US20060101710A1 - Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes - Google Patents

Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes Download PDF

Info

Publication number
US20060101710A1
US20060101710A1 US11/273,982 US27398205A US2006101710A1 US 20060101710 A1 US20060101710 A1 US 20060101710A1 US 27398205 A US27398205 A US 27398205A US 2006101710 A1 US2006101710 A1 US 2006101710A1
Authority
US
United States
Prior art keywords
fuel
additive
combustion
hydrocarbon
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/273,982
Inventor
Dwight Smith
Abdul Chughtai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envirofuels LLC
Original Assignee
Envirofuels LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envirofuels LLC filed Critical Envirofuels LLC
Priority to US11/273,982 priority Critical patent/US20060101710A1/en
Assigned to ENVIROFUELS L.P. reassignment ENVIROFUELS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUGHTAI, ABDUL R., SMITH, DWIGHT M.
Publication of US20060101710A1 publication Critical patent/US20060101710A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • C10L9/12Oxidation means, e.g. oxygen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0008Sols of inorganic materials in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0026Preparation of sols containing a liquid organic phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • C10L1/125Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1266Inorganic compounds nitrogen containing compounds, (e.g. NH3)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1283Inorganic compounds phosphorus, arsenicum, antimonium containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom

Definitions

  • the present invention relates to the field of fuel additives, in particular, to an additive for solid hydrocarbon fueled burners, furnaces and flames to enhance efficiency and/or reduce undesirable emissions, such as pollutants.
  • Solid hydrocarbon fuels such as coal
  • Coal particularly lignite and other low BTU coals, does not burn very efficiently and generates considerable smoke, NOx, SO 2 , particulate matter and other undesirable emissions including CO.
  • Chemical compounds have been used as combustion improvers to enhance combustion efficiency, of solid fuels.
  • many of these additives contain heavy metallic elements such as manganese, zinc, iron, copper, cerium, calcium and barium. On burning, some of these elements can produce heavy metal solid residues, which are highly undesirable.
  • a fuel additive that includes a combustion catalyst to reduce smoke and particulate emissions from coal fired burners, furnaces and other direct-fired applications would be advantageous.
  • a fuel additive that increases efficiency and/or decreases pollutants for coal and other solid fuels including low quality coal such as lignite, used in these applications would be particularly advantageous. It would also be advantageous to reduce smoke, particulate and nitrogen-containing emissions from fuel applications. In addition to reduction of NO x , reduction or elimination of other toxic pollutants, such as SO 2 are highly desirable.
  • An additive that does not result in the formation of heavy metal precipitates and residues during the combustion process would be desirable.
  • the present invention includes a fuel additive and a method of using the additive in relation to solid fuels, such as coal.
  • the fuel additive of the invention includes a phosphorus-containing parent solution containing [Y] x H 2 PO 4 , [Y] x +HPO 4 , where Y is a cation. Y does not have to be the same cation in both salt compounds.
  • the cationic portion of the salt components can be any cation, with potassium being a preferred cation. In this case, the preferred components would be KH 2 PO 4 , K 2 HPO 4 .
  • These salts are at least partially dispersed in water or other appropriate solvent to create the phosphorus-containing parent solution.
  • this embodiment of the fuel additive is an ammonia-free solution.
  • One preferred embodiment includes adding these components, in the presence of water, to create the phosphorus-containing parent solution as an aqueous parent solution.
  • the water acts as the solvent.
  • Other preferred parent solution solvents include alcohols.
  • Another group of preferred cations would be the alkali metals or Group 1A elements. While NH 4 used as Y creates a fuel additive that enhances fuel performance, there are instances when it is preferred to avoid ammonium and thereby ammonia altogether.
  • Another preferred embodiment of the phosphorus-containing parent solution includes the addition of [NH 4]2 HPO 4 to the [Y]H 2 PO 4 , [Y] x+ HPO 4 , and water.
  • Yet another embodiment includes the addition of NH 4 C 2 H 3 O 2 where C 2 H 3 O 2 ⁇ ion is an acetate group such that the solution contains [Y] x H 2 PO 4 , [Y] x+ HPO 4 , [NH 4 ] 2 HPO 4 , NH 4 C 2 H 3 O 2 and water.
  • the fuel additive is prepared using ammonium compounds, ammonium compounds being defined as those compounds containing NHx groups, the nitrogen in the solution is essentially all in the form of ammonium ions. There is at most a negligible amount of free ammonia.
  • the solution has a pH between about 6.0 and 8.0.
  • Another preferred embodiment of the phosphorus-containing parent solution includes the addition of [Y] x PO 4 to the [Y] x H 2 PO 4 , and [Y] x+ HPO 4 .
  • orthophosphoric acids have been described, also called phosphoric acids, this includes pyrophosphoric acids, which are the condensed analogs of orthophosphoric acid.
  • the PO 4 3 ⁇ becomes P 2 O 7 2 ⁇ or other condensed phosphates. Therefore, [Y] x H 2 PO 4 , and [Y] x+ HPO 4 are precursors to pyrophosphoric acids.
  • the use of the pyrophosphoric and other condensed forms is therefore encompassed within the definition of the orthophosphate form.
  • the phosphorus-containing parent solution can be applied directly to the solid fuel in any manner capable of producing a uniform coating, such as spraying, dipping, slurring or the like.
  • coal is sprayed with water to prevent dust formation in the grinding process prior to combustion.
  • the phosphorus containing parent solution can advantageously be included with this water spray.
  • other methods known in the art to contact an aqueous solution with the solid hydrocarbon can also be used.
  • the fuel additive of the invention is useful to enhance combustion such that more complete combustion is achieved with increased combustion to CO 2 and H 2 O as compared to the combustion of the solid fuel without the fuel additive.
  • the outcome is the reduction of products of partial combustion as well as NO x , thereby increasing fuel efficiency.
  • the fuel additive is used by adding this additive to the fuel in an amount sufficient to increase fuel efficiency or to reduce pollutants.
  • the terms enhanced and enhanced combustion refer to either of these effects.
  • An example of reduced pollutants is a reduction of NOx in an exhaust gas produced from a solid fueled direct fired burner, furnace or open flame.
  • both of these effects are observed though the addition of the fuel additive of the current invention.
  • a preferred embodiment includes the addition of between about 50 and 150 ppm phosphorus onto the fuel though the addition of the fuel additive. Increased amounts of phosphorus are effective as well.
  • Included in the invention is a process for enhancing fuel performance of a solid hydrocarbon fuel in a combustion system including the steps of providing the fuel additive described above in an amount effective to enhance fuel performance to the solid hydrocarbon fuel and combusting the solid hydrocarbon fuel with the fuel additive.
  • the combustion system can be any means known to those with ordinary skill in the art for combusting solid hydrocarbons.
  • the combustion system can include one or more direct fired burners, furnaces, fluidized beds, open flames or the like. In a preferred embodiment, this process is used with a solid hydrocarbon fuel.
  • the result of adding the additive to the solid hydrocarbon fuel is an enhanced fuel that has a substantial amount of solid hydrocarbon fuel suitable for combustion, and an amount of the fuel additive operable to enhance combustion.
  • the enhanced fuel contains phosphorus in an amount operable to reduce emissions upon combustion of the enhanced fuel as compared to the combustion of the hydrocarbon fuel without the fuel additive. More preferably, the enhanced fuel contains phosphorus of between about 1 and 150 ppm by weight. Another preferred embodiment is between about 1 and 80 ppm by weight.
  • the fuel additive can be introduced onto the coal prior to burning, onto fly ash prior to a secondary burning or can be injected into the fluidized bed or partially fluidized bed during the combustion process by means known in the art.
  • An alternate embodiment of the invention includes a process for enhancing fuel performance of a hydrocarbon fuel in a combustion system including the steps of adding a chemical addition composition to the hydrocarbon fuel in an amount effective to enhance fuel performance.
  • the chemical addition composition is created by (i) mixing in an aqueous medium a source of reactive NH 2 groups with one of the following:
  • the next step includes either combining the intermediate solution of step (i.a.) with the source of phosphoric acid; or the solution of (i.b.) with the hydroxide at a rate sufficient to create a highly exothermic reaction. This results in reactive NH 2 groups being contained in solution during the formation of the chemical addition composition. This chemical addition composition is added to the hydrocarbon fuel.
  • the parent solution, or the chemical addition composition of the invention can be added directly onto a solid hydrocarbon combustion fuel.
  • An enhanced fuel is created when a substantial amount of a solid fuel suitable for combustion is combined with an amount of the phosphorus-containing parent solution or the chemical addition composition sufficient to reduce emissions or to increase efficiency upon combustion of the enhanced fuel.
  • the current invention includes the use of the conversion surface composition as a solid fuel additive.
  • the fuel additive is chemical addition composition for the enhancement of hydrocarbon fuels where the chemical addition composition has the composition disclosed in U.S. Pat. No. 5,540,788.
  • This embodiment is unique in the use of the source of reactive NH 2 groups, which can be advantageous under certain circumstances. While the chemical composition including reactive NH 2 groups has certain advantages, it can result in the presence of free ammonia. Various other embodiments of the fuel additive of this invention avoid the production of free ammonia and the related issues.
  • the fuel additive of the invention is believed to perform a gas phase conversion of hydrocarbon fuels to achieve more complete combustion to CO 2 and H 2 O in the process.
  • the fuel additive is provided as an aqueous parent solution that can be added directly to the surface of the solid fuel.
  • the mechanism of addition of the aqueous parent solution to the solid surface is not critical as long as a reasonably uniform dispersion on the solid surface is obtained.
  • pre-coating the solid surface with the surface active agent is also conceivable. Tests run using infrared and other testing techniques confirm the reduction of CO from the offgas from the combustion of solid hydrocarbon fuels with the fuel additive of the invention.
  • the invention includes the use of the fuel additive in the direct-fired burners, furnaces and open flames. This is believed to be particularly valuable for burners and furnaces using low BTU and/or high sulfur coals. Use in the burner, furnace or flame appears to provide combustion benefits allowing for a reduction in particulate and other emissions.
  • the process of the invention is effective at the high temperatures produced as part of the combustion process such that the fuel additive is contained in the flame with the fuel. Examples of the use of coal are too numerous to mention but, the use of the additized coal in electric generation plants in which the quality of the coal can vary significantly, especially with respect to BTU and sulfur content, is particularly advantageous.
  • One example of a preferred formulation of the invention includes the following ratios: 1.597 mols KH 2 PO 4 , 0.693 mol K 2 HPO 4 , 0.315 mol [NH 4 ] 2 HPO 4 and water.
  • the pH of the solution can be controlled through manipulation of the ratios of these components. By manipulating the ratios of the resulting H 2 PO 4 ⁇ and HPO 4 2 ⁇ ions, the solution can be created in a preferred pH range of about 6.0 to about 8.0.
  • KH 2 PO 4 , K 2 HPO 4 , [NH 4 ] 2 HPO 4 and water are created into the phosphorus containing parent solution.
  • One example of a preferred embodiment is 0.3 wt % phosphorus in the solution, which can be added directly to the solid fuel surface in a suitable manner.
  • the phosphorus content can be in the range of 5-100 ppb and still be effective.
  • 1-250 ppm phosphorus is used on the fuel. Higher amounts are also effective. More preferably, 1-150 ppm phosphorus by weight of the total solid fuel weight on the surface of the solid fuel.
  • Another preferred embodiment is 1-80 ppm phosphorus.
  • An example of an alternate embodiment of the phosphorus-containing parent solution that is for use on a solid fuel includes mixing about 2.6 molar (M) orthophosphate with alkali metal and ammonium cations, the resulting aqueous parent solution having a pH of 7 at ambient temperatures.
  • the aqueous parent solution prepared in this fashion when added to the solid fuel, acts to diminish the emission of pollutant molecules, under normal operating conditions.
  • An example of an alternate embodiment includes the use of phosphoric acid, potassium hydroxide, ammonium hydroxide in water. Acetic acid can also be added. The amounts of the components can be adjusted to reach the desired pH.
  • H 3 PO 4 /HOA c Solution a Phosphoric Acid/Acetic Acid solution
  • H 3 PO 4 /HOA c Solution is about 90% mole of H 3 PO 4 and 10% mole of HOA c .
  • Example 1 Use of the fuel additive described in Example 1 in combination with a 300 mesh high sulfur Ohio composite coal, containing 3.4% S in provided a 39% reduction in CO emissions in the exhaust gas as compared to the coal without the fuel additive, 52% reduction in SO 2 , reduction in NOx and 10% reduction in particulates.
  • the coal was impregnated with the aqueous parent solution, prior to combustion, such that the resulting P concentration (based on total weight of coal) was 80 ppm.
  • the solvent is one that is defined by solubility or dispersibility of the salts in the solvent as well as the volatility of the solvent.
  • the salts are preferably dispersed throughout the solvent but the solvent is of such volatility that it can be vaporized during the combustion process without affecting the quality of the combustion.
  • [Y] x H 2 PO 4 , [Y] x+ HPO 4 also encompasses [Y] x [H 2 PO 4 ] z , [Y] x +[HPO 4 ] z where x and z are variable integers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present invention relates to the field of fuel additives for hydrocarbon fuels that acts to enhance efficiency and/or reduce pollution. The fuel additive is a phosphorus-containing composition that can be added to the surface of solid hydrocarbon fuels for combustion with the fuel in a direct fired burner, furnace or open flame.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to provisional patent application 60/628,002 filed Nov. 15, 2004.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to the field of fuel additives, in particular, to an additive for solid hydrocarbon fueled burners, furnaces and flames to enhance efficiency and/or reduce undesirable emissions, such as pollutants.
  • BACKGROUND OF THE INVENTION
  • Solid hydrocarbon fuels, such as coal, have long been used to fuel burners, furnaces and open flames. Coal, particularly lignite and other low BTU coals, does not burn very efficiently and generates considerable smoke, NOx, SO2, particulate matter and other undesirable emissions including CO. Chemical compounds have been used as combustion improvers to enhance combustion efficiency, of solid fuels. However, many of these additives contain heavy metallic elements such as manganese, zinc, iron, copper, cerium, calcium and barium. On burning, some of these elements can produce heavy metal solid residues, which are highly undesirable.
  • A fuel additive that includes a combustion catalyst to reduce smoke and particulate emissions from coal fired burners, furnaces and other direct-fired applications would be advantageous. A fuel additive that increases efficiency and/or decreases pollutants for coal and other solid fuels including low quality coal such as lignite, used in these applications would be particularly advantageous. It would also be advantageous to reduce smoke, particulate and nitrogen-containing emissions from fuel applications. In addition to reduction of NOx, reduction or elimination of other toxic pollutants, such as SO2 are highly desirable. An additive that does not result in the formation of heavy metal precipitates and residues during the combustion process would be desirable.
  • SUMMARY OF THE INVENTION
  • The present invention includes a fuel additive and a method of using the additive in relation to solid fuels, such as coal.
  • The fuel additive of the invention includes a phosphorus-containing parent solution containing [Y]xH2PO4, [Y]x+HPO4, where Y is a cation. Y does not have to be the same cation in both salt compounds. The cationic portion of the salt components can be any cation, with potassium being a preferred cation. In this case, the preferred components would be KH2PO4, K2HPO4. These salts are at least partially dispersed in water or other appropriate solvent to create the phosphorus-containing parent solution. Advantageously, this embodiment of the fuel additive is an ammonia-free solution. One preferred embodiment includes adding these components, in the presence of water, to create the phosphorus-containing parent solution as an aqueous parent solution. The water acts as the solvent. Other preferred parent solution solvents include alcohols. Another group of preferred cations would be the alkali metals or Group 1A elements. While NH4 used as Y creates a fuel additive that enhances fuel performance, there are instances when it is preferred to avoid ammonium and thereby ammonia altogether.
  • Another preferred embodiment of the phosphorus-containing parent solution includes the addition of [NH4]2HPO4 to the [Y]H2PO4, [Y]x+HPO4, and water. Yet another embodiment includes the addition of NH4C2H3O2 where C2H3O2 ion is an acetate group such that the solution contains [Y]xH2PO4, [Y]x+HPO4, [NH4]2HPO4, NH4C2H3O2 and water. When the fuel additive is prepared using ammonium compounds, ammonium compounds being defined as those compounds containing NHx groups, the nitrogen in the solution is essentially all in the form of ammonium ions. There is at most a negligible amount of free ammonia. In a preferred embodiment, the solution has a pH between about 6.0 and 8.0.
  • Another preferred embodiment of the phosphorus-containing parent solution includes the addition of [Y] xPO4 to the [Y]xH2PO4, and [Y]x+HPO4.
  • While orthophosphoric acids have been described, also called phosphoric acids, this includes pyrophosphoric acids, which are the condensed analogs of orthophosphoric acid. The difference being that, through the process to condense the orthophosphoric acid, the PO4 3− becomes P2O7 2− or other condensed phosphates. Therefore, [Y]xH2PO4, and [Y]x+HPO4 are precursors to pyrophosphoric acids. The use of the pyrophosphoric and other condensed forms is therefore encompassed within the definition of the orthophosphate form.
  • In the case of solid fuels, such as coal, the phosphorus-containing parent solution can be applied directly to the solid fuel in any manner capable of producing a uniform coating, such as spraying, dipping, slurring or the like. In many instances in industry, coal is sprayed with water to prevent dust formation in the grinding process prior to combustion. The phosphorus containing parent solution can advantageously be included with this water spray. However, other methods known in the art to contact an aqueous solution with the solid hydrocarbon can also be used.
  • The fuel additive of the invention is useful to enhance combustion such that more complete combustion is achieved with increased combustion to CO2 and H2O as compared to the combustion of the solid fuel without the fuel additive. The outcome is the reduction of products of partial combustion as well as NOx, thereby increasing fuel efficiency.
  • The fuel additive is used by adding this additive to the fuel in an amount sufficient to increase fuel efficiency or to reduce pollutants. The terms enhanced and enhanced combustion refer to either of these effects. An example of reduced pollutants is a reduction of NOx in an exhaust gas produced from a solid fueled direct fired burner, furnace or open flame. Advantageously, both of these effects are observed though the addition of the fuel additive of the current invention. A preferred embodiment includes the addition of between about 50 and 150 ppm phosphorus onto the fuel though the addition of the fuel additive. Increased amounts of phosphorus are effective as well.
  • Included in the invention is a process for enhancing fuel performance of a solid hydrocarbon fuel in a combustion system including the steps of providing the fuel additive described above in an amount effective to enhance fuel performance to the solid hydrocarbon fuel and combusting the solid hydrocarbon fuel with the fuel additive. The combustion system can be any means known to those with ordinary skill in the art for combusting solid hydrocarbons. The combustion system can include one or more direct fired burners, furnaces, fluidized beds, open flames or the like. In a preferred embodiment, this process is used with a solid hydrocarbon fuel. The result of adding the additive to the solid hydrocarbon fuel is an enhanced fuel that has a substantial amount of solid hydrocarbon fuel suitable for combustion, and an amount of the fuel additive operable to enhance combustion. Preferably, the enhanced fuel contains phosphorus in an amount operable to reduce emissions upon combustion of the enhanced fuel as compared to the combustion of the hydrocarbon fuel without the fuel additive. More preferably, the enhanced fuel contains phosphorus of between about 1 and 150 ppm by weight. Another preferred embodiment is between about 1 and 80 ppm by weight.
  • In a fluidized bed application, the fuel additive can be introduced onto the coal prior to burning, onto fly ash prior to a secondary burning or can be injected into the fluidized bed or partially fluidized bed during the combustion process by means known in the art.
  • An alternate embodiment of the invention includes a process for enhancing fuel performance of a hydrocarbon fuel in a combustion system including the steps of adding a chemical addition composition to the hydrocarbon fuel in an amount effective to enhance fuel performance. The chemical addition composition is created by (i) mixing in an aqueous medium a source of reactive NH2 groups with one of the following:
  • 1. (a) an alkali metal hydroxide to raise the pH of the solution above 12 to form an aqueous ammonium/alkali metal hydroxide; or
  • 2. (b) a source of phosphoric acid to lower the pH of the solution to about 0 to form an acidic ammonium mixture.
  • 3. The next step includes either combining the intermediate solution of step (i.a.) with the source of phosphoric acid; or the solution of (i.b.) with the hydroxide at a rate sufficient to create a highly exothermic reaction. This results in reactive NH2 groups being contained in solution during the formation of the chemical addition composition. This chemical addition composition is added to the hydrocarbon fuel.
  • The parent solution, or the chemical addition composition of the invention, can be added directly onto a solid hydrocarbon combustion fuel.
  • An enhanced fuel is created when a substantial amount of a solid fuel suitable for combustion is combined with an amount of the phosphorus-containing parent solution or the chemical addition composition sufficient to reduce emissions or to increase efficiency upon combustion of the enhanced fuel.
  • A composition of phosphoric acid, alkali metal hydroxide and a source of reactive NH2 groups has been explored in U.S. Pat. No. 5,540,788 for the creation of a conversion surface, the disclosure of the patent being incorporated herein by reference. The current invention includes the use of the conversion surface composition as a solid fuel additive. In one embodiment the fuel additive is chemical addition composition for the enhancement of hydrocarbon fuels where the chemical addition composition has the composition disclosed in U.S. Pat. No. 5,540,788. This embodiment is unique in the use of the source of reactive NH2 groups, which can be advantageous under certain circumstances. While the chemical composition including reactive NH2 groups has certain advantages, it can result in the presence of free ammonia. Various other embodiments of the fuel additive of this invention avoid the production of free ammonia and the related issues.
  • DETAILED DESCRIPTION
  • The fuel additive of the invention is believed to perform a gas phase conversion of hydrocarbon fuels to achieve more complete combustion to CO2 and H2O in the process. Preferably, the fuel additive is provided as an aqueous parent solution that can be added directly to the surface of the solid fuel. The mechanism of addition of the aqueous parent solution to the solid surface is not critical as long as a reasonably uniform dispersion on the solid surface is obtained. In some cases, it may advantageous to include dispersants, surfactants or other surface active agents to help provide a uniform dispersion of the additive on the solid surface. In these cases it is the usual practice to dissolve, disperse or emulsify the surface active additive in the parent solution. However, pre-coating the solid surface with the surface active agent is also conceivable. Tests run using infrared and other testing techniques confirm the reduction of CO from the offgas from the combustion of solid hydrocarbon fuels with the fuel additive of the invention.
  • The invention includes the use of the fuel additive in the direct-fired burners, furnaces and open flames. This is believed to be particularly valuable for burners and furnaces using low BTU and/or high sulfur coals. Use in the burner, furnace or flame appears to provide combustion benefits allowing for a reduction in particulate and other emissions. The process of the invention is effective at the high temperatures produced as part of the combustion process such that the fuel additive is contained in the flame with the fuel. Examples of the use of coal are too numerous to mention but, the use of the additized coal in electric generation plants in which the quality of the coal can vary significantly, especially with respect to BTU and sulfur content, is particularly advantageous.
  • One example of a preferred formulation of the invention includes the following ratios: 1.597 mols KH2PO4, 0.693 mol K2HPO4, 0.315 mol [NH4]2HPO4 and water. The pH of the solution can be controlled through manipulation of the ratios of these components. By manipulating the ratios of the resulting H2PO4 and HPO4 2− ions, the solution can be created in a preferred pH range of about 6.0 to about 8.0.
  • In a preferred embodiment, KH2PO4, K2HPO4, [NH4]2HPO4 and water are created into the phosphorus containing parent solution. One example of a preferred embodiment is 0.3 wt % phosphorus in the solution, which can be added directly to the solid fuel surface in a suitable manner. Upon addition to the fuel surface, the phosphorus content can be in the range of 5-100 ppb and still be effective. Preferably, 1-250 ppm phosphorus is used on the fuel. Higher amounts are also effective. More preferably, 1-150 ppm phosphorus by weight of the total solid fuel weight on the surface of the solid fuel. Another preferred embodiment is 1-80 ppm phosphorus.
  • An example of an alternate embodiment of the phosphorus-containing parent solution that is for use on a solid fuel includes mixing about 2.6 molar (M) orthophosphate with alkali metal and ammonium cations, the resulting aqueous parent solution having a pH of 7 at ambient temperatures. The aqueous parent solution prepared in this fashion, when added to the solid fuel, acts to diminish the emission of pollutant molecules, under normal operating conditions. An example of an alternate embodiment includes the use of phosphoric acid, potassium hydroxide, ammonium hydroxide in water. Acetic acid can also be added. The amounts of the components can be adjusted to reach the desired pH.
  • EXAMPLE 1
  • 1. Prepare a Phosphoric Acid/Acetic Acid solution [H3PO4/HOAc Solution]. For this run, the H3PO4/HOAc Solution is about 90% mole of H3PO4 and 10% mole of HOAc.
  • 2. Prepare for reaction De-ionized water
  • 3. 2,736.39 lbs of the Potassium Hydroxide is added to the water
  • 4. Add to this aqueous solution 1315.14 lbs of the Ammonium Hydroxide (29%)
  • 5. Into the resulting solution, add the H3PO4/HOAc Solution and allow for reaction.
  • 6. After reaction, adjust pH with acetic acid to a pH of about 7.0. The resulting product of this reaction is useful as the chemical addition component to enhance hydrocarbon fuel.
  • EXAMPLE 2
  • Use of the fuel additive described in Example 1 in combination with a 300 mesh high sulfur Ohio composite coal, containing 3.4% S in provided a 39% reduction in CO emissions in the exhaust gas as compared to the coal without the fuel additive, 52% reduction in SO2, reduction in NOx and 10% reduction in particulates. The coal was impregnated with the aqueous parent solution, prior to combustion, such that the resulting P concentration (based on total weight of coal) was 80 ppm.
  • EXAMPLE 3
  • Unit Ratio
    Component Lbs weight
    Phosphoric Acid 2,583 0.25
    Potassium Hydroxide 2,736 0.26
    Ammonium Hydroxide 1,315 0.13
    Acetic Acid 672 0.06
    Deionized Water 3,105 0.30
    Total Phosphorus-Containing Parent Solution 10,411 1.00
  • In an alternate embodiment, the solvent is one that is defined by solubility or dispersibility of the salts in the solvent as well as the volatility of the solvent. For example, the salts are preferably dispersed throughout the solvent but the solvent is of such volatility that it can be vaporized during the combustion process without affecting the quality of the combustion.
  • While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention. For example, [Y]xH2PO4, [Y]x+HPO4 also encompasses [Y]x[H2PO4]z, [Y]x+[HPO4]z where x and z are variable integers.

Claims (17)

1. A process for enhancing fuel performance of a hydrocarbon fuel in a combustion system having a direct fired burner, furnace or open flame comprising the steps of: providing a fuel additive to the hydrocarbon fuel in an amount effective to enhance fuel performance to the direct fired burner, furnace or open flame and combusting the hydrocarbon fuel with the fuel additive, the fuel additive comprising a mixture of salts and a dispersion fluid, the mixture of salts comprising:
[Y]xH2PO4; and
[Y]x+HPO4, wherein [Y] is a cation, the dispersion fluid being operable to maintain the salts within the dispersion fluid in at least a partially dispersed state to create a solution, the enhanced fuel performance being measurable by increased fuel efficiency or decreased pollutant output in an exhaust gas resulting from the combustion of the fuel and the fuel additive.
2. The process of claim 1 for enhancing fuel performance wherein the fuel additive is ammonia-free.
3. The process of claim 1 for enhancing fuel performance wherein the fuel additive further comprises [NH4]2HPO4.
4. The process of claim 1 for enhancing fuel performance wherein the fuel additive further comprises NH4C2H3O2 where C2H3O2 is an acetate group.
5. The process of claim 1 for enhancing fuel performance wherein the pH of the solution is between about 6.0 and 8.0.
6. The process of claim 1 for enhancing fuel performance wherein phosphorus is present in the hydrocarbon fuel in an amount of between about 1 and 150 ppm by weight.
7. The process of claim 1 for enhancing fuel performance wherein the hydrocarbon fuel is a solid hydrocarbon fuel, preferentially coal, more preferentially high sulfur coal and most preferentially high sulfur and low BTU coal.
8. A process for creating an enhanced hydrocarbon fuel for use in a combustion system comprising the step of adding an amount effective to enhance fuel performance to the hydrocarbon fuel of a chemical addition composition, the chemical addition composition comprising reaction products from mixing of a source of phosphoric acid, an alkali metal hydroxide, ammonium hydroxide and water.
9. The process of claim 8 for creating an enhanced hydrocarbon fuel wherein the chemical addition composition further comprises acetic acid.
10. A process for creating a fuel additive for enhancing combustion of a hydrocarbon fuel, the process comprising the step of: mixing the salts [Y]xH2PO4 and [Y]x+HPO4, wherein [Y] is a cation, in a solvent to at least partially disperse the salts in the solvent to create an phosphorus-containing parent solution that is operable to enhance combustion when added to a direct fired burner, furnace or open flame in the presence of a solid hydrocarbon fuel and combusted.
11. A combustion additive comprising a mixture of salts and a dispersion fluid, the mixture of salts comprising:
[Y]xH2PO4; and
[Y]x+HPO4, wherein [Y] is a cation, the dispersion fluid being operable to maintain the salts within the dispersion fluid in at least a partially dispersed state to create a solution, the fuel additive being operable to enhance combustion when placed into contact with fuel in a direct fired burner, furnace or open flame and combusted, the enhanced combustion being measurable by increased fuel efficiency or decreased pollutant output in an exhaust gas resulting from the combustion of the fuel and the fuel additive.
12. The fuel additive of claim 11 further comprising [NH4]2HPO4.
13. The fuel additive of claim 11 further comprising NH4C2H3O2 where C2H3O2 is an acetate group.
14. The fuel additive of claim 11 wherein the pH of the solution is between about 6.0 and 8.0.
15. An enhanced fuel comprising a substantial amount of solid fuel suitable for combustion and an amount of fuel additive, of claim 11, operable to enhance combustion.
16. The enhanced fuel of claim 15 wherein phosphorus is present in the hydrocarbon fuel in an amount of between about 1 and 150 ppm by weight.
17. The enhanced fuel of claim 15 wherein the amount of fuel additive is the amount operable to reduce emissions upon combustion of the enhanced fuel as compared to the combustion of the hydrocarbon fuel without the fuel additive.
US11/273,982 2004-11-15 2005-11-15 Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes Abandoned US20060101710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/273,982 US20060101710A1 (en) 2004-11-15 2005-11-15 Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62800204P 2004-11-15 2004-11-15
US11/273,982 US20060101710A1 (en) 2004-11-15 2005-11-15 Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes

Publications (1)

Publication Number Publication Date
US20060101710A1 true US20060101710A1 (en) 2006-05-18

Family

ID=35840408

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/273,982 Abandoned US20060101710A1 (en) 2004-11-15 2005-11-15 Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes

Country Status (15)

Country Link
US (1) US20060101710A1 (en)
EP (1) EP1838820A1 (en)
JP (1) JP2008520765A (en)
KR (1) KR20070086116A (en)
CN (1) CN101072853A (en)
AR (1) AR052791A1 (en)
AU (1) AU2005307847A1 (en)
BR (1) BRPI0517859A (en)
CA (1) CA2587144A1 (en)
EA (1) EA200701057A1 (en)
IL (1) IL182896A0 (en)
MX (1) MX2007005788A (en)
PE (1) PE20060804A1 (en)
SV (1) SV2006002302A (en)
WO (1) WO2006055559A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969444A (en) * 2016-03-22 2016-09-28 安徽徽明建设集团有限公司 Anti-slagging biomass briquette with mosquito-repellent effect and manufacturing method thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742351A (en) * 1951-06-07 1956-04-17 Exxon Research Engineering Co Stabilized heating oil
US3445206A (en) * 1965-12-23 1969-05-20 Cities Service Oil Co Metal hydrocarbyl orthophosphate gasoline additive
US3476533A (en) * 1965-07-15 1969-11-04 Texaco Inc Jet fuel composition
US3483178A (en) * 1968-04-18 1969-12-09 Monsanto Co Esters,salts,and acids of organo-phosphono-amine oxides
US3644106A (en) * 1966-08-24 1972-02-22 Victor C E Burnop Colloidal dispersions
US3652242A (en) * 1970-02-02 1972-03-28 Mobil Oil Corp Liquid hydrocarbon fuels containing alkylamine salts
US3734963A (en) * 1969-03-18 1973-05-22 Exxon Co Inorganic lithium-amine complexes
US3795495A (en) * 1971-01-20 1974-03-05 Union Oil Co Gasoline anti-icing additives
US3909430A (en) * 1972-08-07 1975-09-30 Chevron Res Lubricating composition
US3968157A (en) * 1972-08-07 1976-07-06 Chevron Research Company Bisphosphoramides
US4107058A (en) * 1977-08-19 1978-08-15 Exxon Research & Engineering Co. Pressure grease composition
US4690687A (en) * 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
US4720288A (en) * 1986-03-27 1988-01-19 Union Oil Company Of California Gasoline fuel composition
US5034114A (en) * 1989-07-28 1991-07-23 Ira Kukin Acid neutralizing combustion additive with detergent builder
US5084263A (en) * 1989-07-24 1992-01-28 Mccoy/Defalco Electrochemics, Inc. Method of preparing inorganic polymeric water complexes and products so produced
US5540788A (en) * 1995-02-24 1996-07-30 Mdechem, Inc. Method of preparing iron-phosphate conversion surfaces
US5630852A (en) * 1994-11-23 1997-05-20 Fmc Corporation Organophosphorus additives for improved fuel lubricity
US6361623B1 (en) * 1997-06-13 2002-03-26 Henkel Corporation Method for phosphatizing iron and steel
US20020038525A1 (en) * 1992-09-11 2002-04-04 Chevron Research And Technology Company Fuel composition for two-cycle engines
US20030226312A1 (en) * 2002-06-07 2003-12-11 Roos Joseph W. Aqueous additives in hydrocarbonaceous fuel combustion systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4898699A (en) * 1999-07-16 2001-02-05 Reatech Phosphor addition in gasification
HUP0300105A3 (en) * 2003-01-13 2005-05-30 Cserta Peter A new application of phosphorus-nitrogen-metal complex layer
MXPA05008117A (en) * 2003-01-31 2005-11-04 Envirofuels Lp Method and composition for creation of conversion surface.
AR046386A1 (en) * 2003-06-23 2005-12-07 Envirofuels Lp HYDROCARBON FUEL ADDITIVE AND RELATED PROCESSES

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742351A (en) * 1951-06-07 1956-04-17 Exxon Research Engineering Co Stabilized heating oil
US3476533A (en) * 1965-07-15 1969-11-04 Texaco Inc Jet fuel composition
US3445206A (en) * 1965-12-23 1969-05-20 Cities Service Oil Co Metal hydrocarbyl orthophosphate gasoline additive
US3644106A (en) * 1966-08-24 1972-02-22 Victor C E Burnop Colloidal dispersions
US3483178A (en) * 1968-04-18 1969-12-09 Monsanto Co Esters,salts,and acids of organo-phosphono-amine oxides
US3734963A (en) * 1969-03-18 1973-05-22 Exxon Co Inorganic lithium-amine complexes
US3652242A (en) * 1970-02-02 1972-03-28 Mobil Oil Corp Liquid hydrocarbon fuels containing alkylamine salts
US3795495A (en) * 1971-01-20 1974-03-05 Union Oil Co Gasoline anti-icing additives
US3909430A (en) * 1972-08-07 1975-09-30 Chevron Res Lubricating composition
US3968157A (en) * 1972-08-07 1976-07-06 Chevron Research Company Bisphosphoramides
US4107058A (en) * 1977-08-19 1978-08-15 Exxon Research & Engineering Co. Pressure grease composition
US4690687A (en) * 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
US4720288A (en) * 1986-03-27 1988-01-19 Union Oil Company Of California Gasoline fuel composition
US5084263A (en) * 1989-07-24 1992-01-28 Mccoy/Defalco Electrochemics, Inc. Method of preparing inorganic polymeric water complexes and products so produced
US5310419A (en) * 1989-07-24 1994-05-10 Mccoy Charles R Method of preparing inorganic polymeric water complexes and products so produced
US5034114A (en) * 1989-07-28 1991-07-23 Ira Kukin Acid neutralizing combustion additive with detergent builder
US20020038525A1 (en) * 1992-09-11 2002-04-04 Chevron Research And Technology Company Fuel composition for two-cycle engines
US5630852A (en) * 1994-11-23 1997-05-20 Fmc Corporation Organophosphorus additives for improved fuel lubricity
US5540788A (en) * 1995-02-24 1996-07-30 Mdechem, Inc. Method of preparing iron-phosphate conversion surfaces
US6361623B1 (en) * 1997-06-13 2002-03-26 Henkel Corporation Method for phosphatizing iron and steel
US20030226312A1 (en) * 2002-06-07 2003-12-11 Roos Joseph W. Aqueous additives in hydrocarbonaceous fuel combustion systems

Also Published As

Publication number Publication date
MX2007005788A (en) 2007-07-18
CN101072853A (en) 2007-11-14
EP1838820A1 (en) 2007-10-03
IL182896A0 (en) 2007-08-19
SV2006002302A (en) 2006-07-28
JP2008520765A (en) 2008-06-19
PE20060804A1 (en) 2006-09-23
AU2005307847A1 (en) 2006-05-26
WO2006055559A1 (en) 2006-05-26
BRPI0517859A (en) 2008-10-21
AR052791A1 (en) 2007-04-04
CA2587144A1 (en) 2006-05-26
EA200701057A1 (en) 2007-10-26
KR20070086116A (en) 2007-08-27

Similar Documents

Publication Publication Date Title
RU2292383C1 (en) Method of reducing nitrogen oxide (nox) emissions in coal-combusting municipal power-supply furnace
US20100024289A1 (en) Additive for Hydrocarbon Fuel and Related Process
RU2418040C2 (en) Method of reducing amount of pollutants released into atmosphere when burning sulphur-containing carbon-bearing fuel (versions)
KR101246879B1 (en) Liquid Combustion Catalyst Composition Containing Complex Metal Complex Ion Compound
US4202671A (en) Fuel conditioner
AU684075B2 (en) Fuel additives
AU2007285609B2 (en) Coal with improved combustion properties
US20060101710A1 (en) Additive for solid hydrocarbon fueled direct fired burners, furnaces, open flames and related processes
US20060179709A1 (en) Additive for liquid or liquified hydrocarbon fueled direct fired burners, open flames and related processes
KR101301400B1 (en) Fuel Additives Compositions For Reducing Coal Use And Harmful Gas
KR101231638B1 (en) Composition of fuel-additives
GB2522612A (en) Fuel additive composition
RU2773078C2 (en) Solid fuel modifier and its application method
US20080168707A1 (en) Additive for hydrocarbon fuel and related processes consisting of compounds of adenosine phosphates
EP3470138A1 (en) Catalyst fuel additive
WO2007136548A2 (en) Additive for hydrocarbon fuel and related processes consisting of compounds of adenosine phosphates
HU187400B (en) Preparation for fire-side cleaning stokers

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENVIROFUELS L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMITH, DWIGHT M.;CHUGHTAI, ABDUL R.;REEL/FRAME:017227/0116

Effective date: 20051114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION