candidate C-terminal truncated peptide indicates a potentially useful immunogen for the production of anti-C5a antibodies.
- A third method employs the septic rats described in Example 1. In this Example, one group of CLP sepsis induced rats is administered 50 mg/kg of a candidate C-terminal C5a truncated peptide intravenously immediately after the CLP procedure, while a second group of CLP rats is used as a control. Survival rates and symptoms of sepsis are recorded over a ten day period. Candidate C-terminal truncated C5a peptides which reduce the symptoms of sepsis, and/or increase survival times as compared to the control group are considered potential immunogens for producing anti-C5a antibodies.
- This Example describes the effect of human C5a peptide, and certain shorter synthetic human C5a peptides A, M, or C, to inhibit the H2O2 production of human neutrophils stimulated by phorbol myristate acetate (PMA). Again, peptide A (SEQ ID NO:4) represents residues 1-20 of human C5a peptide, peptide M (SEQ ID NO: 5) represents residues 21-40 of human C5a peptide, and peptide C (SEQ ID NO:6) represents residues 55-74 of human C5a peptide. Human neutrophils were isolated and then pretreated with C5a peptide or one of the shorter synthetic peptides (A, M, or C). Cells were then stimulated with PMA and the production of H2O2 was measured.
- As shown in
FIG. 10 , C5a peptide and the shorter peptides alone have no effect on H2O2 production. However, PMA elicits a strong H2O2 response, which is inhibitable by the C5a peptide, and to varying degrees by peptides A, M, and C. Peptide M was shown to exert the strongest suppression of H2O2 production of all of the peptides (SeeFIG. 10 ). - This Example describes the production of anti-human C5a antibodies. A short human C5a peptide with the sequence CCYDGASVNNDETCEQRAAR (peptide M, SEQ ID NO:5) was obtained from Research Genetics (Huntsville Ala.) and coupled to keyhole limpet hemocyanin (KLH). The coupled peptide was used as an antigen to immunize rabbits. After several injections, the antibody was recovered by affinity purification.
- A Western Blot was then used to demonstrate that these anti-human C5a antibodies are specific for human C5a peptide, and not rat C5a peptide. Briefly, recombinant human and rat C5a peptide were run in parallel on a gel, and transferred to a filter. The filter was blocked, and then probed with the anti-human C5a antibody. The resulting signal revealed that the anti-human C5a antibody was only able to recongnize human C5a peptide, and not rat C5a peptide (See
FIG. 11 ). - An additional Western blot was also performed in order to determine if polyclonal anti-human antibodies (commercially available from Calbiochem) shared this type of specificity. Again, recombinant human and rat C5a peptide were run in parallel on a gel, and transferred to a filter. The filter was blocked, and then probed with the commercially available polyclonal anti-C5a antibody. The resulting signal revealed that the polyclonal anti-human C5a antibody was able to recognize both human and rat C5a peptide (See
FIG. 11 ). As such, it is clear that the commercially available polyclonal anti-human C5a antibody does not have the same type of specificity as the anti-human C5a antibody discussed above. - Anti-C5a antibodies may be used prophylactically or therapeutically to treat sepsis in humans. Individuals at risk of contracting sepsis, particularly patients undergoing surgery, or those with sepsis may be administered an effective amount of anti-C5a antibodies to prevent or reduce the severity of the disease. A typical treatment regimen would consist of administering 5-10 mg of antibody per kilogram of patient body weight. Prophylactically the dose would be given just prior to surgery, and repeated at least once immediately thereafter. Therapeutically the dose would be given every 24-48 hours until remission of the disease is apparent. The initial therapeutic dose would be 25 mg per kilogram of patient body weight, and then reduced to 5-10 mg per kilogram. The antibody may be administered by any number of routes, but the preferred route of administration is intravenously.
- All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in bio-chemistry, immunology, chemistry, molecular biology, the medical profession or related fields are intended to be within the scope of the following claims.
Claims (5)
1. A composition comprising an antibody specific for complement component C5a peptide.
2. A method for the treatment of sepsis in a human comprising:
a) providing;
i) a human presenting symptoms of sepsis, and
ii) a therapeutic composition comprising an antibody specific for complement component C5a peptide; and;
b) administering said therapeutic composition to said human underconditions such that at least one symptoms is reduced.
3. The method of claim 2 , wherein said human presents the symptoms of sepsis for a period in the range of approximately six to twelve hours prior to the administration of said therapeutic composition.
4. The method of claim 2 , wherein said antibody is polyclonal.
5. The method of claim 2 , wherein said antibody is monoclonal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/236,188 US20060159684A1 (en) | 1999-08-31 | 2005-09-27 | Compositions and methods for the threatment of sepsis |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/387,671 US6673346B1 (en) | 1999-08-31 | 1999-08-31 | Compositions and methods for the treatment of sepsis |
US09/878,603 US6987166B2 (en) | 1999-08-31 | 2001-06-11 | Compositions and methods for the treatment of sepsis |
US11/236,188 US20060159684A1 (en) | 1999-08-31 | 2005-09-27 | Compositions and methods for the threatment of sepsis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/878,603 Continuation US6987166B2 (en) | 1999-08-31 | 2001-06-11 | Compositions and methods for the treatment of sepsis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060159684A1 true US20060159684A1 (en) | 2006-07-20 |
Family
ID=23530897
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/387,671 Expired - Lifetime US6673346B1 (en) | 1999-08-31 | 1999-08-31 | Compositions and methods for the treatment of sepsis |
US09/651,685 Expired - Lifetime US6866845B1 (en) | 1999-08-31 | 2000-08-30 | Compositions and methods for the treatment of sepsis |
US09/878,603 Expired - Lifetime US6987166B2 (en) | 1999-08-31 | 2001-06-11 | Compositions and methods for the treatment of sepsis |
US11/236,188 Abandoned US20060159684A1 (en) | 1999-08-31 | 2005-09-27 | Compositions and methods for the threatment of sepsis |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/387,671 Expired - Lifetime US6673346B1 (en) | 1999-08-31 | 1999-08-31 | Compositions and methods for the treatment of sepsis |
US09/651,685 Expired - Lifetime US6866845B1 (en) | 1999-08-31 | 2000-08-30 | Compositions and methods for the treatment of sepsis |
US09/878,603 Expired - Lifetime US6987166B2 (en) | 1999-08-31 | 2001-06-11 | Compositions and methods for the treatment of sepsis |
Country Status (3)
Country | Link |
---|---|
US (4) | US6673346B1 (en) |
AU (1) | AU6949800A (en) |
WO (1) | WO2001015731A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9011852B2 (en) | 2010-04-30 | 2015-04-21 | Alexion Pharmaceuticals, Inc. | Anti-C5a antibodies |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT757556E (en) * | 1994-04-11 | 2006-10-31 | Wyeth Corp | BACTERINA BORRELIA BURGDORFERI |
US6673346B1 (en) * | 1999-08-31 | 2004-01-06 | The Regents Of The University Of Michigan | Compositions and methods for the treatment of sepsis |
US7432356B2 (en) † | 2001-08-17 | 2008-10-07 | Genentech, Inc. | Complement pathway inhibitors binding to C5 and C5a without preventing formation of C5b |
EP3372243A1 (en) | 2001-08-17 | 2018-09-12 | Genentech, Inc. | Complement pathway inhibitors binding to c5 and c5a without preventing formation of c5b |
AU2003290605A1 (en) * | 2002-11-05 | 2004-06-03 | The Regents Of The University Of Michigan | Compositions and methods for the diagnosis and treatment of sepsis |
DE60326264D1 (en) * | 2002-12-02 | 2009-04-02 | Resistentia Pharmaceuticals Ab | METHOD AND MATERIALS FOR THE TREATMENT OF INFLAMMATION USING A POLYPEPTIDE CONTAINING ITS OWN C5 AMINOSAUTE SEGMENT AND A NON-OWN AMINOSAUTE SEGMENT |
EP2266606B1 (en) | 2003-05-15 | 2014-09-10 | Genentech, Inc. | Methods and compositions for the prevention and treatment of sepsis |
CA2482687C (en) * | 2003-09-29 | 2012-11-20 | Ed. Geistlich Soehne Ag Fuer Chemische Industrie | Treatment of mesothelioma |
WO2006125200A2 (en) * | 2005-05-19 | 2006-11-23 | The Procter & Gamble Company | Method for reducing sepsis or cardiogenic shock associated with myocardial injury |
US7767789B2 (en) * | 2005-06-02 | 2010-08-03 | University Hopitals of Cleveland | Truncated proteins as cancer markers |
EP2129681A2 (en) * | 2007-03-22 | 2009-12-09 | Novartis Ag | C5 antigens and uses thereof |
WO2008119851A1 (en) | 2007-03-28 | 2008-10-09 | Universidad De Barcelona | Protein product for treatment of infectious diseases and related inflammatory processes |
EP3121197A1 (en) | 2008-11-10 | 2017-01-25 | Alexion Pharmaceuticals, Inc. | Methods and compositions for treating complement-associated disorders |
CA2766565A1 (en) | 2009-06-23 | 2010-12-29 | Alexion Pharmaceuticals, Inc. | Bispecific antibodies that bind to complement proteins |
EP2327725A1 (en) | 2009-11-26 | 2011-06-01 | InflaRx GmbH | Anti-C5a binding moieties with high blocking activity |
WO2011106635A1 (en) * | 2010-02-25 | 2011-09-01 | The Trustees Of The University Of Pennsylvania | Treatment of sepsis using complement inhibitors |
KR101335203B1 (en) * | 2010-03-26 | 2013-11-29 | 숙명여자대학교산학협력단 | Peptides for Promotion of Angiogenesis and the use thereof |
EP2468295A1 (en) * | 2010-12-21 | 2012-06-27 | Affiris AG | Vaccines based on peptides of the complement protein C5a |
UA124734C2 (en) | 2016-06-14 | 2021-11-10 | Рідженерон Фармасьютікалз, Інк. | Anti-c5 antibodies and uses thereof |
EP3541407A1 (en) | 2016-11-18 | 2019-09-25 | Universitat de Barcelona | Combined cd6 and imipenem therapy for treatment of infectious diseases and related inflammatory processes |
EP3600421A4 (en) | 2017-03-23 | 2021-01-06 | The Trustees of The University of Pennsylvania | Anti-c5a antibodies and uses thereof |
EP3724226A1 (en) | 2017-12-13 | 2020-10-21 | Regeneron Pharmaceuticals, Inc. | Anti-c5 antibody combinations and uses thereof |
TW202208427A (en) | 2020-05-06 | 2022-03-01 | 德商因夫萊亞斯有限公司 | Humanized anti-c5a antibodies |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4357272A (en) * | 1978-03-22 | 1982-11-02 | The South African Inventions Development Corporation | Recovering purified antibodies from egg yolk |
US4686100A (en) * | 1985-04-02 | 1987-08-11 | The Board Of Trustees Of The Leland Stanford Junior University | Method for the treatment of adult respiratory distress syndrome |
US5051448A (en) * | 1984-07-24 | 1991-09-24 | The Mclean Hospital Corporation | GABA esters and GABA analog esters |
US5169862A (en) * | 1989-07-07 | 1992-12-08 | Peptide Technologies Corporation | Analogs of viscosin and their uses |
US5192746A (en) * | 1990-07-09 | 1993-03-09 | Tanabe Seiyaku Co., Ltd. | Cyclic cell adhesion modulation compounds |
US5260203A (en) * | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
US5340023A (en) * | 1991-08-26 | 1994-08-23 | Onoda Cement Company, Ltd. | Plasma spraying method and apparatus |
US5539085A (en) * | 1993-08-20 | 1996-07-23 | Onyx Pharmaceuticals, Inc. | Bcl-2 and R-ras complex |
US5559103A (en) * | 1993-07-21 | 1996-09-24 | Cytel Corporation | Bivalent sialyl X saccharides |
US5565332A (en) * | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5576423A (en) * | 1994-12-02 | 1996-11-19 | Schering Corporation | Antibodies to the slam protein expressed on activated T cells |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5658727A (en) * | 1991-04-10 | 1997-08-19 | The Scripps Research Institute | Heterodimeric receptor libraries using phagemids |
US5837499A (en) * | 1993-12-06 | 1998-11-17 | Ciba-Geigy Corporation | DNA encoding C5A receptor antagonists having substantially no agonist activity and methods of expressing same |
US5904922A (en) * | 1989-10-31 | 1999-05-18 | Ophidian Pharmaceuticals, Inc. | Treatment with polyvalent antivenom containing immunoglobulin which is greater than 50% venom-reactive |
US6673346B1 (en) * | 1999-08-31 | 2004-01-06 | The Regents Of The University Of Michigan | Compositions and methods for the treatment of sepsis |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2938534A1 (en) | 1979-09-24 | 1981-04-23 | Bayer Ag, 5090 Leverkusen | ACYLATED TRIAZOLYL (GAMMA) FLUORPINAKOLYL DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS FUNGICIDES |
ES2054667T3 (en) | 1986-04-28 | 1994-08-16 | Cetus Oncology Corp | MONOCLONAL ANTIBODIES AGAINST C5A AND DES-ARG74-C5A, THEIR PRODUCTION AND USE. |
WO1996039503A1 (en) | 1995-06-05 | 1996-12-12 | Novartis Ag | C5a RECEPTOR ANTAGONISTS HAVING SUBSTANTIALLY NO AGONIST ACTIVITY AND METHODS FOR PREPARATION |
-
1999
- 1999-08-31 US US09/387,671 patent/US6673346B1/en not_active Expired - Lifetime
-
2000
- 2000-08-30 US US09/651,685 patent/US6866845B1/en not_active Expired - Lifetime
- 2000-08-31 AU AU69498/00A patent/AU6949800A/en not_active Abandoned
- 2000-08-31 WO PCT/US2000/024219 patent/WO2001015731A1/en active Application Filing
-
2001
- 2001-06-11 US US09/878,603 patent/US6987166B2/en not_active Expired - Lifetime
-
2005
- 2005-09-27 US US11/236,188 patent/US20060159684A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4357272A (en) * | 1978-03-22 | 1982-11-02 | The South African Inventions Development Corporation | Recovering purified antibodies from egg yolk |
US5051448A (en) * | 1984-07-24 | 1991-09-24 | The Mclean Hospital Corporation | GABA esters and GABA analog esters |
US4686100A (en) * | 1985-04-02 | 1987-08-11 | The Board Of Trustees Of The Leland Stanford Junior University | Method for the treatment of adult respiratory distress syndrome |
US5260203A (en) * | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5169862A (en) * | 1989-07-07 | 1992-12-08 | Peptide Technologies Corporation | Analogs of viscosin and their uses |
US5904922A (en) * | 1989-10-31 | 1999-05-18 | Ophidian Pharmaceuticals, Inc. | Treatment with polyvalent antivenom containing immunoglobulin which is greater than 50% venom-reactive |
US5192746A (en) * | 1990-07-09 | 1993-03-09 | Tanabe Seiyaku Co., Ltd. | Cyclic cell adhesion modulation compounds |
US5658727A (en) * | 1991-04-10 | 1997-08-19 | The Scripps Research Institute | Heterodimeric receptor libraries using phagemids |
US5340023A (en) * | 1991-08-26 | 1994-08-23 | Onoda Cement Company, Ltd. | Plasma spraying method and apparatus |
US5565332A (en) * | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5559103A (en) * | 1993-07-21 | 1996-09-24 | Cytel Corporation | Bivalent sialyl X saccharides |
US5539085A (en) * | 1993-08-20 | 1996-07-23 | Onyx Pharmaceuticals, Inc. | Bcl-2 and R-ras complex |
US5837499A (en) * | 1993-12-06 | 1998-11-17 | Ciba-Geigy Corporation | DNA encoding C5A receptor antagonists having substantially no agonist activity and methods of expressing same |
US5576423A (en) * | 1994-12-02 | 1996-11-19 | Schering Corporation | Antibodies to the slam protein expressed on activated T cells |
US6673346B1 (en) * | 1999-08-31 | 2004-01-06 | The Regents Of The University Of Michigan | Compositions and methods for the treatment of sepsis |
US6866845B1 (en) * | 1999-08-31 | 2005-03-15 | The Regents Of The University Of Michigan | Compositions and methods for the treatment of sepsis |
US6987166B2 (en) * | 1999-08-31 | 2006-01-17 | The Regents Of The Univeristy Of Michigan | Compositions and methods for the treatment of sepsis |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9011852B2 (en) | 2010-04-30 | 2015-04-21 | Alexion Pharmaceuticals, Inc. | Anti-C5a antibodies |
US9221901B2 (en) | 2010-04-30 | 2015-12-29 | Alexion Pharmaceuticals, Inc. | Methods of treating complement-associated disorders with anti-C5a antibodies |
US9309310B2 (en) | 2010-04-30 | 2016-04-12 | Alexion Pharmaceuticals, Inc. | Nucleic acids encoding anti-C5a antibodies |
US9371378B1 (en) | 2010-04-30 | 2016-06-21 | Alexion Pharmaceuticals, Inc. | Anti-C5a antibodies |
US9434784B1 (en) | 2010-04-30 | 2016-09-06 | Alexion Pharmaceuticals, Inc. | Nucleic acids encodng anti-C5A antibodies |
US9469690B2 (en) | 2010-04-30 | 2016-10-18 | Alexion Pharmaceuticals, Inc. | Methods of treating complement-associated disorders with anti-C5a antibodies |
US9963503B2 (en) | 2010-04-30 | 2018-05-08 | Alexion Pharmaceuticals, Inc. | Methods of producing anti-C5a antibodies |
US10450370B2 (en) | 2010-04-30 | 2019-10-22 | Alexion Pharmaceuticals, Inc. | Anti-C5a antibodies |
US11407821B2 (en) | 2010-04-30 | 2022-08-09 | Alexion Pharmaceuticals, Inc. | Anti-C5A antibodies |
Also Published As
Publication number | Publication date |
---|---|
US20020165138A1 (en) | 2002-11-07 |
AU6949800A (en) | 2001-03-26 |
US6673346B1 (en) | 2004-01-06 |
US6866845B1 (en) | 2005-03-15 |
US6987166B2 (en) | 2006-01-17 |
WO2001015731A1 (en) | 2001-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060159684A1 (en) | Compositions and methods for the threatment of sepsis | |
JP4691225B2 (en) | Opsonic and protective monoclonal and chimeric antibodies specific for lipoteichoic acid of Gram-positive bacteria | |
CA2022429C (en) | Methods and compositions for ameliorating the symptoms of sepsis | |
US7795402B2 (en) | Anti-Staphylococcus aureus antibodies | |
US6291654B1 (en) | Method for isolating a C3 binding protein of streptococcus pneumoniae | |
CN114231512A (en) | Cysteine proteases | |
JPH03501330A (en) | Monoclonal antibody that reacts with cachectin | |
JP2014003979A (en) | Nucleic acid for encoding adhesion factor of group b streptococcus, adhesion factor of group b streptococcus, and use of them | |
US7332592B2 (en) | Isolated recombinant bovine soluble CD14 polypeptide, rbosCD14 | |
US7067135B2 (en) | Methods and compositions for the treatment and prevention of Staphylococcus aureus infections | |
RU2262952C2 (en) | TREATMENT OF MYCOTIC INFECTION WITH ANTIMYCOTIC PREPARATIONS OUT OF POLYENIC GROUP OR THAT OF BETA-GLUCANSINTASE INHIBITORS IN COMBINATION WITH ANTI-hsp90-ANTIBODIES | |
JP2008179634A (en) | Opsonic monoclonal and chimeric antibody specific for lipoteichoic acid of gram positive bacterium | |
JP3892902B2 (en) | Use of antibodies to block the action of gram positive bacteria and mycobacteria | |
JP2005514053A6 (en) | Opsonic monoclonal and chimeric antibodies specific for lipoteichoic acid of Gram-positive bacteria | |
CN115698279A (en) | Cysteine proteases | |
JP2002513398A (en) | Fibronectin binding protein compositions and methods of use | |
US8361441B2 (en) | Detection and therapy of bacterial infection caused by Enterobacteriaceae | |
US6586580B1 (en) | Protein rib, a cell surface protein that confers immunity to many strains of the group B Streptococcus: process for purification of the protein, reagent kit and pharmaceutical composition | |
US20090162369A1 (en) | Synthetic chimeric peptides | |
US6582950B1 (en) | C3 binding polypeptide of Streptococcus agalactiae group b Streptococcus | |
AU2002354096B2 (en) | Cytotoxic protein and utilization thereof | |
US6306824B1 (en) | Uses of lipopolysaccharide binding protein | |
CA2324981A1 (en) | Peptides | |
AU3511099A (en) | Use of antibodies to block the effects of Gram-positive bacteria and mycobacteria | |
JPH10290693A (en) | New fibronectin binding protein compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF MICHIGAN, THE, MICHIG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WARD, PETER A.;HUBER-LANG, MARKUS;SARMA, VIDYA;AND OTHERS;REEL/FRAME:017585/0728;SIGNING DATES FROM 20051227 TO 20060112 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MICHIGAN;REEL/FRAME:047468/0280 Effective date: 20181109 |