US20060135706A1 - Moldable poly(arylene ether) thermosetting compositions, methods, and articles - Google Patents
Moldable poly(arylene ether) thermosetting compositions, methods, and articles Download PDFInfo
- Publication number
- US20060135706A1 US20060135706A1 US11/351,941 US35194106A US2006135706A1 US 20060135706 A1 US20060135706 A1 US 20060135706A1 US 35194106 A US35194106 A US 35194106A US 2006135706 A1 US2006135706 A1 US 2006135706A1
- Authority
- US
- United States
- Prior art keywords
- poly
- arylene ether
- weight
- resins
- ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 poly(arylene ether Chemical compound 0.000 title claims abstract description 145
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 229920001187 thermosetting polymer Polymers 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 title claims description 59
- 229920005989 resin Polymers 0.000 claims abstract description 101
- 239000011347 resin Substances 0.000 claims abstract description 101
- 239000012141 concentrate Substances 0.000 claims abstract description 36
- 239000007787 solid Substances 0.000 claims abstract description 35
- 239000002904 solvent Substances 0.000 claims abstract description 26
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 239000012456 homogeneous solution Substances 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 72
- 229920002554 vinyl polymer Polymers 0.000 claims description 21
- 229920000647 polyepoxide Polymers 0.000 claims description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 16
- 239000003822 epoxy resin Substances 0.000 claims description 16
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 12
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 12
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical group C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 claims description 11
- 229920001971 elastomer Polymers 0.000 claims description 11
- 239000005060 rubber Substances 0.000 claims description 11
- 239000011258 core-shell material Substances 0.000 claims description 10
- 239000004643 cyanate ester Substances 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 8
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 7
- 229920001519 homopolymer Polymers 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229920001721 polyimide Polymers 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 claims description 5
- ICMZFZGUTLNLAJ-UHFFFAOYSA-N 2,6-dimethyl-7-oxabicyclo[4.1.0]hepta-2,4-diene Chemical group CC1=CC=CC2(C)OC12 ICMZFZGUTLNLAJ-UHFFFAOYSA-N 0.000 claims description 5
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 claims description 5
- 229920000459 Nitrile rubber Polymers 0.000 claims description 5
- 239000011354 acetal resin Substances 0.000 claims description 5
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 5
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 claims description 5
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical group C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 229920001225 polyester resin Polymers 0.000 claims description 5
- 239000004645 polyester resin Substances 0.000 claims description 5
- 239000009719 polyimide resin Substances 0.000 claims description 5
- 229920006324 polyoxymethylene Polymers 0.000 claims description 5
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 150000002170 ethers Chemical class 0.000 claims description 4
- 125000001188 haloalkyl group Chemical group 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 229920005604 random copolymer Polymers 0.000 claims description 4
- 229920006132 styrene block copolymer Polymers 0.000 claims description 4
- KPTMGJRRIXXKKW-UHFFFAOYSA-N 2,3,5-trimethyl-7-oxabicyclo[2.2.1]hepta-1,3,5-triene Chemical group O1C2=C(C)C(C)=C1C=C2C KPTMGJRRIXXKKW-UHFFFAOYSA-N 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- BTWLSZLCUIXOIL-UHFFFAOYSA-N ethene;styrene Chemical compound C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 BTWLSZLCUIXOIL-UHFFFAOYSA-N 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 150000002989 phenols Chemical class 0.000 claims description 2
- 150000003462 sulfoxides Chemical class 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 150000003738 xylenes Chemical class 0.000 claims description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims 2
- 150000001241 acetals Chemical class 0.000 claims 2
- 150000001412 amines Chemical class 0.000 description 21
- 239000000243 solution Substances 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 13
- 239000004014 plasticizer Substances 0.000 description 13
- 239000011342 resin composition Substances 0.000 description 13
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 11
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 229920001400 block copolymer Polymers 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 239000004721 Polyphenylene oxide Substances 0.000 description 8
- 150000004982 aromatic amines Chemical class 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 150000002118 epoxides Chemical group 0.000 description 8
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 150000002978 peroxides Chemical class 0.000 description 7
- PVXVWWANJIWJOO-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-N-ethylpropan-2-amine Chemical compound CCNC(C)CC1=CC=C2OCOC2=C1 PVXVWWANJIWJOO-UHFFFAOYSA-N 0.000 description 6
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 6
- QMMZSJPSPRTHGB-UHFFFAOYSA-N MDEA Natural products CC(C)CCCCC=CCC=CC(O)=O QMMZSJPSPRTHGB-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 125000000732 arylene group Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229930185605 Bisphenol Natural products 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 5
- 150000002357 guanidines Chemical class 0.000 description 5
- 150000002460 imidazoles Chemical class 0.000 description 5
- 229920000768 polyamine Polymers 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 235000013824 polyphenols Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004634 thermosetting polymer Substances 0.000 description 4
- BGGGMYCMZTXZBY-UHFFFAOYSA-N (3-hydroxyphenyl) phosphono hydrogen phosphate Chemical compound OC1=CC=CC(OP(O)(=O)OP(O)(O)=O)=C1 BGGGMYCMZTXZBY-UHFFFAOYSA-N 0.000 description 3
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 3
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 3
- NWIVYGKSHSJHEF-UHFFFAOYSA-N 4-[(4-amino-3,5-diethylphenyl)methyl]-2,6-diethylaniline Chemical compound CCC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(CC)C=2)=C1 NWIVYGKSHSJHEF-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 150000001913 cyanates Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Chemical class 0.000 description 3
- 239000002184 metal Chemical class 0.000 description 3
- 238000005691 oxidative coupling reaction Methods 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- 0 *NC(N(*)*)=N* Chemical compound *NC(N(*)*)=N* 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 2
- ZNGVHHSNUPMIQY-UHFFFAOYSA-N 2-tert-butyl-4-[2-(5-tert-butyl-4-hydroxy-2-methylphenyl)propan-2-yl]-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1C(C)(C)C1=CC(C(C)(C)C)=C(O)C=C1C ZNGVHHSNUPMIQY-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- SNPOZKMCSJMKKV-UHFFFAOYSA-N COC1=C(C)C(C)=C(C)C(C)=C1C Chemical compound COC1=C(C)C(C)=C(C)C(C)=C1C SNPOZKMCSJMKKV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical class CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical class P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004597 plastic additive Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 150000004291 polyenes Chemical class 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- GRKDVZMVHOLESV-UHFFFAOYSA-N (2,3,4,5,6-pentabromophenyl)methyl prop-2-enoate Chemical compound BrC1=C(Br)C(Br)=C(COC(=O)C=C)C(Br)=C1Br GRKDVZMVHOLESV-UHFFFAOYSA-N 0.000 description 1
- FGHOOJSIEHYJFQ-UHFFFAOYSA-N (2,4-ditert-butylphenyl) dihydrogen phosphite Chemical compound CC(C)(C)C1=CC=C(OP(O)O)C(C(C)(C)C)=C1 FGHOOJSIEHYJFQ-UHFFFAOYSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RQHGZNBWBKINOY-PLNGDYQASA-N (z)-4-tert-butylperoxy-4-oxobut-2-enoic acid Chemical compound CC(C)(C)OOC(=O)\C=C/C(O)=O RQHGZNBWBKINOY-PLNGDYQASA-N 0.000 description 1
- SHRRVNVEOIKVSG-UHFFFAOYSA-N 1,1,2,2,3,3-hexabromocyclododecane Chemical class BrC1(Br)CCCCCCCCCC(Br)(Br)C1(Br)Br SHRRVNVEOIKVSG-UHFFFAOYSA-N 0.000 description 1
- RGASRBUYZODJTG-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C(C)(C)C)C(C)(C)C RGASRBUYZODJTG-UHFFFAOYSA-N 0.000 description 1
- BOWAERGBTFJCGG-UHFFFAOYSA-N 1,1-dibromo-2-(2,2-dibromoethyl)cyclohexane Chemical class BrC(Br)CC1CCCCC1(Br)Br BOWAERGBTFJCGG-UHFFFAOYSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical class BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- YUAPUIKGYCAHGM-UHFFFAOYSA-N 1,2-dibromo-3-(2,3-dibromopropoxy)propane Chemical compound BrCC(Br)COCC(Br)CBr YUAPUIKGYCAHGM-UHFFFAOYSA-N 0.000 description 1
- PQRRSJBLKOPVJV-UHFFFAOYSA-N 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane Chemical compound BrCC(Br)C1CCC(Br)C(Br)C1 PQRRSJBLKOPVJV-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- YUAYXCGERFHZJE-UHFFFAOYSA-N 1-(1-phenylprop-2-enoxy)prop-2-enylbenzene Chemical compound C=1C=CC=CC=1C(C=C)OC(C=C)C1=CC=CC=C1 YUAYXCGERFHZJE-UHFFFAOYSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical class BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- BLPURQSRCDKZNX-UHFFFAOYSA-N 2,4,6-tris(oxiran-2-ylmethoxy)-1,3,5-triazine Chemical compound C1OC1COC(N=C(OCC1OC1)N=1)=NC=1OCC1CO1 BLPURQSRCDKZNX-UHFFFAOYSA-N 0.000 description 1
- YCOCJTRFDZHLHR-UHFFFAOYSA-N 2-(2,4,6-tribromophenoxy)-1,3,5-triazine Chemical compound BrC1=CC(Br)=CC(Br)=C1OC1=NC=NC=N1 YCOCJTRFDZHLHR-UHFFFAOYSA-N 0.000 description 1
- DEQYKFQEQDSGBB-UHFFFAOYSA-N 2-(2-carboxybenzoyl)peroxycarbonylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OOC(=O)C1=CC=CC=C1C(O)=O DEQYKFQEQDSGBB-UHFFFAOYSA-N 0.000 description 1
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 1
- STHCTMWQPJVCGN-UHFFFAOYSA-N 2-[[2-[1,1,2-tris[2-(oxiran-2-ylmethoxy)phenyl]ethyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1CC(C=1C(=CC=CC=1)OCC1OC1)(C=1C(=CC=CC=1)OCC1OC1)C1=CC=CC=C1OCC1CO1 STHCTMWQPJVCGN-UHFFFAOYSA-N 0.000 description 1
- BWDQITNIYSXSON-UHFFFAOYSA-N 2-[[3,5-bis(oxiran-2-ylmethoxy)phenoxy]methyl]oxirane Chemical compound C1OC1COC(C=C(OCC1OC1)C=1)=CC=1OCC1CO1 BWDQITNIYSXSON-UHFFFAOYSA-N 0.000 description 1
- QIRNGVVZBINFMX-UHFFFAOYSA-N 2-allylphenol Chemical compound OC1=CC=CC=C1CC=C QIRNGVVZBINFMX-UHFFFAOYSA-N 0.000 description 1
- IGQFNPRYLOIMKF-UHFFFAOYSA-N 2-bromophenol;formaldehyde Chemical compound O=C.OC1=CC=CC=C1Br IGQFNPRYLOIMKF-UHFFFAOYSA-N 0.000 description 1
- GLVYLTSKTCWWJR-UHFFFAOYSA-N 2-carbonoperoxoylbenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1C(O)=O GLVYLTSKTCWWJR-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- IXDKAJLKGJBFHD-UHFFFAOYSA-N 2-phenylpropan-2-yl benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(C)(C)OOC(=O)C1=CC=CC=C1 IXDKAJLKGJBFHD-UHFFFAOYSA-N 0.000 description 1
- HNAHQXRBPKUSKG-UHFFFAOYSA-N 2-tert-butyl-4-[2-(5-tert-butyl-2-ethyl-4-hydroxyphenyl)butan-2-yl]-5-ethylphenol Chemical compound CCC1=CC(O)=C(C(C)(C)C)C=C1C(C)(CC)C1=CC(C(C)(C)C)=C(O)C=C1CC HNAHQXRBPKUSKG-UHFFFAOYSA-N 0.000 description 1
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 1
- UQSXEMVUGMPGLS-UHFFFAOYSA-N 2-tert-butylperoxycarbonylbenzoic acid Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1C(O)=O UQSXEMVUGMPGLS-UHFFFAOYSA-N 0.000 description 1
- LBBOQIHGWMYDPM-UHFFFAOYSA-N 2-tert-butylphenol;formaldehyde Chemical compound O=C.CC(C)(C)C1=CC=CC=C1O LBBOQIHGWMYDPM-UHFFFAOYSA-N 0.000 description 1
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 1
- PZRWFKGUFWPFID-UHFFFAOYSA-N 3,9-dioctadecoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCCCCCCCCCCCC)OCC21COP(OCCCCCCCCCCCCCCCCCC)OC2 PZRWFKGUFWPFID-UHFFFAOYSA-N 0.000 description 1
- BVYPJEBKDLFIDL-UHFFFAOYSA-N 3-(2-phenylimidazol-1-yl)propanenitrile Chemical compound N#CCCN1C=CN=C1C1=CC=CC=C1 BVYPJEBKDLFIDL-UHFFFAOYSA-N 0.000 description 1
- CARNFEUGBMWTON-UHFFFAOYSA-N 3-(2-prop-2-enoxyethoxy)prop-1-ene Chemical compound C=CCOCCOCC=C CARNFEUGBMWTON-UHFFFAOYSA-N 0.000 description 1
- FLZYQMOKBVFXJS-UHFFFAOYSA-N 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoic acid Chemical compound CC1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O FLZYQMOKBVFXJS-UHFFFAOYSA-N 0.000 description 1
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- ISPWSRVEMSGMKS-UHFFFAOYSA-N 3-[[3-hydroxypropyl(dimethyl)silyl]oxy-dimethylsilyl]propan-1-ol Chemical compound OCCC[Si](C)(C)O[Si](C)(C)CCCO ISPWSRVEMSGMKS-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- ZRYCRPNCXLQHPN-UHFFFAOYSA-N 3-hydroxy-2-methylbenzaldehyde Chemical compound CC1=C(O)C=CC=C1C=O ZRYCRPNCXLQHPN-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- DYIZJUDNMOIZQO-UHFFFAOYSA-N 4,5,6,7-tetrabromo-2-[2-(4,5,6,7-tetrabromo-1,3-dioxoisoindol-2-yl)ethyl]isoindole-1,3-dione Chemical compound O=C1C(C(=C(Br)C(Br)=C2Br)Br)=C2C(=O)N1CCN1C(=O)C2=C(Br)C(Br)=C(Br)C(Br)=C2C1=O DYIZJUDNMOIZQO-UHFFFAOYSA-N 0.000 description 1
- QDRFIDSUGRGGAY-UHFFFAOYSA-N 4-(3,5-dimethyl-4-oxocyclohexa-2,5-dien-1-ylidene)-2,6-dimethylcyclohexa-2,5-dien-1-one Chemical compound C1=C(C)C(=O)C(C)=CC1=C1C=C(C)C(=O)C(C)=C1 QDRFIDSUGRGGAY-UHFFFAOYSA-N 0.000 description 1
- KHAHWKLZGBIAKT-UHFFFAOYSA-N 4-(4-methylpyrimidin-2-yl)benzaldehyde Chemical compound CC1=CC=NC(C=2C=CC(C=O)=CC=2)=N1 KHAHWKLZGBIAKT-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- ZJAFQAPHWPSKRZ-UHFFFAOYSA-N 4-nitrobenzenecarboperoxoic acid Chemical compound OOC(=O)C1=CC=C([N+]([O-])=O)C=C1 ZJAFQAPHWPSKRZ-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- NHJIDZUQMHKGRE-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-yl 2-(7-oxabicyclo[4.1.0]heptan-4-yl)acetate Chemical compound C1CC2OC2CC1OC(=O)CC1CC2OC2CC1 NHJIDZUQMHKGRE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FNOISSJTEFWMQS-UHFFFAOYSA-N C.C.C(CC1CO1)[Y]COCC1CO1 Chemical compound C.C.C(CC1CO1)[Y]COCC1CO1 FNOISSJTEFWMQS-UHFFFAOYSA-N 0.000 description 1
- ISNICOKBNZOJQG-UHFFFAOYSA-N CN=C(N(C)C)N(C)C Chemical compound CN=C(N(C)C)N(C)C ISNICOKBNZOJQG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 229920013646 Hycar Polymers 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- 239000004727 Noryl Substances 0.000 description 1
- 229920001207 Noryl Polymers 0.000 description 1
- FMRKGHDJPZQDIT-UHFFFAOYSA-N OC(CC[Y]CCC1CO1)COCCC1CO1 Chemical compound OC(CC[Y]CCC1CO1)COCCC1CO1 FMRKGHDJPZQDIT-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UOGPKCHLHAWNIY-UHFFFAOYSA-N [2-hydroxy-3-(2-hydroxy-3-prop-2-enoyloxypropoxy)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(O)COCC(O)COC(=O)C=C UOGPKCHLHAWNIY-UHFFFAOYSA-N 0.000 description 1
- OPLZHVSHWLZOCP-UHFFFAOYSA-N [2-hydroxy-3-[2-hydroxy-3-(2-methylprop-2-enoyloxy)propoxy]propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COCC(O)COC(=O)C(C)=C OPLZHVSHWLZOCP-UHFFFAOYSA-N 0.000 description 1
- LAUIXFSZFKWUCT-UHFFFAOYSA-N [4-[2-(4-phosphonooxyphenyl)propan-2-yl]phenyl] dihydrogen phosphate Chemical compound C=1C=C(OP(O)(O)=O)C=CC=1C(C)(C)C1=CC=C(OP(O)(O)=O)C=C1 LAUIXFSZFKWUCT-UHFFFAOYSA-N 0.000 description 1
- PDAVOLCVHOKLEO-UHFFFAOYSA-N acetyl benzenecarboperoxoate Chemical compound CC(=O)OOC(=O)C1=CC=CC=C1 PDAVOLCVHOKLEO-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000005130 benzoxazines Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- KIKYOFDZBWIHTF-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohex-3-ene-1,2-dicarboxylate Chemical compound C1CC=CC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 KIKYOFDZBWIHTF-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- KBWLNCUTNDKMPN-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) hexanedioate Chemical compound C1OC1COC(=O)CCCCC(=O)OCC1CO1 KBWLNCUTNDKMPN-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- LBAYFEDWGHXMSM-UHFFFAOYSA-N butaneperoxoic acid Chemical class CCCC(=O)OO LBAYFEDWGHXMSM-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate group Chemical group [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- UNWDCFHEVIWFCW-UHFFFAOYSA-N decanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCC(=O)OO UNWDCFHEVIWFCW-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 125000005594 diketone group Chemical class 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- PWWSSIYVTQUJQQ-UHFFFAOYSA-N distearyl thiodipropionate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCCCCCC PWWSSIYVTQUJQQ-UHFFFAOYSA-N 0.000 description 1
- YFQXEEXTCUCORR-UHFFFAOYSA-N ditert-butyl hexanediperoxoate Chemical class CC(C)(C)OOC(=O)CCCCC(=O)OOC(C)(C)C YFQXEEXTCUCORR-UHFFFAOYSA-N 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N glycolonitrile Natural products N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QWVBGCWRHHXMRM-UHFFFAOYSA-N hexadecoxycarbonyloxy hexadecyl carbonate Chemical compound CCCCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCCCC QWVBGCWRHHXMRM-UHFFFAOYSA-N 0.000 description 1
- GBXAHFXTHNBQRX-UHFFFAOYSA-N hexanediperoxoic acid Chemical compound OOC(=O)CCCCC(=O)OO GBXAHFXTHNBQRX-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002485 inorganic esters Chemical group 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- WGDZOMQOZHIXKI-UHFFFAOYSA-N pentanediperoxoic acid Chemical compound OOC(=O)CCCC(=O)OO WGDZOMQOZHIXKI-UHFFFAOYSA-N 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical class OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- NUGJFLYPGQISPX-UHFFFAOYSA-N peroxydiphosphoric acid Chemical compound OP(O)(=O)OOP(O)(O)=O NUGJFLYPGQISPX-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- MPNNOLHYOHFJKL-UHFFFAOYSA-N peroxyphosphoric acid Chemical compound OOP(O)(O)=O MPNNOLHYOHFJKL-UHFFFAOYSA-N 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 1
- 150000008301 phosphite esters Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- CZPZWMPYEINMCF-UHFFFAOYSA-N propaneperoxoic acid Chemical class CCC(=O)OO CZPZWMPYEINMCF-UHFFFAOYSA-N 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YSMATABRECEYRJ-UHFFFAOYSA-N tert-butyl nonaneperoxoate Chemical compound CCCCCCCCC(=O)OOC(C)(C)C YSMATABRECEYRJ-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000005000 thioaryl group Chemical group 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- MZHULIWXRDLGRR-UHFFFAOYSA-N tridecyl 3-(3-oxo-3-tridecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCC MZHULIWXRDLGRR-UHFFFAOYSA-N 0.000 description 1
- WGKLOLBTFWFKOD-UHFFFAOYSA-N tris(2-nonylphenyl) phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(OC=1C(=CC=CC=1)CCCCCCCCC)OC1=CC=CC=C1CCCCCCCCC WGKLOLBTFWFKOD-UHFFFAOYSA-N 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/123—Polyphenylene oxides not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- thermosetting resins comprising thermosetting resins and poly(arylene ether) resins
- thermosetting compositions comprising substantial amounts of higher molecular weight poly(arylene ether)s, for example, those having intrinsic viscosities of about 0.30 dL/g or greater (as measured at 25° C. in chloroform).
- high temperatures are typically required to dissolve the poly(arylene ether)s in the thermosetting resin.
- latent catalysts such as aluminum tris(acetylacetonate) can then be dissolved into the solution to initiate curing.
- the high temperatures required to prevent the poly(arylene ether) from precipitating out of solution are incompatible with the use of many cure agents, particularly amine cure agents, which would undergo a rapid and uncontrolled reaction at such elevated temperatures.
- U.S. Pat. No. 4,623,558 to Lin describes a plastisol dispersion composition
- a plastisol dispersion composition comprising (1) poly(phenylene oxide) in powder form, which is insoluble in the reactive plasticizer at room temperature and plasticizable at a temperature at or above the fluxing temperature; (2) a liquid reactive plasticizer member of the group consisting of (a) at least one epoxide resin having an average of more than one epoxide group in the molecule, (b) at least one liquid monomer, oligomer or prepolymer containing at least one ethylenically unsaturated group and (c) a mixture of (a) and (b); said liquid reactive plasticizer being capable of solvating the poly(phenylene oxide) at the fluxing temperature and being present in an amount ranging from 5 to 2,000 parts per 100 parts by weight of (1); and (3) 0.01 to 10% by weight of (2) of a latent curing agent, such as a thermal initiator or photoinitiator,
- curable poly(arylene ether)-containing resin compositions that allow the poly(arylene ether) to remain in a workable state in the thermosetting resin at a temperature suitable for addition of a low-temperature cure agent.
- curable poly(arylene ether)-containing resin compositions that form homogeneous solutions at lower temperature for intimate mixing of the poly(arylene ether) into the resin matrix.
- One embodiment is a curable resin composition
- a curable resin composition comprising: about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene (SBS) block copolymers, styrene ethylene styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers, functionalized butadiene-acrylonitrile copolymers
- Another embodiment is a cured resin composition comprising the reaction product of the above curable resin composition.
- Another embodiment is an article comprising the above cured resin composition.
- Another embodiment is a method of preparing a curable resin composition, comprising: forming an intimate blend comprising about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight of a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene block copolymers, styrene-ethylene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, functionalized butadiene-acrylonitrile copolymers, sty
- Another embodiment is a method of preparing a poly(arylene ether)-containing solid concentrate, comprising: blending about 30 to about 90 parts by weight of a poly(arylene ether) and about 10 to about 70 parts by weight of a thermosetting resin in the presence of a suitable solvent to form a homogeneous solution; and substantially removing the suitable solvent to yield a solid concentrate; wherein the parts by weight of the poly(arylene ether) and the thermosetting resin sum to 100.
- Another embodiment is a poly(arylene ether)-containing solid concentrate prepared according to the above method.
- One embodiment is a curable resin composition
- a curable resin composition comprising: about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight per 100 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight per 100 parts by weight of a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene (SBS) block copolymers, styrene ethylene styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers, functionalized buta
- thermosetting resin may act as a solvent for the poly(arylene ether), dissolving it to form a homogeneous solution at elevated temperature.
- cooling of the solution leads to precipitation of the poly(arylene ether) in large, non-homogeneous solid aggregates, including crystalline portions in some cases, forming an intermediate composition unsuitable for further addition of catalysts or hardeners.
- Addition of the compatibilizing agents prior to cooling the solution appears to inhibit crystallization and formation of intractable aggregates, and it allows formation of a finely divided dispersion that is workable at temperatures suitable for the use of amine curing agents.
- the compatibilizing agent may be used to prepare poly(arylene ether)-containing solid concentrates.
- a solvent such as toluene may be used to form a solution containing the poly(arylene ether), the compatibilizing agent, and the thermosetting resin. Removal of solvent from this solution creates a solid concentrate in the form of a stable powder that may be dissolved readily into additional thermoset resin, catalyzed, and cured. It has been possible to prepare solid concentrates with a wide range of poly(arylene ether) concentrations for maximum flexibility in formulating. For example, concentrates having high concentrations of poly(arylene ether) may be diluted with additional thermosetting resin, and concentrates having lower concentrations of poly(arylene ether) may be melted and used directly.
- Suitable poly(arylene ether) resins comprise a plurality of structural units of the formula wherein for each structural unit, each Q 1 is independently halogen, primary or secondary C 1 -C 7 alkyl, phenyl, C 1 -C 7 haloalkyl, C 1 -C 7 aminoalkyl, C 1 -C 7 hydrocarbonoxy, or C 2 -C 7 halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q 2 is independently hydrogen, halogen, primary or secondary C 1 -C 7 alkyl, phenyl, C 1 -C 7 haloalkyl, C 1 -C 7 aminoalkyl, C 1 -C 7 hydrocarbonoxy, or C 2 -C 7 halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms.
- Examples of suitable primary C 1 -C 7 alkyl groups are methyl, ethyl, n-propyl, n-butyl, isobutyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, 2,3-dimethylbutyl, 2-, 3-, or 4-methylpentyl, and the corresponding heptyl groups.
- Examples of secondary C 1 -C 7 alkyl groups are isopropyl, sec-butyl and 3-pentyl.
- any alkyl radicals are straight chain rather than branched.
- each Q 1 is C 1 -C 7 alkyl or phenyl, especially C 1 -C 7 alkyl
- each Q 2 is hydrogen.
- Both homopolymer and copolymer poly(arylene ether) polymers are included.
- the preferred homopolymers are those containing 2,6-dimethylphenylene ether units.
- Suitable copolymers include random copolymers containing, for example, such units in combination with 2,3,6-trimethyl-1,4-phenylene ether units or copolymers derived from copolymerization of 2,6-dimethylphenol with 2,3,6-trimethylphenol.
- poly(arylene ether) polymers containing moieties prepared by grafting vinyl monomers or polymers such as poly(styrene), as well as coupled poly(arylene ether) polymers in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in a known manner with the hydroxy groups of two poly(arylene ether) chains to produce a higher molecular weight polymer.
- Poly(arylene ether) polymers of the composition further include combinations of any of the above. Many suitable random copolymers, as well as homopolymers, are disclosed in the patent literature. Reference is made to U.S. Pat. No. 4,054,553 to Olander, U.S. Pat. No.
- the poly(arylene ether) resin is typically prepared by the oxidative coupling of at least one monohydroxyaromatic compound such as 2,6-xylenol or 2,3,6-trimethylphenol.
- Catalyst systems are generally employed for such coupling; they typically contain at least one heavy metal compound such as a copper, manganese or cobalt compound, usually in combination with various other materials.
- Particularly useful poly(arylene ether) resins are those having terminal hydroxy groups and a number average molecular weight of about 8,000 to about 13,000 atomic mass units (amu), preferably about 9,000 to about 12,000 amu, more preferably about 10,000 to about 11,000 amu, as determined by gel permeation chromatography using polystyrene standards.
- the poly(arylene ether) resin accordingly may have an intrinsic viscosity (I.V.) of about 0.20 to about 0.40 deciliters per gram (dL/g), preferably about 0.25 to about 0.35 dL/g, more preferably about 0.28 to about 0.32 dL/g, as measured in chloroform at 25° C.
- Such poly(arylene ether)s may be synthesized directly or obtained by subjecting poly(arylene ether)s to redistribution. Suitable methods for redistribution are described in, for example, U.S. Pat. No. 5,834,565.
- low molecular weight poly(arylene ether)s are prepared from poly(arylene ether)s typically having a number average molecular weight of about 15,000 to 25,000 amu.
- Such preparation of a low molecular weight poly(arylene ether) resin can be accomplished by reacting the poly(arylene ether) resin with an oxidizing agent such as a peroxide or a quinone, with or without a phenol.
- Another procedure is to obtain a low molecular weight poly(arylene ether) resin by oxidative coupling as described above to produce resins of the desired number average molecular weight which is isolated, preferably, by a direct isolation method.
- resins of the desired number average molecular weight which is isolated, preferably, by a direct isolation method.
- even such low molecular weight resins can optionally be functionalized with a peroxide or peroxide and a phenol to achieve even lower molecular weight.
- Phenolics useful in the redistribution reaction described herein include all known phenol compounds, including those having the formula A 1 -[OH] n wherein A 1 is any aromatic, mixed aliphatic aromatic hydrocarbon, heterocycle or derivative of the like, —OH is a hydroxy residue, and n is an integer from 1 to about 10, preferably from 1 to about 5.
- a particularly preferred phenolic is 2,2-bis(4-hydroxyphenyl)propane.
- any peroxide would be useful in the redistribution reaction, including those having the formula A 2 -O-O-A 3 wherein A 2 and A 3 are any aliphatic acyl, aromatic acyl group, alkyl, or mixed aliphatic aromatic hydrocarbon, hydrogen or inorganic ester moiety or derivatives of the like.
- Typical peroxides include without limitation: 1) diacyl peroxides such as dibenzoyl peroxide, 4,4′-di-t-butylbenzoyl peroxide or other aryl substituted derivatives, dilauryl peroxide, acetyl benzoyl peroxide, acetyl cyclohexylsulfonyl peroxide and diphthaloyl peroxide; 2) peroxydicarbonates such as dicetylperoxydicarbonate; 3) peroxyacids such as perbenzoic acid, 3-chloroperbenzoic acid, 4-nitroperbenzoic acid, and other substituted derivatives of perbenzoic acid, peroxyacetic acid, peroxypropanoicacid, peroxybutanoic acid, peroxynonanoic acid, peroxydodecanoic acid, diperoxyglutaric acid, diperoxyadipic acid, diperoxyoctanedioic acid, diperoxynonan
- peroxides may be used alone or in combination with or without the presence of a catalyst to induce decomposition of the peroxide and increase the rate of radical production.
- oxidizing agents known in the art include quinones such as 2,2′,6,6′-tetramethyl diphenoquinone (TMDQ) may also be used in the presence or absence of a phenol.
- TMDQ 2,2′,6,6′-tetramethyl diphenoquinone
- the composition may comprise the poly(arylene ether) in an amount of about 5 to about 50 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 10 parts by weight, more preferably at least about 15 parts by weight, of the poly(arylene ether). Also within this range, it may be preferred to use up to about 40 parts by weight, more preferably up to about 30 parts by weight, of the poly(arylene ether).
- the curable composition further comprises a thermosetting resin selected from epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, mixtures comprising at least one of the foregoing thermosetting resins, and the like.
- the thermosetting resin may be present in its monomeric, oligomeric, or polymeric state and may further include reaction products with art-known cure agents and catalysts.
- the epoxy resin useful in this invention would include, in its broadest sense, any epoxy compound.
- Suitable epoxy compounds useful in this formulation may have the formula A 4 -[X] wherein A 4 is any aromatic, aliphatic, mixed aliphatic aromatic hydrocarbon, heterocycle or derivative of the like; X is an epoxy containing residue; and p is any integer, preferably from 1 to about 100, more preferably 2 to about 100.
- the epoxide comprise at least two epoxy compounds, one being brominated to provide flame retardancy and the other at levels sufficient to provide a total bromine content of about 10 to about 30 weight percent, based on the weight of the solid composition.
- Preferred epoxy compounds include those wherein p is 1 to 4, more preferably those wherein p is 2.
- a 5 and A 6 are aromatic radicals, Y is a single bond or a divalent radical, and q is an integer from 0 to about 500.
- the radicals A 5 and A 6 may be substituted or unsubstituted with typical groups chosen from aryl, alkyl, alkoxy, halogen, and the like.
- Y may include divalent radicals such as alkylene, cycloalkylene, arylene, oxy, thio, sulfonyl, sulfoxy, and carbonyl.
- Typical of this class of compounds are the diglycidyl ethers of 4,4′-(1-methylethylidene) diphenol, 4,4′-(1-methylethylidene)bis(2-methylphenol), 4,4′-(1-methylethylidene)bis(2,6-dimethylphenol), 4,4′-(1,1-cyclopentylidene)diphenol, 4,4′-(cyclohexylidene)diphenol, 4,4′-(1-methylethylidene)bis(2,6-dibromo phenol), 4,4′-methylenediphenol, 4,4′-(1-methylethylidene)bis(2-allylphenol), 4,4′-(1-methylethylidene)bis(2-t-butyl-5-methylphenol), 4,4′-(1-(
- the reaction products of the above diepoxides with bisphenols commonly referred to as upstaged resins.
- a typical example includes the condensation product of bisphenol A diglycidyl ether with tetrabromobisphenol A.
- the partial condensation products suitable for use may be prepared by heating the mixture of compounds, as hereinabove described, at a temperature in the range of about 50° C. to about 225° C., preferably about 70° C. to about 200° C., more preferably about 100° C. to about 190° C., in the presence of a catalytic amount of at least one basic reagent, such as copper (for instance lithium dimethylcuprate), amine, phosphine, or metal salt with a strong alkoxide counter ion.
- a catalytic amount of at least one basic reagent such as copper (for instance lithium dimethylcuprate), amine, phosphine, or metal salt with a strong alkoxide counter ion.
- the triarylphosphines are the preferred basic reagents for the bisphenol bisepoxide condensation reaction for their effectiveness at low levels, their low tendency to cause side reactions, and their harmlessness when they remain present after the reaction is complete. They are usually employed in the amount of about 0.1% to about 0.5% by weight.
- the reaction is preferably conducted in an inert atmosphere such as nitrogen, especially when a triarylphosphine is employed as a catalyst.
- Multifunctional epoxides as described by the formula wherein Y is as defined above; A 7 and A 8 are aromatic radicals either substituted or unsubstituted with typical substituting groups chosen from aryl, alkyl, alkoxy, halo, and the like; and r is an integer from 0 to about 500.
- the materials described by this formula include all epoxidized phenolic resins including epoxidized novolacs and resols. Most common examples of compounds described by this formula include glycidyl ethers produced by the condensation of epichlorohydrin with a phenolic resin.
- this class of compounds include the glycidyl ethers of phenol formaldehyde novolac, cresol formaldehyde novolac, bromophenol formaldehyde novolac, t-butylphenol formaldehyde novolac, phenolic resins derived from the condensation of phenol with a diene or mixtures of dienes, such as dicyclopentadiene or butadiene, or additionally, with a polybutadiene resin.
- multifunctional epoxides include phloroglucinol triglycidyl ether and tetrakis(glycidoxyphenyl) ethane.
- Glycidyl ethers of amines, amides, or nitrogen containing heterocycles may include triglycidylcyanurate, triglycidylisocyanurate, N,N,N′N′-tetraglicidyldiaminodiphenylmethane, N,N,-O-triglycidyl-4-aminophenol, N,N-diglycidyl aniline, and N,N-diglycidyl hydantoin.
- Glycidyl ethers of carboxylic acids such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate and diglycidyl adipate.
- Homopolymers or copolymers prepared from unsaturated epoxides such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether.
- unsaturated epoxides such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether.
- these materials may be used as homopolymers or copolymers obtained from mixtures of the unsaturated epoxides mentioned above or mixtures of unsaturated epoxides and other vinyl monomers known in the practice of vinyl polymerization.
- Polysiloxanes containing epoxy functionality such as the glycidyl ether of 1,3-bis(3-hydroxypropyl)tetramethyldisiloxane.
- thermosetting resin may comprise an epoxy-functionalized dihydric phenol, such as bisphenol polyglycidyl ethers derived from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) or bis(2-hydroxyphenyl)methane (bisphenol F).
- an epoxy-functionalized dihydric phenol such as bisphenol polyglycidyl ethers derived from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) or bis(2-hydroxyphenyl)methane (bisphenol F).
- thermosetting components comprise vinylic compounds, including triallylisocyanurate, triallylcyanurate, diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl fumarate, diethylene glycol diallylcarbonate, triallyl phosphate, ethylene glycol diallyl ether, allyl ethers of trimethylolopropane, partial allyl ethers of pentaerythritol, diallyl sebacate, allylated novolacs, allylated resol resins, and/or cyanate esters.
- vinyl thermosetting resins include those known in the art, such as those described in S. H. Goodman, “Handbook of Thermoset Plastics”, Noyes Publications (1986).
- Cyanate esters include those having the formula A 9 [X] S wherein A 9 is any aromatic, aliphatic, mixed aliphatic aromatic hydrocarbons, heterocycles or derivatives of the like, X is a cyanate group, and s is an integer from 1 to 10 and preferably from 1 to 4. Typical of this class of compounds are those derived from the reaction of cyanogen halides with the bisphenols described above. Various examples of cyanate esters can be found in I. Hamerton, “Chemistry and Technology of the Cyanate Esters”, Chapman Hall (1994).
- Polyimides including bismaleimides, include those known in the art, such as those described in D. Wilson, H. D. Stenzenberger and P.M. Hergenrother, “Polyimides”, Chapman Hall (1990).
- Benzoxazines include those known to the art, such as those described in U.S. Pat. No. 5,973,144 to Ishida.
- the composition may comprise the thermosetting resin in an amount of about 25 to about 90 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 50 parts by weight, more preferably at least about 60 parts by weight, of the thermosetting resin. Also within this range, it may be preferred to use up to about 85 parts by weight of the thermosetting resin.
- the composition further comprises a compatibilizing agent to keep poly(arylene ether) in a fine, dispersed, and workable state.
- a compatibilizing agent to keep poly(arylene ether) in a fine, dispersed, and workable state.
- Compatibility is meant to include the stabilization of the composition against gross phase separation.
- Indicators of improved compatibilization include, for example, increased ductility and improved phase morphology stabilization.
- Improved compatibility of the blend components contributes to the desirable physical properties of the curable resin composition.
- Preferred compatibilizing agents include polyvinyl acetal resins, including copolymers of polyvinyl butyral and other vinyl monomers such as vinyl acetate, and partially hydrolyzed derivatives therefrom.
- polyvinyl butyral encompasses such copolymers.
- An example of such a polyvinyl butyral is poly(vinyl butyral-co-polyvinyl alcohol-co-polyvinyl acetate).
- Of particular utility is a polyvinyl butyral resin of molecular weight 50,000 to 120,000, available from Solutia under the trademark BUTVAR®.
- compatibilizing agents include, for example, low molecular weight thermoplastic elastomers known in the art, such as styrene-butadiene-styrene (SBS) block copolymers, styrene-ethylene-styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers and functionalized butadiene-acrylonitrile copolymers such as those sold under the tradename HYCAR® Reactive Liquid Rubbers by B. F. Goodrich Company.
- SBS low molecular weight thermoplastic elastomers known in the art, such as styrene-butadiene-styrene (SBS) block copolymers, styrene-ethylene-styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers and functionalized
- core shell type toughening agents such as styrene-butadiene and styrene-butadiene-styrene core shell rubbers.
- Other useful materials may be found in W. Hofmann and C. Hanser, “Rubber Technology Handbook”, Verlag Publishers (1989); and B. Ellis, “Chemistry and Technology of the Epoxy Resins”, Chapman Hall (1993).
- the composition may comprise the compatibilizing agent in an amount of about 0.5 to about 15 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 2 parts by weight, more preferably at least about 3 parts by weight, of the compatibilizing agent. Also within this range, it may be preferred to use up to about 10 parts by weight, more preferably up to about 8 parts by weight, of the compatibilizing agent.
- the composition further comprises a cure agent to effect crosslinking between the reactive thermosetting components.
- a cure agent to effect crosslinking between the reactive thermosetting components.
- the term cure agent is meant to include curing catalysts and co-catalysts. Any known cure agent suitable for the desired application may be employed. Suitable cure agents are described, for example, in B. Ellis, “Chemistry and Technology of the Epoxy Resins”, Chapman Hall (1993).
- Preferred cure agents include amine cure agents, such as amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF 3 -amine adducts, imidazoles, guanidines, arylene polyamines, mixtures comprising at least one of the foregoing amine cure agents, and the like.
- amine cure agents such as amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF 3 -amine adducts, imidazoles, guanidines, arylene polyamines, mixtures comprising at least one of the foregoing amine cure agents, and the like.
- imidazoles are imidazole, 1,2-dimethylimidazole, 2-methylimidazole, 2-heptadecylimidazole and 1-(2-cyanoethyl)-2-phenylimidazole.
- Suitable guanidines may be represented by the formula wherein Z 1 and Z 3 independently represent a C 1 -C 4 alkyl group, and Z 2 , Z 4 , and Z 5 independently represent hydrogen or a C 1 -C 4 alkyl group.
- Particularly useful cure agents include arylene polyamines with alkyl substitution on the aromatic ring.
- Highly preferred cure agents include 4,4′-methylenebis[2,6-diethylaniline] (MDEA), and diethyltoluenediamine (DETDA).
- cure agents further include metal carboxylates wherein the metal is zinc, magnesium or aluminum, and the carboxylate is a C 1-24 carboxylate such as acetate, octoate, or stearate.
- suitable cure agents include aluminum and zinc salts of diketones of the formula wherein each of R 1 and R 2 is a C 1-20 alkyl or aryl and R 3 is hydrogen or C 1 -C 20 alkyl or aryl; preferably, R 1 and R 2 are methyl, and R 3 is hydrogen.
- the amount of cure agent employed may vary according to the cure agent equivalent weight and the thermosetting resin type and amount.
- the composition may typically comprise the cure agent in an amount of about 3 to about 150 parts by weight per 100 parts by weight of the thermosetting resin. Within this range, it may be preferred to use at least about 20 parts by weight, more preferably at least about 30 parts by weight, of the cure agent. Also within this range, it may be preferred to use up to about 100 parts by weight, more preferably to about 60 parts by weight, of the cure agent.
- the curable resin composition may, optionally, further comprise a plasticizer to reduce the brittleness of cured substrates.
- plasticizers When used in appropriate quantities, these plasticizers reduce the glass transition temperature of the poly(arylene ether) less than 1° C. per part poly(arylene ether) without severely affecting the glass transition temperature of the remaining thermosetting components.
- Suitable plasticizers are known and include, for example, resorcinol diphosphate, bisphenol-A-diphosphate and isopropylated phenol phosphate. When present, the plasticizer may be used at about 0.1 to about 20 parts by weight per 100 parts by weight of the poly(arylene ether).
- the plasticizer may be preferred to use at least about 0.5 part by weight, more preferably at least about 1 part by weight, of the plasticizer. Also within this range, it may be preferred to use up to about 10 parts by weight, more preferably up to about 3 parts by weight, of the plasticizer.
- the curable resin composition may further optionally comprise various additives, for example, antioxidants, UV absorbers, stabilizers such as light stabilizers and others, lubricants, pigments, dyes, colorants, anti-static agents, flame retardants, impact modifiers, mold release agents, and the like, and mixtures thereof. Selection of types and amounts of such additives may be performed without undue experimentation by those skilled in the art.
- antioxidants include organophosphites, for example, tris(nonyl-phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite, 2,4-di-tert-butylphenyl phosphite, or distearyl pentaerythritol diphosphite; alkylated monophenols, polyphenols and alkylated reaction products of polyphenols with dienes, such as, for example, tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane and 3,5-di-tert-butyl-4-hydroxyhydrocinnamate octadecyl; butylated reaction products of para-cresol and dicyclopentadiene; alkylated hydropho
- Flame retardant additives include both reactive and non-reactive flame retardant additives such as tetrabromobisphenol A derivatives, including the bis(2-hydroxyethyl)ether of tetrabromobisphenol A, the bis(3-acryloyloxy-2-hydroxypropyl) ether of tetrabromobisphenol A, the bis(3-methacryloyloxy-2-hydroxypropyl) ether of tetrabromobisphenol A, the bis(3-hydroxypropyl) ether of tetrabromobisphenol A, the bis(2,3-dibromopropyl) ether of tetrabromobisphenol A, the diallyl ether of tetrabromobisphenol A, and the bis(vinylbenzyl) ether of tetrabromobisphenol A; pentabromobenzyl acrylate; dibromostyrenes; tribromostyrenes; tetrabromocyclooct
- Such additives are typically used in concentrations of about 12 to about 20 weight percent of the brominated additive, or about 15 to about 25 weight percent of the phosphorous-containing additive.
- Flame retardance may also be imparted to the compositions by the inclusion of brominated thermosetting resins, for example a brominated poly(epoxide), or a poly(arylene ether) having a phosphorous-containing moiety in its backbone.
- modifiers such as those described in R. Gachter and H. Muller (eds.), P. P. Klemchuck (assoc. ed.), “Plastic Additives Handbook, 4 th Edition”, Hansen Publishers, (1993).
- Fillers may also be added optionally to the adhesive compositions to modify product characteristics.
- Suitable fillers include but are not limited to silicates, titanium dioxide, fibers, glass fibers (including continuous and chopped fibers), carbon black, graphite, calcium carbonate, talc, and mica.
- Preferred conductive fillers include vapor-grown carbon fibers, such as those having an average diameter of about 3.5 to about 500 nanometers as described in, for example, U.S. Pat. No. 4,565,684 and 5,024,818 to Tibbetts et al.; U.S. Pat. No. 4,572,813 to Arakawa; U.S. Pat. Nos. 4,663,230 and 5,165,909 to Tennent; U.S. Pat. No.
- the preparation of the curable resin composition may be achieved by merely blending the components under conditions suitable for the formation of an intimate blend. During mixing, the blend is preferably sufficiently heated such that the components are in solution, thereby enabling intimate mixing. Such conditions include mixing components in a vessel capable of heating and shearing action to thoroughly dissolve and blend all components.
- the composition is prepared using a thermoset resin in its liquified (i.e., melted) state as a solvent. No additional solvents are employed.
- a compatibilizer, a poly(arylene ether), and, optionally, a plasticizer are dissolved in the thermoset resin with heating.
- the cure agent may be added immediately or after cooling the solution to a temperature low enough to prevent premature curing.
- addition of the cure agent MDEA is preferably conducted after cooling the solution to a temperature up to about 100° C., preferably a temperature up to about 90° C.
- such cooling may be accompanied by conversion of the solution to a fine dispersion.
- the particles in the dispersion may have particle sizes up to about 1 millimeter, more commonly up to about 100 microns.
- At least 50 weight percent, preferably at least 90 weight percent, of the total poly(arylene ether) is supplied to the composition as a solid concentrate further comprising the thermosetting resin.
- This method is very convenient because poly(arylene ether) provided as such a solid concentrate dissolves much more easily in thermosetting resin than does pure poly(arylene ether).
- the polyarylene ether and thermosetting resin are dissolved in a suitable solvent, with heating as needed.
- Suitable solvents may include alcohols, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, chlorohydrocarbons, nitrohydrocarbons, ethers, esters, amides, mixed ether-esters, sulfoxides, mixtures comprising at lease one of the foregoing solvents, and the like.
- Preferred solvents include aromatic hydrocarbons, such as benzene, toluene, and xylenes, and toluene is highly preferred.
- the solvent is then substantially removed (i.e., at least about 90 weight percent, preferably at least about 95 weight percent, more preferably at least about 99 weight percent of the solvent is removed) to form a powdered solid concentrate.
- the solid concentrate may comprise about 30 to about 86 weight percent poly(arylene ether), about 10 to about 70 weight percent epoxy resin, and about 4 to about 8 weight percent compatibilizing agent, based on the total weight of the solid concentrate.
- the epoxy resin content of the solid concentrate exceeds about 70 weight percent, the solid concentrate may become sticky and difficult to handle.
- the poly(arylene ether) content of the solid concentrate is less than about 30 weight percent, the concentrate becomes an inefficient means of delivering the poly(arylene ether).
- a preferred solid concentrate may comprise about 30 to about 76 weight percent poly(arylene ether), about 20 to about 70 weight percent thermosetting resin, and about 4 to about 6 weight percent compatibilizing agent, based on the total weight of the solid concentrate. Additional components may conveniently be added to the solid concentrate by dry blending.
- Preparation of the poly(arylene ether)-containing solid concentrates may further include reducing the intrinsic viscosity (reducing the molecular weight) of the poly(arylene ether) via a redistribution reaction, as described above. Redistribution reactions may be used, for example, to convert a poly(arylene ether) having an intrinsic viscosity of at least about 0.40 dL/g to a poly(arylene ether) having an intrinsic viscosity up to about 0.35 dL/g, preferably up to about 0.30 dL/g.
- compositions and methods are useful to increase the ductility and toughness of cured resins.
- the composition may be used to form articles by techniques including pultrusion, casting, and resin transfer molding.
- This comparative example illustrates the preparation and properties of a composition comprising an epoxy resin and cure agent, but no poly(arylene ether).
- the resulting homogeneous solution was poured into open bar molds, and cured for about 2 hours at 100° C. and 4 hours at 175° C. Molded parts were evaluated for Z-axis expansion (30° C.-260° C.; according to ASTM D6341) and K 1 C fracture toughness (according to ASTM D5045). The composition and properties are summarized in the Table below.
- compositions comprising a directly isolated poly(arylene ether) resin.
- epoxy resin EPON® 828 and plasticizer resorcinol diphosphate were charged into a flask with stirring. The solution was heated and as the temperature reached about 100° C., polyvinyl butyral (poly(vinyl butyral-co-polyvinyl alcohol-co-polyvinyl acetate) having a polyvinyl butyral content of about 88%, obtained as BUTVAR® B76 from Solutia) was added; the polyvinyl butyral appeared to dissolve completely as the temperature reached about 150° C.
- poly(arylene ether) directly isolated poly(2,6-dimethylphenyl ether), intrinsic viscosity 0.30 dL/g at 25° C. in chloroform; prepared and isolated according to known techniques for oxidative coupling of 2,6-xylenol; see, for example, U.S. Pat. No. 3,306,875 to Hay
- a solution formed.
- the homogeneous solution became a slurry of finely dispersed particles.
- MDEA was added and with its addition the slurry became a solution. Molding and property evaluation were conducted as described in Comparative Example 1.
- This example illustrates preparation of a composition using a solid concentrate of poly(arylene ether) and epoxy resin.
- Fifty weight parts each of EPON® 828 and poly(arylene ether) (directly isolated poly(2,6-dimethylphenyl ether) having an intrinsic viscosity of 0.40 dL/g as measured in chloroform at 25° C.; obtained as NORYL® 640-111 from GE Plastics) and 0.5 parts Bisphenol A from Shell Chemical were charged into a vessel containing toluene to form an approximately 40% solids solution. After stirring and heating at 95° C.
- thermosetting composition comprising 15 parts by weight poly(arylene ether), 80 parts by weight EPON® 828, and 5 parts by weight polyvinyl butyral.
- the thermosetting composition was prepared by combining 30 parts of the above solid concentrate with 65 parts EPON® 828 and 5 parts polyvinyl butyral in a flask and heating at 200° C. with stirring until the powder dissolved. The resulting solution was cooled to about 80° C. yielding a fine precipitate of poly(arylene ether); addition of MDEA was accompanied by dissolution of the poly(arylene ether) precipitate and formation of a solution. Molding and property evaluation were conducted as described in Comparative Example 1. Results are presented in the Table. This example demonstrates an alternative technique for easily incorporating poly(arylene ether) into a thermosetting resin matrix.
- Example 4 The procedure of Example 4 was followed, except that the powdered concentrated was prepared and used as a 67:33 weight/weight ratio of redistributed poly(arylene ether) and polyepoxide. Results are presented in the Table. TABLE C. Ex. 1 Ex. 1 Ex. 2 Ex. 3 Ex.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- This application is a division of U.S. Nonprovisional application Ser. No. 09/681,941 filed Jun. 28, 2001.
- Curable resin compositions comprising thermosetting resins and poly(arylene ether) resins are known. However, it has been difficult to prepare thermosetting compositions comprising substantial amounts of higher molecular weight poly(arylene ether)s, for example, those having intrinsic viscosities of about 0.30 dL/g or greater (as measured at 25° C. in chloroform). As described, for example, in U.S. Pat. No. 4,912,172 to Hallgren et al., high temperatures are typically required to dissolve the poly(arylene ether)s in the thermosetting resin. High temperature, latent catalysts such as aluminum tris(acetylacetonate) can then be dissolved into the solution to initiate curing. However, the high temperatures required to prevent the poly(arylene ether) from precipitating out of solution are incompatible with the use of many cure agents, particularly amine cure agents, which would undergo a rapid and uncontrolled reaction at such elevated temperatures.
- U.S. Pat. No. 4,623,558 to Lin describes a plastisol dispersion composition comprising (1) poly(phenylene oxide) in powder form, which is insoluble in the reactive plasticizer at room temperature and plasticizable at a temperature at or above the fluxing temperature; (2) a liquid reactive plasticizer member of the group consisting of (a) at least one epoxide resin having an average of more than one epoxide group in the molecule, (b) at least one liquid monomer, oligomer or prepolymer containing at least one ethylenically unsaturated group and (c) a mixture of (a) and (b); said liquid reactive plasticizer being capable of solvating the poly(phenylene oxide) at the fluxing temperature and being present in an amount ranging from 5 to 2,000 parts per 100 parts by weight of (1); and (3) 0.01 to 10% by weight of (2) of a latent curing agent, such as a thermal initiator or photoinitiator, for plasticizers present in the composition. The latent curing agents are not reactive with the thermoset resins at lower temperatures.
- There remains a need for curable poly(arylene ether)-containing resin compositions that allow the poly(arylene ether) to remain in a workable state in the thermosetting resin at a temperature suitable for addition of a low-temperature cure agent. There also remains a need for curable poly(arylene ether)-containing resin compositions that form homogeneous solutions at lower temperature for intimate mixing of the poly(arylene ether) into the resin matrix.
- One embodiment is a curable resin composition comprising: about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene (SBS) block copolymers, styrene ethylene styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers, functionalized butadiene-acrylonitrile copolymers, styrene-butadiene core shell rubbers, styrene-butadiene-styrene core shell rubbers, and mixtures comprising at least one of the foregoing compatibilizing agents; and about 3 to about 150 parts by weight per 100 parts of weight of the thermosetting resin of an amine cure agent selected from the group consisting of amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF3-amine adducts, imidazoles, guanidines, arylene polyamines, and mixtures comprising at least one of the foregoing amine cure agents; wherein the parts by weight of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent sum to 100.
- Another embodiment is a cured resin composition comprising the reaction product of the above curable resin composition.
- Another embodiment is an article comprising the above cured resin composition.
- Another embodiment is a method of preparing a curable resin composition, comprising: forming an intimate blend comprising about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight of a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene block copolymers, styrene-ethylene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, functionalized butadiene-acrylonitrile copolymers, styrene-butadiene core shell rubbers, styrene-butadiene-styrene core shell rubbers, and mixtures comprising at least one of the foregoing compatibilizing agents; and about 3 to about 150 parts by weight per 100 parts by weight thermosetting resin of an amine cure agent selected from the group consisting of amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF3-amine adducts, imidazoles, guanidines, arylene polyamines, and mixtures comprising at least one of the foregoing amine cure agents; wherein the parts by weight of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent sum to 100.
- Another embodiment is a method of preparing a poly(arylene ether)-containing solid concentrate, comprising: blending about 30 to about 90 parts by weight of a poly(arylene ether) and about 10 to about 70 parts by weight of a thermosetting resin in the presence of a suitable solvent to form a homogeneous solution; and substantially removing the suitable solvent to yield a solid concentrate; wherein the parts by weight of the poly(arylene ether) and the thermosetting resin sum to 100.
- Another embodiment is a poly(arylene ether)-containing solid concentrate prepared according to the above method.
- One embodiment is a curable resin composition comprising: about 5 to about 50 parts by weight of a poly(arylene ether); about 25 to 90 parts by weight per 100 parts by weight of a thermosetting resin selected from the group consisting of epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, and mixtures comprising at least one of the foregoing thermosetting resins; about 0.5 to about 15 parts by weight per 100 parts by weight of a compatibilizing agent selected from the group consisting of polyvinyl acetal resins, styrene-butadiene-styrene (SBS) block copolymers, styrene ethylene styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers, functionalized butadiene-acrylonitrile copolymers, styrene-butadiene core shell rubbers, styrene-butadiene-styrene core shell rubbers, and mixtures comprising at least one of the foregoing compatibilizing agents; and about 3 to about 150 parts by weight per 100 parts of weight of the thermosetting resin of an amine cure agent selected from the group consisting of amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF3-amine adducts, imidazoles, guanidines, arylene polyamines, and mixtures comprising at least one of the foregoing amine cure agents; wherein the parts by weight of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent sum to 100.
- It has unexpectedly been discovered that the use of the compatibilizing agent in the above composition allows the poly(arylene ether) to remain finely dispersed in the thermosetting resin at temperatures suitable for the use of amine cure agents. While not wishing to be bound by any particular hypothesis, the present inventors believe that their invention may function as follows. The thermosetting resin may act as a solvent for the poly(arylene ether), dissolving it to form a homogeneous solution at elevated temperature. In the absence of the compatibilizing agent, cooling of the solution leads to precipitation of the poly(arylene ether) in large, non-homogeneous solid aggregates, including crystalline portions in some cases, forming an intermediate composition unsuitable for further addition of catalysts or hardeners. Addition of the compatibilizing agents prior to cooling the solution appears to inhibit crystallization and formation of intractable aggregates, and it allows formation of a finely divided dispersion that is workable at temperatures suitable for the use of amine curing agents.
- In addition, it has been discovered that the compatibilizing agent may be used to prepare poly(arylene ether)-containing solid concentrates. For example, a solvent such as toluene may be used to form a solution containing the poly(arylene ether), the compatibilizing agent, and the thermosetting resin. Removal of solvent from this solution creates a solid concentrate in the form of a stable powder that may be dissolved readily into additional thermoset resin, catalyzed, and cured. It has been possible to prepare solid concentrates with a wide range of poly(arylene ether) concentrations for maximum flexibility in formulating. For example, concentrates having high concentrations of poly(arylene ether) may be diluted with additional thermosetting resin, and concentrates having lower concentrations of poly(arylene ether) may be melted and used directly.
- Suitable poly(arylene ether) resins comprise a plurality of structural units of the formula
wherein for each structural unit, each Q1 is independently halogen, primary or secondary C1-C7 alkyl, phenyl, C1-C7 haloalkyl, C1-C7 aminoalkyl, C1-C7 hydrocarbonoxy, or C2-C7 halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q2 is independently hydrogen, halogen, primary or secondary C1-C7 alkyl, phenyl, C1-C7 haloalkyl, C1-C7 aminoalkyl, C1-C7 hydrocarbonoxy, or C2-C7 halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms. Examples of suitable primary C1-C7 alkyl groups are methyl, ethyl, n-propyl, n-butyl, isobutyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, 2,3-dimethylbutyl, 2-, 3-, or 4-methylpentyl, and the corresponding heptyl groups. Examples of secondary C1-C7 alkyl groups are isopropyl, sec-butyl and 3-pentyl. Preferably, any alkyl radicals are straight chain rather than branched. Preferably, each Q1 is C1-C7 alkyl or phenyl, especially C1-C7 alkyl, and each Q2 is hydrogen. - Both homopolymer and copolymer poly(arylene ether) polymers are included. The preferred homopolymers are those containing 2,6-dimethylphenylene ether units. Suitable copolymers include random copolymers containing, for example, such units in combination with 2,3,6-trimethyl-1,4-phenylene ether units or copolymers derived from copolymerization of 2,6-dimethylphenol with 2,3,6-trimethylphenol. Also included are poly(arylene ether) polymers containing moieties prepared by grafting vinyl monomers or polymers such as poly(styrene), as well as coupled poly(arylene ether) polymers in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in a known manner with the hydroxy groups of two poly(arylene ether) chains to produce a higher molecular weight polymer. Poly(arylene ether) polymers of the composition further include combinations of any of the above. Many suitable random copolymers, as well as homopolymers, are disclosed in the patent literature. Reference is made to U.S. Pat. No. 4,054,553 to Olander, U.S. Pat. No. 4,092,294 to Bennett, Jr. et al., U.S. Pat. No. 4,477,649 to Mobley, U.S. Pat. No. 4,477,651 to White et al., and U.S. Pat. No. 4,517,341 to White.
- The poly(arylene ether) resin is typically prepared by the oxidative coupling of at least one monohydroxyaromatic compound such as 2,6-xylenol or 2,3,6-trimethylphenol. Catalyst systems are generally employed for such coupling; they typically contain at least one heavy metal compound such as a copper, manganese or cobalt compound, usually in combination with various other materials.
- Particularly useful poly(arylene ether) resins are those having terminal hydroxy groups and a number average molecular weight of about 8,000 to about 13,000 atomic mass units (amu), preferably about 9,000 to about 12,000 amu, more preferably about 10,000 to about 11,000 amu, as determined by gel permeation chromatography using polystyrene standards. The poly(arylene ether) resin accordingly may have an intrinsic viscosity (I.V.) of about 0.20 to about 0.40 deciliters per gram (dL/g), preferably about 0.25 to about 0.35 dL/g, more preferably about 0.28 to about 0.32 dL/g, as measured in chloroform at 25° C. Such poly(arylene ether)s may be synthesized directly or obtained by subjecting poly(arylene ether)s to redistribution. Suitable methods for redistribution are described in, for example, U.S. Pat. No. 5,834,565. In one procedure, low molecular weight poly(arylene ether)s are prepared from poly(arylene ether)s typically having a number average molecular weight of about 15,000 to 25,000 amu. Such preparation of a low molecular weight poly(arylene ether) resin can be accomplished by reacting the poly(arylene ether) resin with an oxidizing agent such as a peroxide or a quinone, with or without a phenol. Another procedure is to obtain a low molecular weight poly(arylene ether) resin by oxidative coupling as described above to produce resins of the desired number average molecular weight which is isolated, preferably, by a direct isolation method. However, even such low molecular weight resins can optionally be functionalized with a peroxide or peroxide and a phenol to achieve even lower molecular weight.
- Phenolics useful in the redistribution reaction described herein include all known phenol compounds, including those having the formula
A1-[OH]n
wherein A1 is any aromatic, mixed aliphatic aromatic hydrocarbon, heterocycle or derivative of the like, —OH is a hydroxy residue, and n is an integer from 1 to about 10, preferably from 1 to about 5. A particularly preferred phenolic is 2,2-bis(4-hydroxyphenyl)propane. - In general, any peroxide would be useful in the redistribution reaction, including those having the formula
A2-O-O-A3
wherein A2 and A3 are any aliphatic acyl, aromatic acyl group, alkyl, or mixed aliphatic aromatic hydrocarbon, hydrogen or inorganic ester moiety or derivatives of the like. Typical peroxides include without limitation: 1) diacyl peroxides such as dibenzoyl peroxide, 4,4′-di-t-butylbenzoyl peroxide or other aryl substituted derivatives, dilauryl peroxide, acetyl benzoyl peroxide, acetyl cyclohexylsulfonyl peroxide and diphthaloyl peroxide; 2) peroxydicarbonates such as dicetylperoxydicarbonate; 3) peroxyacids such as perbenzoic acid, 3-chloroperbenzoic acid, 4-nitroperbenzoic acid, and other substituted derivatives of perbenzoic acid, peroxyacetic acid, peroxypropanoicacid, peroxybutanoic acid, peroxynonanoic acid, peroxydodecanoic acid, diperoxyglutaric acid, diperoxyadipic acid, diperoxyoctanedioic acid, diperoxynonanedioic acid, diperoxydecanedioic acid, diperoxydoecandioic acid, monoperoxyphthalic acid, as well as the inorganic acids such as peroxysulfuric acid, peroxydisulfuric acid, peroxyphosphoric acid, peroxydiphosphoric acid and their corresponding salts; and 4) peroxycarboxylic esters such as t-butyl performate, t-butyl peracetate, t-butyl peroxyisobutyrate, t-butyl perbenzoate, cumyl perbenzoate, t-butyl peroxynonanoate, t-butyl monoperoxymaleate, t-butyl monoperoxyphthalate, di-t-butyl diperoxyadipates, and 2,5-dimethyl 2,5-bis(benzoylperoxy)hexane. - These peroxides may be used alone or in combination with or without the presence of a catalyst to induce decomposition of the peroxide and increase the rate of radical production. Other oxidizing agents known in the art include quinones such as 2,2′,6,6′-tetramethyl diphenoquinone (TMDQ) may also be used in the presence or absence of a phenol.
- The composition may comprise the poly(arylene ether) in an amount of about 5 to about 50 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 10 parts by weight, more preferably at least about 15 parts by weight, of the poly(arylene ether). Also within this range, it may be preferred to use up to about 40 parts by weight, more preferably up to about 30 parts by weight, of the poly(arylene ether).
- The curable composition further comprises a thermosetting resin selected from epoxy resins, polyester resins, polyimide resins, bis-maleimide resins, cyanate ester resins, vinyl resins, benzoxazine resins, benzocyclobutene resins, mixtures comprising at least one of the foregoing thermosetting resins, and the like. The thermosetting resin may be present in its monomeric, oligomeric, or polymeric state and may further include reaction products with art-known cure agents and catalysts.
- The epoxy resin useful in this invention would include, in its broadest sense, any epoxy compound. Suitable epoxy compounds useful in this formulation may have the formula
A4-[X]
wherein A4 is any aromatic, aliphatic, mixed aliphatic aromatic hydrocarbon, heterocycle or derivative of the like; X is an epoxy containing residue; and p is any integer, preferably from 1 to about 100, more preferably 2 to about 100. - When flame retardance is required, it is preferred that the epoxide comprise at least two epoxy compounds, one being brominated to provide flame retardancy and the other at levels sufficient to provide a total bromine content of about 10 to about 30 weight percent, based on the weight of the solid composition. Preferred epoxy compounds include those wherein p is 1 to 4, more preferably those wherein p is 2.
- Typical to this family of materials are:
- 1) Diepoxides having the formula
wherein A5 and A6 are aromatic radicals, Y is a single bond or a divalent radical, and q is an integer from 0 to about 500. The radicals A5 and A6 may be substituted or unsubstituted with typical groups chosen from aryl, alkyl, alkoxy, halogen, and the like. Y may include divalent radicals such as alkylene, cycloalkylene, arylene, oxy, thio, sulfonyl, sulfoxy, and carbonyl. - Common examples of the above diepoxide compounds include diglycidyl ethers often produced by the condensation of epichlorohydrin with a bisphenol where q=0. Typical of this class of compounds are the diglycidyl ethers of 4,4′-(1-methylethylidene) diphenol, 4,4′-(1-methylethylidene)bis(2-methylphenol), 4,4′-(1-methylethylidene)bis(2,6-dimethylphenol), 4,4′-(1,1-cyclopentylidene)diphenol, 4,4′-(cyclohexylidene)diphenol, 4,4′-(1-methylethylidene)bis(2,6-dibromo phenol), 4,4′-methylenediphenol, 4,4′-(1-methylethylidene)bis(2-allylphenol), 4,4′-(1-methylethylidene)bis(2-t-butyl-5-methylphenol), 4,4′-(1-methylethylidene)bis(2-t-butyl-5-methylphenol), 4,4′-(1-methylpropylidene)bis(2-t-butyl-5-ethylphenol), 4,4′-(1,4-bis(methylethylidene)phenyl)bis(2-t-butyl-5-methylphenol), 4,4′-biphenol, hydroquinone, resorcinol, and the like. Oligomeric products generated during this condensation reaction are also known and are useful. Such compounds are exemplified by the oligomeric condensation product of bisphenol A and epichlorohydrin sold by Shell Corporation under the tradename EPON® as EPON® 825 (q=0) and EPON® 828 (q=0.14).
- 2) The reaction products of the above diepoxides with bisphenols, commonly referred to as upstaged resins. A typical example includes the condensation product of bisphenol A diglycidyl ether with tetrabromobisphenol A. The partial condensation products suitable for use may be prepared by heating the mixture of compounds, as hereinabove described, at a temperature in the range of about 50° C. to about 225° C., preferably about 70° C. to about 200° C., more preferably about 100° C. to about 190° C., in the presence of a catalytic amount of at least one basic reagent, such as copper (for instance lithium dimethylcuprate), amine, phosphine, or metal salt with a strong alkoxide counter ion.
- The triarylphosphines, especially triphenylphosphine, are the preferred basic reagents for the bisphenol bisepoxide condensation reaction for their effectiveness at low levels, their low tendency to cause side reactions, and their harmlessness when they remain present after the reaction is complete. They are usually employed in the amount of about 0.1% to about 0.5% by weight. The reaction is preferably conducted in an inert atmosphere such as nitrogen, especially when a triarylphosphine is employed as a catalyst.
- 3) Multifunctional epoxides as described by the formula
wherein Y is as defined above; A7 and A8 are aromatic radicals either substituted or unsubstituted with typical substituting groups chosen from aryl, alkyl, alkoxy, halo, and the like; and r is an integer from 0 to about 500. The materials described by this formula include all epoxidized phenolic resins including epoxidized novolacs and resols. Most common examples of compounds described by this formula include glycidyl ethers produced by the condensation of epichlorohydrin with a phenolic resin. Examples of this class of compounds include the glycidyl ethers of phenol formaldehyde novolac, cresol formaldehyde novolac, bromophenol formaldehyde novolac, t-butylphenol formaldehyde novolac, phenolic resins derived from the condensation of phenol with a diene or mixtures of dienes, such as dicyclopentadiene or butadiene, or additionally, with a polybutadiene resin. - Other multifunctional epoxides include phloroglucinol triglycidyl ether and tetrakis(glycidoxyphenyl) ethane.
- 4) Glycidyl ethers of amines, amides, or nitrogen containing heterocycles. These materials may include triglycidylcyanurate, triglycidylisocyanurate, N,N,N′N′-tetraglicidyldiaminodiphenylmethane, N,N,-O-triglycidyl-4-aminophenol, N,N-diglycidyl aniline, and N,N-diglycidyl hydantoin.
- 5) Glycidyl ethers of carboxylic acids such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate and diglycidyl adipate.
- 6) Homopolymers or copolymers prepared from unsaturated epoxides such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether. As mentioned, these materials may be used as homopolymers or copolymers obtained from mixtures of the unsaturated epoxides mentioned above or mixtures of unsaturated epoxides and other vinyl monomers known in the practice of vinyl polymerization.
- 7) Polysiloxanes containing epoxy functionality such as the glycidyl ether of 1,3-bis(3-hydroxypropyl)tetramethyldisiloxane.
- 8) Compounds prepared by epoxidation of alkenes, dienes or polyenes, such as phenylglycidyl ether, allylglycidyl ether, napthylglycidyl ether, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, vinylcyclohexene dioxide, and substituted derivatives thereof. In addition, epoxidized polyenes such as polybutadiene resins or butadiene containing copolymers would be useful.
- In one embodiment, the thermosetting resin may comprise an epoxy-functionalized dihydric phenol, such as bisphenol polyglycidyl ethers derived from 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) or bis(2-hydroxyphenyl)methane (bisphenol F).
- Other useful thermosetting components comprise vinylic compounds, including triallylisocyanurate, triallylcyanurate, diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl fumarate, diethylene glycol diallylcarbonate, triallyl phosphate, ethylene glycol diallyl ether, allyl ethers of trimethylolopropane, partial allyl ethers of pentaerythritol, diallyl sebacate, allylated novolacs, allylated resol resins, and/or cyanate esters. These various thermosetting resins can be used either individually or in combination with one another. Examples of vinyl thermosetting resins include those known in the art, such as those described in S. H. Goodman, “Handbook of Thermoset Plastics”, Noyes Publications (1986).
- Cyanate esters include those having the formula
A9[X]S
wherein A9 is any aromatic, aliphatic, mixed aliphatic aromatic hydrocarbons, heterocycles or derivatives of the like, X is a cyanate group, and s is an integer from 1 to 10 and preferably from 1 to 4. Typical of this class of compounds are those derived from the reaction of cyanogen halides with the bisphenols described above. Various examples of cyanate esters can be found in I. Hamerton, “Chemistry and Technology of the Cyanate Esters”, Chapman Hall (1994). - Polyimides, including bismaleimides, include those known in the art, such as those described in D. Wilson, H. D. Stenzenberger and P.M. Hergenrother, “Polyimides”, Chapman Hall (1990).
- Benzoxazines include those known to the art, such as those described in U.S. Pat. No. 5,973,144 to Ishida.
- The composition may comprise the thermosetting resin in an amount of about 25 to about 90 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 50 parts by weight, more preferably at least about 60 parts by weight, of the thermosetting resin. Also within this range, it may be preferred to use up to about 85 parts by weight of the thermosetting resin.
- The composition further comprises a compatibilizing agent to keep poly(arylene ether) in a fine, dispersed, and workable state. Compatibility is meant to include the stabilization of the composition against gross phase separation. Indicators of improved compatibilization include, for example, increased ductility and improved phase morphology stabilization. Improved compatibility of the blend components contributes to the desirable physical properties of the curable resin composition.
- Preferred compatibilizing agents include polyvinyl acetal resins, including copolymers of polyvinyl butyral and other vinyl monomers such as vinyl acetate, and partially hydrolyzed derivatives therefrom. The term “polyvinyl butyral” encompasses such copolymers. An example of such a polyvinyl butyral is poly(vinyl butyral-co-polyvinyl alcohol-co-polyvinyl acetate). Of particular utility is a polyvinyl butyral resin of molecular weight 50,000 to 120,000, available from Solutia under the trademark BUTVAR®. Other compatibilizing agents include, for example, low molecular weight thermoplastic elastomers known in the art, such as styrene-butadiene-styrene (SBS) block copolymers, styrene-ethylene-styrene (SES) block copolymers, styrene-ethylene-butylene-styrene (SEBS) block copolymers and functionalized butadiene-acrylonitrile copolymers such as those sold under the tradename HYCAR® Reactive Liquid Rubbers by B. F. Goodrich Company. Also included are core shell type toughening agents such as styrene-butadiene and styrene-butadiene-styrene core shell rubbers. Other useful materials may be found in W. Hofmann and C. Hanser, “Rubber Technology Handbook”, Verlag Publishers (1989); and B. Ellis, “Chemistry and Technology of the Epoxy Resins”, Chapman Hall (1993).
- The composition may comprise the compatibilizing agent in an amount of about 0.5 to about 15 parts by weight per 100 parts by weight total of the poly(arylene ether), the thermosetting resin, and the compatibilizing agent. Within this range, it may be preferred to use at least about 2 parts by weight, more preferably at least about 3 parts by weight, of the compatibilizing agent. Also within this range, it may be preferred to use up to about 10 parts by weight, more preferably up to about 8 parts by weight, of the compatibilizing agent.
- The composition further comprises a cure agent to effect crosslinking between the reactive thermosetting components. For the purpose of this invention, the term cure agent is meant to include curing catalysts and co-catalysts. Any known cure agent suitable for the desired application may be employed. Suitable cure agents are described, for example, in B. Ellis, “Chemistry and Technology of the Epoxy Resins”, Chapman Hall (1993).
- Preferred cure agents include amine cure agents, such as amidoamines, polyamides, cycloaliphatic amines, modified cycloaliphatic amines, aromatic amines, modified aromatic amines, BF3-amine adducts, imidazoles, guanidines, arylene polyamines, mixtures comprising at least one of the foregoing amine cure agents, and the like.
- Particularly useful imidazoles are imidazole, 1,2-dimethylimidazole, 2-methylimidazole, 2-heptadecylimidazole and 1-(2-cyanoethyl)-2-phenylimidazole.
-
- Particularly useful cure agents include arylene polyamines with alkyl substitution on the aromatic ring. Highly preferred cure agents include 4,4′-methylenebis[2,6-diethylaniline] (MDEA), and diethyltoluenediamine (DETDA).
- Examples of cure agents further include metal carboxylates wherein the metal is zinc, magnesium or aluminum, and the carboxylate is a C1-24 carboxylate such as acetate, octoate, or stearate. Other suitable cure agents include aluminum and zinc salts of diketones of the formula
wherein each of R1 and R2 is a C1-20 alkyl or aryl and R3 is hydrogen or C1-C20 alkyl or aryl; preferably, R1 and R2 are methyl, and R3 is hydrogen. - The amount of cure agent employed may vary according to the cure agent equivalent weight and the thermosetting resin type and amount. The composition may typically comprise the cure agent in an amount of about 3 to about 150 parts by weight per 100 parts by weight of the thermosetting resin. Within this range, it may be preferred to use at least about 20 parts by weight, more preferably at least about 30 parts by weight, of the cure agent. Also within this range, it may be preferred to use up to about 100 parts by weight, more preferably to about 60 parts by weight, of the cure agent.
- The curable resin composition may, optionally, further comprise a plasticizer to reduce the brittleness of cured substrates. When used in appropriate quantities, these plasticizers reduce the glass transition temperature of the poly(arylene ether) less than 1° C. per part poly(arylene ether) without severely affecting the glass transition temperature of the remaining thermosetting components. Suitable plasticizers are known and include, for example, resorcinol diphosphate, bisphenol-A-diphosphate and isopropylated phenol phosphate. When present, the plasticizer may be used at about 0.1 to about 20 parts by weight per 100 parts by weight of the poly(arylene ether). Within this range, it may be preferred to use at least about 0.5 part by weight, more preferably at least about 1 part by weight, of the plasticizer. Also within this range, it may be preferred to use up to about 10 parts by weight, more preferably up to about 3 parts by weight, of the plasticizer.
- The curable resin composition may further optionally comprise various additives, for example, antioxidants, UV absorbers, stabilizers such as light stabilizers and others, lubricants, pigments, dyes, colorants, anti-static agents, flame retardants, impact modifiers, mold release agents, and the like, and mixtures thereof. Selection of types and amounts of such additives may be performed without undue experimentation by those skilled in the art. Exemplary antioxidants include organophosphites, for example, tris(nonyl-phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite, 2,4-di-tert-butylphenyl phosphite, or distearyl pentaerythritol diphosphite; alkylated monophenols, polyphenols and alkylated reaction products of polyphenols with dienes, such as, for example, tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane and 3,5-di-tert-butyl-4-hydroxyhydrocinnamate octadecyl; butylated reaction products of para-cresol and dicyclopentadiene; alkylated hydroquinones; hydroxylated thiodiphenyl ethers; alkylidene-bisphenols; benzyl compounds; esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with monohydric or polyhydric alcohols; esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of thioalkyl or thioaryl compounds, such as, for example, distearylthiopropionate, dilaurylthiopropionate, ditridecylthiodipropionate; and amides of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid.
- Flame retardant additives include both reactive and non-reactive flame retardant additives such as tetrabromobisphenol A derivatives, including the bis(2-hydroxyethyl)ether of tetrabromobisphenol A, the bis(3-acryloyloxy-2-hydroxypropyl) ether of tetrabromobisphenol A, the bis(3-methacryloyloxy-2-hydroxypropyl) ether of tetrabromobisphenol A, the bis(3-hydroxypropyl) ether of tetrabromobisphenol A, the bis(2,3-dibromopropyl) ether of tetrabromobisphenol A, the diallyl ether of tetrabromobisphenol A, and the bis(vinylbenzyl) ether of tetrabromobisphenol A; pentabromobenzyl acrylate; dibromostyrenes; tribromostyrenes; tetrabromocyclooctanes; dibromoethyldibromocyclohexanes such as 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane; ethylene-bis-tetrabromophthalimide; hexabromocyclododecanes; tetrabromophthalic anhydrides; brominated diphenylethers such as decabromodiphenyl ether; poly(2,6-dibromophenylene ether); and tris(2,4,6-tribromophenoxy-1,3,5-triazine; as well as phosphorus-containing additives, for example, the phosphorus-containing additives described above and those described in R. Gachter and H. Muller (eds.), P. P. Klemchuck (assoc. ed.), “Plastic Additives Handbook, 4th Edition”, Hansen Publishers, (1993). Such additives are typically used in concentrations of about 12 to about 20 weight percent of the brominated additive, or about 15 to about 25 weight percent of the phosphorous-containing additive. Flame retardance may also be imparted to the compositions by the inclusion of brominated thermosetting resins, for example a brominated poly(epoxide), or a poly(arylene ether) having a phosphorous-containing moiety in its backbone.
- Other art-known modifiers, fillers, antioxidants, UV absorbers, stabilizers, lubricants, plasticizers, pigments, dyes, colorants, anti-static agents, mold release agents, and flame retardants may also be used in the present invention such as those described in R. Gachter and H. Muller (eds.), P. P. Klemchuck (assoc. ed.), “Plastic Additives Handbook, 4th Edition”, Hansen Publishers, (1993).
- Fillers may also be added optionally to the adhesive compositions to modify product characteristics. Suitable fillers include but are not limited to silicates, titanium dioxide, fibers, glass fibers (including continuous and chopped fibers), carbon black, graphite, calcium carbonate, talc, and mica. Preferred conductive fillers include vapor-grown carbon fibers, such as those having an average diameter of about 3.5 to about 500 nanometers as described in, for example, U.S. Pat. No. 4,565,684 and 5,024,818 to Tibbetts et al.; U.S. Pat. No. 4,572,813 to Arakawa; U.S. Pat. Nos. 4,663,230 and 5,165,909 to Tennent; U.S. Pat. No. 4,816,289 to Komatsu et al.; U.S. Pat. No. 4,876,078 to Arakawa et al.; U.S. Pat. No. 5,589,152 to Tennent et al.; and U.S. Pat. No. 5,591,382 to Nahass et al. Suitable filler types and amounts are dictated by the desired end application and may be determined without undue experimentation.
- The preparation of the curable resin composition may be achieved by merely blending the components under conditions suitable for the formation of an intimate blend. During mixing, the blend is preferably sufficiently heated such that the components are in solution, thereby enabling intimate mixing. Such conditions include mixing components in a vessel capable of heating and shearing action to thoroughly dissolve and blend all components.
- In one embodiment, the composition is prepared using a thermoset resin in its liquified (i.e., melted) state as a solvent. No additional solvents are employed. In this embodiment, a compatibilizer, a poly(arylene ether), and, optionally, a plasticizer, are dissolved in the thermoset resin with heating. Depending on the cure agent employed, the cure agent may be added immediately or after cooling the solution to a temperature low enough to prevent premature curing. For example, addition of the cure agent MDEA is preferably conducted after cooling the solution to a temperature up to about 100° C., preferably a temperature up to about 90° C. Depending on the molecular weight and degree of functionalization of the poly(arylene ether), such cooling may be accompanied by conversion of the solution to a fine dispersion. The particles in the dispersion may have particle sizes up to about 1 millimeter, more commonly up to about 100 microns. Addition of the cure agent, such as, for example, MDEA or DETDA, typically creates a homogeneous solution.
- In one embodiment, at least 50 weight percent, preferably at least 90 weight percent, of the total poly(arylene ether) is supplied to the composition as a solid concentrate further comprising the thermosetting resin. This method is very convenient because poly(arylene ether) provided as such a solid concentrate dissolves much more easily in thermosetting resin than does pure poly(arylene ether). In this embodiment, the polyarylene ether and thermosetting resin are dissolved in a suitable solvent, with heating as needed. Suitable solvents may include alcohols, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, chlorohydrocarbons, nitrohydrocarbons, ethers, esters, amides, mixed ether-esters, sulfoxides, mixtures comprising at lease one of the foregoing solvents, and the like. Preferred solvents include aromatic hydrocarbons, such as benzene, toluene, and xylenes, and toluene is highly preferred. The solvent is then substantially removed (i.e., at least about 90 weight percent, preferably at least about 95 weight percent, more preferably at least about 99 weight percent of the solvent is removed) to form a powdered solid concentrate. For example, when the thermosetting resin is the epoxy EPON® 828, and the poly(arylene ether) is a directly isolated or redistributed poly(arylene ether) having an intrinsic viscosity of about 0.30 dL/g, the solid concentrate may comprise about 30 to about 86 weight percent poly(arylene ether), about 10 to about 70 weight percent epoxy resin, and about 4 to about 8 weight percent compatibilizing agent, based on the total weight of the solid concentrate. When the epoxy resin content of the solid concentrate exceeds about 70 weight percent, the solid concentrate may become sticky and difficult to handle. When the poly(arylene ether) content of the solid concentrate is less than about 30 weight percent, the concentrate becomes an inefficient means of delivering the poly(arylene ether). A preferred solid concentrate may comprise about 30 to about 76 weight percent poly(arylene ether), about 20 to about 70 weight percent thermosetting resin, and about 4 to about 6 weight percent compatibilizing agent, based on the total weight of the solid concentrate. Additional components may conveniently be added to the solid concentrate by dry blending.
- Preparation of the poly(arylene ether)-containing solid concentrates may further include reducing the intrinsic viscosity (reducing the molecular weight) of the poly(arylene ether) via a redistribution reaction, as described above. Redistribution reactions may be used, for example, to convert a poly(arylene ether) having an intrinsic viscosity of at least about 0.40 dL/g to a poly(arylene ether) having an intrinsic viscosity up to about 0.35 dL/g, preferably up to about 0.30 dL/g.
- The above described compositions and methods are useful to increase the ductility and toughness of cured resins. The composition may be used to form articles by techniques including pultrusion, casting, and resin transfer molding.
- The invention is further illustrated by the following non-limiting examples.
- This comparative example illustrates the preparation and properties of a composition comprising an epoxy resin and cure agent, but no poly(arylene ether). One hundred parts of 2,2-bis(4-hydroxyphenyl)propane-epichlorohydrin copolymer, obtained under the trade name EPON® 828 from Shell Oil Co., were charged into a flask with stirring. After the epoxide was heated to 90° C. with continued stirring, 46 parts by weight of cure agent methylene-bis-diethylaniline (4,4′-methylenebis(2,6-diethylaniline); MDEA; CAS Registry No. 13680-35-8; obtained as ETHACURE® 208 from Ethyl Corporation) was added. The resulting homogeneous solution was poured into open bar molds, and cured for about 2 hours at 100° C. and 4 hours at 175° C. Molded parts were evaluated for Z-axis expansion (30° C.-260° C.; according to ASTM D6341) and K1C fracture toughness (according to ASTM D5045). The composition and properties are summarized in the Table below.
- These examples illustrate preparation of compositions comprising a directly isolated poly(arylene ether) resin. Using proportions specified in the Table, epoxy resin EPON® 828 and plasticizer resorcinol diphosphate were charged into a flask with stirring. The solution was heated and as the temperature reached about 100° C., polyvinyl butyral (poly(vinyl butyral-co-polyvinyl alcohol-co-polyvinyl acetate) having a polyvinyl butyral content of about 88%, obtained as BUTVAR® B76 from Solutia) was added; the polyvinyl butyral appeared to dissolve completely as the temperature reached about 150° C. As the temperature reached about 160° C., poly(arylene ether) (directly isolated poly(2,6-dimethylphenyl ether), intrinsic viscosity 0.30 dL/g at 25° C. in chloroform; prepared and isolated according to known techniques for oxidative coupling of 2,6-xylenol; see, for example, U.S. Pat. No. 3,306,875 to Hay) was added. As the temperature reached about 200° C., a solution formed. As the solution was cooled to about 80° C., the homogeneous solution became a slurry of finely dispersed particles. At 80° C., MDEA was added and with its addition the slurry became a solution. Molding and property evaluation were conducted as described in Comparative Example 1. Results are presented in the Table. It should be noted that it is not possible to prepare corresponding comparative examples lacking a compatibilizing agent. In the absence of a compatibilizing agent, cooling the poly(arylene ether)/polyepoxide solution to 80° C. results in sudden precipitation of the poly(arylene ether) as a viscous mass, rather than formation of a slurry of finely dispersed particles.
- This example illustrates preparation of a composition using a solid concentrate of poly(arylene ether) and epoxy resin. Fifty weight parts each of EPON® 828 and poly(arylene ether) (directly isolated poly(2,6-dimethylphenyl ether) having an intrinsic viscosity of 0.40 dL/g as measured in chloroform at 25° C.; obtained as NORYL® 640-111 from GE Plastics) and 0.5 parts Bisphenol A from Shell Chemical were charged into a vessel containing toluene to form an approximately 40% solids solution. After stirring and heating at 95° C. for one hour, the poly(arylene ether) was completely dissolved, and 0.677 parts 75% benzoyl peroxide stabilized with water (obtained from Catalyst Systems, Inc.) was added to redistribute the poly(phenylene ether) and lower its intrinsic viscosity to 0.30 dL/g. The toluene was removed to yield a solid concentrate consisting of approximately equal weight parts of polyepoxide and redistributed poly(phenylene ether) having an intrinsic viscosity of 0.30 dL/g. This powder was used as the sole source of poly(arylene ether) in a thermosetting composition comprising 15 parts by weight poly(arylene ether), 80 parts by weight EPON® 828, and 5 parts by weight polyvinyl butyral. The thermosetting composition was prepared by combining 30 parts of the above solid concentrate with 65 parts EPON® 828 and 5 parts polyvinyl butyral in a flask and heating at 200° C. with stirring until the powder dissolved. The resulting solution was cooled to about 80° C. yielding a fine precipitate of poly(arylene ether); addition of MDEA was accompanied by dissolution of the poly(arylene ether) precipitate and formation of a solution. Molding and property evaluation were conducted as described in Comparative Example 1. Results are presented in the Table. This example demonstrates an alternative technique for easily incorporating poly(arylene ether) into a thermosetting resin matrix.
- The procedure of Example 4 was followed, except that the powdered concentrated was prepared and used as a 67:33 weight/weight ratio of redistributed poly(arylene ether) and polyepoxide. Results are presented in the Table.
TABLE C. Ex. 1 Ex. 1 Ex. 2 Ex. 3 Ex. 4 COMPOSITION PPE (0.30IV) — 9.5 15 — — PPE as a 50:50 — — — 15 — PPE/Epoxy composition PPE as a 67:33 — — — — 15 PPE/Epoxy composition EPON ® 828 100 85 78 65 72 EPON ® 828 a 50:50 — — — 15 — PPE/Epoxy composition EPON ® 828 as a 67:33 — — — — 8 PPE/Epoxy composition Polyvinyl Butyral — 5.5 5 5 5 Resorcinol Diphosphate — 11 13 — 7 (pbw per 100 pbw PPE) Methylene-bis-diethyl 46 41 46 46 46 aniline (pbw per 100 pbw EPON ® 828) PROPERTIES Molded part thickness 2.688 2.976 3.717 3.136 2.611 (mm) Tg (° C.) 137/156 145/207 142/187 141/207 145/203 Z-axis expansion, 3.05 3.46 3.52 3.18 3.50 30-260° C., neat resin bar (%) K1C fracture toughness 0.75 — 0.97 1.10 0.99 (MPa-m1/2) - The results show that Examples 1-4 provide higher fracture toughness than Comparative Example 1.
- While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
- All cited patents and other references are incorporated herein by reference.
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/351,941 US20060135706A1 (en) | 2001-06-28 | 2006-02-10 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
US11/844,095 US7393895B2 (en) | 2001-06-28 | 2007-08-23 | Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/681,941 US7022777B2 (en) | 2001-06-28 | 2001-06-28 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
US11/351,941 US20060135706A1 (en) | 2001-06-28 | 2006-02-10 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/681,941 Division US7022777B2 (en) | 2001-06-28 | 2001-06-28 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/844,095 Division US7393895B2 (en) | 2001-06-28 | 2007-08-23 | Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060135706A1 true US20060135706A1 (en) | 2006-06-22 |
Family
ID=24737500
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/681,941 Expired - Fee Related US7022777B2 (en) | 2001-06-28 | 2001-06-28 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
US11/351,941 Abandoned US20060135706A1 (en) | 2001-06-28 | 2006-02-10 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
US11/844,095 Expired - Fee Related US7393895B2 (en) | 2001-06-28 | 2007-08-23 | Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/681,941 Expired - Fee Related US7022777B2 (en) | 2001-06-28 | 2001-06-28 | Moldable poly(arylene ether) thermosetting compositions, methods, and articles |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/844,095 Expired - Fee Related US7393895B2 (en) | 2001-06-28 | 2007-08-23 | Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer |
Country Status (9)
Country | Link |
---|---|
US (3) | US7022777B2 (en) |
EP (1) | EP1409588A2 (en) |
JP (1) | JP2004531634A (en) |
KR (1) | KR100678434B1 (en) |
CN (1) | CN100432150C (en) |
AU (1) | AU2002305349A1 (en) |
IN (1) | IN2003DE01973A (en) |
SG (1) | SG152053A1 (en) |
WO (1) | WO2003002667A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110130524A1 (en) * | 2008-07-22 | 2011-06-02 | Basf Se | Mixtures of amines with guanidine derivatives |
US20110180970A1 (en) * | 2008-07-22 | 2011-07-28 | Basf Se | Process for preparing moldings using mixtures of amines with guanidine derivatives |
US20110190419A1 (en) * | 2008-07-22 | 2011-08-04 | Basf Se | Blends comprising epoxy resins and mixtures of amines with guanidine derivatives |
US20170247566A1 (en) * | 2014-11-19 | 2017-08-31 | Sabic Global Technologies B.V. | Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite |
US11274218B2 (en) | 2017-12-11 | 2022-03-15 | Lg Chem, Ltd. | Thermosetting resin composition for coating metal thin film and metal laminate using the same |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030215588A1 (en) * | 2002-04-09 | 2003-11-20 | Yeager Gary William | Thermoset composition, method, and article |
EP1497372B1 (en) * | 2002-04-09 | 2007-01-17 | General Electric Company | Thermoset composition, method and article |
KR20100094586A (en) * | 2002-09-30 | 2010-08-26 | 히다치 가세고교 가부시끼가이샤 | Resin composition for printed wiring board, and vanish, prepreg and metal-clad laminate using same |
KR100523594B1 (en) * | 2002-10-24 | 2005-10-24 | 주식회사 엘지화학 | Epoxy/thermoplastic blend composition |
KR100588301B1 (en) * | 2002-10-24 | 2006-06-09 | 주식회사 엘지화학 | Epoxy/thermoplastic blend composition |
US7250477B2 (en) * | 2002-12-20 | 2007-07-31 | General Electric Company | Thermoset composite composition, method, and article |
FR2854900B1 (en) * | 2003-05-16 | 2007-07-27 | Nexans | COMPOSITION FOR ADHERENT LAYER, ELECTRICAL CONDUCTOR COATED WITH SUCH A ADHERENT LAYER AND METHOD OF MANUFACTURING SUCH AN ELECTRICAL CONDUCTOR |
US6887574B2 (en) * | 2003-06-06 | 2005-05-03 | Dow Global Technologies Inc. | Curable flame retardant epoxy compositions |
US7157509B2 (en) | 2003-06-27 | 2007-01-02 | Henkel Corporation | Curable compositions |
US20050042961A1 (en) * | 2003-08-18 | 2005-02-24 | Henkel Loctite Corporation | Curable compositions for advanced processes, and products made therefrom |
US20050080185A1 (en) * | 2003-10-10 | 2005-04-14 | Mhetar Vijay R. | Poly(arylene ether) composition and method of making |
US7101933B2 (en) * | 2003-12-10 | 2006-09-05 | Uniplus Electronics Co., Ltd. | Process for producing high speed transmitting dielectric material |
KR101129115B1 (en) * | 2004-04-02 | 2012-03-23 | 리전츠 오브 더 유니버시티 오브 미네소타 | Amphiphilic block copolymer-toughened thermoset resins |
US20060074151A1 (en) * | 2004-09-28 | 2006-04-06 | Polyclad Laminates, Inc. | Low expansion dielectric compositions |
US8129456B2 (en) * | 2004-09-28 | 2012-03-06 | Isola Usa Corp. | Flame retardant compositions with a phosphorated compound |
US7687556B2 (en) * | 2004-09-28 | 2010-03-30 | Isola Usa Corp. | Flame retardant compositions |
US7666938B2 (en) * | 2004-12-03 | 2010-02-23 | Henkel Corporation | Nanoparticle silica filled benzoxazine compositions |
US8029889B1 (en) | 2004-12-03 | 2011-10-04 | Henkel Corporation | Prepregs, towpregs and preforms |
US7649060B2 (en) * | 2005-12-02 | 2010-01-19 | Henkel Corporation | Curable compositions |
US7411508B2 (en) * | 2005-06-17 | 2008-08-12 | Perkinemer Las, Inc. | Methods and systems for locating and identifying labware using radio-frequency identification tags |
US7429800B2 (en) * | 2005-06-30 | 2008-09-30 | Sabic Innovative Plastics Ip B.V. | Molding composition and method, and molded article |
US20070004871A1 (en) * | 2005-06-30 | 2007-01-04 | Qiwei Lu | Curable composition and method |
US7378455B2 (en) | 2005-06-30 | 2008-05-27 | General Electric Company | Molding composition and method, and molded article |
US20070049690A1 (en) * | 2005-08-29 | 2007-03-01 | Pravin Borade | Impact modified poly(arylene ether)/polyester blends and method |
US20080071035A1 (en) * | 2006-09-15 | 2008-03-20 | Delsman Erik R | Curable poly(arylene ether) composition and method |
US20080071036A1 (en) * | 2006-09-15 | 2008-03-20 | Delsman Erik R | Cured poly(arylene ether) composition, method, and article |
US20080076885A1 (en) * | 2006-09-21 | 2008-03-27 | Gary William Yeager | Poly(arylene ether) composition and method |
US20080076884A1 (en) * | 2006-09-21 | 2008-03-27 | Gary William Yeager | Poly(arylene ether) composition and method |
JP5409373B2 (en) * | 2006-11-13 | 2014-02-05 | ヘンケル コーポレイション | Benzoxazine composition having core-shell rubber |
CN101646661A (en) * | 2006-11-29 | 2010-02-10 | 汉高公司 | The preparation method of benzoxazines |
US7537827B1 (en) | 2006-12-13 | 2009-05-26 | Henkel Corporation | Prepreg laminates |
US20090030141A1 (en) * | 2007-07-23 | 2009-01-29 | Kim Gene Balfour | Poly(arylene ether) composition, method, and article |
DE102008023076A1 (en) * | 2008-05-09 | 2009-11-12 | Henkel Ag & Co. Kgaa | Polymerizable composition |
US9051498B2 (en) | 2011-05-13 | 2015-06-09 | Huntsman Advanced Materials Americas Llc | Epoxy resins with high thermal stability and toughness |
CN103547602A (en) * | 2011-05-17 | 2014-01-29 | 亨斯迈先进材料美国有限责任公司 | Halogen free thermoset resin system for low dielectric loss at high frequency applications |
US8859672B2 (en) * | 2011-06-27 | 2014-10-14 | Sabic Global Technologies B.V. | Poly(arylene ether)-poly(hydroxy ether) block copolymer and method of making |
KR101942325B1 (en) * | 2012-02-10 | 2019-04-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Anticorrosion coatings |
US8552105B2 (en) | 2012-03-08 | 2013-10-08 | Sabic Innovative Plastics Ip B.V. | Compatibilized composition, method for the formation thereof, and article comprising same |
US8686079B2 (en) | 2012-04-13 | 2014-04-01 | Sabic Innovative Plastics Ip B.V. | Compatibilized composition, method for the formation thereof, and article comprising same |
US9611385B2 (en) * | 2012-06-29 | 2017-04-04 | Sabic Global Technologies B.V. | Ultrafine poly(phenylene ether) particles and compositions derived therefrom |
CN103819870B (en) * | 2012-11-16 | 2016-06-15 | 株式会社田村制作所 | Resin molding, metal forming, copper-clad plate and the multilayer laminated boards substrate on compositions of thermosetting resin, B rank |
US8865823B2 (en) | 2013-02-01 | 2014-10-21 | Sabic Global Technologies B.V. | Triblock copolymer, method for its formation, and compatibilized compositions comprising it |
US20150028247A1 (en) | 2013-07-23 | 2015-01-29 | Sabic Innovative Plastics Ip B.V. | Rigid foam and associated article and method |
US9296916B2 (en) * | 2013-08-09 | 2016-03-29 | Sabic Global Technologies B.V. | Poly(phenylene ether)/epoxy homogeneous solid and powder coating composition incorporating same |
US9447227B2 (en) | 2013-10-03 | 2016-09-20 | Sabic Global Technologies B.V. | Flexible polyurethane foam and associated method and article |
CN103740033A (en) * | 2014-01-20 | 2014-04-23 | 苏州新区华士达工程塑胶有限公司 | Improved SBS (Styrene Butadiene Styrene) formula |
KR101890464B1 (en) * | 2015-12-31 | 2018-09-28 | 롯데첨단소재(주) | Polyamide/polyphenylene ether resin composition and molded product for vehicle using the same |
JP7142636B2 (en) * | 2017-08-03 | 2022-09-27 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition, molded product and electric wire |
WO2019117574A1 (en) * | 2017-12-11 | 2019-06-20 | 주식회사 엘지화학 | Thermosetting resin composition for metal thin film coating and metal laminate using same |
TWI700330B (en) * | 2018-11-09 | 2020-08-01 | 台光電子材料股份有限公司 | Resin composition and articles made from it |
CN114989571B (en) * | 2022-03-28 | 2023-12-05 | 金发科技股份有限公司 | Polyester composite material and preparation method and application thereof |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3306875A (en) * | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols and resulting products |
US3375298A (en) * | 1965-05-21 | 1968-03-26 | Gen Electric | Crosslinked polyphenylene oxide |
US4054553A (en) * | 1975-06-02 | 1977-10-18 | General Electric Company | Polyphenylene oxide process |
US4092294A (en) * | 1976-08-30 | 1978-05-30 | General Electric Company | Method for preparing polyphenylene ethers |
US4436870A (en) * | 1981-08-07 | 1984-03-13 | Basf Aktiengesellschaft | Production of molding materials containing polyphenylene ethers |
US4477651A (en) * | 1983-06-06 | 1984-10-16 | General Electric Company | Process for preparing polyphenylene oxides |
US4477649A (en) * | 1983-03-25 | 1984-10-16 | General Electric Company | Two-stage continuous process for preparation of polyphenylene oxides |
US4496695A (en) * | 1981-02-28 | 1985-01-29 | Mitsubishi Gas Chemical Company, Inc. | Curable resin composition |
US4517341A (en) * | 1982-07-27 | 1985-05-14 | General Electric Company | Process for preparing polyphenylene oxide-rubber graft copolymers and products obtained thereby |
US4565684A (en) * | 1984-08-20 | 1986-01-21 | General Motors Corporation | Regulation of pyrolysis methane concentration in the manufacture of graphite fibers |
US4572813A (en) * | 1983-09-06 | 1986-02-25 | Nikkiso Co., Ltd. | Process for preparing fine carbon fibers in a gaseous phase reaction |
US4594371A (en) * | 1984-08-31 | 1986-06-10 | Rensselaer Polytechnic Institute | Fine particle dispersions of incompatible polymers in polymer matrices |
US4623558A (en) * | 1985-05-29 | 1986-11-18 | W. R. Grace & Co. | Reactive plastisol dispersion |
US4663230A (en) * | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US4668768A (en) * | 1985-11-25 | 1987-05-26 | General Electric Company | Anti-solvent precipitation process for isolating polymers from solution |
US4816289A (en) * | 1984-04-25 | 1989-03-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for production of a carbon filament |
US4853423A (en) * | 1988-07-14 | 1989-08-01 | General Electric Company | Curable polyphenylene ether-polyepoxide compositions useful in printed circuit board production |
US4876078A (en) * | 1984-04-20 | 1989-10-24 | Nikkiso Co., Ltd. | Process for preparing carbon fibers in gas phase growth |
US4888397A (en) * | 1985-07-24 | 1989-12-19 | General Electric Company | Functionalized polyphenylene ether from polyphenylene ether chain terminated with phenoxy moiety containing amino and hydroxy group |
US4912172A (en) * | 1987-09-03 | 1990-03-27 | General Electric Company | Compositions comprising polyphenylene ethers, polyepoxides and aluminum or zinc diketone salt |
US4954195A (en) * | 1989-02-13 | 1990-09-04 | Lockheed Corporation | Production of thermoset composites containing thermoplastic fillers |
US5017663A (en) * | 1989-04-18 | 1991-05-21 | Sumitomo Chemical Co., Ltd. | Resin composition |
US5024818A (en) * | 1990-10-09 | 1991-06-18 | General Motors Corporation | Apparatus for forming carbon fibers |
US5043367A (en) * | 1988-12-22 | 1991-08-27 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions useful in printed circuit board production |
US5089343A (en) * | 1989-08-03 | 1992-02-18 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5098781A (en) * | 1990-12-28 | 1992-03-24 | General Electric Company | Thermoplastic film, reinforced hollow glass microsphere reinforced laminates for thin low dielectric constant substrates |
US5162450A (en) * | 1989-02-17 | 1992-11-10 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5165909A (en) * | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US5212239A (en) * | 1991-02-22 | 1993-05-18 | Arco Chemical Technology, L.P. | Resin blends containing crystalline propylene polymers and styrenic copolymers |
US5213886A (en) * | 1989-02-17 | 1993-05-25 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5294655A (en) * | 1992-05-15 | 1994-03-15 | General Electric Company | Polyphenylene ether electrical insulation compositions |
US5308565A (en) * | 1993-02-05 | 1994-05-03 | General Electric Company | Method of preparing modified polyphenylene oxide resin systems for electrical laminates having improved solderability and solvent resistance |
US5352745A (en) * | 1991-01-11 | 1994-10-04 | Asahi Kasei Kogyo Kabushiki Kaisha | Curable polyphenylene ether and cyanurate resin composition and a cured resin composition obtainable therefrom |
US5397822A (en) * | 1993-08-18 | 1995-03-14 | General Electric Company | Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
US5834565A (en) * | 1996-11-12 | 1998-11-10 | General Electric Company | Curable polyphenylene ether-thermosetting resin composition and process |
US5922815A (en) * | 1997-12-15 | 1999-07-13 | General Electric Company | Process for producing blends of tackifying resins with low molecular weight polyphenylene ethers |
US5973144A (en) * | 1997-10-03 | 1999-10-26 | Ishida; Hatsuo | High char yield benzoxazines |
US6194495B1 (en) * | 1998-03-23 | 2001-02-27 | General Electric Company | Cyanate ester based thermoset compositions |
US6197898B1 (en) * | 1997-11-18 | 2001-03-06 | General Electric Company | Melt-mixing thermoplastic and epoxy resin above Tg or Tm of thermoplastic with curing agent |
US6518362B1 (en) * | 1998-02-18 | 2003-02-11 | 3M Innovative Properties Company | Melt blending polyphenylene ether, polystyrene and curable epoxy |
US6576718B1 (en) * | 1999-10-05 | 2003-06-10 | General Electric Company | Powder coating of thermosetting resin(s) and poly(phenylene ethers(s)) |
US6906120B1 (en) * | 2000-06-20 | 2005-06-14 | General Electric | Poly(arylene ether) adhesive compositions |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1211863A (en) * | 1966-10-11 | 1970-11-11 | Rank Xerox Ltd | Improvements in or relating to electrostatographic carriers |
JPS5531833A (en) | 1978-08-26 | 1980-03-06 | Toto Kasei Kk | Preparation of powder coating |
DE3315803A1 (en) | 1983-04-30 | 1984-10-31 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING MOLDS CONTAINING POLYPHENYLENE ETHER |
JP2810166B2 (en) | 1989-12-04 | 1998-10-15 | 出光石油化学株式会社 | Method for removing solvent from polymer solution |
EP0436212A3 (en) | 1990-01-02 | 1992-07-29 | General Electric Company | Polyphenylene ether-polyepoxide compositions rapidly curable to flame retardant, solderable materials |
TW203081B (en) | 1991-10-09 | 1993-04-01 | Gen Electric | |
JP3102121B2 (en) | 1992-02-18 | 2000-10-23 | 住友化学工業株式会社 | Flame retardant resin composition |
IT1255247B (en) | 1992-07-23 | 1995-10-20 | Enichem Polimeri | PROCEDURE FOR REMOVING VOLATILE COMPONENTS FROM SOLUTIONS CONTAINING POLYPHENYLENETERS |
JPH09104094A (en) | 1995-10-12 | 1997-04-22 | Matsushita Electric Works Ltd | Manufacture of laminated sheet |
US6096821A (en) * | 1999-04-02 | 2000-08-01 | General Electric Company | Polyphenylene ether resin concentrates |
-
2001
- 2001-06-28 US US09/681,941 patent/US7022777B2/en not_active Expired - Fee Related
-
2002
- 2002-05-01 KR KR1020037016451A patent/KR100678434B1/en not_active IP Right Cessation
- 2002-05-01 AU AU2002305349A patent/AU2002305349A1/en not_active Abandoned
- 2002-05-01 WO PCT/US2002/013996 patent/WO2003002667A2/en active Application Filing
- 2002-05-01 SG SG200601218-1A patent/SG152053A1/en unknown
- 2002-05-01 CN CNB02812880XA patent/CN100432150C/en not_active Expired - Fee Related
- 2002-05-01 EP EP02734163A patent/EP1409588A2/en not_active Withdrawn
- 2002-05-01 JP JP2003509034A patent/JP2004531634A/en active Pending
-
2003
- 2003-11-20 IN IN1973DE2003 patent/IN2003DE01973A/en unknown
-
2006
- 2006-02-10 US US11/351,941 patent/US20060135706A1/en not_active Abandoned
-
2007
- 2007-08-23 US US11/844,095 patent/US7393895B2/en not_active Expired - Fee Related
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3306875A (en) * | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols and resulting products |
US3375298A (en) * | 1965-05-21 | 1968-03-26 | Gen Electric | Crosslinked polyphenylene oxide |
US4054553A (en) * | 1975-06-02 | 1977-10-18 | General Electric Company | Polyphenylene oxide process |
US4092294A (en) * | 1976-08-30 | 1978-05-30 | General Electric Company | Method for preparing polyphenylene ethers |
US4496695A (en) * | 1981-02-28 | 1985-01-29 | Mitsubishi Gas Chemical Company, Inc. | Curable resin composition |
US4436870A (en) * | 1981-08-07 | 1984-03-13 | Basf Aktiengesellschaft | Production of molding materials containing polyphenylene ethers |
US4517341A (en) * | 1982-07-27 | 1985-05-14 | General Electric Company | Process for preparing polyphenylene oxide-rubber graft copolymers and products obtained thereby |
US4477649A (en) * | 1983-03-25 | 1984-10-16 | General Electric Company | Two-stage continuous process for preparation of polyphenylene oxides |
US4477651A (en) * | 1983-06-06 | 1984-10-16 | General Electric Company | Process for preparing polyphenylene oxides |
US4572813A (en) * | 1983-09-06 | 1986-02-25 | Nikkiso Co., Ltd. | Process for preparing fine carbon fibers in a gaseous phase reaction |
US4876078A (en) * | 1984-04-20 | 1989-10-24 | Nikkiso Co., Ltd. | Process for preparing carbon fibers in gas phase growth |
US4816289A (en) * | 1984-04-25 | 1989-03-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for production of a carbon filament |
US4565684A (en) * | 1984-08-20 | 1986-01-21 | General Motors Corporation | Regulation of pyrolysis methane concentration in the manufacture of graphite fibers |
US4594371A (en) * | 1984-08-31 | 1986-06-10 | Rensselaer Polytechnic Institute | Fine particle dispersions of incompatible polymers in polymer matrices |
US4663230A (en) * | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US5165909A (en) * | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US5589152A (en) * | 1984-12-06 | 1996-12-31 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and adhesive compositions containing same |
US4623558A (en) * | 1985-05-29 | 1986-11-18 | W. R. Grace & Co. | Reactive plastisol dispersion |
US4888397A (en) * | 1985-07-24 | 1989-12-19 | General Electric Company | Functionalized polyphenylene ether from polyphenylene ether chain terminated with phenoxy moiety containing amino and hydroxy group |
US4668768A (en) * | 1985-11-25 | 1987-05-26 | General Electric Company | Anti-solvent precipitation process for isolating polymers from solution |
US4912172A (en) * | 1987-09-03 | 1990-03-27 | General Electric Company | Compositions comprising polyphenylene ethers, polyepoxides and aluminum or zinc diketone salt |
US4853423A (en) * | 1988-07-14 | 1989-08-01 | General Electric Company | Curable polyphenylene ether-polyepoxide compositions useful in printed circuit board production |
US5043367A (en) * | 1988-12-22 | 1991-08-27 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions useful in printed circuit board production |
US4954195A (en) * | 1989-02-13 | 1990-09-04 | Lockheed Corporation | Production of thermoset composites containing thermoplastic fillers |
US5162450A (en) * | 1989-02-17 | 1992-11-10 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5213886A (en) * | 1989-02-17 | 1993-05-25 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5017663A (en) * | 1989-04-18 | 1991-05-21 | Sumitomo Chemical Co., Ltd. | Resin composition |
US5089343A (en) * | 1989-08-03 | 1992-02-18 | General Electric Company | Curable dielectric polyphenylene ether-polyepoxide compositions |
US5024818A (en) * | 1990-10-09 | 1991-06-18 | General Motors Corporation | Apparatus for forming carbon fibers |
US5098781A (en) * | 1990-12-28 | 1992-03-24 | General Electric Company | Thermoplastic film, reinforced hollow glass microsphere reinforced laminates for thin low dielectric constant substrates |
US5352745A (en) * | 1991-01-11 | 1994-10-04 | Asahi Kasei Kogyo Kabushiki Kaisha | Curable polyphenylene ether and cyanurate resin composition and a cured resin composition obtainable therefrom |
US5212239A (en) * | 1991-02-22 | 1993-05-18 | Arco Chemical Technology, L.P. | Resin blends containing crystalline propylene polymers and styrenic copolymers |
US5294655A (en) * | 1992-05-15 | 1994-03-15 | General Electric Company | Polyphenylene ether electrical insulation compositions |
US5308565A (en) * | 1993-02-05 | 1994-05-03 | General Electric Company | Method of preparing modified polyphenylene oxide resin systems for electrical laminates having improved solderability and solvent resistance |
US5591382A (en) * | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
US5397822A (en) * | 1993-08-18 | 1995-03-14 | General Electric Company | Thermoplastic compositions containing polyphenylene ether resin and characterized by improved elongation and flexibility employing a blend of multiblock copolymers |
US5834565A (en) * | 1996-11-12 | 1998-11-10 | General Electric Company | Curable polyphenylene ether-thermosetting resin composition and process |
US5973144A (en) * | 1997-10-03 | 1999-10-26 | Ishida; Hatsuo | High char yield benzoxazines |
US6197898B1 (en) * | 1997-11-18 | 2001-03-06 | General Electric Company | Melt-mixing thermoplastic and epoxy resin above Tg or Tm of thermoplastic with curing agent |
US5922815A (en) * | 1997-12-15 | 1999-07-13 | General Electric Company | Process for producing blends of tackifying resins with low molecular weight polyphenylene ethers |
US6518362B1 (en) * | 1998-02-18 | 2003-02-11 | 3M Innovative Properties Company | Melt blending polyphenylene ether, polystyrene and curable epoxy |
US6194495B1 (en) * | 1998-03-23 | 2001-02-27 | General Electric Company | Cyanate ester based thermoset compositions |
US6576718B1 (en) * | 1999-10-05 | 2003-06-10 | General Electric Company | Powder coating of thermosetting resin(s) and poly(phenylene ethers(s)) |
US6906120B1 (en) * | 2000-06-20 | 2005-06-14 | General Electric | Poly(arylene ether) adhesive compositions |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110130524A1 (en) * | 2008-07-22 | 2011-06-02 | Basf Se | Mixtures of amines with guanidine derivatives |
US20110180970A1 (en) * | 2008-07-22 | 2011-07-28 | Basf Se | Process for preparing moldings using mixtures of amines with guanidine derivatives |
US20110190419A1 (en) * | 2008-07-22 | 2011-08-04 | Basf Se | Blends comprising epoxy resins and mixtures of amines with guanidine derivatives |
US8741426B2 (en) | 2008-07-22 | 2014-06-03 | Basf Se | Blends comprising epoxy resins and mixtures of amines with guanidine derivatives |
US8852489B2 (en) | 2008-07-22 | 2014-10-07 | Basf Se | Process for preparing moldings using mixtures of amines with guanidine derivatives |
US9012020B2 (en) | 2008-07-22 | 2015-04-21 | Basf Se | Blends comprising epoxy resins and mixtures of amines with guanidine derivatives |
US9328058B2 (en) | 2008-07-22 | 2016-05-03 | Basf Se | Mixtures of amines with guanidine derivatives |
US20170247566A1 (en) * | 2014-11-19 | 2017-08-31 | Sabic Global Technologies B.V. | Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite |
US10647877B2 (en) * | 2014-11-19 | 2020-05-12 | Sabic Global Technologies B.V. | Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite |
US11274218B2 (en) | 2017-12-11 | 2022-03-15 | Lg Chem, Ltd. | Thermosetting resin composition for coating metal thin film and metal laminate using the same |
Also Published As
Publication number | Publication date |
---|---|
AU2002305349A1 (en) | 2003-03-03 |
WO2003002667A3 (en) | 2003-11-27 |
US7022777B2 (en) | 2006-04-04 |
EP1409588A2 (en) | 2004-04-21 |
US7393895B2 (en) | 2008-07-01 |
SG152053A1 (en) | 2009-05-29 |
WO2003002667A2 (en) | 2003-01-09 |
US20070287801A1 (en) | 2007-12-13 |
US20030018131A1 (en) | 2003-01-23 |
CN100432150C (en) | 2008-11-12 |
KR100678434B1 (en) | 2007-02-05 |
IN2003DE01973A (en) | 2005-12-16 |
KR20040015268A (en) | 2004-02-18 |
JP2004531634A (en) | 2004-10-14 |
CN1639261A (en) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7393895B2 (en) | Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer | |
US7090920B2 (en) | Poly(arylene ether) adhesive compositions | |
US6051662A (en) | Curable polyphenylene ether-thermosetting resin composition and process | |
EP0962495B1 (en) | A curable polyphenylene ether-thermosetting resin composition | |
US7019062B2 (en) | High performance thermoplastic compositions with improved melt flow properties | |
US4912172A (en) | Compositions comprising polyphenylene ethers, polyepoxides and aluminum or zinc diketone salt | |
US6166137A (en) | Poly(arylene ether)/polyetherimide blends and methods of making the same | |
US5262491A (en) | High performance curable PPO/monomeric epoxy compositions with tin metal salt compatibilizing agent | |
EP0360544A2 (en) | Thermoplastic resinous composition | |
JPH03115426A (en) | Curable dielectric polyphenylene ether/ polyepoxide composition | |
US5840793A (en) | Modified high heat amorphous crystalline blends | |
KR100622774B1 (en) | Carboxy-functionalized polyphenylene ethers and blends containing them | |
US4814393A (en) | Composition of graft modified polyphenylene ether and polycarbonate | |
EP0593054A2 (en) | Thermoplastic resin composition and process for preparing the same | |
KR19990079684A (en) | Curable Polyphenylene Ether-thermosetting Resin Composition and Method for Producing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551 Effective date: 20070831 Owner name: SABIC INNOVATIVE PLASTICS IP B.V.,NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551 Effective date: 20070831 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001 Effective date: 20080307 Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001 Effective date: 20080307 |