US20060099986A1 - Power control - Google Patents

Power control Download PDF

Info

Publication number
US20060099986A1
US20060099986A1 US11/214,071 US21407105A US2006099986A1 US 20060099986 A1 US20060099986 A1 US 20060099986A1 US 21407105 A US21407105 A US 21407105A US 2006099986 A1 US2006099986 A1 US 2006099986A1
Authority
US
United States
Prior art keywords
mobile station
frequency band
parameter value
output power
maximum output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/214,071
Other languages
English (en)
Inventor
Rami Vaittinen
Harri Jokinen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Inc
Original Assignee
Nokia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Inc filed Critical Nokia Inc
Assigned to NOKIA CORPORATION reassignment NOKIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOKINEN, HARRI, VAITTINEN, RAMI
Publication of US20060099986A1 publication Critical patent/US20060099986A1/en
Priority to US12/322,025 priority Critical patent/US7933626B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/36Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the invention relates to control of transmission power in communications networks, specifically in systems wherein transmitters operate in several frequency bands.
  • a communications network is a facility which enables communication between two or more entities such as user terminal equipment (mobile or fixed) or other communication device, network entities and other nodes.
  • the communication may comprise, for example, communication of voice, electronic mail (email), text messages, data, multimedia and so on.
  • a communications network typically operates in accordance with a given rules which set out what the various elements of a system are permitted to do and how that should be achieved. For example, a standard or specification may define if the user, or more precisely user equipment, is provided with a circuit switched (CS) bearer or a packet switched (PS) bearer, or both. Communication protocols and/or parameters which should be used for the connection are also typically defined. For example, the manner in which communication should be implemented between the user equipment and the elements of the communication networks is typically based on a predefined communication protocol.
  • Access to the communication network may be provided by a fixed line or wireless communication interface.
  • Communication systems providing wireless access enable at least some degree of mobility for the users thereof. More advanced mobility support can typically be added as an enhanced feature.
  • An example of communication networks providing wireless access is a public land mobile network (PLMN).
  • the public land mobile networks (PLMN) are commonly based on cellular technology.
  • a base transceiver station (BTS) or similar access entity services mobile communication device or user equipment (UE) via a wireless interface between these entities. These devices will in the following be referred commonly as mobile stations.
  • the communication on the wireless interface between the mobile station and elements of the communication network can be based on an appropriate communication protocol.
  • the operation of the base station apparatus and other apparatus required for the communication can be controlled by one or several control entities.
  • Non-limiting examples of PLMN systems include the GSM (Global System for Mobile communications), the so called 2.5 generation GPRS (General Packet Radio Service) or the third generation (3G) networks such as WCDMA (Wideband Code Division Multiple Access) or EDGE (Enhanced Data for GSM Evolution).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • 3G Third Generation
  • WCDMA Wideband Code Division Multiple Access
  • EDGE Enhanced Data for GSM Evolution
  • Other examples of wireless access technologies include various wireless local area networks (WLANs) and satellite based systems.
  • the various control entities of a communication system may be interconnected.
  • One or more gateway nodes may be provided for connecting a network to other communication networks, for example to an IP (Internet Protocol) and/or other packet switched data networks.
  • IP Internet Protocol
  • the communications network provides user with access to external networks, hosts, or services offered by specific service providers.
  • GSM Global System for Mobile communication
  • the first GSM networks were designed for voice services.
  • PS packet switched
  • GPRS General Packet Radio Service
  • GPRS is a packet radio network utilising the GSM network, which endeavours to optimise data packet transmission by means of GPRS protocol layers on the air interface between a mobile station and a GPRS network.
  • a GPRS mobile station can operate in one of three modes of operation as disclosed for example by the standard document 3GPP TS 23.060 version 6.5.0 of June 2004. These modes are:
  • Class A mode of operation the MS is attached to the both GPRS and other GSM services.
  • the mobile user can make and/or receive calls on the two services simultaneously e.g. having a normal GSM voice call and receiving GPRS data packets at the same time.
  • Class B mode of operation the MS is attached to the both GPRS and other GSM services, but the MS can only operate on set of services at a time.
  • Class C mode of operation the MS can only be attached either to the GSM network or the GPRS network. The selection is done manually and there are no simultaneous operations.
  • a multi-band GSM network may use frequencies from multiple, typically two, different frequency bands.
  • a single cell of a GSM system may use frequencies from a single frequency band only or it may use frequencies from multiple frequency bands.
  • the latter is often called “common BCCH cell” as the frequency identifying the cell and broadcasting BCCH (broadcast control channel) information is common for traffic channels on that cell, where the traffic channels may be assigned on different frequency bands.
  • a mobile station (MS) transmitting packet data to the network uses the output power given by the formula in the sub-clause 10.2.1 of the standard specification 3GPP TS 45.008 version 6.0.8 of July 2004.
  • PMAX parameter is broadcast on a broadcast control channel (BCCH) in system information 13 (SI 3 ) and in system information 14 (SI 4 ) and respectively on packet broadcast control channel (PBCCH) in packet system information 13 (PSI 3 ), see, for example, 3GPP TS 44.018 version 6.8.0 of July 2004 and 3GPP TS 44.060 version 6.8.0 of July 2004.
  • BCCH broadcast control channel
  • PBCCH packet broadcast control channel
  • the exemplifying Table 1 of FIG. 1 presents the nominal output powers of GSM 400 , GSM 900 , GSM 850 and GSM 700 bands according to GSM standards. If the MS is packet idle mode listening BCCH (in 900 MHz band) intermittently and it receives the MS_TXPWR_MAX_CCH parameter with value 8 then the nominal output power level is 27 dBm. Then the MS requests packet resources and the network allocates resources on 1800 MHz. As can be seen from the second table in the following, value 8 denotes 14 dBm on the 1800 MHz band instead of 27 dBm on 900 MHz band. Too low output power level may lead to a poor signal quality and respectively too high power level may cause unnecessary interference.
  • Table 2 of FIG. 2 presents nominal output powers for DCS 1800 band as specified in 3GPP TS 45.005 version 6.6.0 of July 2004.
  • the mobile station's maximum output power is based on parameters received in system information messages on (P)BCCH channel while in the packet idle mode.
  • P system information messages on
  • the network may have difficulties in setting the correct maximum output power for the mobile station.
  • the network cannot optimise the maximum power for each frequency band separately in a common BCCH cell and especially, because of the different mapping of power control levels on different frequency bands, the network cannot set the same dBm value, or a value that reflects the frequency band specific path loss for each frequency band on that cell, for the maximum output power on each frequency band.
  • Embodiments of the present invention aim to overcome one or several of the above problems.
  • a method for controlling transmission power of a mobile station communicating with a telecommunications network comprises determining a maximum output power level of a mobile station in a first frequency band, transmitting a first parameter value indicative of said maximum output power level of a mobile station in a first frequency band, determining a maximum output power level of the mobile station in at least one second frequency band, and transmitting at least one second parameter value indicative of the maximum output power level in association with said at least one second frequency band.
  • a method for determining maximum transmission power comprises receiving in mobile station a first transmission power parameter value, determining an output power level of the mobile station in a first frequency band based on said first transmission power parameter value, receiving at least one second transmission power parameter value, and determining a maximum output power level of the mobile station in at least one second frequency band based on said first transmission power parameter value and at least one second transmission power parameter value.
  • a method for determining maximum transmission power comprises receiving a first parameter value, determining a maximum output power level of a mobile station in a first frequency band based on said first parameter value, receiving a second parameter value, and determining a maximum output power level of the mobile station in a second frequency band based on said second parameter value and a predetermined offset value.
  • a method for determining maximum transmission power in a mobile station comprises receiving a power control parameter value, determining a maximum output power level of the mobile station in a first frequency band based on said parameter value and a first predetermined offset value, and determining a maximum output power level of the mobile station in a second frequency band based on said parameter value and a second predetermined offset value.
  • a method for determining maximum transmission power in a mobile station comprises receiving a power control parameter value, receiving a flag indicative how an output power is to be derived from the received power control parameter, detecting that the flag indicates multi-band operation, and determining a maximum output power level of the mobile station in a frequency band by mapping for a power control parameter value and a predetermined frequency band specific offset value.
  • a node for a telecommunications network configured to determine a maximum output power level of a mobile station in a first frequency band, to transmit a first parameter value indicating said maximum output power level of the mobile station, to determine a maximum output power level of the mobile station in at least one second frequency band, and to transmit at least one second parameter value indicative the maximum output power level in association with said at least one second frequency band.
  • a mobile station configured to receive a first maximum transmission power parameter value, to determine a maximum output power level of the mobile station in a first frequency band based on said first parameter value, to receive a second transmission power parameter value, and to determine a maximum output power level of the mobile station in at least one second frequency band based on said first transmission power parameter value and at least one second transmission power parameter value.
  • a mobile station is configured to receive a first parameter value, to determine a maximum output power level of the mobile station in a first frequency band based on said first parameter value, to receive a second parameter value, and to determine a maximum output power level of the mobile station in a second frequency band based on said second parameter value and a predetermined offset value.
  • a mobile station is configured to receive a power control parameter value, to determine a maximum output power level of the mobile station in a first frequency band based on said power control parameter value and a first predetermined offset value, and to determine a maximum output power level of the mobile station in a second frequency band based on said power control parameter value and a second predetermined offset value.
  • FIGS. 1 and 2 show nominal output power Tables for exemplifying telecommunications systems
  • FIG. 3 illustrates a method according to an advantageous embodiment of the invention
  • FIG. 4 illustrates a method according to a further advantageous embodiment of the invention
  • FIG. 5 illustrates various further embodiments of the invention.
  • FIG. 3 illustrates a method in accordance with an embodiment for a network node of a telecommunications network for controlling transmission power of mobile stations communicating with the telecommunications network.
  • a maximum output power level of a mobile station is first determined at 110 in a first frequency band, where after a first parameter value indicating said maximum output power level of a mobile station is transmitted at 120 in a first frequency band.
  • a maximum output power level of a mobile station in a second frequency band is also determined at 130 , where after a second parameter value indicating an offset from said maximum output power level of a mobile station is transmitted in the first frequency band.
  • FIG. 4 illustrates a method in accordance with another embodiment for determining maximum transmission power in a mobile station of a telecommunications network.
  • a first maximum transmission power parameter value is received at 210 , where after a maximum output power level of the mobile station in a first frequency band is determined at 220 based on said first parameter value.
  • a second transmission power parameter value can be received at 230 , where after a maximum output power level of the mobile station in a second frequency band can be determined at 240 based on said first and second transmission power parameter values.
  • FIG. 5 illustrates schematically a telecommunications system wherein the various embodiments may be implemented.
  • FIG. 5 illustrates a mobile station 300 , a cellular network 340 , and a network element 330 of the cellular network 340 .
  • the network element 330 is a base station.
  • a cellular network is typically arranged to serve a plurality of mobile stations, via a wireless interface between the mobile stations and base stations of the communication system.
  • the cellular communication network may provide packet switched data transmission in the packet switched domain between a support node and a mobile station.
  • the network in turn may be connected to external networks, for example the Internet, via an appropriate gateway to allow communication between mobile stations and external networks.
  • a network may comprise also other nodes, for example radio network and/or base station controllers.
  • the base station 330 is arranged to transmit signals to and receive signals from the mobile station 300 , via respective wireless interfaces.
  • each mobile station is able to transmit signals to and receive signals from the base stations via the wireless interface.
  • a mobile station within an access network may communicate via radio network channels which are typically referred to as radio bearers. Each mobile station such may have one or more radio channels open at any one time.
  • the mobile station can be used for various tasks such as making and receiving phone calls, for receiving and sending data from and to a network and for experiencing, for example, multimedia or other content.
  • the mobile station is typically provided with a processor and memory for accomplishing these tasks.
  • the operation of the mobile station may be controlled by means of a suitable user interface such as key pad, voice commands, touch sensitive screen or pad, combinations thereof or the like.
  • a mobile station also typically comprise components such as an antenna, a transmitter, a power source,.
  • the mobile stations include a personal computer, a personal data assistant (PDA), a mobile phone, a portable computer, and various combinations thereof.
  • FIG. 5 illustrates certain details of a mobile station 300 in accordance with an embodiment.
  • the mobile station 300 comprises a receiver 310 for receiving a first maximum transmission power parameter value and a second transmission power parameter value.
  • the mobile station also comprises a controller 320 for determining a maximum output power level of the mobile station in a first frequency band based on said first parameter value, and for determining a maximum output power level of the mobile station in a second frequency band based on said first and second transmission power parameter values. It is noted that these component may be provided separately for the first and second frequency bands, if this is deemed appropriate.
  • the method can be implemented by means of software programs executed by a processor in the mobile station.
  • the receivers 310 can be implemented using computer software code means which are arranged to receive data and store received parameter values, while said controllers 320 can be implemented using computer software code means which perform said determinations.
  • FIG. 5 also illustrates some further details of the network element 330 , which comprises an implementation of an advantageous embodiment of the invention.
  • the network element 330 comprises a controller 332 for determining a maximum output power level of a mobile station in a first frequency band, a transmitter 334 for transmitting a first parameter value indicating said maximum output power level of a mobile station in a first frequency band, a controller 332 determining a maximum output power level of a mobile station in a second frequency band, and a transmitter 334 for transmitting a second parameter value indicating an offset from said maximum output power level of a mobile station in a first frequency band.
  • the invention can be implemented using software in the network element.
  • the controllers 332 can be implemented using computer software code means in the network element.
  • the transmitters 334 can be implemented as computer software code means causing the transmission of said values from the processor unit of the network element.
  • existing parameters MS_TXPWR_MAX_CCH and GPRS_MS_TXPWR_MAX_CCH may be used to control maximum output power level of upper bands (e.g. DCS 1800 MHz 1900 MHz) and a new parameter may used to control maximum output power level of lower bands (e.g. GSM 400 , GSM 900 , GSM 850 and GSM 700 bands).
  • This new parameter here called the TBF_MS_TXPWR_MAX parameter, may be used to represent an offset from the upper band value.
  • the TBF_MS_TXPWR_MAX parameter represents an absolute value.
  • the TBF_TXPWR_MAX parameter may be specified independently band by band.
  • the TBF_MS_TXPWR_MAX parameter can be transmitted in SI 13 rest octets information element (IE) sent on BCCH.
  • IE rest octets information element
  • the parameter can be transmitted in a PACKET SYSTEM INFORMATION 1 (PSI 1 ) message.
  • existing parameters for example MS_TXPWR_MAX_CCH and GPRS_MS_TXPWR_MAX_CCH (if PBCCH is present), may be used as a parameter to control maximum output power level of an upper frequency band (e.g. 1800 MHz), and a first new parameter may be used to control maximum output power level for one of the lower bands (e.g. 900 MHz).
  • Maximum output power levels for other bands may be specified using frequency band specific predetermined fixed offset parameters. These parameters may indicate the maximum transmission power for each band as an offset from said first new parameter. Alternatively, the offset may be from the parameter associated with said upper frequency band, or from another further parameter. There can be a separate individually assigned predetermined offset parameter for each of a plurality of frequency bands.
  • the above parameters could be such that a ‘MS_TXPWR_MAX_CCH’ corresponds to the first parameter, and ‘LB_MS_TXPWR_MAX_CCH’ corresponds to the second parameter.
  • this mapping can be achieved by setting code point 1 for MS_TXPWR_MAX_CCH parameter (and respectively for GPRS_MS_TXPWR_MAX_CCH if PBCCH is present) and for a new parameter code point 10 (assuming that existing mapping table specified in 3GPP TS 45.005 is used also for a new parameter).
  • Possible predetermined fixed offset values for different lower band frequencies may be set for example as follows (in the example relative to the 900 MHz band): Frequency band offset 900 MHz 0 dB 850 MHz 0 dB 700 MHz ⁇ 2 dB 400 MHz ⁇ 6 dB
  • maximum output power on different bands is controlled by predefining a frequency band specific offset for each frequency band in use at a cell, transmitting a power control parameter, and calculating the maximum output power value for transmissions on a specific frequency band from said power control parameter and the predefined offset value corresponding to this specific frequency band.
  • the frequency band specific offset could be defined for all bands in use at a base station, e.g. as follows using 900 MHz band as a reference band: Frequency band offset 1900 MHz +6 dB 1800 MHz +6 dB 900 MHz 0 dB 850 MHz 0 dB 700 MHz ⁇ 2 dB 400 MHz ⁇ 6 dB
  • This embodiment can advantageously be implemented by arranging a base station transmit a power control parameter according to prior art, and a second power control parameter.
  • mobile stations which are incapable of performing the inventive method obey the power control parameter transmitted according to prior art, and mobile stations which can perform according to the invention can use the second power control parameter and the predefined offset values for determining maximum transmission power levels in different frequency bands.
  • maximum transmission powers in different frequency bands are controlled by storing predetermined offset values in a mobile station and transmitting an indication from the network to the mobile station that these offset values are to be applied.
  • a maximum transmission power parameter for a predetermined frequency band such as, for example, the MS_TXPWR_MAX_CCH or GPRS_MS_TXPWR_MAX_CCH parameter
  • the transmission power parameter may be defined as for specific predetermined frequency bands.
  • a frequency band specific offset to this value may then be applied to other bands.
  • the invention is not limited to cellular systems, but can be implemented in different types of communication systems as well.
  • the embodiments are applicable to packet switched access and circuit switched access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
US11/214,071 2004-11-09 2005-08-29 Power control Abandoned US20060099986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/322,025 US7933626B2 (en) 2004-11-09 2009-01-27 Power control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0424735.9 2004-11-09
GB0424735A GB0424735D0 (en) 2004-11-09 2004-11-09 Power control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/322,025 Continuation US7933626B2 (en) 2004-11-09 2009-01-27 Power control

Publications (1)

Publication Number Publication Date
US20060099986A1 true US20060099986A1 (en) 2006-05-11

Family

ID=33523421

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/214,071 Abandoned US20060099986A1 (en) 2004-11-09 2005-08-29 Power control
US12/322,025 Expired - Lifetime US7933626B2 (en) 2004-11-09 2009-01-27 Power control

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/322,025 Expired - Lifetime US7933626B2 (en) 2004-11-09 2009-01-27 Power control

Country Status (16)

Country Link
US (2) US20060099986A1 (enrdf_load_stackoverflow)
EP (1) EP1810419B1 (enrdf_load_stackoverflow)
JP (1) JP2008519576A (enrdf_load_stackoverflow)
KR (1) KR100923694B1 (enrdf_load_stackoverflow)
CN (1) CN101053170A (enrdf_load_stackoverflow)
AT (1) ATE473559T1 (enrdf_load_stackoverflow)
AU (1) AU2005303556B2 (enrdf_load_stackoverflow)
BR (1) BRPI0518019B1 (enrdf_load_stackoverflow)
CA (1) CA2585572A1 (enrdf_load_stackoverflow)
DE (1) DE602005022217D1 (enrdf_load_stackoverflow)
GB (1) GB0424735D0 (enrdf_load_stackoverflow)
MX (1) MX2007005559A (enrdf_load_stackoverflow)
RU (1) RU2405255C2 (enrdf_load_stackoverflow)
SG (1) SG159536A1 (enrdf_load_stackoverflow)
TW (1) TWI382690B (enrdf_load_stackoverflow)
WO (1) WO2006051363A1 (enrdf_load_stackoverflow)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021236A1 (en) * 2009-07-24 2011-01-27 Clear Wireless Llc Quality of service based downlink power allocation
CN101977432A (zh) * 2007-03-30 2011-02-16 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置和方法
US20130273926A1 (en) * 2010-12-08 2013-10-17 Nokia Corporation Device-to-device communication scenario
US20150156731A1 (en) * 2013-11-29 2015-06-04 Samsung Sds Co., Ltd. Apparatus and method for controlling transmission power of terminal in wireless environment
US20170048807A1 (en) * 2014-05-05 2017-02-16 Huawei Device Co., Ltd. Power control method, user equipment, and base station
US20220132404A1 (en) * 2019-02-14 2022-04-28 Ntt Docomo, Inc. Terminal and radio communication control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10469205B2 (en) * 2005-07-27 2019-11-05 T-Mobile Usa, Inc. Application-based multi-band transmission
US8417296B2 (en) * 2008-06-05 2013-04-09 Apple Inc. Electronic device with proximity-based radio power control
US8295874B2 (en) * 2009-06-10 2012-10-23 Motorola Mobility Llc Femto-cell power control using idle-mode user equipment in a cellular communication system
JP2011249858A (ja) * 2010-04-30 2011-12-08 Ntt Docomo Inc 端末装置、基地局装置、移動通信システム、及び送信モード設定方法
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
US9300342B2 (en) 2013-04-18 2016-03-29 Apple Inc. Wireless device with dynamically adjusted maximum transmit powers
US9398456B2 (en) 2014-03-07 2016-07-19 Apple Inc. Electronic device with accessory-based transmit power control
US9791490B2 (en) 2014-06-09 2017-10-17 Apple Inc. Electronic device having coupler for tapping antenna signals
WO2020096663A1 (en) * 2019-07-23 2020-05-14 Futurewei Technologies, Inc. Uplink power control in multi-band transmission
CN112449414B (zh) 2019-08-30 2022-07-22 上海华为技术有限公司 一种发射功率的分配方法、网络设备以及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032841A1 (en) * 2002-08-13 2004-02-19 Alcatel Method and devices for operating a radio-based telecommunications system
US20040110525A1 (en) * 2001-12-14 2004-06-10 Black Peter J. Systems and techniques for channel gain computations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100208942B1 (ko) * 1997-01-20 1999-07-15 윤종용 부호분할다중접속 통신시스템의 수신신호 전력레벨 추적장치 및 방법
FI106901B (fi) * 1999-02-23 2001-04-30 Nokia Mobile Phones Ltd Menetelmä ja järjestely pakettidatan siirron hallitsemiseksi solukkojärjestelmässä
DE69940547D1 (de) * 1999-09-04 2009-04-23 Cinterion Wireless Modules Hol Mobilstation und Verfahren zur Einstellung der Ausgangsleistung während der Frequenzwiederdefinierung zwischen den Bändern
EP1367739A1 (de) * 2002-05-29 2003-12-03 Siemens Aktiengesellschaft Verfahren zur Sendeleistungssteuerung in einem Multiträger-Funksystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110525A1 (en) * 2001-12-14 2004-06-10 Black Peter J. Systems and techniques for channel gain computations
US20040032841A1 (en) * 2002-08-13 2004-02-19 Alcatel Method and devices for operating a radio-based telecommunications system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977432A (zh) * 2007-03-30 2011-02-16 株式会社Ntt都科摩 移动通信系统、基站装置、用户装置和方法
US8185146B2 (en) * 2009-07-24 2012-05-22 Clearwire Ip Holdings Llc Quality of service based downlink power allocation
US8311573B1 (en) 2009-07-24 2012-11-13 Clearwire Ip Holdings Llc Quality of service based downlink power allocation
US8311574B1 (en) 2009-07-24 2012-11-13 Clearwire Ip Holdings Llc Quality of service based downlink power allocation
US20110021236A1 (en) * 2009-07-24 2011-01-27 Clear Wireless Llc Quality of service based downlink power allocation
US9491766B2 (en) * 2010-12-08 2016-11-08 Nokia Technologies Oy Device-to-device communication scenario
US20130273926A1 (en) * 2010-12-08 2013-10-17 Nokia Corporation Device-to-device communication scenario
US20150156731A1 (en) * 2013-11-29 2015-06-04 Samsung Sds Co., Ltd. Apparatus and method for controlling transmission power of terminal in wireless environment
US9622195B2 (en) * 2013-11-29 2017-04-11 Samsung Sds Co., Ltd. Apparatus and method for controlling transmission power of terminal in wireless environment
US20170048807A1 (en) * 2014-05-05 2017-02-16 Huawei Device Co., Ltd. Power control method, user equipment, and base station
KR101821691B1 (ko) 2014-05-05 2018-01-24 후아웨이 디바이스 (둥관) 컴퍼니 리미티드 전력 제어 방법, 사용자 기기, 및 기지국
US9907032B2 (en) * 2014-05-05 2018-02-27 Huawei Device (Dongguan) Co., Ltd. Power control parameter configuration by base station
US20220132404A1 (en) * 2019-02-14 2022-04-28 Ntt Docomo, Inc. Terminal and radio communication control method

Also Published As

Publication number Publication date
SG159536A1 (en) 2010-03-30
KR100923694B1 (ko) 2009-10-27
AU2005303556B2 (en) 2010-02-25
MX2007005559A (es) 2007-06-14
WO2006051363A1 (en) 2006-05-18
US7933626B2 (en) 2011-04-26
CA2585572A1 (en) 2006-05-18
KR20070067240A (ko) 2007-06-27
GB0424735D0 (en) 2004-12-08
CN101053170A (zh) 2007-10-10
BRPI0518019A (pt) 2008-10-28
RU2007120463A (ru) 2008-12-20
TW200629768A (en) 2006-08-16
ATE473559T1 (de) 2010-07-15
RU2405255C2 (ru) 2010-11-27
DE602005022217D1 (de) 2010-08-19
EP1810419A1 (en) 2007-07-25
TWI382690B (zh) 2013-01-11
AU2005303556A1 (en) 2006-05-18
BRPI0518019A8 (pt) 2018-05-08
US20090143092A1 (en) 2009-06-04
BRPI0518019B1 (pt) 2019-06-04
EP1810419B1 (en) 2010-07-07
JP2008519576A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
US7933626B2 (en) Power control
US12160831B2 (en) Reference signal determination method and device, and UE
US20220110074A1 (en) Method for transmitting sidelink data, terminal device, and network device
CN101977432B (zh) 移动通信系统、基站装置、用户装置和方法
EP1994781B1 (en) Efficient utilization of transmission gaps for cell measurements
EP2206379B1 (en) Communications system
AU2005255830B2 (en) Method for selecting transport format combination guaranteed QoS in mobile communication system
US20060084459A1 (en) Outer loop power control of user equipment in wireless communication
US20020114315A1 (en) Method and apparatus for improving radio spectrum usage and decreasing user data delay when providing packet PSI status
US20080220766A1 (en) Method for Control of Radio Measurements in a Cellular Mobile Radio Communication System
JP3863427B2 (ja) 最適化休眠モード動作
US20050163074A1 (en) Method of communication
EP3855798A1 (en) Method for feeding back and receiving information, and device
WO2020029077A1 (zh) 一种信息传输方法及装置、终端
JP2006511132A (ja) モバイル通信ネットワークにおけるダイレクト・アップリンク接続のための方法、装置および基地局
US12232050B2 (en) Information reporting method and apparatus, and user equipment
US7797012B1 (en) Method of controlling power
EP1879406B1 (en) Transmission power level indication in a packet switched communication system
WO2010098404A1 (ja) 無線通信システム、無線基地局、無線端末及び通信制御方法
JP2959624B2 (ja) ランダムアクセス制御方式
CN113892299B (zh) 参考信号接收功率阈值的发送和接收方法及装置
US7545774B1 (en) Method for indicating power consumption in a packet switched communication system
CN115633385A (zh) 调整通信系统参数的方法及装置、非易失性存储介质
HK1112333A (en) Method and system for power control in multiband mobile station

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOKIA CORPORATION, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAITTINEN, RAMI;JOKINEN, HARRI;REEL/FRAME:017268/0044;SIGNING DATES FROM 20051020 TO 20051027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION