US20060062077A1 - Fluid mixing apparatus adapter bucket - Google Patents
Fluid mixing apparatus adapter bucket Download PDFInfo
- Publication number
- US20060062077A1 US20060062077A1 US11/274,216 US27421605A US2006062077A1 US 20060062077 A1 US20060062077 A1 US 20060062077A1 US 27421605 A US27421605 A US 27421605A US 2006062077 A1 US2006062077 A1 US 2006062077A1
- Authority
- US
- United States
- Prior art keywords
- container
- mixing apparatus
- axis
- adapter
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/20—Mixing the contents of independent containers, e.g. test tubes
- B01F31/201—Holders therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/40—Mounting or supporting mixing devices or receptacles; Clamping or holding arrangements therefor
- B01F35/42—Clamping or holding arrangements for mounting receptacles on mixing devices
- B01F35/421—Clamping or holding arrangements for mounting receptacles on mixing devices having a cup-shaped or cage-type form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/40—Mounting or supporting mixing devices or receptacles; Clamping or holding arrangements therefor
- B01F35/42—Clamping or holding arrangements for mounting receptacles on mixing devices
- B01F35/425—Holding arrangements for retaining loose elements of the mixing receptacle, e.g. for holding the handle of a can, while it is being shaken
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/30—Mixing paints or paint ingredients, e.g. pigments, dyes, colours, lacquers or enamel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S366/00—Agitating
- Y10S366/605—Paint mixer
Definitions
- Paints or other fluids are typically mixed or blended into homogenous mixtures while in the same cylindrical containers in which they are shipped, stored, sold, and ultimately dispensed by the user.
- An example of the need for such in-container mixing results from colorants or pigments being added to base paints.
- the mixing apparatuses typically include cylindrical receptacles or “buckets” into which the containers are inserted.
- Such cylindrical buckets are frequently mounted and positioned on their mixing apparatuses for balanced spinning or rotating motion about the mixing apparatuses' rotation axes, which extend internally through the centers of the bases of these buckets, and for simultaneous “planetary” revolution about external revolution axes that may or may not be parallel to the internal rotation axes.
- Such cylindrical buckets can also be mounted and positioned on their mixing apparatuses for other balanced motion about the other mixing apparatuses' motion axes, which also extend internally through the buckets.
- the typical paint cylindrical container has its “central geometric axes” extending perpendicularly through the center of its circular base such that the radially outer periphery of the cylindrical container is geometrically symmetrical with respect to such central geometric axis.
- Such a container also has an internal “center of gravity axis” extending through the container's center of gravity and about which the container is balanced when rotated. Because the container is symmetrical, the central geometric axis and the center of gravity axis are coincident and colinear. Therefore, such cylindrical containers are properly balanced when received within the correspondingly cylindrical buckets described above because their center of gravity axes are properly aligned and colinear with the rotation axes of the mixing apparatuses.
- At least one paint manufacturer has introduced a paint can or container that is non-cylindrical, with a substantially square lateral cross-sectional shape and radiused corners.
- This so-called “square container” also has a partial cut-out handle portion at one corner to form an integral handle at an intermediate longitudinal height between the container's base portion and top portion. Because of this configuration with its handle and cut-out portion, and the resultant lateral displacement of paint, the square container's center of gravity does not lie on its central geometric axis.
- the above-described mixing apparatuses would have to be equipped with interchangeable conventional cylindrical buckets and “square buckets”, each appropriately shaped and configured to properly align its corresponding container's center of gravity axis with the rotation axis of the mixing apparatus.
- such an arrangement would require either the provision of multiple mixing apparatuses at a given site or the inordinately time-consuming dismounting of one bucket and re-mounting of another bucket each time a single mixing apparatus is to be used for a container having a shape and configuration different from that of the container for which the mixing apparatus was last used.
- the present invention seeks to over come these disadvantages by providing a single mixing apparatus bucket that is adapted to receive and restrain either cylindrical containers or non-cylindrical containers and that properly registers either of such containers so that its center of gravity axis is colinearly aligned with the rotation axis of the bucket and the mixing apparatus.
- an adapter bucket for a mixing apparatus for mixing a fluid in a fluid container, with the mixing apparatus including a motion axis about which the container is moved by the mixing apparatus.
- the adapter bucket is mountable on the mixing apparatus for receiving and restraining either a first container having its center of gravity axis coincident with its central geometric axis or a second container having its center of gravity axis offset with respect to its central geometric axis.
- the adapter bucket preferably includes a generally cup-shaped body for receiving said selected container therein, with the body including a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and a number of adapter sides extending or protruding transversely, upwardly from the base.
- the selected container is positioned with its center of gravity axis along the apparatus' motion axis when the selected container is received within the adapter between the adapter sides regardless of whether the selected container is the first container or the second container.
- the adapter bucket is especially well adapted for accommodating situations where the above-mentioned first container has a generally circular lateral cross-sectional shape with a generally cylindrical first container side, and the second container has a generally polygonal lateral cross-sectional shape with a number of substantially straight container sides.
- a number (only two in the exemplary embodiment described herein) of the adapter bucket's upwardly protruding sides generally flatly engage and act as restraining members to laterally restrain the second (“square”) container's sides when the second container is received within said adapter, with the other two of the adapter bucket's sides preferably being spaced apart from a corresponding or adjacent pair of the second container's sides when the second container is received within the adapter bucket.
- the adapter bucket includes an intermediate adapter bucket side or corner interconnecting the adapter bucket sides that are spaced apart from the second container sides, with this intermediate side or corner portion tangentially engaging a portion (preferably a corner portion) of the second container when the second container is received within the adapter bucket.
- this is accomplished by way of this intermediate side or corner portion of the adapter bucket being formed as a radiused corner having a larger (and therefore shallower) radius than the other three radiused corners of the adapter bucket.
- a conventional fluid container can be inserted into the adapter bucket and be properly centered, aligned and balanced for mixing, as usual in the prior art.
- the same bucket (called the “adapter” or “adapter bucket” herein) can also interchangeably accommodate the non-conventional so-called “square containers, with their cut-out handle portions at one side or one corner laterally displacing a portion of the fluid in the container and thus shift its center of gravity axis laterally away from its central geometrical axis.
- the adapter bucket of the present invention urges the non-cylindrical container in a lateral direction, as mentioned above, generally towards the cut-out handle portion in order to colinearly align the container's center of gravity axis with the rotation axis of the bucket and the mixing apparatus and properly balance the container.
- This lateral shifting is accomplished as a result of the larger radiused corner of the adapter bucket having a larger radius than that of the other three corners, as described above, and tangentially engaging a radiused corner on the so-called square container to cause the square container to be shifted laterally in a direction toward the container's cut-out handle portion, thus compensating for the lateral difference between the square container's central geometrical axis and its center of gravity axis.
- visual or other indicators are provided on the adapter bucket in order to allow the user to properly orient the square container when inserting it into the adapter bucket so that the center of gravity axis of the container can be properly aligned colinearly with the rotation axis of the mixing apparatus.
- other orienting configurations can be included on the adapter bucket, such as one or more laterally inwardly protruding “dimples” or other protrusions from its sides so that such protrusion can engage the cut-out portion of the square container.
- Still other well known orienting, registering or “detent” features will occur to those skilled in the art to assure proper insertion of the or other non-cylindrical containers that have a center of gravity axis offset relative to their central geometrical axes.
- FIG. 1 is a perspective view of a prior art paint mixing apparatus, illustrating a conventional cylindrical paint container received and restrained within a conventional bucket mounted on the mixing apparatus.
- FIG. 2 is a perspective view similar to that of FIG. 1 , but illustrating an exemplary preferred embodiment of an adapter bucket according to the present invention removed from the mixing apparatus for purposes of clarity.
- FIG. 3 is a perspective view of the adapter bucket shown in FIG. 2 .
- FIG. 4 is a top view of the adapter bucket of FIG. 3 .
- FIG. 5 is a side view of the adapter bucket of FIGS. 3 and 4 .
- FIG. 6 is a perspective view of a conventional cylindrical paint container.
- FIG. 7 is a top perspective view of a non-cylindrical paint container.
- FIG. 8 is a side view of the non-cylindrical paint container of FIG. 7 .
- FIG. 9 is a bottom perspective view of the non-cylindrical paint container of FIGS. 7 and 8 .
- FIG. 10 is a top view of the adapter bucket of FIGS. 3 through 5 , with the conventional cylindrical paint container's center of gravity axis and central geometric axis both with the rotation axis of the bucket.
- FIG. 10A is a cross-sectional view taken generally along lines 10 A- 10 A of FIG. 10 .
- FIG. 11 is a top perspective view of the adapter bucket of FIGS. 3 through 5 , with the non-cylindrical paint container's center of gravity axis offset relative to its central geometric axis but aligned with the rotation axis of the bucket.
- FIG. 12 is a top view of the adapter bucket of FIGS. 3 through 5 , with the non-cylindrical paint container's central geometric axis laterally offset with respect to the rotation axis of the bucket, but with its center of gravity axis aligned with the rotation axis of the bucket.
- FIG. 13 is a perspective view similar to that of FIG. 2 , but illustrating an alternate adapter bucket according to the present invention with inward registry protrusions for engaging handle cut-out portions of the non-cylindrical container.
- FIGS. 1 through 13 of the accompanying drawings depict various merely exemplary embodiments of a mixing apparatus adapter bucket according to the present invention. Such illustrations are shown for purposes of illustration herein as being applicable in mixing apparatuses adapted for mixing paints in the containers in which they are shipped, stored, sold, and ultimately dispensed by the user.
- mixing apparatuses adapted for mixing paints in the containers in which they are shipped, stored, sold, and ultimately dispensed by the user.
- One skilled in the art will readily recognize, however, that other embodiments according to the invention can also be employed in such mixing apparatuses and that the invention can be equally and advantageously used in other types of mixing apparatus, in applications adapted for mixing other fluids, or in applications intended for mixing fluids in other types of dissimilar containers.
- a conventional mixing apparatus 10 includes a cabinet 12 with a closeable door 14 surrounding a mixing area of the machine.
- a conventional bucket 16 is mounted on the mixing apparatus 10 and is adapted for receiving a conventional paint container 50 , having a base 52 , a cylindrical side 54 , a lid 56 , and a handle or bail 58 pivotally secured by the ferrules 59 , as is also illustrated in FIG. 6 .
- the mixing apparatus 10 typically includes a rotation axis 64 , (see FIGS. 2 and 4 ), about which the bucket 16 and the cylindrical paint container 50 are rotated or spun, as well as an conventional external revolution axis (not shown) about which the bucket 16 and the paint container 50 can be revolved in a planetary manner.
- the conventional mixing apparatus 10 with the conventional bucket 16 are well-suited for receiving and restraining the conventional paint container 50 during mixing operations
- at least one paint manufacturer has recently introduced non-cylindrical paint containers, including those having a generally square lateral cross-sectional shape and with a cut-out handle portion at one corner or one side, as is illustrated in FIGS. 7 through 9 and discussed in more detail below.
- FIGS. 2 through 5 illustrate an adapter bucket 20 , according to the present invention, and an angled control member or assembly 22 , which imparts parts mixing motion to the adapter bucket 20 when mounted on the mixing apparatus 10 .
- the exemplary adapter bucket 20 includes a body 26 having a base 28 and generally upstanding or transversely extending sides 30 and 32 .
- the sides 32 include a locator cut-out portion 36 , which serves as a visual indication to the user of the proper orientation of the square paint container 70 (illustrated in FIGS. 7 through 9 ), as will be discussed in more detail below.
- cut-out portions 38 for receiving resilient spring clips 40 on two (or optionally even four) sides of the adapter bucket 20 are provided.
- the spring clips 40 serve to restrain the handle or bail 58 and the ferrules 59 and vertically restrain the cylindrical paint container 50 .
- the spring clips 40 can also be used to restrain the bail 80 of the square paint container 70 .
- Such spring clips 40 can be retained in place on the adapter bucket 20 by way of pegs or pins 44 , or in other conventional ways that will readily occur to those skilled in the art.
- the spring clips 40 can optionally be replaced by tabs pivotally attached to the sides of the adapter bucket, for example, for vertically restraining the cylindrical paint container 50 .
- the exemplary adapter bucket 20 can include cut-away lower corner portions 42 of the base 28 , if needed.
- the preferred adapter bucket 20 preferably includes a number of intermediate side wall or radiused corners 46 and 48 .
- the radiused corner or side wall portion 48 has a larger radius, and its therefore “shallower”, than the other three smaller-radiused corner or side portions 46 .
- This shallower or larger-radiused corner or side portion 48 is provided for properly positioning the non-cylindrical or paint container 70 , as is further discussed below.
- the non-cylindrical or square paint container 70 preferably includes a base 72 , as well as adjacent sides 74 and adjacent sides 76 extending transversely or upwardly from the base 72 .
- the paint container 70 also includes a lid 78 , a bail 80 , and a pair of cut-out portions 82 in the side 76 in order to define an integrally formed handle 84 .
- the paint container 70 has a central geometric axis 86 , which is centrally located with respect to the outer peripheral confines of the space occupied by the painter container 70 , and a center of gravity axis 88 , which passes through the center of gravity of a full paint container 70 .
- the center of gravity axis 88 is laterally offset from the central geometric axis 86 in a direction away from the handle 84 , such that the center of gravity axis 88 and the handle cut-out portions 82 are on opposite sides of the central geometric axis 86 .
- the larger-radiused corner or side portion 48 laterally restrains and urges the paint container 70 laterally toward the opposite corner of the adapter bucket 20 , as is illustrated in FIGS. 10 through 12 .
- this lateral shifting or offset relationship results in the condition discussed above, wherein the central geometric axis 86 of the paint container 70 and the shallower, larger-radiused corner or side portion 48 are on opposite sides of the center of gravity axis 88 of the paint container 70 .
- the adapter bucket 20 can still accommodate, receive and laterally restrain a conventional, cylindrical paint container 50 , with the cylindrical paint container side 54 being tangentially engaged by a number of transversely upstanding protrusions or tabs 29 on the base 28 of the adapter bucket 20 .
- the preferred pair (or pairs) of the spring clips 40 vertically restrain the cylindrical paint container 50 .
- the locator cut-out portion 36 on the adapter bucket 20 provides a visual indication to a user of the proper orientation of the paint container 70 , with its handle 84 located adjacent to the locator cut-out portion 36 .
- FIG. 13 illustrates an alternate embodiment of the invention, wherein the adapter bucket 20 includes one or more “dimples” or other such protrusions 96 protruding laterally inwardly from its sides 32 .
- Such protrusions 96 can thus engage the handle cut-out portions 82 in the paint container 70 in order to provide the user with positive “detent” type of indication that the paint container 70 is properly oriented within the adapter bucket 20 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Abstract
An improved adapter bucket for a mixing apparatus adapted for mixing paints or other fluids can selectively receive either conventional cylindrical containers or non-conventional, non-cylindrical containers therein and restrain either of such container types on the apparatus during mixing operations. The adapter bucket is configured to properly register either of such containers types so that its center of gravity axis is colinearly aligned with the rotation axis of the bucket and the mixing apparatus, regardless of whether the containers' center of gravity axes and central geometric axes are coincident and colinear with each other or laterally offset with respect to each other.
Description
- This is a continuation of U.S. application Ser. No. 10/944,257, filed Sep. 17, 2004, entitled FLUID MIXING APPARATUS MIXING BUCKET, which is a continuation of U.S. application Ser. No. 10/201,148, filed Jul. 23, 2002, entitled FLUID MIXING APPARATUS ADAPTER BUCKET, now abandoned.
- The present invention relates generally to apparatuses for mixing fluids, such as paints, for example, in containers placed in bucket-type receptacles on such mixing apparatuses, and more particularly to buckets adapted to selectively receive containers of different shapes and to register such containers in properly balanced positions.
- Paints or other fluids are typically mixed or blended into homogenous mixtures while in the same cylindrical containers in which they are shipped, stored, sold, and ultimately dispensed by the user. An example of the need for such in-container mixing results from colorants or pigments being added to base paints. In order to properly position and restrain these cylindrical containers, the mixing apparatuses typically include cylindrical receptacles or “buckets” into which the containers are inserted. Such cylindrical buckets are frequently mounted and positioned on their mixing apparatuses for balanced spinning or rotating motion about the mixing apparatuses' rotation axes, which extend internally through the centers of the bases of these buckets, and for simultaneous “planetary” revolution about external revolution axes that may or may not be parallel to the internal rotation axes. Such cylindrical buckets can also be mounted and positioned on their mixing apparatuses for other balanced motion about the other mixing apparatuses' motion axes, which also extend internally through the buckets.
- The typical paint cylindrical container has its “central geometric axes” extending perpendicularly through the center of its circular base such that the radially outer periphery of the cylindrical container is geometrically symmetrical with respect to such central geometric axis. Such a container also has an internal “center of gravity axis” extending through the container's center of gravity and about which the container is balanced when rotated. Because the container is symmetrical, the central geometric axis and the center of gravity axis are coincident and colinear. Therefore, such cylindrical containers are properly balanced when received within the correspondingly cylindrical buckets described above because their center of gravity axes are properly aligned and colinear with the rotation axes of the mixing apparatuses.
- Recently, however, at least one paint manufacturer has introduced a paint can or container that is non-cylindrical, with a substantially square lateral cross-sectional shape and radiused corners. This so-called “square container” also has a partial cut-out handle portion at one corner to form an integral handle at an intermediate longitudinal height between the container's base portion and top portion. Because of this configuration with its handle and cut-out portion, and the resultant lateral displacement of paint, the square container's center of gravity does not lie on its central geometric axis. This results in its center of gravity axis being laterally or radially offset relative to its central geometric axis which extends perpendicularly through the center of its substantially square base and is laterally centered with respect to the laterally outer confines of the space occupied by the square container. Thus, such a square container typically cannot be received within the conventional cylindrical bucket of a mixing apparatus. Even if the bucket's shape was changed to a square lateral cross-section, the square container would be rotationally unbalanced if its central geometric axis were coincident and colinear with the rotation axis of the conventional cylindrical bucket. Such weight imbalance would result in damage, or at least undue and premature wear, to the motion transmission mechanisms and components of the mixing apparatus.
- In order to accommodate both the conventional cylindrical containers and the new square containers, the above-described mixing apparatuses would have to be equipped with interchangeable conventional cylindrical buckets and “square buckets”, each appropriately shaped and configured to properly align its corresponding container's center of gravity axis with the rotation axis of the mixing apparatus. In addition, besides duplicating bucket costs and resulting in undue inconvenience in the storage of multiple buckets, such an arrangement would require either the provision of multiple mixing apparatuses at a given site or the inordinately time-consuming dismounting of one bucket and re-mounting of another bucket each time a single mixing apparatus is to be used for a container having a shape and configuration different from that of the container for which the mixing apparatus was last used.
- The present invention seeks to over come these disadvantages by providing a single mixing apparatus bucket that is adapted to receive and restrain either cylindrical containers or non-cylindrical containers and that properly registers either of such containers so that its center of gravity axis is colinearly aligned with the rotation axis of the bucket and the mixing apparatus.
- According to the present invention, an adapter bucket is provided for a mixing apparatus for mixing a fluid in a fluid container, with the mixing apparatus including a motion axis about which the container is moved by the mixing apparatus. The adapter bucket is mountable on the mixing apparatus for receiving and restraining either a first container having its center of gravity axis coincident with its central geometric axis or a second container having its center of gravity axis offset with respect to its central geometric axis. The adapter bucket preferably includes a generally cup-shaped body for receiving said selected container therein, with the body including a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and a number of adapter sides extending or protruding transversely, upwardly from the base. The selected container is positioned with its center of gravity axis along the apparatus' motion axis when the selected container is received within the adapter between the adapter sides regardless of whether the selected container is the first container or the second container.
- The adapter bucket is especially well adapted for accommodating situations where the above-mentioned first container has a generally circular lateral cross-sectional shape with a generally cylindrical first container side, and the second container has a generally polygonal lateral cross-sectional shape with a number of substantially straight container sides. Preferably internal partial walls or tabs protruding transversely, generally upwardly, from the base of the adapter bucket act as restraining members to tangentially engage and laterally restrain the first (cylindrical) container when the first container is received within said adapter, and spring clips or pivotal tabs restrain the container vertically. A number (only two in the exemplary embodiment described herein) of the adapter bucket's upwardly protruding sides generally flatly engage and act as restraining members to laterally restrain the second (“square”) container's sides when the second container is received within said adapter, with the other two of the adapter bucket's sides preferably being spaced apart from a corresponding or adjacent pair of the second container's sides when the second container is received within the adapter bucket.
- In the preferred exemplary embodiment described herein, the adapter bucket includes an intermediate adapter bucket side or corner interconnecting the adapter bucket sides that are spaced apart from the second container sides, with this intermediate side or corner portion tangentially engaging a portion (preferably a corner portion) of the second container when the second container is received within the adapter bucket. In the preferred, exemplary embodiment described herein, this is accomplished by way of this intermediate side or corner portion of the adapter bucket being formed as a radiused corner having a larger (and therefore shallower) radius than the other three radiused corners of the adapter bucket. This results in the spaced apart adapter bucket sides and the central geometric axis of the second container being on opposite sides of the motion (rotation) axis of the bucket (and thus of the mixing apparatus) when the second (“square”) container is received in its offset position within the adapter bucket.
- Because of this unique configuration, a conventional fluid container can be inserted into the adapter bucket and be properly centered, aligned and balanced for mixing, as usual in the prior art. However, according to the present invention, the same bucket (called the “adapter” or “adapter bucket” herein) can also interchangeably accommodate the non-conventional so-called “square containers, with their cut-out handle portions at one side or one corner laterally displacing a portion of the fluid in the container and thus shift its center of gravity axis laterally away from its central geometrical axis. The adapter bucket of the present invention urges the non-cylindrical container in a lateral direction, as mentioned above, generally towards the cut-out handle portion in order to colinearly align the container's center of gravity axis with the rotation axis of the bucket and the mixing apparatus and properly balance the container. This lateral shifting is accomplished as a result of the larger radiused corner of the adapter bucket having a larger radius than that of the other three corners, as described above, and tangentially engaging a radiused corner on the so-called square container to cause the square container to be shifted laterally in a direction toward the container's cut-out handle portion, thus compensating for the lateral difference between the square container's central geometrical axis and its center of gravity axis.
- Preferably, visual or other indicators are provided on the adapter bucket in order to allow the user to properly orient the square container when inserting it into the adapter bucket so that the center of gravity axis of the container can be properly aligned colinearly with the rotation axis of the mixing apparatus. In addition, other orienting configurations can be included on the adapter bucket, such as one or more laterally inwardly protruding “dimples” or other protrusions from its sides so that such protrusion can engage the cut-out portion of the square container. Still other well known orienting, registering or “detent” features will occur to those skilled in the art to assure proper insertion of the or other non-cylindrical containers that have a center of gravity axis offset relative to their central geometrical axes.
- Other objects, advantages and features of the present invention, in addition to those examples mentioned above, will become apparent from the following description and the appended claims, taken in conjunction with the accompanying drawings.
-
FIG. 1 is a perspective view of a prior art paint mixing apparatus, illustrating a conventional cylindrical paint container received and restrained within a conventional bucket mounted on the mixing apparatus. -
FIG. 2 is a perspective view similar to that ofFIG. 1 , but illustrating an exemplary preferred embodiment of an adapter bucket according to the present invention removed from the mixing apparatus for purposes of clarity. -
FIG. 3 is a perspective view of the adapter bucket shown inFIG. 2 . -
FIG. 4 is a top view of the adapter bucket ofFIG. 3 . -
FIG. 5 is a side view of the adapter bucket ofFIGS. 3 and 4 . -
FIG. 6 is a perspective view of a conventional cylindrical paint container. -
FIG. 7 is a top perspective view of a non-cylindrical paint container. -
FIG. 8 is a side view of the non-cylindrical paint container ofFIG. 7 . -
FIG. 9 is a bottom perspective view of the non-cylindrical paint container ofFIGS. 7 and 8 . -
FIG. 10 is a top view of the adapter bucket ofFIGS. 3 through 5 , with the conventional cylindrical paint container's center of gravity axis and central geometric axis both with the rotation axis of the bucket. -
FIG. 10A is a cross-sectional view taken generally alonglines 10A-10A ofFIG. 10 . -
FIG. 11 is a top perspective view of the adapter bucket ofFIGS. 3 through 5 , with the non-cylindrical paint container's center of gravity axis offset relative to its central geometric axis but aligned with the rotation axis of the bucket. -
FIG. 12 is a top view of the adapter bucket ofFIGS. 3 through 5 , with the non-cylindrical paint container's central geometric axis laterally offset with respect to the rotation axis of the bucket, but with its center of gravity axis aligned with the rotation axis of the bucket. -
FIG. 13 is a perspective view similar to that ofFIG. 2 , but illustrating an alternate adapter bucket according to the present invention with inward registry protrusions for engaging handle cut-out portions of the non-cylindrical container. -
FIGS. 1 through 13 of the accompanying drawings depict various merely exemplary embodiments of a mixing apparatus adapter bucket according to the present invention. Such illustrations are shown for purposes of illustration herein as being applicable in mixing apparatuses adapted for mixing paints in the containers in which they are shipped, stored, sold, and ultimately dispensed by the user. One skilled in the art will readily recognize, however, that other embodiments according to the invention can also be employed in such mixing apparatuses and that the invention can be equally and advantageously used in other types of mixing apparatus, in applications adapted for mixing other fluids, or in applications intended for mixing fluids in other types of dissimilar containers. - Referring initially to
FIG. 1 , aconventional mixing apparatus 10 includes acabinet 12 with acloseable door 14 surrounding a mixing area of the machine. Aconventional bucket 16 is mounted on themixing apparatus 10 and is adapted for receiving aconventional paint container 50, having abase 52, acylindrical side 54, alid 56, and a handle orbail 58 pivotally secured by theferrules 59, as is also illustrated inFIG. 6 . The mixingapparatus 10 typically includes arotation axis 64, (seeFIGS. 2 and 4 ), about which thebucket 16 and thecylindrical paint container 50 are rotated or spun, as well as an conventional external revolution axis (not shown) about which thebucket 16 and thepaint container 50 can be revolved in a planetary manner. - Although the
conventional mixing apparatus 10, with theconventional bucket 16 are well-suited for receiving and restraining theconventional paint container 50 during mixing operations, at least one paint manufacturer has recently introduced non-cylindrical paint containers, including those having a generally square lateral cross-sectional shape and with a cut-out handle portion at one corner or one side, as is illustrated inFIGS. 7 through 9 and discussed in more detail below. -
FIGS. 2 through 5 illustrate anadapter bucket 20, according to the present invention, and an angled control member or assembly 22, which imparts parts mixing motion to theadapter bucket 20 when mounted on the mixingapparatus 10. Theexemplary adapter bucket 20 includes abody 26 having a base 28 and generally upstanding or transversely extendingsides adapter bucket 20 illustrated in the drawings, thesides 32 include a locator cut-outportion 36, which serves as a visual indication to the user of the proper orientation of the square paint container 70 (illustrated inFIGS. 7 through 9 ), as will be discussed in more detail below. - Preferably, cut-out
portions 38 for receiving resilient spring clips 40 on two (or optionally even four) sides of theadapter bucket 20. The spring clips 40 serve to restrain the handle orbail 58 and theferrules 59 and vertically restrain thecylindrical paint container 50. The spring clips 40 can also be used to restrain thebail 80 of thesquare paint container 70. Such spring clips 40 can be retained in place on theadapter bucket 20 by way of pegs or pins 44, or in other conventional ways that will readily occur to those skilled in the art. The spring clips 40 can optionally be replaced by tabs pivotally attached to the sides of the adapter bucket, for example, for vertically restraining thecylindrical paint container 50. - In addition, in order to assure proper clearance with other mixing apparatus components during the mixing operation, the
exemplary adapter bucket 20 can include cut-awaylower corner portions 42 of thebase 28, if needed. - The
preferred adapter bucket 20 preferably includes a number of intermediate side wall orradiused corners FIG. 4 , the radiused corner orside wall portion 48 has a larger radius, and its therefore “shallower”, than the other three smaller-radiused corner orside portions 46. This shallower or larger-radiused corner orside portion 48 is provided for properly positioning the non-cylindrical or paintcontainer 70, as is further discussed below. - Referring to
FIGS. 7 through 9 , the non-cylindrical orsquare paint container 70 preferably includes abase 72, as well asadjacent sides 74 andadjacent sides 76 extending transversely or upwardly from thebase 72. Thepaint container 70 also includes alid 78, abail 80, and a pair of cut-outportions 82 in theside 76 in order to define an integrally formedhandle 84. - Because of the provision of the cut-out
portions 82 and thehandle 84 in thepaint container 70, a portion of the paint or other fluid in thepaint container 70 is necessarily displaced laterally toward the opposite corner of thepaint container 70 from thehandle 84. Thepaint container 70 has a centralgeometric axis 86, which is centrally located with respect to the outer peripheral confines of the space occupied by thepainter container 70, and a center ofgravity axis 88, which passes through the center of gravity of afull paint container 70. Because of the paint displacement mentioned above, the center ofgravity axis 88 is laterally offset from the centralgeometric axis 86 in a direction away from thehandle 84, such that the center ofgravity axis 88 and the handle cut-outportions 82 are on opposite sides of the centralgeometric axis 86. - Such shifting of the center of
gravity axis 88 in thepaint container 70 would cause thepaint container 70 to be rotationally unbalanced if its centralgeometric axis 86 was colinearly aligned with therotation axis 64 of theadapter bucket 20 and the mixingapparatus 10. This weight imbalance would result in damage, or at least premature and undue wear, to the motion transmission mechanisms and components of the mixingapparatus 10. - Therefore, in order to accommodate such laterally offset or shifted center of
gravity axis 88 of thesquare paint container 70, the larger-radiused corner orside portion 48 laterally restrains and urges thepaint container 70 laterally toward the opposite corner of theadapter bucket 20, as is illustrated inFIGS. 10 through 12 . Referring specifically toFIG. 12 , this lateral shifting or offset relationship results in the condition discussed above, wherein the centralgeometric axis 86 of thepaint container 70 and the shallower, larger-radiused corner orside portion 48 are on opposite sides of the center ofgravity axis 88 of thepaint container 70. - This arrangement also results in the
adjacent sides 30, which are interconnected by the larger-radiusedcorner 48, being spaced apart from the sides of thepaint container 70, while theadjacent sides 32 of theadapter bucket 20 generally flatly engage and laterally restrain the sides of thepaint container 70. However, as shown inFIG. 10 , theadapter bucket 20 can still accommodate, receive and laterally restrain a conventional,cylindrical paint container 50, with the cylindricalpaint container side 54 being tangentially engaged by a number of transversely upstanding protrusions ortabs 29 on thebase 28 of theadapter bucket 20. As mentioned above, the preferred pair (or pairs) of the spring clips 40 vertically restrain thecylindrical paint container 50. No lateral shifting of the cylindrical paint container 50 (for balance purposes) is needed since its central geometric axis and center ofgravity axis 60 are the same. However, even the regular cylindrically-shapedpaint container 50 would have to be similarly shifted if the paint (and thus the center of gravity) were displaced due to the provision of handle cut-outs or other such impingements into the interior of the container. - As mentioned above, the locator cut-out
portion 36 on theadapter bucket 20, as shown inFIGS. 10 through 12 , provides a visual indication to a user of the proper orientation of thepaint container 70, with itshandle 84 located adjacent to the locator cut-outportion 36. - As an alternate to the visual indication provided by the locator cut-out
portion 36 shown inFIGS. 10 through 12 ,FIG. 13 illustrates an alternate embodiment of the invention, wherein theadapter bucket 20 includes one or more “dimples” or othersuch protrusions 96 protruding laterally inwardly from itssides 32.Such protrusions 96 can thus engage the handle cut-outportions 82 in thepaint container 70 in order to provide the user with positive “detent” type of indication that thepaint container 70 is properly oriented within theadapter bucket 20. - Those skilled in the art will readily recognize that the present invention has broad utility and wide-ranging application. Alternate embodiments and adaptations of the present invention other than those shown and described herein, as well as variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention, as described in the drawings, the foregoing description thereof, and the appended claims, without departing from the substance or scope of the present invention, as defined in the following claims.
Claims (5)
1. A system for mixing a fluid in a fluid container, comprising:
a fluid container selected from a group including a first container having its center of gravity axis coincident with its central geometric axis and a second container having its center of gravity axis offset with respect to its central geometric axis;
a mixing apparatus including a motion axis about which the container is moved by the mixing apparatus; and
an adapter mountable on the mixing apparatus for receiving and restraining said selected container regardless of whether said selected container is said first container or said second container, said adapter including a generally cup-shaped body for receiving said selected container therein, said body including a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and a number of restraining members oriented transversely with respect to said base,
the restraining members including at least one first restraining member configured to engage said first container when said first container is received within said adapter as said selected container to position its coincident center of gravity and central geometric axes along the motion axis of said mixing apparatus, and
the restraining members further including at least one second restraining member configured to engage said second container when said second container is received within said adapter as said selected container to position its central geometric axis at an offset from the motion axis of said mixing apparatus sufficiently that its center of gravity axis is positioned along the motion axis of said mixing apparatus,
whereby the restraining members are configured to engage said selected container to position its center of gravity axis along the motion axis of said mixing apparatus regardless of whether said selected container is said first container or said second container.
2. A system for mixing a fluid in a fluid container, comprising:
a fluid container selected from a group including a first container having a generally circular lateral cross-sectional shape with a generally cylindrical first container side and having its center of gravity axis coincident with its central geometric axis and a second container having a generally square lateral cross-sectional shape with substantially straight second container sides interconnected by second container corner portions and having its center of gravity axis offset with respect to its central geometric axis;
a mixing apparatus including a rotation axis about which the container is rotated by the mixing apparatus; and
an adapter mountable on the mixing apparatus for receiving and restraining said selected container regardless of whether said selected container is said first container or said second container, said adapter including a generally cup-shaped body for receiving said selected container therein, said body having a generally square lateral cross-sectional shape, including a base through which the rotation axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and a number of restraining members oriented transversely with respect to said base,
the restraining members including at least one first restraining member configured to engage and laterally restrain said first container when said first container is received within said adapter as said selected container to position its coincident center of gravity and central geometric axes along said motion axis of said mixing apparatus, and
the restraining members further including at least one second restraining member configured to engage said second container when said second container is received within said adapter as said selected container to position its central geometric axis at an offset from the motion axis of said mixing apparatus sufficiently that its center of gravity axis is positioned along the motion axis of said mixing apparatus,
whereby the restraining members are configured to engage said selected container to position its center of gravity axis along the motion axis of said mixing apparatus regardless of whether said selected container is said first container or said second container.
3. A system for mixing a fluid in a fluid container, comprising:
a fluid container having a generally square lateral cross-sectional shape and having its center of gravity axis offset with respect to its central geometric axis;
a mixing apparatus including a motion axis about which the container is moved by the mixing apparatus; and
an adapter mountable on the mixing apparatus for receiving and restraining the fluid container, said adapter including a generally cup-shaped body for receiving said container therein, said body having a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and adapter sides oriented transversely with respect to said base,
a number of said sides configured to engage said fluid container to position its central geometric axis at an offset from the motion axis of said mixing apparatus sufficiently that its center of gravity axis is positioned along the motion axis of said mixing apparatus when said fluid container is received within said adapter between said adapter sides.
4. A system for mixing a fluid in a fluid container, comprising:
a fluid container having a generally square lateral cross-sectional shape and having its center of gravity axis offset with respect to its central geometric axis;
a mixing apparatus including a motion axis about which the container is moved by the mixing apparatus; and
an adapter mountable on the mixing apparatus for receiving and restraining the fluid container, said adapter including a generally cup-shaped body for receiving said container therein, said body having a generally square lateral cross-sectional shape, including a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and adapter sides oriented transversely with respect to said base,
at least some of said adapter sides configured to engage said fluid container to position its central geometric axis at an offset from the motion axis of said mixing apparatus sufficiently that its center of gravity axis is positioned along said motion axis of said mixing apparatus when said fluid container is received within said adapter between said adapter sides.
5. A system for mixing a fluid in a fluid container, comprising:
a fluid container having its center of gravity axis offset with respect to its central geometric axis;
a mixing apparatus including a motion axis about which the container is moved by the mixing apparatus; and
an adapter mountable on the mixing apparatus for receiving and restraining the container, said adapter including a generally cup-shaped body for receiving said container therein, said body including a base through which the motion axis of the mixing apparatus extends when said adapter is mounted on the mixing apparatus and a number of restraining members oriented transversely with respect to said base,
at least some of said restraining members configured to engage said container to position its central geometric axis at an offset from the motion axis of said mixing apparatus sufficiently that its center of gravity axis is positioned along said motion axis of said mixing apparatus when said container is received within said adapter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/274,216 US20060062077A1 (en) | 2002-07-23 | 2005-11-15 | Fluid mixing apparatus adapter bucket |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/201,148 US20030142583A1 (en) | 2002-07-23 | 2002-07-23 | Fluid mixing apparatus adapter bucket |
US10/944,257 US6988824B2 (en) | 2002-07-23 | 2004-09-17 | Fluid mixing apparatus adapter bucket |
US11/274,216 US20060062077A1 (en) | 2002-07-23 | 2005-11-15 | Fluid mixing apparatus adapter bucket |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/944,257 Continuation US6988824B2 (en) | 2002-07-23 | 2004-09-17 | Fluid mixing apparatus adapter bucket |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060062077A1 true US20060062077A1 (en) | 2006-03-23 |
Family
ID=27613013
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/201,148 Abandoned US20030142583A1 (en) | 2002-07-23 | 2002-07-23 | Fluid mixing apparatus adapter bucket |
US10/944,257 Expired - Fee Related US6988824B2 (en) | 2002-07-23 | 2004-09-17 | Fluid mixing apparatus adapter bucket |
US11/274,216 Abandoned US20060062077A1 (en) | 2002-07-23 | 2005-11-15 | Fluid mixing apparatus adapter bucket |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/201,148 Abandoned US20030142583A1 (en) | 2002-07-23 | 2002-07-23 | Fluid mixing apparatus adapter bucket |
US10/944,257 Expired - Fee Related US6988824B2 (en) | 2002-07-23 | 2004-09-17 | Fluid mixing apparatus adapter bucket |
Country Status (1)
Country | Link |
---|---|
US (3) | US20030142583A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060256648A1 (en) * | 2001-10-09 | 2006-11-16 | Huckby Dwight R | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US20090207690A1 (en) * | 2008-02-15 | 2009-08-20 | Red Devil Equipment Company | Multi-size mixer |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60228230D1 (en) * | 2001-04-18 | 2008-09-25 | Sherwin Williams Co | IMPROVED CONTAINER AND LID ARRANGEMENT |
US20030142583A1 (en) * | 2002-07-23 | 2003-07-31 | Ultrablend Color, Llc | Fluid mixing apparatus adapter bucket |
US6953279B2 (en) * | 2003-01-21 | 2005-10-11 | Red Devil Equipment Company | Paint mixer with damping frame |
US6945689B2 (en) * | 2003-04-18 | 2005-09-20 | Masterchem Industries, Llc | System for holding paint container |
US6945690B2 (en) * | 2003-05-29 | 2005-09-20 | Masterchem Industries, Inc. | System for holding paint container |
EP1527814A1 (en) * | 2003-10-28 | 2005-05-04 | CPS Color Equipment S.p.A. | Mixer housing arrangement for balancing out-of-balance mixing vessels |
US7306363B2 (en) * | 2004-01-30 | 2007-12-11 | Masterchem Industries Llc | Container holder platform |
ITUD20040138A1 (en) * | 2004-07-01 | 2004-10-01 | Cps Color Equipment Spa | CONTAINMENT DEVICE TO CONTAIN E |
US7654730B2 (en) * | 2004-09-27 | 2010-02-02 | Ultrablend Llc | Ergonomic paint mixer |
CA2583032C (en) * | 2004-10-05 | 2010-06-01 | The Sherwin-Williams Company | Adaptor for holding a container in a bucket of a mixing device, apparatus and method for mixing paint disposed in a container |
DE602005014801D1 (en) * | 2004-10-08 | 2009-07-16 | Sherwin Williams Co | DEVICE AND METHOD FOR MIXING COLOR RENDERED IN A CONTAINER |
US7497348B2 (en) * | 2005-12-15 | 2009-03-03 | Red Devil Equipment Company | Adapter for paint mixers |
US7780339B2 (en) * | 2006-04-24 | 2010-08-24 | Red Devil Equipment Company | Vortex motion paint mixing machine |
US7959345B2 (en) * | 2007-08-10 | 2011-06-14 | Valspar Sourcing, Inc. | System for securing a container within a mixing machine |
US20110315785A1 (en) * | 2010-06-29 | 2011-12-29 | Alexander Essing | Mixing device for flowable materials |
US9669369B1 (en) * | 2013-08-09 | 2017-06-06 | Ryan L. Mees | Mixing bucket stabilizing assembly |
US10940086B2 (en) * | 2015-11-12 | 2021-03-09 | Scalpal Llc | Bottle support and protective collar |
EP4151306A1 (en) | 2016-11-10 | 2023-03-22 | Medisca Pharmaceutique Inc. | Pharmaceutical compounding methods and systems |
US10766012B2 (en) | 2017-02-22 | 2020-09-08 | Radia | Paint mixing device and method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709540A (en) * | 1954-06-22 | 1955-05-31 | James T Kenney | Paint can holder |
US4235553A (en) * | 1978-09-25 | 1980-11-25 | Sears, Roebuck And Co. | Material mixer |
US4497581A (en) * | 1979-11-15 | 1985-02-05 | Miller Paint Equipment, Inc. | Paint shaker |
US5788371A (en) * | 1996-09-17 | 1998-08-04 | Fast America, Incorporated | Horizontal and vertical rotatable paint mixing machine |
US5799820A (en) * | 1994-10-13 | 1998-09-01 | Maas; Alan Francis | Milk/juice jug insulator |
US6193410B1 (en) * | 1998-12-16 | 2001-02-27 | Puckett, Ii Robert A. | Method for agitating the liquid contents of paint balls |
US20030107949A1 (en) * | 2001-10-09 | 2003-06-12 | Huckby Dwight R. | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US20030142583A1 (en) * | 2002-07-23 | 2003-07-31 | Ultrablend Color, Llc | Fluid mixing apparatus adapter bucket |
US20030179646A1 (en) * | 2002-03-19 | 2003-09-25 | Miller William A. | Fluid mixer for accommodating containers of varying sizes |
US20030214878A1 (en) * | 2002-05-13 | 2003-11-20 | Huckby Dwight R. | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US20040085855A1 (en) * | 2003-01-21 | 2004-05-06 | Midas Thomas J. | Keyed paint container holder for a paint mixer |
US20040141412A1 (en) * | 2003-01-21 | 2004-07-22 | Midas Thomas J. | Paint mixer with damping frame |
US20040208083A1 (en) * | 2003-04-18 | 2004-10-21 | Masterchem Industries, Inc. | System for holding paint container |
US20040240314A1 (en) * | 2003-05-29 | 2004-12-02 | Masterchem Industries, Inc. | System for holding paint container |
US20050088910A1 (en) * | 2003-10-28 | 2005-04-28 | Cps Color Equipment Spa | Housing and support structure for mixers for fluid products |
US20050141341A1 (en) * | 2002-04-09 | 2005-06-30 | Guido Greco | Apparatus for processing fluid products and method for the use thereof |
US20050195685A1 (en) * | 2004-09-27 | 2005-09-08 | Ultrablend Llc | Ergonomic paint mixer |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US142583A (en) * | 1873-09-09 | Improvement in couplings for connecting cradles to rocking-chairs | ||
US179646A (en) * | 1876-07-11 | Improvement in harvesters | ||
US214878A (en) * | 1879-04-29 | Improvement in saw-filing machines | ||
US107949A (en) * | 1870-10-04 | Improvement in ice-cream pails | ||
JPS61161128A (en) * | 1985-01-10 | 1986-07-21 | Internatl Paint Kk | Mixer |
JPH0838871A (en) | 1994-08-02 | 1996-02-13 | Suzuka Fine Kk | Gyroscopic mixer |
-
2002
- 2002-07-23 US US10/201,148 patent/US20030142583A1/en not_active Abandoned
-
2004
- 2004-09-17 US US10/944,257 patent/US6988824B2/en not_active Expired - Fee Related
-
2005
- 2005-11-15 US US11/274,216 patent/US20060062077A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709540A (en) * | 1954-06-22 | 1955-05-31 | James T Kenney | Paint can holder |
US4235553A (en) * | 1978-09-25 | 1980-11-25 | Sears, Roebuck And Co. | Material mixer |
US4235553B1 (en) * | 1978-09-25 | 1991-04-02 | Material mixer | |
US4497581A (en) * | 1979-11-15 | 1985-02-05 | Miller Paint Equipment, Inc. | Paint shaker |
US5799820A (en) * | 1994-10-13 | 1998-09-01 | Maas; Alan Francis | Milk/juice jug insulator |
US5788371A (en) * | 1996-09-17 | 1998-08-04 | Fast America, Incorporated | Horizontal and vertical rotatable paint mixing machine |
US6193410B1 (en) * | 1998-12-16 | 2001-02-27 | Puckett, Ii Robert A. | Method for agitating the liquid contents of paint balls |
US20050002273A1 (en) * | 2001-10-09 | 2005-01-06 | Huckby Dwight R. | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US20030107949A1 (en) * | 2001-10-09 | 2003-06-12 | Huckby Dwight R. | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US6817751B2 (en) * | 2001-10-09 | 2004-11-16 | The Sherwin-Williams Company | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US20030179646A1 (en) * | 2002-03-19 | 2003-09-25 | Miller William A. | Fluid mixer for accommodating containers of varying sizes |
US6767126B2 (en) * | 2002-03-19 | 2004-07-27 | Fluid Management, Inc. | Fluid mixer for accommodating containers of varying sizes |
US20050141341A1 (en) * | 2002-04-09 | 2005-06-30 | Guido Greco | Apparatus for processing fluid products and method for the use thereof |
US20030214878A1 (en) * | 2002-05-13 | 2003-11-20 | Huckby Dwight R. | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US6988824B2 (en) * | 2002-07-23 | 2006-01-24 | Ultrablend Color, Llc | Fluid mixing apparatus adapter bucket |
US20030142583A1 (en) * | 2002-07-23 | 2003-07-31 | Ultrablend Color, Llc | Fluid mixing apparatus adapter bucket |
US20050030834A1 (en) * | 2002-07-23 | 2005-02-10 | Ultrablend Color, Llc | Fluid mixing apparatus adapter bucket |
US20040141412A1 (en) * | 2003-01-21 | 2004-07-22 | Midas Thomas J. | Paint mixer with damping frame |
US6767125B2 (en) * | 2003-01-21 | 2004-07-27 | Red Devil Equipment Company | Keyed paint container holder for a paint mixer |
US20040085855A1 (en) * | 2003-01-21 | 2004-05-06 | Midas Thomas J. | Keyed paint container holder for a paint mixer |
US20040208083A1 (en) * | 2003-04-18 | 2004-10-21 | Masterchem Industries, Inc. | System for holding paint container |
US6945689B2 (en) * | 2003-04-18 | 2005-09-20 | Masterchem Industries, Llc | System for holding paint container |
US20040240314A1 (en) * | 2003-05-29 | 2004-12-02 | Masterchem Industries, Inc. | System for holding paint container |
US6945690B2 (en) * | 2003-05-29 | 2005-09-20 | Masterchem Industries, Inc. | System for holding paint container |
US20050088910A1 (en) * | 2003-10-28 | 2005-04-28 | Cps Color Equipment Spa | Housing and support structure for mixers for fluid products |
US20050195685A1 (en) * | 2004-09-27 | 2005-09-08 | Ultrablend Llc | Ergonomic paint mixer |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060256648A1 (en) * | 2001-10-09 | 2006-11-16 | Huckby Dwight R | Apparatus and method for mixing a fluid dispersion disposed in a container having either a cylindrical or a square shape |
US7325968B2 (en) * | 2001-10-09 | 2008-02-05 | The Sherwin-Williams Company | Structure for holding either a cylindrical or square shaped container during a mixing operation |
US20080049549A1 (en) * | 2001-10-09 | 2008-02-28 | The Sherwin-Williams Company | Method for Mixing A Fluid Dispersion Disposed in a Container Having Either a Cylindrical or Square Shape |
US20090207690A1 (en) * | 2008-02-15 | 2009-08-20 | Red Devil Equipment Company | Multi-size mixer |
US8157436B2 (en) * | 2008-02-15 | 2012-04-17 | Red Devil Equipment Company | Multi-size mixer |
US8465199B2 (en) | 2008-02-15 | 2013-06-18 | Red Devil Equipment Co. | Multi-size mixer |
US8905629B2 (en) | 2008-02-15 | 2014-12-09 | Red Devil Equipment Company | Multi-size mixer |
Also Published As
Publication number | Publication date |
---|---|
US20030142583A1 (en) | 2003-07-31 |
US6988824B2 (en) | 2006-01-24 |
US20050030834A1 (en) | 2005-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060062077A1 (en) | Fluid mixing apparatus adapter bucket | |
CA2583239C (en) | Apparatus with automatic balancing for mixing paint disposed in containers having different configurations | |
US7445373B2 (en) | Method for mixing a fluid dispersion disposed in a container having either a cylindrical or square shape | |
US6767125B2 (en) | Keyed paint container holder for a paint mixer | |
US8845179B2 (en) | Shaking machine adaptor for containers having different shapes | |
EP1714749B1 (en) | Storage box | |
EP1945069B1 (en) | Vertical tool storage device with a curved handle | |
US4792236A (en) | Multi-canister tinter with lost-motion coupling | |
US10322419B2 (en) | Dual centrifuge rotor with damping mass | |
CA2000297A1 (en) | Rack for cylindrical containers | |
JPH0852336A (en) | Stirrer | |
KR20030070801A (en) | Receptacle for Discharge Milk Powder by Constant Quantity | |
WO2002079040A1 (en) | Portable powdered milk container | |
EP0377503A2 (en) | Cartridge for properly receiving test elements | |
JPH0763655B2 (en) | Centrifuge tube adapter with hinge | |
KR940005467A (en) | Machine to automatically position and align containers | |
US20030097909A1 (en) | Device for imparting rotary motion to a barrel cap | |
JP3236525U (en) | Container adapter for agitator | |
JP2000016138A (en) | Cup holder device | |
US20240324819A1 (en) | Method and apparatus for assembling accessories in a caddy | |
WO2020078019A1 (en) | Reagent container storage structure, system, and storage tray | |
JPH086498Y2 (en) | centrifuge | |
JP3059369B2 (en) | Container with handle | |
KR20230000746U (en) | Split Type Weiding Rod Drying Furnace | |
JP2010284600A (en) | Kneading apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |