US20060144692A1 - Method for plasma charging a probe - Google Patents

Method for plasma charging a probe Download PDF

Info

Publication number
US20060144692A1
US20060144692A1 US10/813,593 US81359304A US2006144692A1 US 20060144692 A1 US20060144692 A1 US 20060144692A1 US 81359304 A US81359304 A US 81359304A US 2006144692 A1 US2006144692 A1 US 2006144692A1
Authority
US
United States
Prior art keywords
probe
plasma
cannula
components
similar component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/813,593
Inventor
Paul Hensley
Charles Carney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerionx Inc
Original Assignee
Cerionx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2001/001262 external-priority patent/WO2001051198A1/en
Application filed by Cerionx Inc filed Critical Cerionx Inc
Priority to US10/813,593 priority Critical patent/US20060144692A1/en
Assigned to CERIONX, INC. reassignment CERIONX, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MICROPLATE AUTOMATION, INC.
Publication of US20060144692A1 publication Critical patent/US20060144692A1/en
Assigned to COMERICA BANK reassignment COMERICA BANK SECURITY AGREEMENT Assignors: CERIONX, INC.
Assigned to COMERICA BANK reassignment COMERICA BANK SECURITY AGREEMENT Assignors: CERIONX, INC.
Assigned to CERIONX, INC. reassignment CERIONX, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: COMERICA BANK
Assigned to CERIONX, INC. reassignment CERIONX, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: COMERICA BANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0244Drop counters; Drop formers using pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0244Drop counters; Drop formers using pins
    • B01L3/0255Drop counters; Drop formers using pins characterized by the form or material of the pin tip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates to a method for use of plasma to apply a controlled charge to a surface.
  • a scheme using a probe or cannula that may or may not be coated with a layer of material or special coating, which is attached directly or by a tube to a pumping device
  • a scheme using a disposable pipet instead of the probe/cannula but otherwise similar (3) a scheme using a spray head with one or a plurality of openings and pumping system that physically propels multiple precisely metered microdroplets, and (4) a scheme using metal shafts with precisely machined hollowed out spaces at their ends that hold the fluid by surface tension (commonly referred to as a “pin tool”).
  • Droplet formation is a change in the shape of the fluid.
  • the droplet experiences changes in internal forces during the process (eg, surface tension, viscosity, and polarity) and in external forces due to interactions between the fluid and the surfaces of the probe, cannula, pin tool or other similar component (e.g., superficial and interfacial energies). It is desirable to control and be able to use these forces to improve the process.
  • the charge from the plasma on the surfaces of the probe, cannula, pin tool or other similar component will alter forces effecting droplet formation, the force required to release the droplet from the probe, cannula, pin tool or other similar component the surface tension interaction between the liquid and the probe, cannula, pin tool or other similar component, and help suppress the formation of microdroplets (parts of the fluid being transferred that can break off) during dispensing.
  • Some fluid dispensing devices allow the plasma to be pulled into the internal spaces of the probe, cannula or other similar component.
  • the plasma generated surface effects on the fluid inside will have similar action as on the outside surfaces. Exposing the internal surfaces of the probe, cannula or other similar component adds additional control to the total affect of the plasma charge on the fluid handling process.
  • the same surface effect of the plasma charge on the surfaces of the dispensing device can be applied to the surfaces of the fluid containing device into or onto which the fluid is dispensed.
  • the controlled charge can improve the flow of the small fluid droplets down the side wall of a tube or microplate well and will affect the shape of the fluid droplet formation at the bottom of a tube, microplate well or fluid processing surface. As volumes being transferred decrease, the affect of the plasma charge on the surface becomes more important.
  • the shape of the droplets on the surface determines the diameter and depth of the fluid at a defined droplet volume.
  • the charge on the surface of the plate can alter and thereby control the forces of interaction between the droplet and the plate and, as a result, control these parameters.
  • Plasma technology is known in the art and is presently used in connection with a wide variety of applications. The most common uses of plasma are based on technologies that rely on the generation of plasma in a low pressure environment.
  • U.S. Pat. No. 5,633,424 relates to a method of sterilizing items using water vapor-based plasma.
  • the items to be sterilized are placed in a chamber, which is then evacuated.
  • Water vapor is introduced into the chamber and is allowed to uniformly disperse throughout the chamber.
  • Electromagnetic radiation energy is then applied to the chamber, fractionating the water molecules into reactive radicals. These radicals then combine with the microorganisms on the items, effectively vaporizing the microorganisms.
  • the by-product gases are exhausted from the chamber, and the now-sterilized items can be removed from the chamber.
  • U.S. Pat. No. 5,700,327 recites a method for removing organic compounds from hollow containers, thereby cleaning the containers.
  • the container is placed into a vacuum chamber, and an oxidizing gas is introduced into the chamber.
  • An electric field is then applied to the chamber, converting the oxidizing gas into low temperature plasma, which then oxidizes substantially all of the organic compounds within the container.
  • U.S. Pat. No. 6,059,935 discloses two methods and corresponding electrode designs for the generation of a plasma, for example, at or about one atmosphere. Using the disclosed methods, various webs, films and three-dimensional objects are beneficially treated in a reduced amount of time.
  • a first method utilizes a repetitive, asymmetric voltage pulse to generate a plasma discharge between two electrodes.
  • An asymmetric voltage pulse is used to generate a discharge in which a substrate can be exposed predominately to either positive or negative plasma species depending on the voltage polarity used.
  • a second method uses the gap capacitance of an electrode pair and an external inductor in shunt to form a resonant IC circuit.
  • the circuit is driven by a high power radio frequency source operating at 1 to 30 MHz to generate a uniform discharge between the electrode pair.
  • Both methods have temperature controlled discharge surfaces with supply gas temperature, humidity and flow rate control. The gas flow is typically sufficient to cause a turbulent flow field in the discharge region where materials are treated.
  • Electrode pairs implement these methods and include a metal faced electrode and a dielectric covered electrode, one or both of which have a series of holes extending through the electrode face for supply gas flow.
  • the second of the above-described methods will also operate with paired, metal faced electrodes, but under more restricted operating conditions.
  • U.S. Pat. No. 6,132,813 discloses a method for modifying a substrate surface, including the step of applying a high density plasma to the substrate surface in-the presence of a hydrofluorocarbon gas and a carrier gas to form an antiwetting layer on the substrate surface.
  • the method includes a cleaning step of contacting the slider surface with a carrier gas for a period of time effective to clean the surface.
  • U.S. Pat. No. 6,105,589 is directed to an improved method and apparatus are provided for cleaning the specimen and interior specimen chamber of electron microscopes, and similar electron beam instruments.
  • the apparatus consists of a glow-discharge, oxygen-radical generator placed on a specimen chamber port with an excitation source to create a low-power glow-discharge plasma inside the generator. Air or other oxygen and nitrogen mixture is admitted to the generator at a pressure between 0.3 Torr and 5 Torr.
  • the low power glow discharge is used to disassociate oxygen preferentially over nitrogen to create the oxygen radicals.
  • the oxygen radicals then disperse by convection throughout the chamber to clean hydrocarbons from the surfaces of the chamber, stage and specimen by oxidation to CO and H20 gases.
  • U.S. Pat. No. 5,977,715 discloses an atmospheric pressure glow discharge plasma source without the use of an arc.
  • the plasma chamber is capable of producing stable plasma in Ar, He and O2 mixtures using a low voltage RF power supply.
  • the patents detail embodiments with a wide range of electric fields including DC and RE fields of varying strength and an AC glow discharge device in which the frequency of the AC source is adjusted to be matched to the characteristics of the apertured dielectric.
  • jets come out of the apertures at the proper frequency.
  • FIG. 1 is a diagram of the present invention.
  • FIG. 1 outlines the steps of the method of the present invention.
  • a probe or other type of fluid handling device preferably coated with a material optimized to the fluid characteristics of the application, such as TEFLON-coated but applying to probes with any coating, is placed into either a plasma chamber and the chamber is sealed or is placed in proximity to a low temperature, atmospheric plasma source within the area that plasma will be generated.
  • a vacuum is crated in the sealed plasma chamber, and oxygen gas, along with an argon carrier gas, is introduced into the chamber and dissipates throughout the chamber.
  • Sufficient electromagnetic energy is added to the chamber to ionize the oxygen gas within the carrier gas mixture, creating mainly 0 ions, free electrons, and free radicals. Because the probe has very little organic material on the surfaces when it is placed in the plasma chamber, what organic material that is present is quickly removed and the ions and free radicals have no other substance to attach to, and cling to the probe, thereby imparting a charge to the probe.
  • the vacuum chamber is then vented, returning it to atmospheric pressure, and the now-charged probe is removed from the chamber.
  • the method is similar except no vacuum or chamber is required and venting is unnecessary. In either instance, the probe is charged by the plasma in a controlled and precise manner.
  • This method is performed by a machine that does not require human contact with the probe, which could dissipate the charge and possibly “contaminate” the probe. Under these conditions, the method is performed similar to a “tip wash” as is commonly performed. This method can be used as a replacement for a “tip wash”, as any organic material on the probe will be ionized, oxidized and/or vaporized by the plasma as the probe is charged by the plasma.
  • the probe After the probe has been plasma-charged according to the method, it can be used to pipette liquid compounds.
  • the compounds being pipetted with the probe can be quite variable in consistency and physical properties.
  • the major variables affecting the consistency of a liquid compound transfer are surface charge characteristics (hydrophilic to hydrophobic), viscosity, polarity (the electric charge of the solvent and solute), pH, ionic strength, and vapor pressure.
  • the surface characteristics of a probe can be modified to optimize pipetting characteristics of different types of compounds used and otherwise reduce the interaction of the fluid and surface material.
  • the surface characteristics can be “tuned” to the optimum requirements for a compound.
  • the pipetting system can work more optimally over a broader range of compounds and solvents, such as those used in drug discovery and other life science applications. This control is critical when working with small volumes. At low volumes, most noticeably at single digit microliter quantities or less, compound characteristics will cause a liquid to cling to the surface it is attached to and remain attached to the column of fluid from which it is being metered, thus making the accurate and reproducible metering of these small volumes difficult. Applying a charge to the probe can overcome a liquid's tendency to cling to other surfaces and reduce a number of other phenomena that degrade the precision and accuracy of the fluid handling process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A method for electrically charging a probe by plasma technology for use in pipetting compounds in small volumes includes the steps of placing the probe to be charged in a plasma chamber, creating a vacuum within the plasma chamber and then introducing a stable gas into the plasma chamber, applying electromagnetic energy to the plasma chamber, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free radicals, charging the probe by the free radicals attaching to the probe, venting the plasma chamber to back to atmospheric pressure; and removing the charged probe from the plasma chamber, whereby the charged probe can pipette compounds in small volumes. The method is applicable to pipetting both liquid and solid compounds. In another embodiment, the plasma generation is at atmospheric pressure without a containment chamber and the surface charging effect is used for surfaces of both the fluid dispensing device and the fluid containing device. The component surfaces of the fluid dispensing or fluid containing device are placed in proximity to the plasma generation device within the area of plasma generation, electromagnetic energy is applied to the existing atmospheric gas or to the existing atmospheric gas with other gases added, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free radicals, charging the surfaces of the fluid dispensing or fluid containing device and then removing the fluid dispensing or fluid containing device from the area of plasma generation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application derives priority from co-pending U.S. Ser. No. 60/176,201, filed Jan. 14, 2000, and is a continuation-in-part of U.S. patent application Ser. No. 09/765,733, filed Jan. 12, 2001 and PCT/US01/01262 filed Jan. 12, 2001.
  • FIELD OF THE INVENTION
  • The present invention relates to a method for use of plasma to apply a controlled charge to a surface.
  • BACKGROUND OF THE INVENTION
  • Within the disciplines of the clinical, industrial and life science laboratory, scientists perform methods and protocols with extremely small quantities of fluids. These fluids consist of many categories and types with various physical properties Many times volumes are worked with that are between a drop (about 25 microliters) and a few nanoliters. There are a number of standard methods employed to transfer liquid compounds from a source by aspirating the liquid from such fluid holding device into the fluid dispensing device having a probe, cannula, pin tool or other similar component or plurality of components which move, manually or robotically, and then dispensing, from the same probe or plurality of probes, into another fluid holding device.
  • Four common techniques are (1) a scheme using a probe or cannula, that may or may not be coated with a layer of material or special coating, which is attached directly or by a tube to a pumping device, (2) a scheme using a disposable pipet instead of the probe/cannula but otherwise similar, (3) a scheme using a spray head with one or a plurality of openings and pumping system that physically propels multiple precisely metered microdroplets, and (4) a scheme using metal shafts with precisely machined hollowed out spaces at their ends that hold the fluid by surface tension (commonly referred to as a “pin tool”).
  • As routine a process as fluid transfer is in the laboratory, technical challenges to achieve suitable levels of precision and accuracy remain As the volume decreases, it becomes progressively more technically challenging to aspirate and dispense these very small quantities of fluids due to the various effects of interaction between the dispensing device and the fluid. Droplet formation, as the fluid is dispensed, is a change in the shape of the fluid. The droplet experiences changes in internal forces during the process (eg, surface tension, viscosity, and polarity) and in external forces due to interactions between the fluid and the surfaces of the probe, cannula, pin tool or other similar component (e.g., superficial and interfacial energies). It is desirable to control and be able to use these forces to improve the process. The use of low temperature atmospheric plasma in such a way so as to place a charge on the probe, cannula, pin tool or other similar component, in order to control properties of the surface of the probe, cannula, pin tool or other similar component in order to attract or repel the fluid accomplishes this desired objective. This control is achieved by metering the deposition of charge by the plasma. The optimum conditions for fluid transfer can be reached taking into consideration the application, fluid characteristics, the affect of any compound dissolved in the liquid, the affect of any particles or other physical matter in the liquid and the type of probe or delivery mechanism used.
  • The charge from the plasma on the surfaces of the probe, cannula, pin tool or other similar component will alter forces effecting droplet formation, the force required to release the droplet from the probe, cannula, pin tool or other similar component the surface tension interaction between the liquid and the probe, cannula, pin tool or other similar component, and help suppress the formation of microdroplets (parts of the fluid being transferred that can break off) during dispensing. Some fluid dispensing devices allow the plasma to be pulled into the internal spaces of the probe, cannula or other similar component. The plasma generated surface effects on the fluid inside will have similar action as on the outside surfaces. Exposing the internal surfaces of the probe, cannula or other similar component adds additional control to the total affect of the plasma charge on the fluid handling process.
  • The same surface effect of the plasma charge on the surfaces of the dispensing device can be applied to the surfaces of the fluid containing device into or onto which the fluid is dispensed. The controlled charge can improve the flow of the small fluid droplets down the side wall of a tube or microplate well and will affect the shape of the fluid droplet formation at the bottom of a tube, microplate well or fluid processing surface. As volumes being transferred decrease, the affect of the plasma charge on the surface becomes more important. On fluid processing surfaces (surfaces onto which droplets are transferred but without a side wall defining a tube or well), the shape of the droplets on the surface determines the diameter and depth of the fluid at a defined droplet volume. The charge on the surface of the plate can alter and thereby control the forces of interaction between the droplet and the plate and, as a result, control these parameters.
  • Plasma technology is known in the art and is presently used in connection with a wide variety of applications. The most common uses of plasma are based on technologies that rely on the generation of plasma in a low pressure environment.
  • To sterilize medical devices, a technique known as glow discharge is often used, in which the items are sterilized in air, as opposed to a gas-filled evacuated chamber. For example, U.S. Pat. No. 5,633,424 relates to a method of sterilizing items using water vapor-based plasma. The items to be sterilized are placed in a chamber, which is then evacuated. Water vapor is introduced into the chamber and is allowed to uniformly disperse throughout the chamber. Electromagnetic radiation energy is then applied to the chamber, fractionating the water molecules into reactive radicals. These radicals then combine with the microorganisms on the items, effectively vaporizing the microorganisms. The by-product gases are exhausted from the chamber, and the now-sterilized items can be removed from the chamber.
  • U.S. Pat. No. 5,700,327 recites a method for removing organic compounds from hollow containers, thereby cleaning the containers. The container is placed into a vacuum chamber, and an oxidizing gas is introduced into the chamber. An electric field is then applied to the chamber, converting the oxidizing gas into low temperature plasma, which then oxidizes substantially all of the organic compounds within the container.
  • U.S. Pat. No. 6,059,935 discloses two methods and corresponding electrode designs for the generation of a plasma, for example, at or about one atmosphere. Using the disclosed methods, various webs, films and three-dimensional objects are beneficially treated in a reduced amount of time. A first method utilizes a repetitive, asymmetric voltage pulse to generate a plasma discharge between two electrodes. An asymmetric voltage pulse is used to generate a discharge in which a substrate can be exposed predominately to either positive or negative plasma species depending on the voltage polarity used. A second method uses the gap capacitance of an electrode pair and an external inductor in shunt to form a resonant IC circuit. The circuit is driven by a high power radio frequency source operating at 1 to 30 MHz to generate a uniform discharge between the electrode pair. Both methods have temperature controlled discharge surfaces with supply gas temperature, humidity and flow rate control. The gas flow is typically sufficient to cause a turbulent flow field in the discharge region where materials are treated. Electrode pairs implement these methods and include a metal faced electrode and a dielectric covered electrode, one or both of which have a series of holes extending through the electrode face for supply gas flow. The second of the above-described methods will also operate with paired, metal faced electrodes, but under more restricted operating conditions.
  • U.S. Pat. No. 6,132,813 discloses a method for modifying a substrate surface, including the step of applying a high density plasma to the substrate surface in-the presence of a hydrofluorocarbon gas and a carrier gas to form an antiwetting layer on the substrate surface. Optionally, the method includes a cleaning step of contacting the slider surface with a carrier gas for a period of time effective to clean the surface.
  • U.S. Pat. No. 6,105,589 is directed to an improved method and apparatus are provided for cleaning the specimen and interior specimen chamber of electron microscopes, and similar electron beam instruments. The apparatus consists of a glow-discharge, oxygen-radical generator placed on a specimen chamber port with an excitation source to create a low-power glow-discharge plasma inside the generator. Air or other oxygen and nitrogen mixture is admitted to the generator at a pressure between 0.3 Torr and 5 Torr. The low power glow discharge is used to disassociate oxygen preferentially over nitrogen to create the oxygen radicals. The oxygen radicals then disperse by convection throughout the chamber to clean hydrocarbons from the surfaces of the chamber, stage and specimen by oxidation to CO and H20 gases.
  • A number of patents have been issued for plasma generation at atmospheric pressure. Current research with these basic methods has allowed the development of a number of plasma techniques formerly only done at low pressure to be performed at atmospheric pressure. Atmospheric plasma generation has its own set of technical advantages and disadvantages.
  • U.S. Pat. No. 5,977,715 discloses an atmospheric pressure glow discharge plasma source without the use of an arc. The plasma chamber is capable of producing stable plasma in Ar, He and O2 mixtures using a low voltage RF power supply.
  • U.S. Pat. Nos. 5,872,426 and 6,005,349 (a division of application Ser. No. 08/820,013, filed Mar. 18, 1997, now U.S. Pat. No. 5,872,426) and U.S. Pat. No. 6,147,452 (a continuation-in-part application Ser. No. 08/820,013, filed Mar. 18, 1997, now U.S. Pat. No. 5,872,426) disclose a number of methods and apparatus for stabilizing glow plasma discharges by suppressing the transition from glow-to-arc by including a perforated dielectric plate with characteristics detailed in the patent. The patents detail embodiments with a wide range of electric fields including DC and RE fields of varying strength and an AC glow discharge device in which the frequency of the AC source is adjusted to be matched to the characteristics of the apertured dielectric. In this embodiment jets come out of the apertures at the proper frequency.
  • In U.S. Pat. No. 6,262,523 the patent discloses the device to generate a large area atmospheric-pressure plasma jet that can be operated near room temperature. The jet can extend up to 8 inches beyond the open end of the electrodes.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 outlines the steps of the method of the present invention. First, a probe or other type of fluid handling device, preferably coated with a material optimized to the fluid characteristics of the application, such as TEFLON-coated but applying to probes with any coating, is placed into either a plasma chamber and the chamber is sealed or is placed in proximity to a low temperature, atmospheric plasma source within the area that plasma will be generated.
  • In the instance of using a plasma chamber, a vacuum is crated in the sealed plasma chamber, and oxygen gas, along with an argon carrier gas, is introduced into the chamber and dissipates throughout the chamber. Sufficient electromagnetic energy is added to the chamber to ionize the oxygen gas within the carrier gas mixture, creating mainly 0 ions, free electrons, and free radicals. Because the probe has very little organic material on the surfaces when it is placed in the plasma chamber, what organic material that is present is quickly removed and the ions and free radicals have no other substance to attach to, and cling to the probe, thereby imparting a charge to the probe. The vacuum chamber is then vented, returning it to atmospheric pressure, and the now-charged probe is removed from the chamber.
  • In the instance of using a low temperature, atmospheric plasma, the method is similar except no vacuum or chamber is required and venting is unnecessary. In either instance, the probe is charged by the plasma in a controlled and precise manner.
  • This method is performed by a machine that does not require human contact with the probe, which could dissipate the charge and possibly “contaminate” the probe. Under these conditions, the method is performed similar to a “tip wash” as is commonly performed. This method can be used as a replacement for a “tip wash”, as any organic material on the probe will be ionized, oxidized and/or vaporized by the plasma as the probe is charged by the plasma.
  • After the probe has been plasma-charged according to the method, it can be used to pipette liquid compounds. The compounds being pipetted with the probe can be quite variable in consistency and physical properties. The major variables affecting the consistency of a liquid compound transfer are surface charge characteristics (hydrophilic to hydrophobic), viscosity, polarity (the electric charge of the solvent and solute), pH, ionic strength, and vapor pressure.
  • By using the plasma-charging method, the surface characteristics of a probe can be modified to optimize pipetting characteristics of different types of compounds used and otherwise reduce the interaction of the fluid and surface material. The surface characteristics can be “tuned” to the optimum requirements for a compound. By modifying the surface characteristics this manner, the pipetting system can work more optimally over a broader range of compounds and solvents, such as those used in drug discovery and other life science applications. This control is critical when working with small volumes. At low volumes, most noticeably at single digit microliter quantities or less, compound characteristics will cause a liquid to cling to the surface it is attached to and remain attached to the column of fluid from which it is being metered, thus making the accurate and reproducible metering of these small volumes difficult. Applying a charge to the probe can overcome a liquid's tendency to cling to other surfaces and reduce a number of other phenomena that degrade the precision and accuracy of the fluid handling process.
  • It will be understood that the embodiment described herein is merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the present invention. For example, the method can also be applied to charging a probe for use in connection with solid (i.e., dry) compounds. All such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.

Claims (9)

1. A method for electrically charging a probe, cannula, pin tool or other similar component or plurality of such components made of any material of a fluid dispensing device used to pipet small volumes of fluids by plasma technology comprising the following steps:
placing such probe, cannula, pin tool or other similar component or plurality of such components to be charged in a space that plasma is generated by a plasma generating device;
applying electromagnetic energy to the plasma generating device, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free radicals, and charging the surface by the charged ions and free radicals attaching to the probe, cannula, pin tool or other similar component or plurality of such components,
removing the charged probe, cannula, pin tool or other similar component or plurality of such components from the area of plasma generation, whereby the charged probe, cannula, pin tool or other similar component or plurality of such components can pipette compounds in small volumes.
2. A method for electrically charging a probe, cannula, pin tool or other similar component or plurality of such components made of any material of a fluid dispensing device used to pipet small volumes of fluids by plasma technology comprising the following steps:
placing such probe, cannula, pin tool or other similar component or plurality of such components to be charged within in a space that plasma is generated by a plasma generating device;
using the plasma generating device to introduce a gas mixture of oxygen and a carrier gas into the plasma, and
applying electromagnetic energy to the gas mixture, thereby causing a breakdown of the Oxygen (O2) molecules into O ions, free electrons, and free radicals; (i.e., the plasma), thereby causing the ions and free radicals to attack and attach to the probe, cannula, pin tool or other similar component or plurality of such components, thereby imparting a charge to the surface
removing the charged probe, cannula, pin tool or other similar component or plurality of such components from the area of plasma generation, whereby the charged probe, cannula, pin tool or other similar component or plurality of such components can pipette compounds in small volumes.
3. The method of claim 2 wherein the carrier gas is argon.
4. A method for electrically charging a probe, cannula, pin tool or other similar component or plurality of such components made of any material of a fluid dispensing device and coated with one or more additional materials or treatments used to pipet small volumes of fluids by plasma technology comprising the following steps:
placing such coated probe, cannula, pin tool or other similar component or plurality of such components with a physical coating or permanent surface treatment to be charged in a space that plasma is generated by a plasma generating device,
applying electromagnetic energy to the plasma generating device, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free, radicals, and charging the surface by the charged ions and free radicals attaching to the probe, cannula, pin tool or other similar component or plurality of such components,
removing the charged probe, cannula, pin tool or other similar component or plurality of such components from the area of plasma generation, whereby the charged probe, cannula, pin tool or other similar component or plurality of such components can pipette compounds in small volumes.
5. The methods of claims 1 for electrically charging a probe, cannula, pin tool or other similar component or plurality of such components made of any material of a fluid dispensing device used to pipet small volumes of fluids by plasma technology comprising the following steps:
placing such probe, cannula, pin tool or other similar component or plurality of such components to be charged in a space that plasma is generated by a plasma generating device,
applying electromagnetic energy to the plasma generating device, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free radicals, and charging the probe by the charged ions and free radicals attaching to the probe, cannula, pin tool or other similar component or plurality of such components,
using the fluid dispensing device to create a backpressure or vacuum within the probe, cannula or other similar component or plurality of such components and pulling the plasma into the interior space of the probe, cannula or other similar component or plurality of such components
using the fluid handling device to create a positive pressure within the probe, cannula or other similar component or plurality of such components to expel the plasma from the interior space of the probe, cannula or other similar component or plurality of such components.
repeating the prior two steps, as desired.
removing the charged component from the area of plasma generation, whereby the charged probe, cannula or other similar component or plurality of such components can pipette compounds in small volumes.
6. A method for electrically charging the surfaces of a fluid containing device, such as, but not limited to, a tube or microplate made of any material, with one or a plurality of containment wells or fluid processing surface, made of any material including but not limited to plastic, composite, glass or silicon, by plasma technology for use in manipulating small volumes of fluids comprising the following steps:
placing such container, having a tube like structure or wells for containing such fluid or a surface to place drops of fluids into a position so as to be exposed appropriately to the plasma,
applying electromagnetic energy to the plasma generating device, thereby molecularly disassociating the gas, thus creating charged ions, free electrons, and free radicals, and charging the probe by the charged ions and free radicals attaching to the surfaces to be treated;
moving or leaving in place the containing device or surface for the dispensing of small volumes of fluid, or removing or leaving in place the containing device or surface without further processing.
7. The method in claim 6 using a gas mixture of oxygen and a carrier gas.
8. The method in claim 6 using with the carrier gas argon.
9. The method in claim 6 with the plasma charge being applied on a one or more coating materials or treatments on the containment device or surface.
US10/813,593 2000-01-14 2004-03-30 Method for plasma charging a probe Abandoned US20060144692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/813,593 US20060144692A1 (en) 2000-01-14 2004-03-30 Method for plasma charging a probe

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US17620100P 2000-01-14 2000-01-14
US76573301A 2001-01-12 2001-01-12
PCT/US2001/001262 WO2001051198A1 (en) 2000-01-14 2001-01-12 Method for plasma charging a probe
US2003/0047441 2002-03-08
US10/094,403 US6724608B2 (en) 2000-01-14 2002-03-08 Method for plasma charging a probe
US10/813,593 US20060144692A1 (en) 2000-01-14 2004-03-30 Method for plasma charging a probe

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2001/001262 Continuation-In-Part WO2001051198A1 (en) 2000-01-14 2001-01-12 Method for plasma charging a probe
US76573301A Continuation-In-Part 2000-01-14 2001-01-12
US10/094,403 Continuation US6724608B2 (en) 2000-01-14 2002-03-08 Method for plasma charging a probe

Publications (1)

Publication Number Publication Date
US20060144692A1 true US20060144692A1 (en) 2006-07-06

Family

ID=28789730

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/094,403 Expired - Lifetime US6724608B2 (en) 2000-01-14 2002-03-08 Method for plasma charging a probe
US10/813,593 Abandoned US20060144692A1 (en) 2000-01-14 2004-03-30 Method for plasma charging a probe

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/094,403 Expired - Lifetime US6724608B2 (en) 2000-01-14 2002-03-08 Method for plasma charging a probe

Country Status (3)

Country Link
US (2) US6724608B2 (en)
AU (1) AU2003210503A1 (en)
WO (1) WO2003085155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102766A1 (en) * 2008-02-12 2009-08-20 Purdue Research Foundation Low temperature plasma probe and methods of use thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092644B2 (en) * 2003-06-16 2012-01-10 Ionfield Systems, Llc Method and apparatus for cleaning and surface conditioning objects using plasma
US20060272675A1 (en) * 2005-06-02 2006-12-07 Cerionx, Inc. Method and apparatus for cleaning and surface conditioning objects using plasma
US8366871B2 (en) * 2003-06-16 2013-02-05 Ionfield Holdings, Llc Method and apparatus for cleaning and surface conditioning objects using plasma
US20060272674A1 (en) * 2005-06-02 2006-12-07 Cerionx, Inc. Method and apparatus for cleaning and surface conditioning objects using plasma
US8092643B2 (en) * 2003-06-16 2012-01-10 Ionfield Systems, Llc Method and apparatus for cleaning and surface conditioning objects using plasma
AU2004251649A1 (en) 2003-06-16 2005-01-06 Cerionx, Inc. Atmospheric pressure non-thermal plasma device to clean and sterilize the surface of probes, cannulas, pin tools, pipettes and spray heads
US20060237030A1 (en) * 2005-04-22 2006-10-26 Cerionx, Inc. Method and apparatus for cleaning and surface conditioning objects with plasma
JP5156192B2 (en) * 2006-01-24 2013-03-06 ギガフォトン株式会社 Extreme ultraviolet light source device
JP5612579B2 (en) * 2009-07-29 2014-10-22 ギガフォトン株式会社 Extreme ultraviolet light source device, control method of extreme ultraviolet light source device, and recording medium recording the program
WO2012166156A1 (en) * 2010-06-07 2012-12-06 Casares Carlos Maxwell Hand wash and sanitation device
US8773018B2 (en) 2011-01-25 2014-07-08 Paul F. Hensley Tuning a dielectric barrier discharge cleaning system
WO2014179472A1 (en) 2013-04-30 2014-11-06 Health Diagnostic Laboratory, Inc. Pipette tip washing device
US9744570B2 (en) 2013-04-30 2017-08-29 Grenova, Llc Pipette tip washing device
US9579696B2 (en) 2013-04-30 2017-02-28 Grenova, Llc Cleaning solution and method of cleaning laboratory consumables
US10285564B2 (en) 2013-04-30 2019-05-14 Grenova, Inc. Pipette tip washing device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397702A (en) * 1980-01-09 1983-08-09 Johnson Controls, Inc. Fabrication of non-conductive charged sensing probe unit
US5377070A (en) * 1992-07-13 1994-12-27 Fuji Xerox Co., Ltd. Charging apparatus for photoreceptor
US5451428A (en) * 1991-05-21 1995-09-19 Hewlett-Packard Company Method for pretreating the surface of a medical device
US5468453A (en) * 1993-06-14 1995-11-21 Cirrus Diagnostics, Inc. Low carryover pipette probe
US5633424A (en) * 1994-12-29 1997-05-27 Graves; Clinton G. Device and methods for plasma sterilization
US5700327A (en) * 1995-03-10 1997-12-23 Polar Materials, Incorporated Method for cleaning hollow articles with plasma
US5706162A (en) * 1994-12-14 1998-01-06 Xerox Corporation Corona generating device
US5872426A (en) * 1997-03-18 1999-02-16 Stevens Institute Of Technology Glow plasma discharge device having electrode covered with perforated dielectric
US5977715A (en) * 1995-12-14 1999-11-02 The Boeing Company Handheld atmospheric pressure glow discharge plasma source
US6059935A (en) * 1995-06-19 2000-05-09 The University Of Tennessee Research Corporation Discharge method and apparatus for generating plasmas
US6105589A (en) * 1999-01-11 2000-08-22 Vane; Ronald A. Oxidative cleaning method and apparatus for electron microscopes using an air plasma as an oxygen radical source
US6132813A (en) * 1997-12-11 2000-10-17 International Business Machines Corporation High density plasma surface modification for improving antiwetting properties
US6147452A (en) * 1997-03-18 2000-11-14 The Trustees Of The Stevens Institute Of Technology AC glow plasma discharge device having an electrode covered with apertured dielectric
US6262523B1 (en) * 1999-04-21 2001-07-17 The Regents Of The University Of California Large area atmospheric-pressure plasma jet
US6342187B1 (en) * 1987-02-25 2002-01-29 Adir Jacob Process and apparatus for dry sterilization of medical devices and materials

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397702A (en) * 1980-01-09 1983-08-09 Johnson Controls, Inc. Fabrication of non-conductive charged sensing probe unit
US6342187B1 (en) * 1987-02-25 2002-01-29 Adir Jacob Process and apparatus for dry sterilization of medical devices and materials
US5451428A (en) * 1991-05-21 1995-09-19 Hewlett-Packard Company Method for pretreating the surface of a medical device
US5377070A (en) * 1992-07-13 1994-12-27 Fuji Xerox Co., Ltd. Charging apparatus for photoreceptor
US5468453A (en) * 1993-06-14 1995-11-21 Cirrus Diagnostics, Inc. Low carryover pipette probe
US5706162A (en) * 1994-12-14 1998-01-06 Xerox Corporation Corona generating device
US5633424A (en) * 1994-12-29 1997-05-27 Graves; Clinton G. Device and methods for plasma sterilization
US5700327A (en) * 1995-03-10 1997-12-23 Polar Materials, Incorporated Method for cleaning hollow articles with plasma
US6059935A (en) * 1995-06-19 2000-05-09 The University Of Tennessee Research Corporation Discharge method and apparatus for generating plasmas
US5977715A (en) * 1995-12-14 1999-11-02 The Boeing Company Handheld atmospheric pressure glow discharge plasma source
US6005349A (en) * 1997-03-18 1999-12-21 The Trustees Of The Stevens Institute Of Technology Method for generating and maintaining a glow plasma discharge
US6147452A (en) * 1997-03-18 2000-11-14 The Trustees Of The Stevens Institute Of Technology AC glow plasma discharge device having an electrode covered with apertured dielectric
US5872426A (en) * 1997-03-18 1999-02-16 Stevens Institute Of Technology Glow plasma discharge device having electrode covered with perforated dielectric
US6132813A (en) * 1997-12-11 2000-10-17 International Business Machines Corporation High density plasma surface modification for improving antiwetting properties
US6105589A (en) * 1999-01-11 2000-08-22 Vane; Ronald A. Oxidative cleaning method and apparatus for electron microscopes using an air plasma as an oxygen radical source
US6262523B1 (en) * 1999-04-21 2001-07-17 The Regents Of The University Of California Large area atmospheric-pressure plasma jet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102766A1 (en) * 2008-02-12 2009-08-20 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
US20110042560A1 (en) * 2008-02-12 2011-02-24 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
US8519354B2 (en) 2008-02-12 2013-08-27 Purdue Research Foundation Low temperature plasma probe and methods of use thereof

Also Published As

Publication number Publication date
US6724608B2 (en) 2004-04-20
US20030047441A1 (en) 2003-03-13
WO2003085155A1 (en) 2003-10-16
AU2003210503A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
US6724608B2 (en) Method for plasma charging a probe
US7094314B2 (en) Atmospheric pressure non-thermal plasma device to clean and sterilize the surfaces of probes, cannulas, pin tools, pipettes and spray heads
US8092643B2 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
US20060162741A1 (en) Method and apparatus for cleaning and surface conditioning objects with plasma
AU2014349815B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
JP2002515639A (en) Method of forming a physically and chemically active environment by a plasma jet and related plasma jet
US20060162740A1 (en) Method and apparatus for cleaning and surface conditioning objects using non-equilibrium atmospheric pressure plasma
Wong et al. In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation
US8366871B2 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
US8465809B2 (en) Multiarc discharge moving bed reactor system
US20060237030A1 (en) Method and apparatus for cleaning and surface conditioning objects with plasma
US8092644B2 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
Babij et al. Atmospheric pressure plasma jet for mass spectrometry
WO2001051198A1 (en) Method for plasma charging a probe
US20050008550A1 (en) Low-power atmospheric pressure mini-plasma and array for surface and material treatment
JPH0523579A (en) Surface processing and its device
WO2006091285A2 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
RU2740502C1 (en) Method for producing plasma-activated sterile liquids
US20060272674A1 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
Dinescu et al. Cold Atmospheric Pressure Plasma Jets and Their Applications
US20060272675A1 (en) Method and apparatus for cleaning and surface conditioning objects using plasma
WO2006078894A2 (en) Method and apparatus for cleaning and surface conditioning objects using non-equilibrium atmospheric pressure plasma
JP2003277939A (en) Apparatus and method for plasma film deposition

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERIONX, INC., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:MICROPLATE AUTOMATION, INC.;REEL/FRAME:015509/0248

Effective date: 20041215

AS Assignment

Owner name: COMERICA BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CERIONX, INC.;REEL/FRAME:018362/0326

Effective date: 20060922

Owner name: COMERICA BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CERIONX, INC.;REEL/FRAME:018363/0579

Effective date: 20060922

AS Assignment

Owner name: CERIONX, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK;REEL/FRAME:019573/0888

Effective date: 20070716

Owner name: CERIONX, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK;REEL/FRAME:019573/0893

Effective date: 20070716

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION