US20060104881A1 - Process for the produciton of metal oxide and metalloid oxide dispersions - Google Patents
Process for the produciton of metal oxide and metalloid oxide dispersions Download PDFInfo
- Publication number
- US20060104881A1 US20060104881A1 US10/546,893 US54689305A US2006104881A1 US 20060104881 A1 US20060104881 A1 US 20060104881A1 US 54689305 A US54689305 A US 54689305A US 2006104881 A1 US2006104881 A1 US 2006104881A1
- Authority
- US
- United States
- Prior art keywords
- dispersion
- predispersion
- metal oxide
- added
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/145—After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/141—Preparation of hydrosols or aqueous dispersions
- C01B33/1415—Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water
- C01B33/1417—Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water an aqueous dispersion being obtained
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
- C01F7/026—Making or stabilising dispersions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/006—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Definitions
- the invention provides a process for the production of low-viscosity, highly filled dispersions of pyrogenic metal oxides and metalloid oxides.
- silica and aluminium dioxide dispersions are used in polishing processes (chemical-mechanical polishing) or in the paper industry for the production of a paper coating.
- highly filled silica dispersions or dispersions of silicon-titanium mixed oxide are used for the production of shaped glass articles.
- U.S. Pat. No. 5,116,535, U.S. Pat. No. 5,246,624 and U.S. Pat. No. 6,248,144 all describe processes for the production of low-viscosity dispersions of pyrogenic silicon dioxide powder (fumed silica).
- Fumed silica powders are produced like other pyrogenic oxide powders, e.g. alumina or titanium dioxide, preferably by flame hydrolysis.
- a homogeneous mixture of a vaporous starting material of the subsequent oxide e.g. silicon tetrachloride or aluminium chloride, is burnt with hydrogen, oxygen and an inert gas using a burner in a cooled combustion chamber.
- water is produced by the reaction of hydrogen and oxygen, and in a second step, this water hydrolyses the starting material with the formation of the pyrogenic oxide.
- primary particles are initially formed, which can coalesce into aggregates as the reaction progresses.
- Aggregates here are primary particles that have fused together.
- the aggregates can cluster together further to form agglomerates.
- the agglomerates are first separated. With higher dispersing energies, larger aggregates are also converted to small aggregates.
- the content of silica powder in these processes is reduced to values of less than 40 wt. %, the effectiveness of the dispersing is reduced to such an extent that only incomplete destructuring of the silica powder takes place and larger aggregates remain in dispersion. This can lead to sedimentation or gelation of the dispersion.
- the dispersion is then adjusted to the desired solids content by dilution.
- a disadvantage of these processes is the time- and energy-intensive incorporation of the pyrogenically produced silica powder to achieve the required viscosity.
- an aqueous predispersion is divided into two partial streams, which are brought together again under high pressure.
- the particles grind one another during this process.
- the predispersion is also placed under high pressure, but the collision of the particles takes place against armoured wall regions.
- Dispersion can take place over the entire pH range, the alkaline range being preferred. If a dispersion with a high solids content in the acidic range is desired, it is advantageous to reduce the viscosity by means of suitable additives.
- the object of the invention is to provide a process for the production of finely dispersed dispersions containing pyrogenically produced metal oxides as the solid phase, which avoids the disadvantages of the prior art.
- the object is achieved by a process for the production of an aqueous dispersion of pyrogenically produced metal oxide or metalloid oxide powders with a BET surface area of between 5 and 600 m 2 /g, with a metal oxide or metalloid oxide content in the dispersion of between 5 and 25 wt. %, which comprises the following steps:
- the shear rate can be between 20000 and 30000 s ⁇ 1 .
- the process according to the invention can preferably be carried out with silica powder, alumina powder, doped silica powder, described e.g. in DE-A-19847161 or DE-A-10065028, or with silicon-aluminium mixed oxide powder, described e.g. in DE-A-4226711, DE-A-10135452, DE-A19919635 or US-A-2003/22081.
- bases and/or acids may be added to the dispersion and/or predispersion.
- bases for example ammonia, ammonium hydroxide, tetramethylammonium hydroxide, primary, secondary or tertiary organic amines, sodium hydroxide solution or potassium hydroxide solution may be used.
- acids for example phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid or carboxylic acids may be used.
- cationic polymers and/or aluminium salts may be added to the dispersion and/or predispersion.
- Suitable cationic polymers may be those with at least one quaternary ammonium group, a phosphonium group, an acid adduct of a primary, secondary or tertiary amine group, polyethylene imines, polydiallylamines or polyallylamines, polyvinylamines, dicyandiamide condensates, dicyandiamide-polyamine co-condensates or polyamide-formaldehyde condensates.
- aluminium compounds in the production of silica dispersions is already described in the German patent application with application number DE10238463.0.
- a surface-active substances which is of a non-ionic, cationic, anionic or amphoteric nature.
- preservatives can also be added to the process according to the invention.
- These can, for example, be compounds that are available under the trade names Preventol® from Bayer or Acticide® from Thor.
- the viscosity of the dispersions produced was determined using a rotary rheometer from Physica, model 300, and the CC 27 measuring cup at 25° C. The viscosity value was determined at a shear rate of 10 s ⁇ 1 and 100 s ⁇ 1 .
- the particle size present in the dispersion is determined by dynamic light scattering.
- the instrument used is the Zetasizer 3000 HSa (Malvern Instruments, UK).
- the median value of the volume distribution d 50(V) is given.
- the shear rate in the process according to the invention is expressed as the peripheral speed divided by the distance between the surfaces.
- the peripheral speeds can be calculated from the speed of the rotor and the rotor diameter.
- the distance between rotor and stator is approx. 1 mm in the dispersing devices used.
- Dispersing devices used the rotor/stator machines Conti-TDS 3 and Conti-TDS 4 from Ystral are used for dispersing.
- the pH of the predispersion can be between 2 and 4.5, as a result of the acidic nature of the pyrogenically produced silica and depending on the quality of the raw materials. If desired, the pH can be adjusted to be constant throughout the different silica batches by adding acid, e.g. aqueous hydrochloric acid, or base, e.g. aqueous ammonia solution, in order to achieve a constant grinding output.
- acid e.g. aqueous hydrochloric acid
- base e.g. aqueous ammonia solution
- a pH value of the predispersion close to the isoelectric point is advantageous, since the particles to be ground can be more readily ground in this case without having to overcome reciprocal electrostatic repelling forces.
- alkaline pH values When alkaline pH values are being adjusted, it can be useful to pass through the area around pH 7 by rapid addition of the alkaline component.
- a heating of the dispersion by the high energy input is countered by a heat exchanger, which limits the temperature increase to no more than 40° C.
- the suction nozzle is closed and shearing continues at 3000 rpm for a further 10 min.
- deionised water is used to dilute to a concentration slightly higher than the desired end concentration to be able to take into account the quantities of additives still to be added.
- the pH is adjusted to 5.3 with ammonia solution. On reaching the desired pH, the remainder of the water needed is metered in to achieve the exact silica end concentration of the dispersion of 12 wt. %. Using the Conti TDS 3, homogenisation is performed for a few more minutes.
- the pH is adjusted to 5.0 with ammonia solution. More deionised water is used to adjust the concentration of the dispersion to 12 wt. % silica and, using the Conti TDS 4, homogenisation is performed for a few more minutes.
- the thorough mixing/homogenisation is additionally supported by a jetstream mixer from Ystral installed in the mixing tank.
- the pH is adjusted to 9.5 by rapidly adding ammonia solution.
- the thorough mixing/homogenisation is additionally supported by a jetstream mixer from Ystral installed in the mixing tank.
- a jetstream mixer from Ystral installed in the mixing tank.
- more deionised water is used to adjust the concentration of the dispersion to 15 wt. % silica and, using the Conti TDS 4, homogenisation is performed for a few more minutes.
- the suction nozzle is closed and the 35 wt. %-predispersion is sheared at 3000 rpm for a further 10 min (Example 14: 30 min).
- deionised water is used to dilute to a concentration slightly higher than the desired end concentration to be able to take into account the quantities of additives still to be added.
- the pH is adjusted to the desired level using sodium hydroxide or ammonia solution. On reaching the desired pH, the remainder of the water needed is metered in to achieve the exact silica end concentration.
- an aqueous aluminium chloride solution is added (10 wt. %, based on Al 2 O 3 ), so that, based on the quantity of AEROSIL® 200 used, a concentration of 0.01 mg Al 2 O 3 per m 2 silica surface area is obtained.
- the pH of the dispersion is kept at a pH of between 3.8 and 4.5 by simultaneously adding 25 wt. % sodium hydroxide solution.
- the pH is adjusted to 5.0 with the sodium hydroxide solution, the remainder of the deionised water needed is added to adjust the concentration of the dispersion to 20 wt. % and dispersing is continued for a further 5 minutes.
- 35.75 kg of deionised water are initially charged into a 60 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring) under shear conditions, 19.25 kg of AEROSIL® 200 are sucked in. Once the intake is complete, the suction nozzle is closed and the 35 wt. % predispersion is sheared at 3000 rpm for a further 10 min.
- an aqueous aluminium chloride solution is added (10 wt. %, based on Al 2 O 3 ), so that, based on the quantity of AEROSIL® 200 used, a concentration of 0.01 mg Al 2 O 3 per m 2 silica surface area is obtained.
- the pH of the dispersion is kept at a pH of between 3.8 and 4.5 by simultaneously adding 25% sodium hydroxide solution. After adding the required aluminium chloride solution, the pH is adjusted to 5.0 with the sodium hydroxide solution, the remainder of the deionised water needed is added to adjust the concentration of the dispersion to 20 wt. % and dispersing is continued for a further 5 minutes.
- Examples 1, 2, 3 and 6 show the importance of a high filling level during grinding.
- a high filling level during grinding with a rotor/stator set leads to a reduction in the viscosity of the dispersion.
- Examples 3, 4 and 6 show the importance of the shear rate for successful grinding. At a higher shear rate, even with a low concentration of the predispersion, an equivalent product, or even a product with a slightly lower viscosity, can be achieved.
- Examples 10, 11 and 12 show that, with a higher concentration of the silica, a higher viscosity is obtained.
- Examples 13, 14 and 15 show that, in addition to the shear rate and the filling level during grinding, the period of grinding and the pH of the predispersion also have an influence. A longer grinding period brings about a lower viscosity of the dispersion. A reduction from pH 4.4 to 3.5 brings about a marked reduction in viscosity for the same grinding period.
- Examples 16 and 17 show that the addition of aluminium salts clearly reduces the viscosity of dispersions containing silica.
- the viscosity of the dispersion can be reduced surprisingly markedly. This can be seen particularly clearly from Example 17.
- TAB. 1 Dispersing parameters and physico-chemical data of the silica dispersions Predispersion Predispersion Shear rate (approx.) Dispersion d 50(v) Visc. 10 s ⁇ 1 Visc. 100 s ⁇ 1 Ex. AEROSIL wt. % pH s ⁇ 1 wt.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Silicon Compounds (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Colloid Chemistry (AREA)
Abstract
Description
- The invention provides a process for the production of low-viscosity, highly filled dispersions of pyrogenic metal oxides and metalloid oxides.
- Low-viscosity, highly filled dispersions of pyrogenic metal oxides or metalloid oxides are widely used. For example, silica and aluminium dioxide dispersions are used in polishing processes (chemical-mechanical polishing) or in the paper industry for the production of a paper coating. In the glass industry, highly filled silica dispersions or dispersions of silicon-titanium mixed oxide are used for the production of shaped glass articles.
- U.S. Pat. No. 5,116,535, U.S. Pat. No. 5,246,624 and U.S. Pat. No. 6,248,144 all describe processes for the production of low-viscosity dispersions of pyrogenic silicon dioxide powder (fumed silica).
- Fumed silica powders are produced like other pyrogenic oxide powders, e.g. alumina or titanium dioxide, preferably by flame hydrolysis. In this process, a homogeneous mixture of a vaporous starting material of the subsequent oxide, e.g. silicon tetrachloride or aluminium chloride, is burnt with hydrogen, oxygen and an inert gas using a burner in a cooled combustion chamber. In a first step of this process, water is produced by the reaction of hydrogen and oxygen, and in a second step, this water hydrolyses the starting material with the formation of the pyrogenic oxide.
- In this process, primary particles are initially formed, which can coalesce into aggregates as the reaction progresses. Aggregates here are primary particles that have fused together. The aggregates can cluster together further to form agglomerates. During the dispersing of pyrogenic oxide particles, even under the action of low dispersing energy, the agglomerates are first separated. With higher dispersing energies, larger aggregates are also converted to small aggregates.
- The principle on which the documents U.S. Pat. No. 5,116,535, U.S. Pat. No. 5,246,624 and U.S. Pat. No. 6,248,144 are based is the same, i.e. to achieve as complete as possible a destructuring of the fumed silica powder by the action of high shear energies. However, in order to be able to introduce the high shear energies into the system, this must have a high viscosity. The high viscosity is achieved in the production processes of the above documents by a high level of filling of silica powder, which has to be at least 40 wt. %, and preferably 50 to 60 wt. %. If the content of silica powder in these processes is reduced to values of less than 40 wt. %, the effectiveness of the dispersing is reduced to such an extent that only incomplete destructuring of the silica powder takes place and larger aggregates remain in dispersion. This can lead to sedimentation or gelation of the dispersion. The dispersion is then adjusted to the desired solids content by dilution.
- A disadvantage of these processes is the time- and energy-intensive incorporation of the pyrogenically produced silica powder to achieve the required viscosity.
- In addition, there is a process for the dispersion of pyrogenically produced metal oxides in an aqueous medium, in which two predispersed suspension streams under high pressure are depressurised via two nozzles. These nozzles have to be adjusted in such a way that the dispersion jets hit one another exactly and the particles grind one another as a result.
- This process for the production of dispersions containing pyrogenically produced silica is described e.g. in EP-A-773270.
- In this process, an aqueous predispersion is divided into two partial streams, which are brought together again under high pressure. The particles grind one another during this process. In another embodiment, the predispersion is also placed under high pressure, but the collision of the particles takes place against armoured wall regions. Dispersion can take place over the entire pH range, the alkaline range being preferred. If a dispersion with a high solids content in the acidic range is desired, it is advantageous to reduce the viscosity by means of suitable additives.
- The precise adjustment of the two predispersed suspension streams is problematic in this process. Only with precise adjustment can uniform grinding of the silica powder take place. A further complicating factor is that, under the extreme stress on the nozzles at pressures of up to 3500 kg/cm2, these display marked wear, which has a negative effect on the above-mentioned adjustment and can lead to impurities entering the dispersion.
- In the embodiment in which the collision of the particles takes place against armoured wall regions, it has been shown that the wall regions are subject to marked wear and this embodiment is not suitable for the dispersing of fumed silica.
- It is true of both high-pressure processes that the dimensions of the equipment available do not allow larger quantities of dispersion to be produced inexpensively.
- The object of the invention is to provide a process for the production of finely dispersed dispersions containing pyrogenically produced metal oxides as the solid phase, which avoids the disadvantages of the prior art. In particular, it should be possible to incorporate pyrogenically produced metal oxides or metalloid oxides into an aqueous phase as rapidly as possible, the introduction of impurities should be minimal and it should be possible to implement the process economically.
- The object is achieved by a process for the production of an aqueous dispersion of pyrogenically produced metal oxide or metalloid oxide powders with a BET surface area of between 5 and 600 m2/g, with a metal oxide or metalloid oxide content in the dispersion of between 5 and 25 wt. %, which comprises the following steps:
-
- water, which is optionally adjusted to pH values of between 2 and 4 by adding acids, is circulated from a receiving vessel via a rotor/stator machine, and
- metal oxide powder or metalloid oxide powder is introduced, using a feed-device, into the shear zone between the slots in the rotor teeth and the stator slots, continuously or discontinuously and with the rotor/stator machine running, in a quantity such that a predispersion with a solids content of between 20 and 40 wt. % results, and, after all the metal oxide powder or metalloid oxide powder has been added,
- the feed device closes and shearing continues in such a way that the shear rate is in the range of between 10000 and 40000 s−1, and
- then, by dilution, the predispersion is adjusted to the desired solids content of the dispersion while maintaining the dispersing conditions.
- In a preferred embodiment, the shear rate can be between 20000 and 30000 s−1.
- The process according to the invention can preferably be carried out with silica powder, alumina powder, doped silica powder, described e.g. in DE-A-19847161 or DE-A-10065028, or with silicon-aluminium mixed oxide powder, described e.g. in DE-A-4226711, DE-A-10135452, DE-A19919635 or US-A-2003/22081.
- Furthermore, in the process according to the invention, bases and/or acids may be added to the dispersion and/or predispersion. As bases, for example ammonia, ammonium hydroxide, tetramethylammonium hydroxide, primary, secondary or tertiary organic amines, sodium hydroxide solution or potassium hydroxide solution may be used. As acids, for example phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid or carboxylic acids may be used.
- Furthermore, in the process according to the invention, cationic polymers and/or aluminium salts may be added to the dispersion and/or predispersion. Suitable cationic polymers may be those with at least one quaternary ammonium group, a phosphonium group, an acid adduct of a primary, secondary or tertiary amine group, polyethylene imines, polydiallylamines or polyallylamines, polyvinylamines, dicyandiamide condensates, dicyandiamide-polyamine co-condensates or polyamide-formaldehyde condensates. Suitable aluminium salts may be aluminium chloride, aluminium hydroxychlorides of the general formula Al(OH)xCl with x=2-8, aluminium chlorate, aluminium sulfate, aluminium nitrate, aluminium hydroxynitrates of the general formula Al(OH)xNO3 with x=2-8, aluminium acetate, alums such as aluminium potassium sulfate or aluminium ammonium sulfate, aluminium formates, aluminium lactate, aluminium oxide, aluminium hydroxide acetate, aluminium isopropylate, aluminium hydroxide, aluminium silicates and mixtures of the above compounds. The use of these aluminium compounds in the production of silica dispersions is already described in the German patent application with application number DE10238463.0.
- It can also be advantageous to add to the dispersion and/or predispersion a surface-active substances, which is of a non-ionic, cationic, anionic or amphoteric nature.
- Finally, one or more preservatives can also be added to the process according to the invention. These can, for example, be compounds that are available under the trade names Preventol® from Bayer or Acticide® from Thor.
- Analytical Determinations
- Determination of the viscosity of the dispersions: the viscosity of the dispersions produced was determined using a rotary rheometer from Physica, model 300, and the CC 27 measuring cup at 25° C. The viscosity value was determined at a shear rate of 10 s−1 and 100 s−1.
- Determination of the particle size present in the dispersion: the particle size present in the dispersion is determined by dynamic light scattering. The instrument used is the Zetasizer 3000 HSa (Malvern Instruments, UK). The median value of the volume distribution d50(V) is given.
- Determination of the shear rate: the shear rate in the process according to the invention is expressed as the peripheral speed divided by the distance between the surfaces.
- The peripheral speeds can be calculated from the speed of the rotor and the rotor diameter. The distance between rotor and stator is approx. 1 mm in the dispersing devices used.
- Dispersing devices used: the rotor/stator machines Conti-TDS 3 and Conti-TDS 4 from Ystral are used for dispersing.
- Silica powders used: AEROSIL® 90 (approx. 90 m2/g), AEROSIL® 130 (approx. 130 m2/g), AEROSIL® 200 (approx. 200 m2/g) and AEROSIL® 300 (approx. 300 m2/g), all DEGUSSA AG, are used.
- Examples: the pH of the predispersion can be between 2 and 4.5, as a result of the acidic nature of the pyrogenically produced silica and depending on the quality of the raw materials. If desired, the pH can be adjusted to be constant throughout the different silica batches by adding acid, e.g. aqueous hydrochloric acid, or base, e.g. aqueous ammonia solution, in order to achieve a constant grinding output.
- During the grinding, a pH value of the predispersion close to the isoelectric point is advantageous, since the particles to be ground can be more readily ground in this case without having to overcome reciprocal electrostatic repelling forces. When alkaline pH values are being adjusted, it can be useful to pass through the area around pH 7 by rapid addition of the alkaline component.
- In all the examples, a heating of the dispersion by the high energy input is countered by a heat exchanger, which limits the temperature increase to no more than 40° C.
- 32.5 kg of deionised water are initially charged into a 60 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 3 (stator slot: 4 mm 25′ ring and 1 mm ring, rotor/stator spacing approx. 1 mm) under shear conditions, the quantity of AEROSIL® 200 required for a predispersion of 13.0 wt. % (Example 1, comparative example), 24.0 wt. % (Example 2) and 28.5 wt. % (Example 3), corresponding to Table 1, is added.
- Once the intake is complete, the suction nozzle is closed and shearing continues at 3000 rpm for a further 10 min. When the grinding is complete, deionised water is used to dilute to a concentration slightly higher than the desired end concentration to be able to take into account the quantities of additives still to be added.
- The pH is adjusted to 5.3 with ammonia solution. On reaching the desired pH, the remainder of the water needed is metered in to achieve the exact silica end concentration of the dispersion of 12 wt. %. Using the Conti TDS 3, homogenisation is performed for a few more minutes.
- 475 kg of deionised water are initially charged into a 1600 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 4 (stator slot: 6 mm ring and 1 mm ring, rotor/stator spacing approx. 1 mm) under shear conditions, 190 kg of AEROSIL® 200 are taken in. Once the intake is complete, the suction nozzle is closed and the 28.5 wt. % predispersion is sheared at 3000 rpm for a further 10 min. The pH of the predispersion is approx. pH 3.7. When the grinding is complete, deionised water is used to dilute to a concentration slightly higher than the desired end concentration of the dispersion of 12 wt. % to be able to take into account the quantities of additives still to be added.
- The pH is adjusted to 5.0 with ammonia solution. More deionised water is used to adjust the concentration of the dispersion to 12 wt. % silica and, using the Conti TDS 4, homogenisation is performed for a few more minutes. The thorough mixing/homogenisation is additionally supported by a jetstream mixer from Ystral installed in the mixing tank.
- 475 kg of deionised water are initially charged into a 1600 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 4 (stator slot: 6 mm ring and 1 mm ring, rotor/stator spacing approx. 1 mm) under shear conditions, 190 kg of AEROSIL® 300 (or a smaller quantity according to the Table) are taken in. Once the intake is complete, the suction nozzle is closed and the 28.5 wt. % predispersion is sheared at 3000 rpm for a further 10 min. The pH of the predispersion is approx. 3.6. When the grinding is complete, deionised water is used to dilute to a concentration slightly higher than the desired end concentration of 15% to be able to take into account the quantities of additives still to be added.
- The pH is adjusted to 9.5 by rapidly adding ammonia solution. The thorough mixing/homogenisation is additionally supported by a jetstream mixer from Ystral installed in the mixing tank. On reaching the desired pH of 9.5, more deionised water is used to adjust the concentration of the dispersion to 15 wt. % silica and, using the Conti TDS 4, homogenisation is performed for a few more minutes.
- 32.5 kg of deionised water are initially charged into a 60 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator spacing approx. 1 mm) under shear conditions, 17.5 kg of pyrogenically produced silica according to Table 1 are taken in.
- Once the intake is complete, the suction nozzle is closed and the 35 wt. %-predispersion is sheared at 3000 rpm for a further 10 min (Example 14: 30 min). When the grinding is complete, deionised water is used to dilute to a concentration slightly higher than the desired end concentration to be able to take into account the quantities of additives still to be added.
- The pH is adjusted to the desired level using sodium hydroxide or ammonia solution. On reaching the desired pH, the remainder of the water needed is metered in to achieve the exact silica end concentration.
- 43.5 kg of deionised water are initially charged into a 60 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring) under shear conditions, 11.6 kg of, AEROSIL® 200 are sucked in. Once the intake is complete, the suction nozzle is closed and the 21 wt. % predispersion is sheared at 3000 rpm for a further 10 min.
- After the grinding, an aqueous aluminium chloride solution is added (10 wt. %, based on Al2O3), so that, based on the quantity of AEROSIL® 200 used, a concentration of 0.01 mg Al2O3 per m2 silica surface area is obtained. The pH of the dispersion is kept at a pH of between 3.8 and 4.5 by simultaneously adding 25 wt. % sodium hydroxide solution. After adding the required aluminium chloride solution, the pH is adjusted to 5.0 with the sodium hydroxide solution, the remainder of the deionised water needed is added to adjust the concentration of the dispersion to 20 wt. % and dispersing is continued for a further 5 minutes.
- 35.75 kg of deionised water are initially charged into a 60 l stainless steel mixing tank. Then, with the aid of the suction tube of the Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring) under shear conditions, 19.25 kg of AEROSIL® 200 are sucked in. Once the intake is complete, the suction nozzle is closed and the 35 wt. % predispersion is sheared at 3000 rpm for a further 10 min.
- After the grinding, an aqueous aluminium chloride solution is added (10 wt. %, based on Al2O3), so that, based on the quantity of AEROSIL® 200 used, a concentration of 0.01 mg Al2O3 per m2 silica surface area is obtained. The pH of the dispersion is kept at a pH of between 3.8 and 4.5 by simultaneously adding 25% sodium hydroxide solution. After adding the required aluminium chloride solution, the pH is adjusted to 5.0 with the sodium hydroxide solution, the remainder of the deionised water needed is added to adjust the concentration of the dispersion to 20 wt. % and dispersing is continued for a further 5 minutes.
- Examples 1, 2, 3 and 6 show the importance of a high filling level during grinding. A high filling level during grinding with a rotor/stator set leads to a reduction in the viscosity of the dispersion.
- Examples 3, 4 and 6 show the importance of the shear rate for successful grinding. At a higher shear rate, even with a low concentration of the predispersion, an equivalent product, or even a product with a slightly lower viscosity, can be achieved.
- Examples 10, 11 and 12 show that, with a higher concentration of the silica, a higher viscosity is obtained.
- Examples 13, 14 and 15 show that, in addition to the shear rate and the filling level during grinding, the period of grinding and the pH of the predispersion also have an influence. A longer grinding period brings about a lower viscosity of the dispersion. A reduction from pH 4.4 to 3.5 brings about a marked reduction in viscosity for the same grinding period.
- Examples 16 and 17 show that the addition of aluminium salts clearly reduces the viscosity of dispersions containing silica. When the process according to the invention is applied with high shear rates, the viscosity of the dispersion can be reduced surprisingly markedly. This can be seen particularly clearly from Example 17.
TAB. 1 Dispersing parameters and physico-chemical data of the silica dispersions Predispersion Predispersion Shear rate (approx.) Dispersion d50(v) Visc. 10 s−1 Visc. 100 s−1 Ex. AEROSIL wt. % pH s−1 wt. % Additive pH nm mPas mPas 1 200 13.0 4.0 20000 12 NH4OH 5.3 130 1615 320 2 200 24.0 3.8 20000 12 NH4OH 5.3 130 50 32 3 200 28.5 3.7 20000 12 NH4OH 5.3 137 35 24 4 200 28.5 3.7 25000 12 NH4OH 5.0 128 9 8 5 300 28.5 3.6 25000 15 NH4OH 9.5 131 9 9 6 200 35.0 3.5 20000 12 NH4OH 5.3 104 12 11 7 200 35.0 3.5 20000 20 NaOH 10.0 81 40 35 8 200 35.0 3.5 20000 20 NH4OH 10.0 86 38 32 9 300 35.0 3.3 20000 22 NH4OH 10.3 91 70 53 10 90 35.0 4.0 20000 15 NH4OH 5.3 154 6 5 11 90 35.0 4.0 20000 20 NH4OH 5.3 155 26 15 12 90 35.0 4.0 20000 25 NH4OH 5.3 160 40 23 13 130 35.0 4.4 20000 15 NH4OH 5.3 165 39 20 14 130 35.0 4.4 20000 15 NH4OH 5.3 158 21 14 15 130 35.0 3.5* 20000 15 NH4OH 5.3 155 7 6 16 200 21.0 3.9 20000 20 NaOH, AlCl3 5.0 108 385 164 17 200 35.0 3.5 20000 20 NaOH, AlCl3 5.0 88 8 8
*Predispersion adjusted to 3.5 with dilute HCl
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/894,539 US8529651B2 (en) | 2003-04-14 | 2010-09-30 | Process for the production of metal oxide and metalloid oxide dispersions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10317066A DE10317066A1 (en) | 2003-04-14 | 2003-04-14 | Process for the preparation of metal oxide and metalloid oxide dispersions |
DE10317066.9 | 2003-04-14 | ||
PCT/EP2004/003445 WO2004089816A1 (en) | 2003-04-14 | 2004-04-01 | Process for the production of metal oxide and metalloid oxide dispersions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/894,539 Continuation US8529651B2 (en) | 2003-04-14 | 2010-09-30 | Process for the production of metal oxide and metalloid oxide dispersions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060104881A1 true US20060104881A1 (en) | 2006-05-18 |
Family
ID=33154199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/546,893 Abandoned US20060104881A1 (en) | 2003-04-14 | 2004-04-01 | Process for the produciton of metal oxide and metalloid oxide dispersions |
US12/894,539 Active 2024-11-19 US8529651B2 (en) | 2003-04-14 | 2010-09-30 | Process for the production of metal oxide and metalloid oxide dispersions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/894,539 Active 2024-11-19 US8529651B2 (en) | 2003-04-14 | 2010-09-30 | Process for the production of metal oxide and metalloid oxide dispersions |
Country Status (9)
Country | Link |
---|---|
US (2) | US20060104881A1 (en) |
EP (1) | EP1611054B1 (en) |
JP (1) | JP4768601B2 (en) |
CN (1) | CN1771192B (en) |
AT (1) | ATE485238T1 (en) |
DE (2) | DE10317066A1 (en) |
ES (1) | ES2353501T3 (en) |
PL (1) | PL1611054T3 (en) |
WO (1) | WO2004089816A1 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040106697A1 (en) * | 2002-08-22 | 2004-06-03 | Degussa Ag | Stabilized, aqueous silicon dioxide dispersion |
US20050224749A1 (en) * | 2002-06-06 | 2005-10-13 | Degussa Ag | Aqueous dispersion containing pyrogenically prepared metal oxide particles and dispersants |
US20060216441A1 (en) * | 2005-03-09 | 2006-09-28 | Degussa Ag | Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving |
US20070048205A1 (en) * | 2005-08-12 | 2007-03-01 | Degussa Ag | Cerium oxide powder and cerium oxide dispersion |
US20070173581A1 (en) * | 2004-03-04 | 2007-07-26 | Degussa Ag | High-transparency laser-markable and laser-weldable plastic materials |
US20070254164A1 (en) * | 2006-04-27 | 2007-11-01 | Guardian Industries Corp. | Photocatalytic window and method of making same |
US20080051113A1 (en) * | 2006-08-22 | 2008-02-28 | Research In Motion Limited | Apparatus, and associated method, for dynamically configuring a page message used to page an access terminal in a radio communication system |
US20080098932A1 (en) * | 2004-07-30 | 2008-05-01 | Degussa Gmbh | Dispersion containing titanium dioxide |
US20080187673A1 (en) * | 2005-02-03 | 2008-08-07 | Degussa Gmbh | Aqueous Emulsions of Functional Alkoxysilanes and Condensed Oligomers Thereof, Their Preparation and Use For Surface Treatment |
US20080206572A1 (en) * | 1995-08-26 | 2008-08-28 | Evonik Degussa Gmbh | Silane-Containing Binder for Composite Materials |
US20080221318A1 (en) * | 2005-08-26 | 2008-09-11 | Evonik Degussa Gmbh | Cellulose- or Lignocellulose-Containing Composite Materials Based on a Silane-Based Composite as a Binder |
US20080242782A1 (en) * | 2006-07-17 | 2008-10-02 | Degussa Gmbh | Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same |
US20080249237A1 (en) * | 2005-11-04 | 2008-10-09 | Evonik Degussa Gmbh | Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use |
US20080264299A1 (en) * | 2005-07-12 | 2008-10-30 | Evonik Degussa Gmbh | Aluminium Oxide Dispersion |
US20090007818A1 (en) * | 2006-03-20 | 2009-01-08 | Evonik Degussa Gmbh | Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials |
US20090131694A1 (en) * | 2006-04-15 | 2009-05-21 | Evonik Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom |
US20090136757A1 (en) * | 2007-11-15 | 2009-05-28 | Evonik Degussa Gmbh | Method of fractionating oxidic nanoparticles by crossflow membrane filtration |
US20090261309A1 (en) * | 2004-07-01 | 2009-10-22 | Degussa Ag | Silicon dioxide dispersion comprising polyol |
US7615577B2 (en) | 2005-12-15 | 2009-11-10 | Evonik Degussa Gmbh | Highly filled dispersion containing transition aluminium oxide |
US20100107930A1 (en) * | 2006-12-15 | 2010-05-06 | Evonik Degussa Gmbh | Dispersion of high surface area silica |
US20100159144A1 (en) * | 2006-01-26 | 2010-06-24 | Evonik Degussa Gmbh | Anticorrosive layer on metal surfaces |
US20100209339A1 (en) * | 2007-10-16 | 2010-08-19 | Evonik Degussa | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom |
US20100209719A1 (en) * | 2007-09-21 | 2010-08-19 | Evonik Degussa Gmbh | Residue-free, coat-forming, aqueous sealing system for metal surfaces, based on silane |
US20100233392A1 (en) * | 2006-08-22 | 2010-09-16 | Evonik Degussa Gmbh | Dispersion of aluminium oxide, coating composition and ink-absorbing medium |
US20110144226A1 (en) * | 2007-08-25 | 2011-06-16 | Evonik Degussa Gmbh | Radiation-curable formulations |
US8236918B2 (en) | 2004-10-08 | 2012-08-07 | Evonik Degussa Gmbh | Polyether-functional siloxanes, polyether siloxane-containing compositions, methods for the production thereof and use thereof |
US8298679B2 (en) | 2007-08-28 | 2012-10-30 | Evonik Degussa Gmbh | Aqueous silane systems based on bis(trialkoxysilylalkyl)amines |
US8394972B2 (en) | 2007-08-14 | 2013-03-12 | Evonik Degussa Gmbh | Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes |
US8431646B2 (en) | 2007-04-20 | 2013-04-30 | Evonik Degussa Gmbh | Mixture containing organosilicon compound and use thereof |
US8481654B2 (en) | 2004-07-29 | 2013-07-09 | Evonik Degussa Gmbh | Aqueous silane nanocomposites |
US8481165B2 (en) | 2004-07-29 | 2013-07-09 | Evonik Degussa Gmbh | Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties |
US20140049349A1 (en) * | 2012-08-14 | 2014-02-20 | Joshua S. Mcconkey | Use of alumina paper for strain relief and electrical insulation in high-temperature coil windings |
US8728225B2 (en) | 2009-04-20 | 2014-05-20 | Evonik Degussa Gmbh | Composition containing quaternary amino-functional organosilicon compounds and production and use thereof |
US8747541B2 (en) | 2009-04-20 | 2014-06-10 | Evonik Degussa Gmbh | Dispersion containing silica particles surface-modified with quaternary, aminofunctional organosilicon compounds |
US9662763B2 (en) | 2011-02-21 | 2017-05-30 | Fujimi Incorporated | Polishing composition |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1897860A1 (en) * | 2006-09-07 | 2008-03-12 | Degussa Novara Technology S.p.A. | Sol-gel process |
DE102006059315A1 (en) * | 2006-12-15 | 2008-06-19 | Evonik Degussa Gmbh | Process for the preparation of fumed silica dispersions |
CN101626854B (en) | 2007-01-29 | 2012-07-04 | 赢创德固赛有限责任公司 | Fumed metal oxides for investment casting |
DE102007059861A1 (en) * | 2007-12-12 | 2009-06-18 | Evonik Degussa Gmbh | Process for the preparation of silica dispersions |
JP6530881B2 (en) * | 2012-10-12 | 2019-06-12 | 株式会社フジミインコーポレーテッド | Method for producing polishing composition |
TWI794150B (en) | 2015-12-18 | 2023-03-01 | 德商何瑞斯廓格拉斯公司 | Preparation of quartz glass bodies from silicon dioxide granulate |
US11339076B2 (en) | 2015-12-18 | 2022-05-24 | Heraeus Quarzglas Gmbh & Co. Kg | Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass |
WO2017103123A2 (en) | 2015-12-18 | 2017-06-22 | Heraeus Quarzglas Gmbh & Co. Kg | Production of silica glass bodies with dew-point control in the melting furnace |
JP6881776B2 (en) | 2015-12-18 | 2021-06-02 | ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー | Preparation of opaque quartz glass body |
US11053152B2 (en) | 2015-12-18 | 2021-07-06 | Heraeus Quarzglas Gmbh & Co. Kg | Spray granulation of silicon dioxide in the preparation of quartz glass |
US10730780B2 (en) | 2015-12-18 | 2020-08-04 | Heraeus Quarzglas Gmbh & Co. Kg | Preparation of a quartz glass body in a multi-chamber oven |
WO2017103115A2 (en) | 2015-12-18 | 2017-06-22 | Heraeus Quarzglas Gmbh & Co. Kg | Production of a silica glass article in a suspended crucible made of refractory metal |
KR20180095619A (en) | 2015-12-18 | 2018-08-27 | 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 | Increase in silicon content during silica glass production |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280822A (en) * | 1978-09-28 | 1981-07-28 | J. M. Huber Corporation | Method for production of abrasive composition for use in toothpaste |
US6248144B1 (en) * | 1999-07-15 | 2001-06-19 | Fujimi Incorporated | Process for producing polishing composition |
US20010042493A1 (en) * | 2000-04-12 | 2001-11-22 | Thomas Scharfe | Dispersions containing pyrogenic oxides |
US20020121156A1 (en) * | 2001-02-22 | 2002-09-05 | Degussa Ag | Aqueous dispersion, process for its production and use |
US20020134027A1 (en) * | 2000-12-23 | 2002-09-26 | Degussa Ag | Aqueous dispersion, a process for the preparation and the use thereof |
US20030095905A1 (en) * | 2001-07-20 | 2003-05-22 | Thomas Scharfe | Pyrogenically produced aluminum-silicon mixed oxides |
US20040034144A1 (en) * | 2002-01-26 | 2004-02-19 | Degussa Ag | Cationic mixed-oxide dispersion, coating pigment and ink-absorbing medium |
US20040106697A1 (en) * | 2002-08-22 | 2004-06-03 | Degussa Ag | Stabilized, aqueous silicon dioxide dispersion |
US6808769B2 (en) * | 2002-03-22 | 2004-10-26 | Degussa Ag | Dispersion, coating composition, and recording medium |
US20050169861A1 (en) * | 2002-07-03 | 2005-08-04 | Degussa Ag | Aqueous dispersion containing pyrogenically produced metal oxide particles and phosphates |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1266660B1 (en) * | 1993-11-04 | 1997-01-09 | Eniricerche Spa | PROCEDURE FOR THE PREPARATION OF POROUS SILICA XEROGELS IN SPHERICAL FORM |
-
2003
- 2003-04-14 DE DE10317066A patent/DE10317066A1/en not_active Ceased
-
2004
- 2004-04-01 JP JP2006504942A patent/JP4768601B2/en not_active Expired - Lifetime
- 2004-04-01 WO PCT/EP2004/003445 patent/WO2004089816A1/en active Application Filing
- 2004-04-01 CN CN2004800093265A patent/CN1771192B/en not_active Expired - Lifetime
- 2004-04-01 PL PL04725037T patent/PL1611054T3/en unknown
- 2004-04-01 ES ES04725037T patent/ES2353501T3/en not_active Expired - Lifetime
- 2004-04-01 US US10/546,893 patent/US20060104881A1/en not_active Abandoned
- 2004-04-01 DE DE602004029659T patent/DE602004029659D1/en not_active Expired - Lifetime
- 2004-04-01 EP EP04725037A patent/EP1611054B1/en not_active Expired - Lifetime
- 2004-04-01 AT AT04725037T patent/ATE485238T1/en active
-
2010
- 2010-09-30 US US12/894,539 patent/US8529651B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280822A (en) * | 1978-09-28 | 1981-07-28 | J. M. Huber Corporation | Method for production of abrasive composition for use in toothpaste |
US6248144B1 (en) * | 1999-07-15 | 2001-06-19 | Fujimi Incorporated | Process for producing polishing composition |
US20010042493A1 (en) * | 2000-04-12 | 2001-11-22 | Thomas Scharfe | Dispersions containing pyrogenic oxides |
US20020134027A1 (en) * | 2000-12-23 | 2002-09-26 | Degussa Ag | Aqueous dispersion, a process for the preparation and the use thereof |
US20020121156A1 (en) * | 2001-02-22 | 2002-09-05 | Degussa Ag | Aqueous dispersion, process for its production and use |
US20030095905A1 (en) * | 2001-07-20 | 2003-05-22 | Thomas Scharfe | Pyrogenically produced aluminum-silicon mixed oxides |
US20040034144A1 (en) * | 2002-01-26 | 2004-02-19 | Degussa Ag | Cationic mixed-oxide dispersion, coating pigment and ink-absorbing medium |
US6808769B2 (en) * | 2002-03-22 | 2004-10-26 | Degussa Ag | Dispersion, coating composition, and recording medium |
US20050169861A1 (en) * | 2002-07-03 | 2005-08-04 | Degussa Ag | Aqueous dispersion containing pyrogenically produced metal oxide particles and phosphates |
US20040106697A1 (en) * | 2002-08-22 | 2004-06-03 | Degussa Ag | Stabilized, aqueous silicon dioxide dispersion |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080206572A1 (en) * | 1995-08-26 | 2008-08-28 | Evonik Degussa Gmbh | Silane-Containing Binder for Composite Materials |
US20050224749A1 (en) * | 2002-06-06 | 2005-10-13 | Degussa Ag | Aqueous dispersion containing pyrogenically prepared metal oxide particles and dispersants |
US7470423B2 (en) * | 2002-06-06 | 2008-12-30 | Degussa Ag | Aqueous dispersion containing pyrogenically prepared metal oxide particles and dispersants |
US7374787B2 (en) | 2002-08-22 | 2008-05-20 | Dequssa Ag | Stabilized, aqueous silicon dioxide dispersion |
US20040106697A1 (en) * | 2002-08-22 | 2004-06-03 | Degussa Ag | Stabilized, aqueous silicon dioxide dispersion |
US20070173581A1 (en) * | 2004-03-04 | 2007-07-26 | Degussa Ag | High-transparency laser-markable and laser-weldable plastic materials |
US20090261309A1 (en) * | 2004-07-01 | 2009-10-22 | Degussa Ag | Silicon dioxide dispersion comprising polyol |
US8911638B2 (en) | 2004-07-01 | 2014-12-16 | Degussa Ag | Silicon dioxide dispersion comprising polyol |
US8481654B2 (en) | 2004-07-29 | 2013-07-09 | Evonik Degussa Gmbh | Aqueous silane nanocomposites |
US8481165B2 (en) | 2004-07-29 | 2013-07-09 | Evonik Degussa Gmbh | Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties |
US20080098932A1 (en) * | 2004-07-30 | 2008-05-01 | Degussa Gmbh | Dispersion containing titanium dioxide |
US7780777B2 (en) | 2004-07-30 | 2010-08-24 | Evonik Degussa Gmbh | Dispersion containing titanium dioxide |
US8236918B2 (en) | 2004-10-08 | 2012-08-07 | Evonik Degussa Gmbh | Polyether-functional siloxanes, polyether siloxane-containing compositions, methods for the production thereof and use thereof |
US8795784B2 (en) | 2005-02-03 | 2014-08-05 | Evonik Degussa Gmbh | Aqueous emulsions of functional alkoxysilanes and condensed oligomers thereof, their preparation and use for surface treatment |
US20080187673A1 (en) * | 2005-02-03 | 2008-08-07 | Degussa Gmbh | Aqueous Emulsions of Functional Alkoxysilanes and Condensed Oligomers Thereof, Their Preparation and Use For Surface Treatment |
US20060216441A1 (en) * | 2005-03-09 | 2006-09-28 | Degussa Ag | Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving |
US7704586B2 (en) | 2005-03-09 | 2010-04-27 | Degussa Ag | Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving |
US20080264299A1 (en) * | 2005-07-12 | 2008-10-30 | Evonik Degussa Gmbh | Aluminium Oxide Dispersion |
US8562733B2 (en) | 2005-07-12 | 2013-10-22 | Evonik Degussa Gmbh | Aluminium oxide dispersion |
US20070048205A1 (en) * | 2005-08-12 | 2007-03-01 | Degussa Ag | Cerium oxide powder and cerium oxide dispersion |
US7553465B2 (en) | 2005-08-12 | 2009-06-30 | Degussa Ag | Cerium oxide powder and cerium oxide dispersion |
US9012538B2 (en) | 2005-08-26 | 2015-04-21 | Evonik Degussa Gmbh | Silane-containing binder for composite materials |
US20080221318A1 (en) * | 2005-08-26 | 2008-09-11 | Evonik Degussa Gmbh | Cellulose- or Lignocellulose-Containing Composite Materials Based on a Silane-Based Composite as a Binder |
US8188266B2 (en) | 2005-08-26 | 2012-05-29 | Evonik Degussa Gmbh | Cellulose- or lignocellulose-containing composite materials based on a silane-based composite as a binder |
US20080249237A1 (en) * | 2005-11-04 | 2008-10-09 | Evonik Degussa Gmbh | Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use |
US8232333B2 (en) | 2005-11-04 | 2012-07-31 | Evonik Degussa Gmbh | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
US7615577B2 (en) | 2005-12-15 | 2009-11-10 | Evonik Degussa Gmbh | Highly filled dispersion containing transition aluminium oxide |
US20100159144A1 (en) * | 2006-01-26 | 2010-06-24 | Evonik Degussa Gmbh | Anticorrosive layer on metal surfaces |
US20090007818A1 (en) * | 2006-03-20 | 2009-01-08 | Evonik Degussa Gmbh | Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials |
US20090131694A1 (en) * | 2006-04-15 | 2009-05-21 | Evonik Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom |
US20070254164A1 (en) * | 2006-04-27 | 2007-11-01 | Guardian Industries Corp. | Photocatalytic window and method of making same |
US7879938B2 (en) | 2006-07-17 | 2011-02-01 | Evonik Degussa Gmbh | Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same |
US20080242782A1 (en) * | 2006-07-17 | 2008-10-02 | Degussa Gmbh | Compositions comprising an organic polymer as the matrix and inorganic particles as the filler, process for the preparation thereof and applications of the same |
US20100233392A1 (en) * | 2006-08-22 | 2010-09-16 | Evonik Degussa Gmbh | Dispersion of aluminium oxide, coating composition and ink-absorbing medium |
US20080051113A1 (en) * | 2006-08-22 | 2008-02-28 | Research In Motion Limited | Apparatus, and associated method, for dynamically configuring a page message used to page an access terminal in a radio communication system |
US7918933B2 (en) | 2006-12-15 | 2011-04-05 | Evonik Degussa Gmbh | Dispersion of high surface area silica |
US20100107930A1 (en) * | 2006-12-15 | 2010-05-06 | Evonik Degussa Gmbh | Dispersion of high surface area silica |
US8431646B2 (en) | 2007-04-20 | 2013-04-30 | Evonik Degussa Gmbh | Mixture containing organosilicon compound and use thereof |
US8394972B2 (en) | 2007-08-14 | 2013-03-12 | Evonik Degussa Gmbh | Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes |
US20110144226A1 (en) * | 2007-08-25 | 2011-06-16 | Evonik Degussa Gmbh | Radiation-curable formulations |
US8809412B2 (en) | 2007-08-25 | 2014-08-19 | Evonik Degussa Gmbh | Radiation-curable formulations |
US8298679B2 (en) | 2007-08-28 | 2012-10-30 | Evonik Degussa Gmbh | Aqueous silane systems based on bis(trialkoxysilylalkyl)amines |
US20100209719A1 (en) * | 2007-09-21 | 2010-08-19 | Evonik Degussa Gmbh | Residue-free, coat-forming, aqueous sealing system for metal surfaces, based on silane |
US20100209339A1 (en) * | 2007-10-16 | 2010-08-19 | Evonik Degussa | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite prepared therefrom |
US20090136757A1 (en) * | 2007-11-15 | 2009-05-28 | Evonik Degussa Gmbh | Method of fractionating oxidic nanoparticles by crossflow membrane filtration |
US8764992B2 (en) | 2007-11-15 | 2014-07-01 | Evonik Degussa Gmbh | Method of fractionating oxidic nanoparticles by crossflow membrane filtration |
US20100187174A1 (en) * | 2007-11-15 | 2010-07-29 | Evonik Degussa Gmbh | Method of fractionating oxidic nanoparticles by crossflow membrane filtration |
US8728225B2 (en) | 2009-04-20 | 2014-05-20 | Evonik Degussa Gmbh | Composition containing quaternary amino-functional organosilicon compounds and production and use thereof |
US8747541B2 (en) | 2009-04-20 | 2014-06-10 | Evonik Degussa Gmbh | Dispersion containing silica particles surface-modified with quaternary, aminofunctional organosilicon compounds |
US8979996B2 (en) | 2009-04-20 | 2015-03-17 | Evonik Degussa Gmbh | Composition containing quaternary amino-functional organosilicon compunds and production and use thereof |
US9662763B2 (en) | 2011-02-21 | 2017-05-30 | Fujimi Incorporated | Polishing composition |
US20140049349A1 (en) * | 2012-08-14 | 2014-02-20 | Joshua S. Mcconkey | Use of alumina paper for strain relief and electrical insulation in high-temperature coil windings |
US9520224B2 (en) * | 2012-08-14 | 2016-12-13 | Siemens Energy, Inc. | Use of alumina paper for strain relief and electrical insulation in high-temperature coil windings |
Also Published As
Publication number | Publication date |
---|---|
DE10317066A1 (en) | 2004-11-11 |
EP1611054A1 (en) | 2006-01-04 |
ATE485238T1 (en) | 2010-11-15 |
US20110155951A1 (en) | 2011-06-30 |
ES2353501T3 (en) | 2011-03-02 |
EP1611054B1 (en) | 2010-10-20 |
DE602004029659D1 (en) | 2010-12-02 |
CN1771192A (en) | 2006-05-10 |
US8529651B2 (en) | 2013-09-10 |
WO2004089816A1 (en) | 2004-10-21 |
JP2006522731A (en) | 2006-10-05 |
JP4768601B2 (en) | 2011-09-07 |
PL1611054T3 (en) | 2011-04-29 |
CN1771192B (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8529651B2 (en) | Process for the production of metal oxide and metalloid oxide dispersions | |
US7374787B2 (en) | Stabilized, aqueous silicon dioxide dispersion | |
US6676719B2 (en) | Aqueous dispersion, a process for the preparation and the use thereof | |
EP1606218B1 (en) | Pyrogenic silicon dioxide powder and dispersion thereof | |
US7722849B2 (en) | Pyrogenic silicon dioxide and a dispersion thereof | |
JP3990559B2 (en) | Aqueous dispersion for polishing a semiconductor substrate or a layer applied thereon and method for producing the same | |
KR100772258B1 (en) | Stabilized, aqueous silicon dioxide dispersion | |
EP2217531B1 (en) | Process for preparing silicon dioxide dispersions | |
US7892510B2 (en) | Silicon dioxide dispersion | |
JP2009519196A (en) | Highly filled dispersion containing aluminum oxide | |
WO2008071466A1 (en) | Process for preparing fumed silica dispersions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DEGUSSA AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LORTZ, WOLFGANG;BATZ-SOHN, CHRISTOPH;PERLET, GABRIELE;AND OTHERS;REEL/FRAME:020482/0890;SIGNING DATES FROM 20050801 TO 20050912 |
|
AS | Assignment |
Owner name: EVONIK DEGUSSA GMBH,GERMANY Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296 Effective date: 20071031 Owner name: DEGUSSA GMBH,GERMANY Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937 Effective date: 20070102 Owner name: EVONIK DEGUSSA GMBH, GERMANY Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296 Effective date: 20071031 Owner name: DEGUSSA GMBH, GERMANY Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937 Effective date: 20070102 |
|
AS | Assignment |
Owner name: EVONIK DEGUSSA GMBH,GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127 Effective date: 20070912 Owner name: EVONIK DEGUSSA GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127 Effective date: 20070912 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |