US20060076267A1 - Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms - Google Patents

Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms Download PDF

Info

Publication number
US20060076267A1
US20060076267A1 US11/285,630 US28563005A US2006076267A1 US 20060076267 A1 US20060076267 A1 US 20060076267A1 US 28563005 A US28563005 A US 28563005A US 2006076267 A1 US2006076267 A1 US 2006076267A1
Authority
US
United States
Prior art keywords
degrees
base oil
pour point
fischer
tropsch derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/285,630
Inventor
Stephen Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Priority to US11/285,630 priority Critical patent/US20060076267A1/en
Publication of US20060076267A1 publication Critical patent/US20060076267A1/en
Priority to US12/966,486 priority patent/US8216448B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/042Mixtures of base-materials and additives the additives being compounds of unknown or incompletely defined constitution only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/95Processing of "fischer-tropsch" crude

Definitions

  • This invention is directed to a process for improving the lubricating properties of a distillate base oil by blending it with a pour point depressing base oil blending component prepared from an isomerized Fischer-Tropsch derived bottoms.
  • the invention also includes the composition of the pour point depressing base oil blending component and of the base oil blend.
  • Lubricating base oil is the major constituent in these finished lubricants and contributes significantly to the properties of the finished lubricant.
  • a few lubricating base oils are used to manufacture a wide variety of finished lubricants by varying the mixtures of individual lubricating base oils and individual additives.
  • Lubricating base oils are base oils having a viscosity of about 3 cSt or greater at 100 degrees C., preferably about 4 cSt or greater at 100 degrees C.; a pour point of about 9 degrees C. or less, preferably about ⁇ 15 degrees C. or less; and a VI (viscosity index) that is usually about 90 or greater, preferably about 100 or greater.
  • lubricating base oils should have a Noack volatility no greater than current conventional Group I or Group II light neutral oils.
  • Group II base oils are defined as having a sulfur content of equal to or less than 300 ppm, saturates equal to 90 percent or greater, and a VI between 80 and 120.
  • a Group II base oil having a VI between about 110 and 120 is referred to in this disclosure as a Group II plus base oil.
  • Group III base oils are defined as having a sulfur content of equal to or less than 300 ppm, saturates equal to 90 percent or greater, and a VI of greater than 120. It would be advantageous to be able to boost the VI of a Group II base oil into the Group II plus and the Group III base oil range.
  • the present invention makes it possible to lower pour point and raise VI. Depending upon the amount of pour point depressing base oil blending component added to the base oil blend, the Noack volatility may also be lowered and the viscosity of the base oil may be raised.
  • Base oil refers to a hydrocarbon product having the above properties prior to the addition of additives. That is, the term “base oil” generally refers to a petroleum or syncrude fraction recovered from the fractionation operation. “Additives” are chemicals which are added to improve certain properties in the finished lubricant so that it meets relevant specifications. Conventional pour point additives are expensive and add to the cost of the finished lubricant. Some additives also present solubility problems and require their use along with a solvent. Consequently, it is desirable to use the minimum amount of an additive necessary to produce an on specification lubricant.
  • pour point which is an important property of base oils intended for blending into finished lubricants is the lowest temperature at which movement of the base oil is observed. In order to meet the relevant pour point specification for a finished lubricant, it is often necessary to lower the pour point of the base oil by the addition of an additive.
  • Conventional additives which have been used to lower the pour point of base oils are referred to as pour point depressants (PPDs) and typically are polymers with pendant hydrocarbon chains that interact with the paraffins in the base by inhibiting the formation of large wax crystal lattices.
  • pour point depressants examples include ethylene-vinyl-acetate copolymers, vinyl-acetate olefin copolymers, alkyl-esters of styrene-maleic-anhydride copolymers, alkyl-esters of unsaturated-carboxylic acids, polyalkylacrylates, polyalklymethacrylates, alkyl phenols, and alpha-olefin copolymers.
  • Many of the known pour point depressants are solid at ambient temperature and must be diluted drastically with solvent prior to use. See Factors Affecting Performance of Crude Oil Wax - Control Additives by J. S. Manka and K. L. Ziegler, World Oil, June 2001, pages 75-81.
  • pour point depressants taught in the literature have a wax-like paraffinic part, which co-crystallizes with the wax-forming components in the oil, and a polar part which hinders crystal growth.
  • the pour point depressing base oil blending component employed in the present invention differs from pour point depressants known from the prior art in being essentially both aromatic-free and polar-free.
  • One of the advantages of the present invention is that the pour point depressing base oil blending component of the present invention is not an additive in the conventional sense.
  • the pour point depressing base oil blending component used in the invention is only a high boiling syncrude fraction which has been isomerized under controlled conditions to give a specified degree of alkyl branching in the molecule. Therefore, it does not lend itself to problems which have been associated with the use of conventional additives.
  • Syncrude prepared from the Fischer-Tropsch process comprises a mixture of various solid, liquid, and gaseous hydrocarbons.
  • Those Fischer-Tropsch products which boil within the range of lubricating base oil contain a high proportion of wax which makes them ideal candidates for processing into lubricating base oil stocks.
  • the hydrocarbon products recovered from the Fischer-Tropsch process have been proposed as feedstocks for preparing high quality lubricating base oils.
  • the Fischer-Tropsch waxes are converted into Fischer-Tropsch base oils by various processes, such as by hydroprocessing and distillation, the base oils produced fall into different narrow-cut viscosity ranges.
  • Fischer-Tropsch cuts which have properties which make them suitable for preparing lubricating base oils are particularly advantageous for blending with marginal quality conventional base oils or Fischer-Tropsch derived base oils due to their low volatility, low sulfur content, and excellent cold flow properties.
  • the bottoms that remains after recovering the lubricating base oil cuts from the vacuum column is generally unsuitable for use as a lubricating base oil itself and is usually recycled to a hydrocracking unit for conversion to lower molecular weight products.
  • Applicant has found that the high molecular weight hydrocarbons associated with the bottoms when properly processed are particularly useful for improving the lubricating properties of base oils, either conventionally derived or Fischer-Tropsch derived.
  • a “Fischer-Tropsch derived” refers to a hydrocarbon stream in which a substantial portion, except for added hydrogen, is derived from a Fischer-Tropsch process regardless of subsequent processing steps.
  • a “Fischer-Tropsch derived bottoms” refers to a hydrocarbon product recovered from the bottom of a fractionation column, usually a vacuum column, which was initially derived from the Fischer-Tropsch process.
  • conventional base oils this disclosure is referring to conventional petroleum derived lubricating base oils produced using petroleum refining processes well documented in the literature and known to those skilled in the art.
  • the term “distillate base oil” refers to either a “Fischer-Tropsch derived” or “conventional” base oil recovered as a side stream from a fractionation column as opposed to the “bottoms”.
  • the word “comprises” or “comprising” is intended as an open-ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements.
  • the phrase “consists essentially of” or “consisting essentially of” is intended to mean the exclusion of other elements of any essential significance to the composition.
  • the phrase “consisting of” or “consists of” are intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities.
  • the present invention is directed to a method for improving the lubricating properties of a distillate base oil characterized by a pour point of 0 degrees C. or less and a boiling range having the 10 percent point falling between about 625 degrees F. and about 790 degrees F. and the 90 percent point falling between about 725 degrees F. and about 950 degrees F.
  • the method comprises blending with said distillate base oil a sufficient amount of a pour point depressing base oil blending component to reduce the pour point of the resulting base oil blend at least 3 degrees C. below the pour point of the distillate base oil, wherein the pour point depressing base oil blending component is an isomerized Fischer-Tropsch derived bottoms product having a pour point that is at least 3 degrees C.
  • the isomerized Fischer-Tropsch derived bottoms product used to lower the pour point of the lubricating base oil is usually recovered as the bottoms from the vacuum column of a Fischer-Tropsch operation.
  • the average molecular weight of the pour point depressing base oil blending component usually will fall within the range of from about 600 to about 1100 with an average molecular weight between about 700 and about 1000 being preferred.
  • the pour point of the pour point depressing base oil blending component will be between about ⁇ 9 degrees C. and about 20 degrees C.
  • the 10 percent point of the boiling range of the pour point depressing base oil blending component usually will be within the range of from about 850 degrees F. and about 1050 degrees F.
  • the invention is also directed to a pour point depressing base oil blending component suitable for lowering the pour point of a base oil which comprises an isomerized Fischer-Tropsch derived bottoms product having an average molecular weight between about 600 and about 1100 and an average degree of branching in the molecules between about 6.5 and about 10 alkyl branches per 100 carbon atoms.
  • the distillate base oil may be either a conventional petroleum-derived base oil or a Fischer-Tropsch derived base oil. It may be a light neutral base oil or a medium neutral base oil.
  • the cloud point of the base oil blend may be raised. Therefore, if the cloud point of the base oil blend is a critical specification, the distillate base oil must have a cloud point no higher than the target cloud point.
  • the cloud point of the distillate base oil will be lower than the target specification to allow for some rise in the cloud point and still meet the specification.
  • Base oils intended for use in certain finished lubricants often require a cloud point of 0 degrees C. or less. Therefore, for base oils intended for those applications, a cloud point below 0 degrees C. is desirable.
  • the present invention In addition to lowering the pour point of the distillate base oil, the present invention also has been observed to increase the VI. In the case of both pour point and VI, the degree of change in these values could not have been predicted by only observing the properties of the individual components. In each case a premium was observed. That is to say, the pour point of the blend containing the distillate base oil and the pour point depressing base oil blending component is not merely a proportional averaging of the two pour points, but the value obtained is significantly lower than would be expected. The pour point in many cases has been observed to be lower than the value for either of the two individual components. The same is also true for VI.
  • the VI of the mixture is not the proportional average of the VI's for the two components but is higher than would be expected, and in many cases, the VI of the base oil blend will exceed the VI of either component.
  • the pour point depressing base oil blending component will comprise no more than about 15 weight percent of the base oil of the blend, more preferably 7 weight percent or less, and most preferably 3.5 weight percent or less. Since it is usually desirable to maintain as low a cloud point as possible for the base oil blend, only the minimum amount of the pour point depressing base oil blending component necessary to meet the pour point and/or VI specifications is added to the distillate base oil. The pour point depressing base oil component will also increase the viscosity of the blend. Therefore the amount of the pour point depressing base oil component which can be added may also be limited by the upper viscosity limit.
  • Pour point refers to the temperature at which a sample of the distillate base oil or the isomerized Fischer-Tropsch derived bottoms will begin to flow under carefully controlled conditions.
  • ASTM D-5950 or its equivalent.
  • Cloud point is a measurement complementary to the pour point, and is expressed as a temperature at which a sample begins to develop a haze under carefully specified conditions. Cloud points in this specification were determined by ASTM D-5773-95 or its equivalent.
  • Kinematic viscosity described in this disclosure was measured by ASTM D-445 or its equivalent. VI may be determined by using ASTM D-2270-93 (1998) or its equivalent.
  • an equivalent analytical method to the standard reference method refers to any analytical method which gives substantially the same results as the standard method.
  • Molecular weight may be determined by ASTM D-2502, ASTM D-2503, or other suitable method.
  • molecular weight is preferably determined by ASTM D-2503-02.
  • the branching properties of the pour point depressing base oil blending component of the present invention was determined by analyzing a sample of oil using carbon-13 NMR according to the following seven-step process. References cited in the description of the process provide details of the process steps. Steps 1 and 2 are performed only on the initial materials from a new process.
  • the average carbon number may be determined with sufficient accuracy for lubricant materials by dividing the molecular weight of the sample by 14 (the formula weight of CH 2 ).
  • the number of branches per molecule is the sum of the branches found in step 4.
  • the number of alkyl branches per 100 carbon atoms is calculated from the number of branches per molecule (step 6) times 100/average carbon number.
  • Measurements can be performed using any Fourier Transform NMR spectrometer.
  • the measurements are performed using a spectrometer having a magnet of 7.0T or greater.
  • the spectral width was limited to the saturated carbon region, about 0-80 ppm vs. TMS (tetramethylsilane).
  • Solutions of 15-25 percent by weight in chloroform-d1 were excited by 45 degrees pulses followed by a 0.8 sec acquisition time.
  • the proton decoupler was gated off during a 10 sec delay prior to the excitation pulse and on during acquisition. Total experiment times ranged from 11-80 minutes.
  • the DEPT and APT sequences were carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
  • DEPT Distortionless Enhancement by Polarization Transfer. DEPT does not show quaternaries.
  • the DEPT 45 sequence gives a signal all carbons bonded to protons.
  • DEPT 90 shows CH carbons only.
  • DEPT 135 shows CH and CH 3 up and CH 2 180 degrees out of phase (down).
  • APT is Attached Proton Test. It allows all carbons to be seen, but if CH and CH 3 are up, then quaternaries and CH 2 are down.
  • the sequences are useful in that every branch methyl should have a corresponding CH. And the methyls are clearly identified by chemical shift and phase. Both are described in the references cited.
  • the branching properties of each sample were determined by C-13 NMR using the assumption in the calculations that the entire sample was iso-paraffinic. Corrections were not made for n-paraffins or naphthenes, which may have been present in the oil samples in varying amounts.
  • the naphthenes content may be measured using Field Ionization Mass Spectroscopy (FI
  • the isomerized Fischer-Tropsch derived product which is employed as a pour point depressing base oil blending component in the present invention is separated as a high boiling bottoms fraction from the hydrocarbons produced during a Fischer-Tropsch synthesis reaction.
  • the Fischer-Tropsch syncrude as initially recovered from the Fischer-Tropsch synthesis contains a waxy fraction that is normally a solid at room temperature.
  • the waxy fraction may be produced directly from the Fischer-Tropsch syncrude or it may be prepared from the oligomerization of lower boiling Fischer-Tropsch derived olefins. Regardless of the source of the Fischer-Tropsch wax, it must contain hydrocarbons boiling above about 900 degrees F.
  • the Fischer-Tropsch wax is isomerized to introduce favorable branching into the molecules.
  • the isomerized Fischer-Tropsch derived wax will usually be sent to a vacuum column where the various distillate base oil cuts are collected. These distillate base oil fractions may be used to prepare the lubricating base oil blends of the present invention, or they may be cracked into lower boiling products, such as diesel or naphtha.
  • the bottoms material collected from the vacuum column comprises a mixture of high boiling hydrocarbons which is used to prepare the pour depressing base oil blending component of the present invention.
  • the Fischer-Tropsch derived waxy fraction may undergo various other operations, such as hydrocracking, hydrotreating, and hydrofinishing.
  • the pour point depressing base oil blending component of the present invention is not an additive in the normal use of this term within the art, since it is really only a high boiling fraction recovered from the Fischer-Tropsch syncrude.
  • the pour point of the lubricating base oil blend will be below the pour point of both the pour point depressing base oil blending component and the distillate base oil. Therefore, it is usually not necessary to reduce the pour point of the Fischer-Tropsch derived bottoms to the target pour point of the lubricating base oil blend. Accordingly, the actual degree of isomerization need not be as high as might otherwise be expected, and the isomerization reactor may be operated at a lower severity with less cracking and less yield loss.
  • the Fischer-Tropsch derived bottoms should not be over isomerized or its ability to act as a pour point depressing base oil blending component will be compromised. Accordingly, the average degree of branching in the molecules of the bottoms should fall within the range of from about 6.5 to about 10 alkyl branches per 100 carbon atoms.
  • the pour point depressing base oil blending component will have an average molecular weight between about 600 and about 1100, preferably between about 700 and about 1000.
  • the kinematic viscosity at 100 degrees C. will usually fall within the range of from about 8 cSt to about 22 cSt.
  • the 10 percent point of the boiling range of the bottoms typically will fall between about 850 degrees F. and about 1050 degrees F.
  • the higher molecular weight hydrocarbons are more effective as pour point depressing base oil blending components than the lower molecular weight hydrocarbons. Consequently, higher cut points in the fractionation column which result in a higher boiling bottoms material are usually preferred when preparing the pour point depressing base oil blending component.
  • the higher cut point also has the advantage of resulting in a higher yield of the distillate base oil fractions.
  • distillate fraction or “distillate” refers to a side stream product recovered either from an atmospheric fractionation column or from a vacuum column as opposed to the “bottoms” which represents the residual higher boiling fraction recovered from the bottom of the column.
  • Atmospheric distillation is typically used to separate the lighter distillate fractions, such as naphtha and middle distillates, from a bottoms fraction having an initial boiling point above about 700 degrees F. to about 750 degrees F. (about 370 degrees C. to about 400 degrees C.).
  • Vacuum distillation is typically used to separate the higher boiling material, such as the distillate base oil fractions which are used in carrying out the present invention.
  • the distillate base oil and the Fischer-Tropsch derived bottoms product are usually recovered from the vacuum distillation column, although the invention is not intended to be limited to any particular mode of separating the components.
  • the distillate base oil fractions used in carrying out the invention are characterized by a pour point of 0 degrees C. or less and a boiling range having the 10 percent point falling between about 625 degrees F. and about 790 degrees F. and the 90 percent point falling between about 725 degrees F. and about 950 degrees F. Usually the 90 percent point will fall between about 725 degrees F. and 900 degrees F.
  • the distillate base oil may be either conventionally derived from the refining of petroleum or syncrude recovered from a Fischer-Tropsch synthesis reaction.
  • the distillate base oil may be a light neutral base oil or a medium neutral base oil.
  • the distillate base oil will usually have a kinematic viscosity at 100 degrees C. between about 2.5 cSt and about 7 cSt.
  • the viscosity will be between about 3 cSt and about 7 cSt at 100 degrees C. If the target cloud point for the lubricating base oil blend is 0 degrees C., the cloud point of the distillate base oil preferably should be 0 degrees C. or less.
  • distillate base oil contains a high proportion of wax, such as with a Fischer-Tropsch derived base oil
  • Hydroisomerization which is used in the preparation of the isomerized Fischer-Tropsch derived bottoms may also be advantageously used to dewax the distillate base oil fraction. Hydroisomerization is particularly preferred when both the distillate base oil and the pour point depressing base oil blending component are recovered from a Fischer-Tropsch operation. Typically in such operations the entire base oil fraction which contains a great amount of wax is isomerized followed by fractionation in a vacuum column.
  • the present invention is particularly advantageous when used with distillate base oils having a VI of less than 110, since such base oils are usually unsuitable for preparing high quality lubricants without the addition of significant amounts of VI improvers. Due to the VI premium which has been observed when using the pour point depressing base oil blending component of the invention, the VI of marginal base oils may be significantly improved without the use of conventional additives.
  • the pour point depressing base oil blending component of the present invention by increasing the VI, makes it possible to upgrade Group II base oils having a VI of less than 110 up to Group II plus base oils. It is also possible by using the present invention to upgrade Group II base oils to Group III base oils.
  • a lubricating base oil blend prepared according to the process of the present invention will have a kinematic viscosity greater than about 3 cSt at 100 degrees C. Usually the kinematic viscosity at 100 degrees C. will not exceed about 8 cSt.
  • the lubricating base oil blend will also have a pour point below about ⁇ 9 degrees C. and a VI that is usually greater than about 90.
  • the kinematic viscosity at 100 degrees C. will be between about 3 cSt and about 7 cSt, the pour point will be about ⁇ 15 degrees C. or less, and the VI will be about 100 or higher. Even more preferably the VI will be 110 or higher.
  • the cloud point of the lubricating base oil preferably will be 0 degrees C. or below.
  • the pour point of the lubricating base oil blend will be at least 3 degrees C. lower than the pour point of the lower viscosity component of the blend.
  • the pour point of the blend will be at least 6 degrees C. below the pour point of the distillate base oil and more preferably at least 9 degrees C. below the pour point of the distillate base oil.
  • the VI of the blend will preferably be raised by at least three numbers above the VI of the distillate base oil.
  • the properties of the lubricating base oils prepared using the process of the invention are achieved by blending the distillate base oil with the minimum amount of the pour point depressing base oil blending component necessary to meet the desired specifications for the product.
  • the pour point depressing base oil blending component usually will not comprise more than about 15 weight percent of the base oil blend. Preferably, it will comprise 7 weight percent or less, and most preferably the pour point depressing base oil blending component will comprise 3.5 weight percent or less of the blend.
  • the minimum amount of the pour point depressing base oil blending component to meet the desired specifications for pour point and VI are usually preferred to avoid raising the cloud point and/or viscosity of the blend to an unacceptable level. At the lower levels of addition, the effect on cloud point is generally negligible.
  • VI premium refers to a VI boost in which the VI of the blend is significantly higher than would have been expected from a mere proportional averaging of the Vi's for the two fractions.
  • the improvement in VI resulting from the practice of the present invention makes it possible to produce a Group III base oil, i.e., a base oil having a VI greater than 120, from a Group II base oil, i.e., a base oil having a VI between 80 and 120.
  • a Group II plus base oil may also be prepared from a Group II base oil having a VI below about 110.
  • the base oil In order to qualify as a Group II base oil, the base oil must contain 300 ppm of sulfur or less. In the case of a conventional petroleum derived distillate base oil having a marginal sulfur content, blending in the isomerized high boiling Fischer-Tropsch product may also serve to lower the sulfur content to meet sulfur specifications. Fischer-Tropsch derived hydrocarbons contain very low levels of sulfur and, therefore, are ideal for blending with marginal conventional petroleum derived base oils to meet sulfur specifications.
  • a further advantage of the process of the present invention is that the volatility of the lubricating base oil blend may be lowered relative to that of the distillate base oil fraction.
  • the pour point depressing base oil blending component is characterized by a very low Noack volatility. Consequently, depending upon how much of the pour point depressing base oil blending component is blended with the distillate base oil, the lubricating base oil blend may have a lower Noack volatility than the distillate base oil fraction alone.
  • Lubricating base oil blends prepared according to the process of the present invention display a distinctive boiling range profile. Therefore, the lubricating base oil blend comprising the distillate base oil and the pour point depressing base oil blending component may be described as a lubricating base oil having a viscosity at 100 degrees C. between about 3 cSt and about 8 cSt and further containing a high boiling fraction boiling above about 900 degrees F. and a low boiling fraction boiling below about 900 degrees F., wherein when the high boiling fraction is distilled out the low boiling fraction will have a higher pour point than the entire lubricating base oil.
  • the low boiling fraction corresponds to the distillate base oil
  • the high boiling fraction corresponds to the pour point depressing base oil blending component.
  • Lubricating base oil blends of the invention may be identified by using simulated distillation to determine the 900 degrees F. weight percent point. For instance, if the blend is 85 weight percent below 900 degrees F., one would distill off, by conventional distillation methods well known to those skilled in the art, 85 weight percent of the blend to get a 900 degrees F. cutpoint.
  • Hydroisomerization is intended to improve the cold flow properties of Fischer-Tropsch derived or petroleum derived wax by the selective addition of branching into the molecular structure.
  • Waxy petroleum derived base oils also may be advantageously isomerized in preparing them for use in the present invention.
  • Isomerization ideally will achieve high conversion levels of the wax to non-waxy iso-paraffins while at the same time minimizing the conversion by cracking. Since wax conversion can be complete, or at least very high, this process typically does not need to be combined with additional dewaxing processes to produce a high boiling Fischer-Tropsch product with an acceptable pour point.
  • Isomerization operations suitable for use with the present invention typically use a catalyst comprising an acidic component and may optionally contain an active metal component having hydrogenation activity.
  • the acidic component of the catalyst preferably includes an intermediate pore SAPO, such as SAPO-11, SAPO-31, and SAPO41, with SAPO-11 being particularly preferred.
  • Intermediate pore zeolites such as ZSM-22, ZSM-23, SSZ-32, ZSM-35, and ZSM48, also may be used in carrying out the isomerization.
  • Typical active metals include molybdenum, nickel, vanadium, cobalt, tungsten, zinc, platinum, and palladium. The metals platinum and palladium are especially preferred as the active metals, with platinum most commonly used.
  • intermediate pore size refers to an effective pore aperture in the range of from about 4.0 to about 7.1 Angstrom (as measured along both the short or long axis) when the porous inorganic oxide is in the calcined form.
  • Molecular sieves having pore apertures in this range tend to have unique molecular sieving characteristics. Unlike small pore zeolites such as erionite and chabazite, they will allow hydrocarbons having some branching into the molecular sieve void spaces.
  • SAPO silicoaluminophosphate molecular sieve
  • Non-zeolitic molecular sieves include tetrahedrally-coordinated [AlO2] and [PO2] oxide units which may optionally include silica. See U.S. Pat. No. 5,514,362.
  • Catalysts containing non-zeolitic molecular sieves, particularly catalysts containing SAPO's, on which the metal has been deposited using a non-aqueous method have shown greater selectivity and activity than those catalysts which have used an aqueous method to deposit the active metal.
  • solvent dewaxing is used to remove small amounts of any remaining waxy molecules from the lubricating base oil after hydroisomerization.
  • solvent dewaxing may optionally be used to enhance the pour point depressing properties of the isomerized Fischer-Tropsch derived bottoms.
  • the waxy fraction recovered from the solvent dewaxing step was found to be more effective in lowering pour point than the oily fraction.
  • Solvent dewaxing is done by dissolving the Fischer-Tropsch derived bottoms in a solvent, such as methyl ethyl ketone, methyl iso-butyl ketone, or toluene. See U.S. Pat. Nos. 4,477,333; 3,773,650; and 3,775,288.
  • a hydrotreated Fischer-Tropsch wax (having the specifications shown in Table I) was hydroisomerized over a Pt/SAPO-11 catalyst containing 15 weight percent alumina binder.
  • Run conditions included a liquid hourly space velocity (LHSV) of 1.0, a total pressure of 1000 psig, a once-through hydrogen rate of 5300 SCF/bbl, and a reactor temperature of 680 degrees F.
  • LHSV liquid hourly space velocity
  • the catalyst was pre-sulfided at the start of the run using DMDS in dodecane at 645 degrees F., with 6 moles S fed per mole of Pt.
  • the product from the hydroisomerization reactor went directly to a hydrofinishing reactor containing a Pt—Pd/SiO2—Al2O3 catalyst, at a LHSV of 2.1, and a temperature of 450 degrees F., with the same pressure and hydrogen rate as in the isomerization reactor.
  • the product from this reactor went to a high pressure separator, with the liquid going to a stripper, then to product collection.
  • the 650 degrees F+ bottoms product (having the specifications shown in Table II), which had a pour point of ⁇ 19 degrees C. was fractionated into a 650-750 degrees F. cut, a 750-850 degrees F. cut, an 850-950 degrees F. cut, and a 950 degrees F+ bottoms. Inspections on these cuts are given in Table II, showing all the cuts to have pour points greater than the ⁇ 19 degrees C. of the whole 650 degrees F+ bottoms. Recombining the cuts in the same proportions as in the distillation again gave a composite of ⁇ 19 degrees C. pour point.
  • Example 2 A run similar to that in Example 2 was carried out on a feed similar to that of Table I.
  • the 650 degrees F+bottoms product was cut into three fractions, a 650-730 degrees F. cut, a 730-930 degrees F. cut, a 930-1000 degrees F. cut, and a 1000 degrees F+ bottoms. Inspections of the three highest boiling cuts are given in Table VI. TABLE VI Inspections of 650° F.+ of Isomerized FT Wax 730-930° F. 930-1000° F. 1000° F.+ Pour Point, ° C. ⁇ 17 ⁇ 17 ⁇ 6 Cloud Point, ° C. ⁇ 10 +1 +20 Viscosity, 40° C., cSt 18.3 46.5 114.0 100° C., cSt 4.3 8.3 16.6 VI 147 156 157 Sim. Dist., Wt. %, ° F. ST/5 665/708 940/978 10/30 727/777 996/1040 50 818 1077 70/90 861/920 1121/1196 95/EP 949/1023 1235/1310
  • Blends of the 730-930 degrees F. cut and the 1000 degrees F+ cut were prepared. Results are shown in Table VII. These show the blends to have lower pour points than either fraction separately. In the 85/15 case, the VI is higher than for either fraction separately. TABLE VII Inspections on Blends of the 730-930° F. Cut and 1000° F.+ Cut from Table VI Blend, Wt./Wt. % 85/15 93/7 96.5/3.5 Pour Point, ° C. ⁇ 28 ⁇ 28 ⁇ 22 Cloud Pt, ° C. +6 0 ⁇ 4 Viscosity, 40° C., cSt 24.06 20.95 19.57 100° C., cSt 5.282 4.759 4.515 VI 161 154 150
  • Blends of the 930-1000 degrees F. cut from Table VI and the 1000 degrees F+ cut were prepared. Results are shown in Table VIII. These show the pour point reduction of these blends to be considerably less than in Example 3. TABLE VIII Inspections on Blends of the 930-1000° F. Cut and 1000° F.+ Cut from Table VI Blend, Wt./Wt. % 93/7 96.5/3.5 Pour Point, ° C. ⁇ 15 ⁇ 12 Cloud Pt, ° C. ⁇ 2 +5 Viscosity, 40° C., cSt 49.35 47.91 100° C., cSt 8.753 8.556 VI 157 157
  • the hydrotreated FT wax of Table I was isomerized over a Pt/SSZ-32 catalyst at the same conditions as in Example 1, except for an isomerization temperature of 690 degrees F.
  • the 650 degrees F+ bottoms product (Table IX), which had a pour point of ⁇ 21 degrees C. was fractionated into a 650-750 degrees F. cut, a 750-850 degrees F. cut, a 850-950 degrees F. cut, and a 950 degrees F+ bottoms. Inspections on these cuts are given in Table IX, showing all the cuts to have pour points greater than the ⁇ 21 degrees C. of the whole 650 degrees F+ bottoms. Recombining the cuts in the same proportions as in the distillation gave a composite of ⁇ 25 degrees C. pour point. A blend of 85 weight percent of the 650-750 degrees F. 3.0 cSt cut and 15 weight percent of the 950 degrees F+ bottoms was prepared.
  • the blend had a pour point of ⁇ 26 degrees C. (Table X), lower than the pour point of either cut separately. Furthermore, the VI of the 3.8 cSt blend was 7 numbers higher than the 3.8 cSt fraction produced by isomerization only, and the pour point was 20 degrees C. lower. TABLE IX Inspections of 650° F.+ of FT Wax Isomerized at 1000 psig over Pt/SSZ-32 Gravity, ° API 41.1 Pour Point, ° C. ⁇ 21 Cloud Point, ° C. +15 Viscosity, 40° C., cSt 22.06 100° C., cSt 5.081 VI 169 650-750° F. 750-850° F. 850-950° F.
  • the 1000 degrees F+ bottoms of Table VI was solvent dewaxed at ⁇ 30 degrees C. to give a dewaxed oil fraction of 14.7 weight percent and a waxy fraction of 84.8 weight percent. Adding 1 weight percent of the dewaxed oil fraction to the 730-930 degrees F. fraction of Table VI gave a blend of ⁇ 13 degrees C. pour point, higher than the pour point of the 730-930 degrees F. fraction.
  • the wax fraction from Comparative Example B was solvent dewaxed at ⁇ 10 degrees C. to give a dewaxed oil fraction of 79.3 weight percent, and a waxy fraction of 20.2 weight percent. Inspections of these fractions are given in Table XI. TABLE XI Inspections of the Fractions from Solvent Dewaxing the 1000° F.+ Waxy Fraction from Comparative Example B at ⁇ 10° C. Fraction Dewaxed Oil Waxy Fraction Pour Point, ° C. ⁇ 5 +10 Cloud Point, ° C. +18 +30 Viscosity, 40° C., cSt 114.4 127.5 100° C., cSt 16.72 18.74 VI 159 166
  • Blends with the 730-930 degrees F. fraction of Table VI were prepared. Results are shown in Table XII. These show the waxy fraction to be more effective at reducing pour point than the dewaxed oil fraction, requiring only 1 weight percent to lower the pour point of the 730-930 degrees F. cut from ⁇ 17 degrees C. to ⁇ 24 degrees C. TABLE XII Inspections of Blends of 730-930° F. Cut of Table VI with the 1000° F.+ Dewaxed Oil (DWO) or Waxy Fractions of Example 5 Blend, Wt./Wt. % 94/6 97/3 99/1 1000° F.+ Blend DWO DWO Waxy Component Pour Point, ° C.
  • DWO Dewaxed Oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A method for improving the lubricating properties of a distillate base oil characterized by a pour point of 0 degrees C. or less and a boiling range having the 10 percent point falling between about 625 degrees F. and about 790 degrees F. and the 90 percent point falling between about 725 degrees F. and about 950 degrees F., the method comprises blending with said distillate base oil a sufficient amount of a pour point depressing base oil blending component to reduce the pour point of the resulting base oil blend at least 3 degrees C. below the pour point of the distillate base oil, wherein the pour point depressing base oil blending component is an isomerized Fischer-Tropsch derived bottoms product having a pour point that is at least 3 degrees C. higher than the pour point of the distillate base oil.

Description

    FIELD OF THE INVENTION
  • This invention is directed to a process for improving the lubricating properties of a distillate base oil by blending it with a pour point depressing base oil blending component prepared from an isomerized Fischer-Tropsch derived bottoms. The invention also includes the composition of the pour point depressing base oil blending component and of the base oil blend.
  • BACKGROUND OF THE INVENTION
  • Finished lubricants used for automobiles, diesel engines, axles, transmissions, and industrial applications consist of two general components, a lubricating base oil and additives. Lubricating base oil is the major constituent in these finished lubricants and contributes significantly to the properties of the finished lubricant. In general, a few lubricating base oils are used to manufacture a wide variety of finished lubricants by varying the mixtures of individual lubricating base oils and individual additives.
  • Numerous governing organizations, including original equipment manufacturers (OEM's), the American Petroleum Institute (API), Association des Consructeurs d'Automobiles (ACEA), the American Society of Testing and Materials (ASTM), and the Society of Automotive Engineers (SAE), among others, define the specifications for lubricating base oils and finished lubricants. Increasingly, the specifications for finished lubricants are calling for products with excellent low temperature properties, high oxidation stability, and low volatility. Currently, only a small fraction of the base oils manufactured today are able to meet these demanding specifications.
  • Lubricating base oils are base oils having a viscosity of about 3 cSt or greater at 100 degrees C., preferably about 4 cSt or greater at 100 degrees C.; a pour point of about 9 degrees C. or less, preferably about −15 degrees C. or less; and a VI (viscosity index) that is usually about 90 or greater, preferably about 100 or greater. In general, lubricating base oils should have a Noack volatility no greater than current conventional Group I or Group II light neutral oils. Group II base oils are defined as having a sulfur content of equal to or less than 300 ppm, saturates equal to 90 percent or greater, and a VI between 80 and 120. A Group II base oil having a VI between about 110 and 120 is referred to in this disclosure as a Group II plus base oil. Group III base oils are defined as having a sulfur content of equal to or less than 300 ppm, saturates equal to 90 percent or greater, and a VI of greater than 120. It would be advantageous to be able to boost the VI of a Group II base oil into the Group II plus and the Group III base oil range. The present invention makes it possible to lower pour point and raise VI. Depending upon the amount of pour point depressing base oil blending component added to the base oil blend, the Noack volatility may also be lowered and the viscosity of the base oil may be raised.
  • Base oil refers to a hydrocarbon product having the above properties prior to the addition of additives. That is, the term “base oil” generally refers to a petroleum or syncrude fraction recovered from the fractionation operation. “Additives” are chemicals which are added to improve certain properties in the finished lubricant so that it meets relevant specifications. Conventional pour point additives are expensive and add to the cost of the finished lubricant. Some additives also present solubility problems and require their use along with a solvent. Consequently, it is desirable to use the minimum amount of an additive necessary to produce an on specification lubricant.
  • Pour point which is an important property of base oils intended for blending into finished lubricants is the lowest temperature at which movement of the base oil is observed. In order to meet the relevant pour point specification for a finished lubricant, it is often necessary to lower the pour point of the base oil by the addition of an additive. Conventional additives which have been used to lower the pour point of base oils are referred to as pour point depressants (PPDs) and typically are polymers with pendant hydrocarbon chains that interact with the paraffins in the base by inhibiting the formation of large wax crystal lattices. Examples of pour point depressants known to the art include ethylene-vinyl-acetate copolymers, vinyl-acetate olefin copolymers, alkyl-esters of styrene-maleic-anhydride copolymers, alkyl-esters of unsaturated-carboxylic acids, polyalkylacrylates, polyalklymethacrylates, alkyl phenols, and alpha-olefin copolymers. Many of the known pour point depressants are solid at ambient temperature and must be diluted drastically with solvent prior to use. See Factors Affecting Performance of Crude Oil Wax-Control Additives by J. S. Manka and K. L. Ziegler, World Oil, June 2001, pages 75-81. Pour point depressants taught in the literature have a wax-like paraffinic part, which co-crystallizes with the wax-forming components in the oil, and a polar part which hinders crystal growth. The pour point depressing base oil blending component employed in the present invention differs from pour point depressants known from the prior art in being essentially both aromatic-free and polar-free. One of the advantages of the present invention is that the pour point depressing base oil blending component of the present invention is not an additive in the conventional sense. The pour point depressing base oil blending component used in the invention is only a high boiling syncrude fraction which has been isomerized under controlled conditions to give a specified degree of alkyl branching in the molecule. Therefore, it does not lend itself to problems which have been associated with the use of conventional additives.
  • Syncrude prepared from the Fischer-Tropsch process comprises a mixture of various solid, liquid, and gaseous hydrocarbons. Those Fischer-Tropsch products which boil within the range of lubricating base oil contain a high proportion of wax which makes them ideal candidates for processing into lubricating base oil stocks. Accordingly, the hydrocarbon products recovered from the Fischer-Tropsch process have been proposed as feedstocks for preparing high quality lubricating base oils. When the Fischer-Tropsch waxes are converted into Fischer-Tropsch base oils by various processes, such as by hydroprocessing and distillation, the base oils produced fall into different narrow-cut viscosity ranges. Those Fischer-Tropsch cuts which have properties which make them suitable for preparing lubricating base oils are particularly advantageous for blending with marginal quality conventional base oils or Fischer-Tropsch derived base oils due to their low volatility, low sulfur content, and excellent cold flow properties. The bottoms that remains after recovering the lubricating base oil cuts from the vacuum column is generally unsuitable for use as a lubricating base oil itself and is usually recycled to a hydrocracking unit for conversion to lower molecular weight products. Applicant has found that the high molecular weight hydrocarbons associated with the bottoms when properly processed are particularly useful for improving the lubricating properties of base oils, either conventionally derived or Fischer-Tropsch derived.
  • As used in this disclosure the phrase “Fischer-Tropsch derived” refers to a hydrocarbon stream in which a substantial portion, except for added hydrogen, is derived from a Fischer-Tropsch process regardless of subsequent processing steps. Accordingly, a “Fischer-Tropsch derived bottoms” refers to a hydrocarbon product recovered from the bottom of a fractionation column, usually a vacuum column, which was initially derived from the Fischer-Tropsch process. When referring to conventional base oils, this disclosure is referring to conventional petroleum derived lubricating base oils produced using petroleum refining processes well documented in the literature and known to those skilled in the art. The term “distillate base oil” refers to either a “Fischer-Tropsch derived” or “conventional” base oil recovered as a side stream from a fractionation column as opposed to the “bottoms”.
  • As used in this disclosure the word “comprises” or “comprising” is intended as an open-ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements. The phrase “consists essentially of” or “consisting essentially of” is intended to mean the exclusion of other elements of any essential significance to the composition. The phrase “consisting of” or “consists of” are intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities.
  • SUMMARY OF THE INVENTION
  • In its broadest aspect the present invention is directed to a method for improving the lubricating properties of a distillate base oil characterized by a pour point of 0 degrees C. or less and a boiling range having the 10 percent point falling between about 625 degrees F. and about 790 degrees F. and the 90 percent point falling between about 725 degrees F. and about 950 degrees F., the method comprises blending with said distillate base oil a sufficient amount of a pour point depressing base oil blending component to reduce the pour point of the resulting base oil blend at least 3 degrees C. below the pour point of the distillate base oil, wherein the pour point depressing base oil blending component is an isomerized Fischer-Tropsch derived bottoms product having a pour point that is at least 3 degrees C. higher than the pour point of the distillate base oil. For example, if the target pour point of the distillate base oil is −9 degrees C. and the pour point of the distillate base oil is greater than −9 degrees C., an amount of the pour point depressing base oil blending component of the invention will be blended with the distillate base oil in sufficient proportion to lower the pour point of the blend to the target value. The isomerized Fischer-Tropsch derived bottoms product used to lower the pour point of the lubricating base oil is usually recovered as the bottoms from the vacuum column of a Fischer-Tropsch operation. The average molecular weight of the pour point depressing base oil blending component usually will fall within the range of from about 600 to about 1100 with an average molecular weight between about 700 and about 1000 being preferred. Typically the pour point of the pour point depressing base oil blending component will be between about −9 degrees C. and about 20 degrees C. The 10 percent point of the boiling range of the pour point depressing base oil blending component usually will be within the range of from about 850 degrees F. and about 1050 degrees F.
  • The invention is also directed to a pour point depressing base oil blending component suitable for lowering the pour point of a base oil which comprises an isomerized Fischer-Tropsch derived bottoms product having an average molecular weight between about 600 and about 1100 and an average degree of branching in the molecules between about 6.5 and about 10 alkyl branches per 100 carbon atoms.
  • The distillate base oil may be either a conventional petroleum-derived base oil or a Fischer-Tropsch derived base oil. It may be a light neutral base oil or a medium neutral base oil. Depending upon the amount of pour point depressing base oil blending component blended with the distillate base oil, the cloud point of the base oil blend may be raised. Therefore, if the cloud point of the base oil blend is a critical specification, the distillate base oil must have a cloud point no higher than the target cloud point. Preferably the cloud point of the distillate base oil will be lower than the target specification to allow for some rise in the cloud point and still meet the specification. Base oils intended for use in certain finished lubricants often require a cloud point of 0 degrees C. or less. Therefore, for base oils intended for those applications, a cloud point below 0 degrees C. is desirable.
  • In addition to lowering the pour point of the distillate base oil, the present invention also has been observed to increase the VI. In the case of both pour point and VI, the degree of change in these values could not have been predicted by only observing the properties of the individual components. In each case a premium was observed. That is to say, the pour point of the blend containing the distillate base oil and the pour point depressing base oil blending component is not merely a proportional averaging of the two pour points, but the value obtained is significantly lower than would be expected. The pour point in many cases has been observed to be lower than the value for either of the two individual components. The same is also true for VI. The VI of the mixture is not the proportional average of the VI's for the two components but is higher than would be expected, and in many cases, the VI of the base oil blend will exceed the VI of either component. Preferably, in the base oil blend, the pour point depressing base oil blending component will comprise no more than about 15 weight percent of the base oil of the blend, more preferably 7 weight percent or less, and most preferably 3.5 weight percent or less. Since it is usually desirable to maintain as low a cloud point as possible for the base oil blend, only the minimum amount of the pour point depressing base oil blending component necessary to meet the pour point and/or VI specifications is added to the distillate base oil. The pour point depressing base oil component will also increase the viscosity of the blend. Therefore the amount of the pour point depressing base oil component which can be added may also be limited by the upper viscosity limit.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Pour point refers to the temperature at which a sample of the distillate base oil or the isomerized Fischer-Tropsch derived bottoms will begin to flow under carefully controlled conditions. In this disclosure, where pour point is given, unless stated otherwise, it has been determined by standard analytical method ASTM D-5950 or its equivalent. Cloud point is a measurement complementary to the pour point, and is expressed as a temperature at which a sample begins to develop a haze under carefully specified conditions. Cloud points in this specification were determined by ASTM D-5773-95 or its equivalent. Kinematic viscosity described in this disclosure was measured by ASTM D-445 or its equivalent. VI may be determined by using ASTM D-2270-93 (1998) or its equivalent. As used herein, an equivalent analytical method to the standard reference method refers to any analytical method which gives substantially the same results as the standard method. Molecular weight may be determined by ASTM D-2502, ASTM D-2503, or other suitable method. For use in association with this invention, molecular weight is preferably determined by ASTM D-2503-02.
  • The branching properties of the pour point depressing base oil blending component of the present invention was determined by analyzing a sample of oil using carbon-13 NMR according to the following seven-step process. References cited in the description of the process provide details of the process steps. Steps 1 and 2 are performed only on the initial materials from a new process.
  • 1) Identify the CH branch centers and the CH3 branch termination points using the DEPT Pulse sequence (Doddrell, D. T.; D. T. Pegg; M. R. Bendall, Journal of Magnetic Resonance 1982, 48, 323ff.).
  • 2) Verify the absence of carbons initiating multiple branches (quaternary carbons) using the APT pulse sequence (Patt, S. L.; J. N. Shoolery, Journal of Magnetic Resonance 1982, 46, 535ff.).
  • 3) Assign the various branch carbon resonances to specific branch positions and lengths using tabulated and calculated values (Lindeman, L. P., Journal of Qualitative Analytical Chemistry 43, 1971 1245ff; Netzel, D. A., et. al., Fuel, 60, 1981, 307ff).
  • EXAMPLES
  • Branch NMR Chemical Shift (ppm)
    2-methyl 22.5
    3-methyl 19.1 or 11.4
    4-methyl 14.0
    4+methyl 19.6
    Internal ethyl 10.8
    Propyl 14.4
    Adjacent methyls 16.7
  • 4) Quantify the relative frequency of branch occurrence at different carbon positions by comparing the integrated intensity of its terminal methyl carbon to the intensity of a single carbon (=total integral/number of carbons per molecule in the mixture). For the unique case of the 2-methyl branch, where both the terminal and the branch methyl occur at the same resonance position, the intensity was divided by two before doing the frequency of branch occurrence calculation. If the 4-methyl branch fraction is calculated and tabulated, its contribution to the 4+methyls must be subtracted to avoid double counting.
  • 5) Calculate the average carbon number. The average carbon number may be determined with sufficient accuracy for lubricant materials by dividing the molecular weight of the sample by 14 (the formula weight of CH2).
  • 6) The number of branches per molecule is the sum of the branches found in step 4.
  • 7) The number of alkyl branches per 100 carbon atoms is calculated from the number of branches per molecule (step 6) times 100/average carbon number.
  • Measurements can be performed using any Fourier Transform NMR spectrometer. Preferably, the measurements are performed using a spectrometer having a magnet of 7.0T or greater. In all cases, after verification by Mass Spectrometry, UV or an NMR survey that aromatic carbons were absent, the spectral width was limited to the saturated carbon region, about 0-80 ppm vs. TMS (tetramethylsilane). Solutions of 15-25 percent by weight in chloroform-d1 were excited by 45 degrees pulses followed by a 0.8 sec acquisition time. In order to minimize non-uniform intensity data, the proton decoupler was gated off during a 10 sec delay prior to the excitation pulse and on during acquisition. Total experiment times ranged from 11-80 minutes. The DEPT and APT sequences were carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
  • DEPT is Distortionless Enhancement by Polarization Transfer. DEPT does not show quaternaries. The DEPT 45 sequence gives a signal all carbons bonded to protons. DEPT 90 shows CH carbons only. DEPT 135 shows CH and CH3 up and CH2 180 degrees out of phase (down). APT is Attached Proton Test. It allows all carbons to be seen, but if CH and CH3 are up, then quaternaries and CH2 are down. The sequences are useful in that every branch methyl should have a corresponding CH. And the methyls are clearly identified by chemical shift and phase. Both are described in the references cited. The branching properties of each sample were determined by C-13 NMR using the assumption in the calculations that the entire sample was iso-paraffinic. Corrections were not made for n-paraffins or naphthenes, which may have been present in the oil samples in varying amounts. The naphthenes content may be measured using Field Ionization Mass Spectroscopy (FIMS).
  • Since conventional petroleum derived hydrocarbons and Fischer-Tropsch derived hydrocarbons comprise a mixture of varying molecular weights having a wide boiling range, this disclosure will refer to the 10 percent point and the 90 percent point of the respective boiling ranges. The 10 percent point refers to that temperature at which 10 weight percent of the hydrocarbons present within that cut will vaporize at atmospheric pressure. Similarly, the 90 percent point refers to the temperature at which 90 weight percent of the hydrocarbons present will vaporize at atmospheric pressure. In this disclosure when referring to boiling range distribution, the boiling range between the 10 percent and 90 percent boiling points is what is being referred to. For samples having a boiling range above 1000 degrees F., the boiling range distributions in this disclosure were measured using the standard analytical method D-6352 or its equivalent. For samples having a boiling range below 1000 degrees F., the boiling range distributions in this disclosure were measured using the standard analytical method D-2887 or its equivalent. It will be noted that only the 10 percent point is used when referring to the pour point depressing base oil blending component, since it is derived from a bottoms fraction which makes the 90 percent point or upper boiling limit irrelevant.
  • The Isomerized Fischer-Tropsch Bottoms
  • As already explained, the isomerized Fischer-Tropsch derived product which is employed as a pour point depressing base oil blending component in the present invention is separated as a high boiling bottoms fraction from the hydrocarbons produced during a Fischer-Tropsch synthesis reaction. The Fischer-Tropsch syncrude as initially recovered from the Fischer-Tropsch synthesis contains a waxy fraction that is normally a solid at room temperature. The waxy fraction may be produced directly from the Fischer-Tropsch syncrude or it may be prepared from the oligomerization of lower boiling Fischer-Tropsch derived olefins. Regardless of the source of the Fischer-Tropsch wax, it must contain hydrocarbons boiling above about 900 degrees F. in order to produce the bottoms used in preparing the pour point depressing base oil blending component of the present invention. In order to improve the pour point and VI, the Fischer-Tropsch wax is isomerized to introduce favorable branching into the molecules. The isomerized Fischer-Tropsch derived wax will usually be sent to a vacuum column where the various distillate base oil cuts are collected. These distillate base oil fractions may be used to prepare the lubricating base oil blends of the present invention, or they may be cracked into lower boiling products, such as diesel or naphtha. The bottoms material collected from the vacuum column comprises a mixture of high boiling hydrocarbons which is used to prepare the pour depressing base oil blending component of the present invention. In addition to isomerization and fractionation, the Fischer-Tropsch derived waxy fraction may undergo various other operations, such as hydrocracking, hydrotreating, and hydrofinishing. The pour point depressing base oil blending component of the present invention is not an additive in the normal use of this term within the art, since it is really only a high boiling fraction recovered from the Fischer-Tropsch syncrude.
  • It has been found that when the isomerized Fischer-Tropsch derived bottoms is used to reduce the pour point, the pour point of the lubricating base oil blend will be below the pour point of both the pour point depressing base oil blending component and the distillate base oil. Therefore, it is usually not necessary to reduce the pour point of the Fischer-Tropsch derived bottoms to the target pour point of the lubricating base oil blend. Accordingly, the actual degree of isomerization need not be as high as might otherwise be expected, and the isomerization reactor may be operated at a lower severity with less cracking and less yield loss. It has been found that the Fischer-Tropsch derived bottoms should not be over isomerized or its ability to act as a pour point depressing base oil blending component will be compromised. Accordingly, the average degree of branching in the molecules of the bottoms should fall within the range of from about 6.5 to about 10 alkyl branches per 100 carbon atoms.
  • The pour point depressing base oil blending component will have an average molecular weight between about 600 and about 1100, preferably between about 700 and about 1000. The kinematic viscosity at 100 degrees C. will usually fall within the range of from about 8 cSt to about 22 cSt. The 10 percent point of the boiling range of the bottoms typically will fall between about 850 degrees F. and about 1050 degrees F. Generally, the higher molecular weight hydrocarbons are more effective as pour point depressing base oil blending components than the lower molecular weight hydrocarbons. Consequently, higher cut points in the fractionation column which result in a higher boiling bottoms material are usually preferred when preparing the pour point depressing base oil blending component. The higher cut point also has the advantage of resulting in a higher yield of the distillate base oil fractions.
  • It has also been found that by solvent dewaxing the isomerized bottoms material, the effectiveness of the pour point depressing base oil blending component may be enhanced. The waxy product separated during solvent dewaxing from the Fischer-Tropsch derived bottoms has been found to display improved pour point depressing properties. The oily product recovered after the solvent dewaxing operation while displaying some pour point depressing properties is less effective than the waxy product.
  • The Distillate Base Oil
  • The separation of Fischer-Tropsch derived products and petroleum derived products into various fractions having characteristic boiling ranges is generally accomplished by either atmospheric or vacuum distillation or by a combination of atmospheric and vacuum distillation. As used in this disclosure, the term “distillate fraction” or “distillate” refers to a side stream product recovered either from an atmospheric fractionation column or from a vacuum column as opposed to the “bottoms” which represents the residual higher boiling fraction recovered from the bottom of the column. Atmospheric distillation is typically used to separate the lighter distillate fractions, such as naphtha and middle distillates, from a bottoms fraction having an initial boiling point above about 700 degrees F. to about 750 degrees F. (about 370 degrees C. to about 400 degrees C.). At higher temperatures thermal cracking of the hydrocarbons may take place leading to fouling of the equipment and to lower yields of the heavier cuts. Vacuum distillation is typically used to separate the higher boiling material, such as the distillate base oil fractions which are used in carrying out the present invention. Thus the distillate base oil and the Fischer-Tropsch derived bottoms product are usually recovered from the vacuum distillation column, although the invention is not intended to be limited to any particular mode of separating the components.
  • The distillate base oil fractions used in carrying out the invention are characterized by a pour point of 0 degrees C. or less and a boiling range having the 10 percent point falling between about 625 degrees F. and about 790 degrees F. and the 90 percent point falling between about 725 degrees F. and about 950 degrees F. Usually the 90 percent point will fall between about 725 degrees F. and 900 degrees F. The distillate base oil may be either conventionally derived from the refining of petroleum or syncrude recovered from a Fischer-Tropsch synthesis reaction. The distillate base oil may be a light neutral base oil or a medium neutral base oil. The distillate base oil will usually have a kinematic viscosity at 100 degrees C. between about 2.5 cSt and about 7 cSt. Preferably, the viscosity will be between about 3 cSt and about 7 cSt at 100 degrees C. If the target cloud point for the lubricating base oil blend is 0 degrees C., the cloud point of the distillate base oil preferably should be 0 degrees C. or less.
  • If the distillate base oil contains a high proportion of wax, such as with a Fischer-Tropsch derived base oil, it is usually necessary to dewax the base oil. This may be accomplished by either catalytic dewaxing or by solvent dewaxing. Hydroisomerization which is used in the preparation of the isomerized Fischer-Tropsch derived bottoms may also be advantageously used to dewax the distillate base oil fraction. Hydroisomerization is particularly preferred when both the distillate base oil and the pour point depressing base oil blending component are recovered from a Fischer-Tropsch operation. Typically in such operations the entire base oil fraction which contains a great amount of wax is isomerized followed by fractionation in a vacuum column.
  • The present invention is particularly advantageous when used with distillate base oils having a VI of less than 110, since such base oils are usually unsuitable for preparing high quality lubricants without the addition of significant amounts of VI improvers. Due to the VI premium which has been observed when using the pour point depressing base oil blending component of the invention, the VI of marginal base oils may be significantly improved without the use of conventional additives. The pour point depressing base oil blending component of the present invention by increasing the VI, makes it possible to upgrade Group II base oils having a VI of less than 110 up to Group II plus base oils. It is also possible by using the present invention to upgrade Group II base oils to Group III base oils.
  • Lubricating Base Oil Product
  • A lubricating base oil blend prepared according to the process of the present invention will have a kinematic viscosity greater than about 3 cSt at 100 degrees C. Usually the kinematic viscosity at 100 degrees C. will not exceed about 8 cSt. The lubricating base oil blend will also have a pour point below about −9 degrees C. and a VI that is usually greater than about 90. Preferably the kinematic viscosity at 100 degrees C. will be between about 3 cSt and about 7 cSt, the pour point will be about −15 degrees C. or less, and the VI will be about 100 or higher. Even more preferably the VI will be 110 or higher. The cloud point of the lubricating base oil preferably will be 0 degrees C. or below. The pour point of the lubricating base oil blend will be at least 3 degrees C. lower than the pour point of the lower viscosity component of the blend. Preferably, the pour point of the blend will be at least 6 degrees C. below the pour point of the distillate base oil and more preferably at least 9 degrees C. below the pour point of the distillate base oil. At the same time, the VI of the blend will preferably be raised by at least three numbers above the VI of the distillate base oil. The properties of the lubricating base oils prepared using the process of the invention are achieved by blending the distillate base oil with the minimum amount of the pour point depressing base oil blending component necessary to meet the desired specifications for the product.
  • In achieving the selected pour points, the pour point depressing base oil blending component usually will not comprise more than about 15 weight percent of the base oil blend. Preferably, it will comprise 7 weight percent or less, and most preferably the pour point depressing base oil blending component will comprise 3.5 weight percent or less of the blend. The minimum amount of the pour point depressing base oil blending component to meet the desired specifications for pour point and VI are usually preferred to avoid raising the cloud point and/or viscosity of the blend to an unacceptable level. At the lower levels of addition, the effect on cloud point is generally negligible.
  • As already noted, when the pour point depressing base oil blending component is blended with the distillate base oil, a VI premium is observed. The term “VI premium” refers to a VI boost in which the VI of the blend is significantly higher than would have been expected from a mere proportional averaging of the Vi's for the two fractions. The improvement in VI resulting from the practice of the present invention makes it possible to produce a Group III base oil, i.e., a base oil having a VI greater than 120, from a Group II base oil, i.e., a base oil having a VI between 80 and 120. A Group II plus base oil may also be prepared from a Group II base oil having a VI below about 110.
  • In order to qualify as a Group II base oil, the base oil must contain 300 ppm of sulfur or less. In the case of a conventional petroleum derived distillate base oil having a marginal sulfur content, blending in the isomerized high boiling Fischer-Tropsch product may also serve to lower the sulfur content to meet sulfur specifications. Fischer-Tropsch derived hydrocarbons contain very low levels of sulfur and, therefore, are ideal for blending with marginal conventional petroleum derived base oils to meet sulfur specifications.
  • A further advantage of the process of the present invention is that the volatility of the lubricating base oil blend may be lowered relative to that of the distillate base oil fraction. The pour point depressing base oil blending component is characterized by a very low Noack volatility. Consequently, depending upon how much of the pour point depressing base oil blending component is blended with the distillate base oil, the lubricating base oil blend may have a lower Noack volatility than the distillate base oil fraction alone.
  • Lubricating base oil blends prepared according to the process of the present invention display a distinctive boiling range profile. Therefore, the lubricating base oil blend comprising the distillate base oil and the pour point depressing base oil blending component may be described as a lubricating base oil having a viscosity at 100 degrees C. between about 3 cSt and about 8 cSt and further containing a high boiling fraction boiling above about 900 degrees F. and a low boiling fraction boiling below about 900 degrees F., wherein when the high boiling fraction is distilled out the low boiling fraction will have a higher pour point than the entire lubricating base oil. The low boiling fraction corresponds to the distillate base oil, and the high boiling fraction corresponds to the pour point depressing base oil blending component.
  • Lubricating base oil blends of the invention may be identified by using simulated distillation to determine the 900 degrees F. weight percent point. For instance, if the blend is 85 weight percent below 900 degrees F., one would distill off, by conventional distillation methods well known to those skilled in the art, 85 weight percent of the blend to get a 900 degrees F. cutpoint.
  • Hydroisomerization
  • Hydroisomerization, or for the purposes of this disclosure simply “isomerization”, is intended to improve the cold flow properties of Fischer-Tropsch derived or petroleum derived wax by the selective addition of branching into the molecular structure. In the present invention, it is essential that the Fischer-Tropsch derived bottoms be isomerized at some point during its processing in order to make it suitable for use as a pour point depressing base oil blending component. Waxy petroleum derived base oils also may be advantageously isomerized in preparing them for use in the present invention.
  • Isomerization ideally will achieve high conversion levels of the wax to non-waxy iso-paraffins while at the same time minimizing the conversion by cracking. Since wax conversion can be complete, or at least very high, this process typically does not need to be combined with additional dewaxing processes to produce a high boiling Fischer-Tropsch product with an acceptable pour point. Isomerization operations suitable for use with the present invention typically use a catalyst comprising an acidic component and may optionally contain an active metal component having hydrogenation activity. The acidic component of the catalyst preferably includes an intermediate pore SAPO, such as SAPO-11, SAPO-31, and SAPO41, with SAPO-11 being particularly preferred. Intermediate pore zeolites, such as ZSM-22, ZSM-23, SSZ-32, ZSM-35, and ZSM48, also may be used in carrying out the isomerization. Typical active metals include molybdenum, nickel, vanadium, cobalt, tungsten, zinc, platinum, and palladium. The metals platinum and palladium are especially preferred as the active metals, with platinum most commonly used.
  • The phrase “intermediate pore size”, when used herein, refers to an effective pore aperture in the range of from about 4.0 to about 7.1 Angstrom (as measured along both the short or long axis) when the porous inorganic oxide is in the calcined form. Molecular sieves having pore apertures in this range tend to have unique molecular sieving characteristics. Unlike small pore zeolites such as erionite and chabazite, they will allow hydrocarbons having some branching into the molecular sieve void spaces. Unlike larger pore zeolites such as faujasites and mordenites, they are able to differentiate between n-alkanes and slightly branched alkenes, and larger alkanes having, for example, quaternary carbon atoms. See U.S. Pat. No. 5,413,695. The term “SAPO” refers to a silicoaluminophosphate molecular sieve such as described in U.S. Pat. Nos. 4,440,871 and 5,208,005.
  • In preparing those catalysts containing a non-zeolitic molecular sieve and having a hydrogenation component, it is usually preferred that the metal be deposited on the catalyst using a non-aqueous method. Non-zeolitic molecular sieves include tetrahedrally-coordinated [AlO2] and [PO2] oxide units which may optionally include silica. See U.S. Pat. No. 5,514,362. Catalysts containing non-zeolitic molecular sieves, particularly catalysts containing SAPO's, on which the metal has been deposited using a non-aqueous method have shown greater selectivity and activity than those catalysts which have used an aqueous method to deposit the active metal. The non-aqueous deposition of active metals on non-zeolitic molecular sieves is taught in U.S. Pat. No. 5,939,349. In general, the process involves dissolving a compound of the active metal in a non-aqueous, non-reactive solvent and depositing it on the molecular sieve by ion exchange or impregnation.
  • Solvent Dewaxing
  • In conventional refining, solvent dewaxing is used to remove small amounts of any remaining waxy molecules from the lubricating base oil after hydroisomerization. In the present invention, solvent dewaxing may optionally be used to enhance the pour point depressing properties of the isomerized Fischer-Tropsch derived bottoms. In this instance, the waxy fraction recovered from the solvent dewaxing step was found to be more effective in lowering pour point than the oily fraction. Solvent dewaxing is done by dissolving the Fischer-Tropsch derived bottoms in a solvent, such as methyl ethyl ketone, methyl iso-butyl ketone, or toluene. See U.S. Pat. Nos. 4,477,333; 3,773,650; and 3,775,288.
  • The following examples are intended to illustrate the invention but are not to be construed as a limitation on the scope of the invention.
  • EXAMPLES Example 1
  • A hydrotreated Fischer-Tropsch wax (having the specifications shown in Table I) was hydroisomerized over a Pt/SAPO-11 catalyst containing 15 weight percent alumina binder. Run conditions included a liquid hourly space velocity (LHSV) of 1.0, a total pressure of 1000 psig, a once-through hydrogen rate of 5300 SCF/bbl, and a reactor temperature of 680 degrees F. The catalyst was pre-sulfided at the start of the run using DMDS in dodecane at 645 degrees F., with 6 moles S fed per mole of Pt. The product from the hydroisomerization reactor went directly to a hydrofinishing reactor containing a Pt—Pd/SiO2—Al2O3 catalyst, at a LHSV of 2.1, and a temperature of 450 degrees F., with the same pressure and hydrogen rate as in the isomerization reactor. The product from this reactor went to a high pressure separator, with the liquid going to a stripper, then to product collection.
  • The 650 degrees F+ bottoms product (having the specifications shown in Table II), which had a pour point of −19 degrees C. was fractionated into a 650-750 degrees F. cut, a 750-850 degrees F. cut, an 850-950 degrees F. cut, and a 950 degrees F+ bottoms. Inspections on these cuts are given in Table II, showing all the cuts to have pour points greater than the −19 degrees C. of the whole 650 degrees F+ bottoms. Recombining the cuts in the same proportions as in the distillation again gave a composite of −19 degrees C. pour point.
  • A blend of 85 weight percent of the 650-750 degrees F. 2.6 cSt cut and 15 weight percent of the 950 degrees F+ bottoms was prepared. The blend had a pour point of −27 degrees C. (Table III), lower than the pour point of either cut separately.
    TABLE I
    Hydrotreated FT Wax
    Gravity, ° API 40.3
    Pour Point, ° C. +79
    Sulfur, ppm 2
    Nitrogen, ppm 1
    Oxygen, Wt. % 0.11
    Sim. Dist., Wt. %, ° F.
    ST/5 479/590
    10/30 639/728
    50 796
    70/90  884/1005
    95/EP 1062/1187
  • TABLE II
    Inspections of 650° F.+ of FT Wax Isomerized at
    1000 psig over Pt/SAPO-11
    Gravity, ° API 42.1
    Pour Point, ° C. −19
    Cloud Point, ° C. +10
    Viscosity,  40° C., cSt 17.55
    100° C., cSt 4.303
    VI 161
    650-750° F. 750-850° F. 850-950° F. 950° F.+
    Fraction, Wt. % 37.7 27.8 18.4 16.1
    Gravity, ° API 43.9 42.5 40.6 38.0
    Pour Point, ° C. −17 −9 −2 +3
    Cloud Point, ° C. −16 −4 +37 +29
    Vis-  40° C., 9.032 14.65 27.99 88.13
    cos- cSt
    ity, 100° C., 2.648 3.742 5.957 14.19
    cSt
    VI 135 151 166 167
    Sim. Dist.,
    Wt. %, ° F.
    ST/5 612/648 656/693 740/791 884/927
    10/30 658/685 711/756 812/849  949/1004
    50 710 790 894 1052
    70/90 739/791 826/882 929/980 1104/1186
    95/EP 819/896 912/990 1003/1061 1221/1285
  • TABLE III
    Inspections of Blend of 85/15 Wt. % 650-750° F./950° F.+
    Cuts of Table II
    Pour Point, ° C. −27
    Cloud Point, ° C. +6
    Viscosity,  40° C., cSt 12.71
    100° C., cSt 3.426
    VI 154
  • Example 2
  • Another 650 degrees F+bottoms product (Table IV) was collected from the same run as in Example 1, except that the total pressure in the reactors was 300 psig and the temperature in the hydroisomerization reactor was 670 degrees F. The product was fractionated into a 650-730 degrees F. cut, a 730-850 degrees F. cut, and an 850 degrees F+cut. Inspections on these cuts are given in Table IV.
  • A blend of 63 weight percent of the 730-850 degrees F. 3.5 cSt cut and 37 weight percent of the 850 degrees F+cut was prepared (Table V). The blend had a pour point of −13 degrees C., lower than the pour point of either cut separately.
    TABLE IV
    Inspections of 650° F.+ of FT Wax Isomerized at
    300 psig over Pt/SAPO-11
    Gravity, ° API 42.4
    Pour Point, ° C. −16
    Cloud Point, ° C. +13
    Viscosity,  40° C., cSt 17.41
    100° C., cSt 4.320
    VI 166
    650-730° F. 730-850° F. 850° F.+
    Fraction, Wt. % 28.7 29.9 41.4
    Gravity, ° API 44.4 42.9 39.6
    Pour Point, ° C. −19 −8 −5
    Cloud Point, ° C. −12 −5 +24
    Viscosity,  40° C., cSt 8.312 12.99 45.11
    100° C., cSt 2.522 3.460 8.584
    VI 140 151 171
    Sim. Dist., Wt. %, ° F.
    ST/5 597/636 646/684 767/805
    10/30 648/676 701/742 827/886
    50 699 773 939
    70/90 726/773 805/855 1006/1119
    95/EP 799/884 882/963 1180/1322
  • TABLE V
    Inspections of Blend of 63/37 Wt, % 730-850° F./850° F.+
    Cuts of Table IV
    Pour Point, ° C. −13
    Cloud Point, ° C. +13
    Viscosity,  40° C., cSt 20.83
    100° C., cSt 4.888
    VI 168
  • Example 3
  • A run similar to that in Example 2 was carried out on a feed similar to that of Table I.
  • The 650 degrees F+bottoms product was cut into three fractions, a 650-730 degrees F. cut, a 730-930 degrees F. cut, a 930-1000 degrees F. cut, and a 1000 degrees F+ bottoms. Inspections of the three highest boiling cuts are given in Table VI.
    TABLE VI
    Inspections of 650° F.+ of Isomerized FT Wax
    730-930° F. 930-1000° F. 1000° F.+
    Pour Point, ° C. −17 −17 −6
    Cloud Point, ° C. −10 +1 +20
    Viscosity,  40° C., cSt 18.3 46.5 114.0
    100° C., cSt 4.3 8.3 16.6
    VI 147 156 157
    Sim. Dist., Wt. %, ° F.
    ST/5 665/708 940/978
    10/30 727/777  996/1040
    50 818 1077
    70/90 861/920 1121/1196
    95/EP  949/1023 1235/1310
  • Blends of the 730-930 degrees F. cut and the 1000 degrees F+ cut were prepared. Results are shown in Table VII. These show the blends to have lower pour points than either fraction separately. In the 85/15 case, the VI is higher than for either fraction separately.
    TABLE VII
    Inspections on Blends of the 730-930° F. Cut and 1000° F.+
    Cut from Table VI
    Blend, Wt./Wt. % 85/15 93/7 96.5/3.5
    Pour Point, ° C. −28 −28 −22
    Cloud Pt, ° C. +6 0 −4
    Viscosity,  40° C., cSt 24.06 20.95 19.57
    100° C., cSt 5.282 4.759 4.515
    VI 161 154 150
  • Comparative Example A
  • Blends of the 930-1000 degrees F. cut from Table VI and the 1000 degrees F+ cut were prepared. Results are shown in Table VIII. These show the pour point reduction of these blends to be considerably less than in Example 3.
    TABLE VIII
    Inspections on Blends of the 930-1000° F. Cut and 1000° F.+
    Cut from Table VI
    Blend, Wt./Wt. % 93/7 96.5/3.5
    Pour Point, ° C. −15 −12
    Cloud Pt, ° C. −2 +5
    Viscosity,  40° C., cSt 49.35 47.91
    100° C., cSt 8.753 8.556
    VI 157 157
  • Example 4
  • The hydrotreated FT wax of Table I was isomerized over a Pt/SSZ-32 catalyst at the same conditions as in Example 1, except for an isomerization temperature of 690 degrees F.
  • The 650 degrees F+ bottoms product (Table IX), which had a pour point of −21 degrees C. was fractionated into a 650-750 degrees F. cut, a 750-850 degrees F. cut, a 850-950 degrees F. cut, and a 950 degrees F+ bottoms. Inspections on these cuts are given in Table IX, showing all the cuts to have pour points greater than the −21 degrees C. of the whole 650 degrees F+ bottoms. Recombining the cuts in the same proportions as in the distillation gave a composite of −25 degrees C. pour point. A blend of 85 weight percent of the 650-750 degrees F. 3.0 cSt cut and 15 weight percent of the 950 degrees F+ bottoms was prepared. The blend had a pour point of −26 degrees C. (Table X), lower than the pour point of either cut separately. Furthermore, the VI of the 3.8 cSt blend was 7 numbers higher than the 3.8 cSt fraction produced by isomerization only, and the pour point was 20 degrees C. lower.
    TABLE IX
    Inspections of 650° F.+ of FT Wax Isomerized at
    1000 psig over Pt/SSZ-32
    Gravity, ° API 41.1
    Pour Point, ° C. −21
    Cloud Point, ° C. +15
    Viscosity,  40° C., cSt 22.06
    100° C., cSt 5.081
    VI 169
    650-750° F. 750-850° F. 850-950° F. 950° F.+
    Fraction, Wt. % 23.6 36.3 23.6 16.4
    Gravity, ° API 43.6 42.3 40.6 37.5
    Pour Point, ° C. −13 −6 −8 −1
    Cloud Point, ° C. −9 −2 +12 +36
    Vis-  40° C., 10.74 15.36 29.91 87.71
    cos- cSt
    ity, 100° C., 3.007 3.876 6.278 13.95
    cSt
    VI 142 153 167 164
    Sim. Dist.,
    Wt. %, ° F.
    ST/5 636/678 675/707 736/801 892/932
    10/30 690/716 723/764 822/869  953/1003
    50 737 796 902 1047
    70/90 764/808 829/880 937/987 1093/1169
    95/EP 833/904 906/975 1009/1078 1202/1264
  • TABLE X
    Inspections of Blend of 85/15 Wt. % 650-750° F./950° F.+ Cuts
    of Table IX
    Pour Point, ° C. −26
    Cloud Point, ° C. +10
    Viscosity,  40° C., cSt 14.83
    100° C., cSt 3.835
    VI 160
  • Comparative Example B
  • The 1000 degrees F+ bottoms of Table VI was solvent dewaxed at −30 degrees C. to give a dewaxed oil fraction of 14.7 weight percent and a waxy fraction of 84.8 weight percent. Adding 1 weight percent of the dewaxed oil fraction to the 730-930 degrees F. fraction of Table VI gave a blend of −13 degrees C. pour point, higher than the pour point of the 730-930 degrees F. fraction.
  • Example 5
  • The wax fraction from Comparative Example B was solvent dewaxed at −10 degrees C. to give a dewaxed oil fraction of 79.3 weight percent, and a waxy fraction of 20.2 weight percent. Inspections of these fractions are given in Table XI.
    TABLE XI
    Inspections of the Fractions from Solvent Dewaxing the
    1000° F.+ Waxy Fraction from Comparative
    Example B at −10° C.
    Fraction Dewaxed Oil Waxy Fraction
    Pour Point, ° C. −5 +10
    Cloud Point, ° C. +18 +30
    Viscosity,  40° C., cSt 114.4 127.5
    100° C., cSt 16.72 18.74
    VI 159 166
  • The C-13 NMR results of the waxy fraction is shown below.
    MW 802
    Number of Carbons 57.29
    NMR Analysis
    2-methyl 0.25
    3-methyl 0.33
    4-methyl 0.55
    5+ methyl 2.12
    Internal ethyl 0.92
    Adjacent methyl 0.17
    Internal Propyl 0.25
    Sum 4.60
    Alkyl Branches per Molecule 4.60
    Alkyl Branches per 100 Carbons 8.03
    Raw Data
    Total Carbon Integral 342.5
    2-integral 3
    3-integral 2
    4-integral 4.8
    5+ integral 16
    Internal ethyl integral 5.5
    Adjacent methyls 1
    Internal propyls 1.5
    Epsilon carbons 87
    Divisions per carbon 5.98
    Methyl protons 160.4
    Total protons 825.26
  • Blends with the 730-930 degrees F. fraction of Table VI were prepared. Results are shown in Table XII. These show the waxy fraction to be more effective at reducing pour point than the dewaxed oil fraction, requiring only 1 weight percent to lower the pour point of the 730-930 degrees F. cut from −17 degrees C. to −24 degrees C.
    TABLE XII
    Inspections of Blends of 730-930° F. Cut of Table VI with the 1000° F.+
    Dewaxed Oil (DWO) or Waxy Fractions of Example 5
    Blend, Wt./Wt. % 94/6 97/3 99/1
    1000° F.+ Blend DWO DWO Waxy
    Component
    Pour Point, ° C. −26 −23 −24
    Cloud Pt, ° C. −4 −7 −7
    Viscosity,  40° C., cSt 20.42 19.13 18.65
    100° C., cSt 4.692 4.481 4.366
    VI 155 154 149
  • Example 6
  • A high pour point commercial 100N base oil (Table XIII) was blended at a 93/7 weight percent ratio with the 1000 degrees F+ bottoms of Table VI. Results are given in Table XIV. These results show the 1000 degrees F+ bottoms effective at reducing the pour point of the 100N base oil, as well as producing a substantial increase in VI of 11 numbers.
    TABLE XIII
    Inspections of High Pour 100N Base Oil
    Pour Point, ° C. −10
    Cloud Point, ° C. −8
    Viscosity,  40° C. cSt 19.52
    100° C., cSt 4.027
    VI 103
  • TABLE XIV
    Inspections of a 93/7 Wt./Wt. % Blend of the 100N Base Oil of Table XIII
    and the 1000° F.+ Bottoms of Table VI
    Pour Point, ° C. −15
    Cloud Point, ° C. −2
    Viscosity,  40° C., cSt 22.30
    100° C., cSt 4.487
    VI 114
  • Comparative Example C
  • An 85/15 weight percent blend was made using the 650-750 degrees F. cut and the 850-950 degrees F. cut of Table II. This gave a pour point for the blend of −16 degrees C., much higher than the −27 degrees C. for the 650-750 degrees F./950 degrees F+ blend of Table III. The VI of the blend was 141, well below the 154 of the blend of Table III, despite the 850-950 degrees F. and 950 degrees F+ fractions having about the same VI.
  • Comparative Example D
  • An 85/15 weight percent blend was made using the 650-750 degrees F. cut and the 850-950 degrees F. cut of Table IX. This gave a pour point for the blend of −8 degrees C., much higher than the −26 degrees C. for the 650-750 degrees F./950 degrees F+ blend of Table X. The VI of the blend was 149, well below the 160 of the blend of Table X, despite the 850-950 degrees F. fraction having a higher VI than the 950 degrees F+ fraction.

Claims (8)

1-42. (canceled)
43. A process for preparing a pour point depressing base oil blending component suitable for lowering the pour point of a base oils which comprises (a) isomerizing a Fischer-Tropsch derived product and (b) recovering from the isomerized Fischer-Tropsch derived product a Fischer-Tropsch derived bottoms having an average molecular weight between about 600 and about 1100 and an average degree of branching in the molecules between about 6.5 and about 10 alkyl branches per 100 carbon atoms.
44. The process of claim 43 wherein the Fischer-Tropsch derived bottoms recovered in step (b) has an average molecular weight between about 700 and about 1000.
45. The process of claim 43 wherein the Fischer-Tropsch derived bottoms recovered in step (b) has a kinematic viscosity at 100 degrees C. within the range of from about 8 and about 22 cSt.
46. The process of claim 43 wherein the Fischer-Tropsch derived bottoms recovered in step (b) has a pour point of between about −9 degrees C. and about 20 degrees C.
47. The process of claim 43 wherein the Fischer-Tropsch derived bottoms recovered in step (b) has a boiling range in which the 10 percent point falls between about 850 degrees F. and about 1050 degrees F.
48. The process of claim 43 including the additional step of solvent dewaxing the Fischer-Tropsch derived bottoms and separating a waxy product having improved pour point depressing properties as compared to the Fischer-Tropsch derived bottoms.
49-57. (canceled)
US11/285,630 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms Abandoned US20060076267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/285,630 US20060076267A1 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms
US12/966,486 US8216448B2 (en) 2003-11-07 2010-12-13 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/704,031 US7053254B2 (en) 2003-11-07 2003-11-07 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US11/285,630 US20060076267A1 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/704,031 Division US7053254B2 (en) 2003-11-07 2003-11-07 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/966,486 Division US8216448B2 (en) 2003-11-07 2010-12-13 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Publications (1)

Publication Number Publication Date
US20060076267A1 true US20060076267A1 (en) 2006-04-13

Family

ID=33518231

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/704,031 Expired - Fee Related US7053254B2 (en) 2003-11-07 2003-11-07 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US11/285,630 Abandoned US20060076267A1 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a fischer-tropsch derived bottoms
US11/285,631 Expired - Fee Related US7922892B2 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US11/285,607 Expired - Fee Related US8449760B2 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US12/966,486 Expired - Fee Related US8216448B2 (en) 2003-11-07 2010-12-13 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/704,031 Expired - Fee Related US7053254B2 (en) 2003-11-07 2003-11-07 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/285,631 Expired - Fee Related US7922892B2 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US11/285,607 Expired - Fee Related US8449760B2 (en) 2003-11-07 2005-11-21 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US12/966,486 Expired - Fee Related US8216448B2 (en) 2003-11-07 2010-12-13 Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Country Status (9)

Country Link
US (5) US7053254B2 (en)
JP (2) JP2007510776A (en)
CN (3) CN101333473B (en)
AU (3) AU2004288896B2 (en)
BR (1) BRPI0416241A (en)
GB (3) GB2423772B (en)
NL (1) NL1027433C2 (en)
WO (1) WO2005047439A2 (en)
ZA (1) ZA200603468B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080029430A1 (en) * 2005-03-11 2008-02-07 Chevron Usa Inc. Hydraulic Fluid Compositions and Preparation Thereof
US20080053868A1 (en) * 2005-06-22 2008-03-06 Chevron U.S.A. Inc. Engine oil compositions and preparation thereof
US20090036338A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036337A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Electrical Insulating Oil Compositions and Preparation Thereof
US20090036333A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036546A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Medicinal Oil Compositions, Preparations, and Applications Thereof
US20090062164A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090062163A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090062162A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear oil composition, methods of making and using thereof
US20090088352A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Tractor hydraulic fluid compositions and preparation thereof
US20090088353A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Lubricating grease composition and preparation
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
US20090298732A1 (en) * 2008-05-29 2009-12-03 Chevron U.S.A. Inc. Gear oil compositions, methods of making and using thereof
DE112008002257T5 (en) 2007-08-28 2010-09-16 Chevron U.S.A. Inc., San Ramon Slideway lubricant compositions, processes for their preparation and use
DE112008002258T5 (en) 2007-08-28 2010-11-18 Chevron U.S.A. Inc., San Ramon Hydraulic fluid composition and its preparation
US20110024328A1 (en) * 2009-07-31 2011-02-03 Chevron U.S.A. Inc. Distillate production in a hydrocarbon synthesis process.
US20110077179A1 (en) * 2009-09-29 2011-03-31 Chevron Oronite Technology B.V. Trunk piston engine lubricating oil compositions
US20110290702A1 (en) * 2007-08-13 2011-12-01 Gilbert Robert Bernard Germaine Lubricating base oil blend
EP2604676A1 (en) 2011-12-16 2013-06-19 Chevron Oronite Technology B.V. Trunk piston engine lubricating oil compositions
DE112011103622T5 (en) 2010-10-28 2013-10-02 Chevron U.S.A. Inc. Compressor oils with improved oxidation resistance
US8702968B2 (en) 2011-04-05 2014-04-22 Chevron Oronite Technology B.V. Low viscosity marine cylinder lubricating oil compositions
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
WO2017013257A1 (en) 2015-07-22 2017-01-26 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
US10364403B2 (en) 2013-11-06 2019-07-30 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
US10669506B2 (en) 2013-11-06 2020-06-02 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053254B2 (en) * 2003-11-07 2006-05-30 Chevron U.S.A, Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
GB2433072B (en) * 2004-05-04 2008-08-27 Chevron Usa Inc Isomerized petroleum product
US7655132B2 (en) * 2004-05-04 2010-02-02 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using isomerized petroleum product
US7473345B2 (en) * 2004-05-19 2009-01-06 Chevron U.S.A. Inc. Processes for making lubricant blends with low Brookfield viscosities
US7384536B2 (en) * 2004-05-19 2008-06-10 Chevron U.S.A. Inc. Processes for making lubricant blends with low brookfield viscosities
US7273834B2 (en) * 2004-05-19 2007-09-25 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities
US7345210B2 (en) * 2004-06-29 2008-03-18 Conocophillips Company Blending for density specifications using Fischer-Tropsch diesel fuel
US7520976B2 (en) * 2004-08-05 2009-04-21 Chevron U.S.A. Inc. Multigrade engine oil prepared from Fischer-Tropsch distillate base oil
US7655605B2 (en) * 2005-03-11 2010-02-02 Chevron U.S.A. Inc. Processes for producing extra light hydrocarbon liquids
US20060219597A1 (en) * 2005-04-05 2006-10-05 Bishop Adeana R Paraffinic hydroisomerate as a wax crystal modifier
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US8318002B2 (en) * 2005-12-15 2012-11-27 Exxonmobil Research And Engineering Company Lubricant composition with improved solvency
US20080096779A1 (en) * 2005-12-21 2008-04-24 Chevron U.S.A. Inc. Turbine oil composition method for making thereof
US20070232503A1 (en) * 2006-03-31 2007-10-04 Haigh Heather M Soot control for diesel engine lubricants
US7425524B2 (en) * 2006-04-07 2008-09-16 Chevron U.S.A. Inc. Gear lubricant with a base oil having a low traction coefficient
US7582591B2 (en) * 2006-04-07 2009-09-01 Chevron U.S.A. Inc. Gear lubricant with low Brookfield ratio
US20080110797A1 (en) * 2006-10-27 2008-05-15 Fyfe Kim E Formulated lubricants meeting 0W and 5W low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
US20080128322A1 (en) * 2006-11-30 2008-06-05 Chevron Oronite Company Llc Traction coefficient reducing lubricating oil composition
US8747650B2 (en) * 2006-12-21 2014-06-10 Chevron Oronite Technology B.V. Engine lubricant with enhanced thermal stability
US20080260631A1 (en) 2007-04-18 2008-10-23 H2Gen Innovations, Inc. Hydrogen production process
US20090005275A1 (en) * 2007-06-28 2009-01-01 Chevron U.S.A. Inc. Power steering fluid
US20090062161A1 (en) * 2007-08-27 2009-03-05 Joseph Timar Two-cycle gasoline engine lubricant
US20090062168A1 (en) * 2007-08-27 2009-03-05 Joseph Timar Process for making a two-cycle gasoline engine lubricant
JP2009087557A (en) * 2007-09-27 2009-04-23 Futaba Corp Fluorescent display tube and conductive material paste for fluorescent display tube
CN101910377A (en) * 2007-11-28 2010-12-08 国际壳牌研究有限公司 Gasoline compositions
US20090188156A1 (en) * 2007-11-28 2009-07-30 Clayton Christopher William Gasoline composition
US20090143261A1 (en) * 2007-11-30 2009-06-04 Chevron U.S.A. Inc. Engine Oil Compositions with Improved Fuel Economy Performance
JP2011506632A (en) * 2007-12-07 2011-03-03 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Base oil formulation
US8221614B2 (en) * 2007-12-07 2012-07-17 Shell Oil Company Base oil formulations
EP2075314A1 (en) 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Grease formulations
US20090181871A1 (en) * 2007-12-19 2009-07-16 Chevron U.S.A. Inc. Compressor Lubricant Compositions and Preparation Thereof
WO2009080672A1 (en) * 2007-12-20 2009-07-02 Shell Internationale Research Maatschappij B.V. Fuel compositions
JP2011508000A (en) * 2007-12-20 2011-03-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel composition
US8480879B2 (en) * 2008-03-13 2013-07-09 Chevron U.S.A. Inc. Process for improving lubricating qualities of lower quality base oil
US20100077842A1 (en) * 2008-10-01 2010-04-01 Chevron U.S.A. Inc. Method for predicting a property of a base oil
JP6266606B2 (en) 2012-06-21 2018-01-24 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap Lubricating oil composition comprising heavy Fischer-Tropsch derived and alkylated aromatic base oil
US20150144528A1 (en) * 2012-06-28 2015-05-28 Shell Oil Company Process to prepare a gas oil fraction and a residual base oil
US9202963B2 (en) 2012-11-21 2015-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Dual-side illumination image sensor chips and methods for forming the same
CN105378044A (en) 2013-05-14 2016-03-02 路博润公司 Lubricating composition and method of lubricating a transmission
US9453169B2 (en) 2013-09-13 2016-09-27 Uop Llc Process for converting fischer-tropsch liquids and waxes into lubricant base stock and/or transportation fuels
CN115093893A (en) 2014-04-25 2022-09-23 路博润公司 Multi-stage lubricating composition
EP3158032B1 (en) 2014-06-18 2022-09-14 The Lubrizol Corporation Motorcycle engine lubricant
JP6525439B2 (en) 2014-06-27 2019-06-05 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Mixture of friction modifiers that provide good friction performance to transmission fluids
WO2016022773A1 (en) 2014-08-06 2016-02-11 The Lubrizol Corporation Industrial gear lubricant additive package with biodegradable sulfur component
JP6574478B2 (en) 2014-08-28 2019-09-11 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricating composition having seal compatibility
BR112017009936B1 (en) 2014-11-12 2022-08-30 The Lubrizol Corporation MIXED PHOSPHORUS ESTERS FOR LUBRICANT APPLICATIONS
WO2016090121A1 (en) 2014-12-03 2016-06-09 The Lubrizol Corporation Lubricating composition containing an oxyalkylated aromatic polyol compound
EP3040404A1 (en) * 2014-12-31 2016-07-06 Shell Internationale Research Maatschappij B.V. Process for preparing naphtha and middle distillate fractions
KR102608828B1 (en) 2015-02-26 2023-11-30 더루브리졸코오퍼레이션 Aromatic detergents and lubricating compositions thereof
EP3268456A1 (en) 2015-03-09 2018-01-17 The Lubrizol Corporation Method of lubricating an internal combustion engine
WO2016144639A1 (en) 2015-03-10 2016-09-15 The Lubrizol Corporation Lubricating compositions comprising an anti-wear/friction modifying agent
JP6502149B2 (en) * 2015-04-06 2019-04-17 Emgルブリカンツ合同会社 Lubricating oil composition
US20180201865A1 (en) 2015-07-10 2018-07-19 The Lubrizol Corporation Viscosity Modifiers For Improved Fluoroelastomer Seal Performance
US10059898B2 (en) 2015-08-21 2018-08-28 Exxonmobil Chemical Patents Inc. High-viscosity metallocene polyalpha-olefins with high electrohydrodynamic performance
JP2018523746A (en) 2015-08-21 2018-08-23 エクソンモービル・ケミカル・パテンツ・インク Lubricating base oil blend
US10611980B2 (en) 2015-10-15 2020-04-07 Exxonmobil Chemical Patents Inc. Lubricant containing high-viscosity metallocene polyalpha-olefins
WO2017079017A1 (en) 2015-11-06 2017-05-11 The Lubrizol Corporation Low viscosity gear lubricants
EP3390594B1 (en) 2015-12-18 2022-06-29 The Lubrizol Corporation Nitrogen-functionalized olefin polymers for engine lubricants
EP3394216A1 (en) 2015-12-23 2018-10-31 Shell International Research Maatschappij B.V. Process for preparing a base oil having a reduced cloud point
CN108779401A (en) 2015-12-23 2018-11-09 国际壳牌研究有限公司 Remaining base oil
US10808185B2 (en) * 2015-12-28 2020-10-20 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10647925B2 (en) 2015-12-28 2020-05-12 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
WO2017205274A1 (en) 2016-05-24 2017-11-30 The Lubrizol Corporation Seal swell agents for lubricating compositions
CN109477021B (en) 2016-05-24 2021-10-26 路博润公司 Seal swell agents for lubricating compositions
CN109563430B (en) 2016-05-24 2021-11-19 路博润公司 Seal swell agents for lubricating compositions
WO2018017162A1 (en) 2016-07-20 2018-01-25 Exxonmobil Chemical Patent Inc. Shear-stable oil compositions and processes for making the same
US10351488B2 (en) 2016-08-02 2019-07-16 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials
WO2018026406A1 (en) 2016-08-02 2018-02-08 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials
WO2018052692A1 (en) 2016-09-14 2018-03-22 The Lubrizol Corporation Lubricating composition and method of lubricating an internal combustion engine
WO2018057675A1 (en) 2016-09-21 2018-03-29 The Lubrizol Corporation Polyacrylate antifoam components with improved thermal stability
EP3516024A1 (en) 2016-09-21 2019-07-31 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
EP3559177A1 (en) 2016-12-22 2019-10-30 The Lubrizol Corporation Fluorinated polyacrylate antifoam components for lubricating compositions
EP3559157A1 (en) 2016-12-23 2019-10-30 Shell Internationale Research Maatschappij B.V. Haze-free base oils with high paraffinic content
EP3559158B1 (en) 2016-12-23 2022-08-03 Shell Internationale Research Maatschappij B.V. Method for producing fischer-tropsch feedstock derived haze-free base oil fractions
CN110168063A (en) 2017-01-17 2019-08-23 路博润公司 Engine lubricant containing polyether compound
WO2018182982A2 (en) 2017-03-28 2018-10-04 Exxonmobil Chemical Patents Inc. Metallocene-catalyzed polyalpha-olefins
WO2018182984A1 (en) 2017-03-28 2018-10-04 Exxonmobil Chemical Patents Inc. Metallocene compounds
CA3072459A1 (en) 2017-08-17 2019-02-21 The Lubrizol Company Nitrogen-functionalized olefin polymers for driveline lubricants
CN111433331A (en) 2017-12-04 2020-07-17 路博润公司 Alkyl phenol cleaning agent
CA3087692A1 (en) 2018-01-04 2019-07-11 The Lubrizol Corporation Boron containing automotive gear oil
CN111868217B (en) 2018-02-19 2022-09-13 埃克森美孚化学专利公司 Functional fluids comprising low viscosity polyalphaolefin base stocks
EP3768810A1 (en) 2018-03-21 2021-01-27 The Lubrizol Corporation Novel fluorinated polyacrylates antifoams in ultra-low viscosity (<5 cst) finished fluids
US20220010234A1 (en) 2018-11-16 2022-01-13 The Lubrizol Corporation Alkylbenzene sulfonate detergents
CA3144386A1 (en) 2019-06-24 2020-12-30 The Lubrizol Corporation Continuous acoustic mixing for performance additives and compositions including the same
WO2021086926A1 (en) 2019-10-28 2021-05-06 Exxonmobil Chemical Patents Inc. Dimer selective metallocene catalysts, non-aromatic hydrocarbon soluble activators, and processes to produce poly alpha-olefin oligmers therewith
CN114471678B (en) 2020-11-12 2023-08-22 中国石油天然气股份有限公司 Isomerization dewaxing catalyst, preparation method thereof and method for producing lubricating oil base oil
CN113041954B (en) * 2021-04-23 2022-10-14 广东众和化塑股份公司 Pour point blending method of 5# industrial white oil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US6090989A (en) * 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
US20040043910A1 (en) * 2002-09-04 2004-03-04 Lok Brent K. Blending of low viscosity fischer-tropsch base oils to produce high quality lubricating base oils
US20040065588A1 (en) * 2002-10-08 2004-04-08 Genetti William Berlin Production of fuels and lube oils from fischer-tropsch wax
US20040065584A1 (en) * 2002-10-08 2004-04-08 Bishop Adeana Richelle Heavy lube oil from fischer- tropsch wax
US20040094453A1 (en) * 2002-11-20 2004-05-20 Lok Brent K. Blending of low viscosity fischer-tropsch base oils with conventional base oils to produce high quality lubricating base oils
US20040178118A1 (en) * 2003-03-11 2004-09-16 John Rosenbaum Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
US6846778B2 (en) * 2002-10-08 2005-01-25 Exxonmobil Research And Engineering Company Synthetic isoparaffinic premium heavy lubricant base stock

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332219B2 (en) * 1995-12-08 2009-09-16 エクソンモービル リサーチ アンド エンジニアリング カンパニー Biodegradable high performance hydrocarbon base oil
EP1025186B1 (en) * 1998-08-21 2004-05-19 Sasol Wax (South Africa) (Pty) Limited Process for distilling fischer-tropsch derived paraffinic hydrocarbons
US6103099A (en) * 1998-09-04 2000-08-15 Exxon Research And Engineering Company Production of synthetic lubricant and lubricant base stock without dewaxing
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6332974B1 (en) * 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
US6562230B1 (en) * 1999-12-22 2003-05-13 Chevron Usa Inc Synthesis of narrow lube cuts from Fischer-Tropsch products
US7067049B1 (en) * 2000-02-04 2006-06-27 Exxonmobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
AU9408101A (en) * 2000-10-09 2002-04-22 Sasol Tech Pty Ltd Separation of oxygenates from a hydrocarbon stream
RU2272068C2 (en) * 2000-12-19 2006-03-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method of producing spindle oil, light machine oil, and median machine oil from residual fractions of fuel hydrocracking process
US7670996B2 (en) * 2001-02-13 2010-03-02 Shell Oil Company Lubricant composition having a base oil and one or more additives, wherein the base oil has been obtained from waxy paraffinic fischer-tropsch synthesized hydrocarbons
AR032930A1 (en) * 2001-03-05 2003-12-03 Shell Int Research PROCEDURE TO PREPARE AN OIL BASED OIL AND GAS OIL
AR032941A1 (en) * 2001-03-05 2003-12-03 Shell Int Research A PROCEDURE TO PREPARE A LUBRICATING BASE OIL AND BASE OIL OBTAINED, WITH ITS VARIOUS USES
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US6774272B2 (en) * 2002-04-18 2004-08-10 Chevron U.S.A. Inc. Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
WO2004003113A1 (en) * 2002-06-26 2004-01-08 Shell Internationale Research Maatschappij B.V. Lubricant composition
DE60303385T2 (en) * 2002-07-12 2006-09-14 Shell Internationale Research Maatschappij B.V. PROCESS FOR PRODUCING A HEAVY AND LIGHT GREASER L-GROUND LS
US7198710B2 (en) * 2003-03-10 2007-04-03 Chevron U.S.A. Inc. Isomerization/dehazing process for base oils from Fischer-Tropsch wax
JP4740128B2 (en) * 2003-07-04 2011-08-03 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing Fischer-Tropsch product
US7053254B2 (en) * 2003-11-07 2006-05-30 Chevron U.S.A, Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US7655132B2 (en) * 2004-05-04 2010-02-02 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using isomerized petroleum product
US7273834B2 (en) * 2004-05-19 2007-09-25 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities
US7345211B2 (en) * 2004-07-08 2008-03-18 Conocophillips Company Synthetic hydrocarbon products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US6090989A (en) * 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
US20040043910A1 (en) * 2002-09-04 2004-03-04 Lok Brent K. Blending of low viscosity fischer-tropsch base oils to produce high quality lubricating base oils
US20040065588A1 (en) * 2002-10-08 2004-04-08 Genetti William Berlin Production of fuels and lube oils from fischer-tropsch wax
US20040065584A1 (en) * 2002-10-08 2004-04-08 Bishop Adeana Richelle Heavy lube oil from fischer- tropsch wax
US6846778B2 (en) * 2002-10-08 2005-01-25 Exxonmobil Research And Engineering Company Synthetic isoparaffinic premium heavy lubricant base stock
US20040094453A1 (en) * 2002-11-20 2004-05-20 Lok Brent K. Blending of low viscosity fischer-tropsch base oils with conventional base oils to produce high quality lubricating base oils
US20040178118A1 (en) * 2003-03-11 2004-09-16 John Rosenbaum Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674364B2 (en) 2005-03-11 2010-03-09 Chevron U.S.A. Inc. Hydraulic fluid compositions and preparation thereof
US20080029430A1 (en) * 2005-03-11 2008-02-07 Chevron Usa Inc. Hydraulic Fluid Compositions and Preparation Thereof
US20080053868A1 (en) * 2005-06-22 2008-03-06 Chevron U.S.A. Inc. Engine oil compositions and preparation thereof
US20090036338A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036337A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Electrical Insulating Oil Compositions and Preparation Thereof
US20090036333A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036546A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Medicinal Oil Compositions, Preparations, and Applications Thereof
US20110290702A1 (en) * 2007-08-13 2011-12-01 Gilbert Robert Bernard Germaine Lubricating base oil blend
DE112008002256T5 (en) 2007-08-28 2010-07-22 Chevron U.S.A. Inc., San Ramon Compositions for hydraulic fluids and their preparation
US7932217B2 (en) 2007-08-28 2011-04-26 Chevron U.S.A., Inc. Gear oil compositions, methods of making and using thereof
US20090062164A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
DE112008002258T5 (en) 2007-08-28 2010-11-18 Chevron U.S.A. Inc., San Ramon Hydraulic fluid composition and its preparation
DE112008002257T5 (en) 2007-08-28 2010-09-16 Chevron U.S.A. Inc., San Ramon Slideway lubricant compositions, processes for their preparation and use
US20090062162A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear oil composition, methods of making and using thereof
US20090062163A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090088352A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Tractor hydraulic fluid compositions and preparation thereof
US20090088353A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Lubricating grease composition and preparation
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
US20090298732A1 (en) * 2008-05-29 2009-12-03 Chevron U.S.A. Inc. Gear oil compositions, methods of making and using thereof
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
US20110024328A1 (en) * 2009-07-31 2011-02-03 Chevron U.S.A. Inc. Distillate production in a hydrocarbon synthesis process.
US20110077179A1 (en) * 2009-09-29 2011-03-31 Chevron Oronite Technology B.V. Trunk piston engine lubricating oil compositions
US8349776B2 (en) 2009-09-29 2013-01-08 Chevron Oronite Company Llc Trunk piston engine lubricating oil compositions
DE112011103622T5 (en) 2010-10-28 2013-10-02 Chevron U.S.A. Inc. Compressor oils with improved oxidation resistance
US8702968B2 (en) 2011-04-05 2014-04-22 Chevron Oronite Technology B.V. Low viscosity marine cylinder lubricating oil compositions
US9206374B2 (en) 2011-12-16 2015-12-08 Chevron Oronite Sas Trunk piston engine lubricating oil compositions
EP2604676A1 (en) 2011-12-16 2013-06-19 Chevron Oronite Technology B.V. Trunk piston engine lubricating oil compositions
US10364403B2 (en) 2013-11-06 2019-07-30 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
US10669506B2 (en) 2013-11-06 2020-06-02 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
WO2017013257A1 (en) 2015-07-22 2017-01-26 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
US10407640B2 (en) 2015-07-22 2019-09-10 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions

Also Published As

Publication number Publication date
AU2004288896A1 (en) 2005-05-26
GB0424200D0 (en) 2004-12-01
US20060076266A1 (en) 2006-04-13
AU2004288896B2 (en) 2009-07-09
GB2431164B (en) 2008-06-04
US8449760B2 (en) 2013-05-28
GB2423772B (en) 2007-09-12
BRPI0416241A (en) 2007-01-09
CN101942352B (en) 2012-11-14
WO2005047439A3 (en) 2005-07-14
US7053254B2 (en) 2006-05-30
CN100473716C (en) 2009-04-01
NL1027433C2 (en) 2010-07-07
CN101333473A (en) 2008-12-31
NL1027433A1 (en) 2005-05-10
GB2431164A (en) 2007-04-18
GB2423772A (en) 2006-09-06
GB0600326D0 (en) 2006-02-15
US7922892B2 (en) 2011-04-12
CN101942352A (en) 2011-01-12
GB2408268A (en) 2005-05-25
GB2408268B (en) 2007-05-02
JP2007510776A (en) 2007-04-26
WO2005047439A2 (en) 2005-05-26
CN101333473B (en) 2011-04-20
AU2009202355A1 (en) 2009-07-02
JP2011208158A (en) 2011-10-20
US20060070914A1 (en) 2006-04-06
ZA200603468B (en) 2007-07-25
AU2009202355B2 (en) 2011-05-12
US20110094936A1 (en) 2011-04-28
US20050098476A1 (en) 2005-05-12
AU2011201425A1 (en) 2011-04-21
US8216448B2 (en) 2012-07-10
GB0620824D0 (en) 2006-11-29
CN1886489A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US8216448B2 (en) Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
AU2005332016B2 (en) Process for improving the lubricating properties of base oils using isomerized petroleum product
US7520976B2 (en) Multigrade engine oil prepared from Fischer-Tropsch distillate base oil
US20110290702A1 (en) Lubricating base oil blend
US11352580B2 (en) Mineral base oil having high viscosity index and improved volatility and method of manufacturing same
GB2433072A (en) Process for improving the lubricating properties of base oils using isomerized high boiling petroleum product

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION