US20060049087A1 - Aquarium filter having self-priming arrangement - Google Patents

Aquarium filter having self-priming arrangement Download PDF

Info

Publication number
US20060049087A1
US20060049087A1 US10/938,344 US93834404A US2006049087A1 US 20060049087 A1 US20060049087 A1 US 20060049087A1 US 93834404 A US93834404 A US 93834404A US 2006049087 A1 US2006049087 A1 US 2006049087A1
Authority
US
United States
Prior art keywords
water
chamber
intake chamber
intake
aquarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/938,344
Other versions
US7001509B1 (en
Inventor
Chi-Hung Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/938,344 priority Critical patent/US7001509B1/en
Application granted granted Critical
Publication of US7001509B1 publication Critical patent/US7001509B1/en
Publication of US20060049087A1 publication Critical patent/US20060049087A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/045Filters for aquaria

Definitions

  • the present invention relates to aquarium filters and more particularly to an improved aquarium filter having a self-priming arrangement so as to restart the filter after the filter stops due to halting of the pump.
  • the filter housing 10 comprises an intake chamber 13 and a filtering chamber 12 which are separated by a partition wall 11 .
  • a pump 14 is provided under the intake chamber 13 .
  • An impeller 15 is disposed in the intake chamber 13 and is rotatably coupled to the pump 14 .
  • a U-shaped intake tube 16 has one end positioned in an aquarium tank (not shown) and the other end proximate the impeller 15 .
  • Water from the aquarium tank is sucked into the intake tube 16 .
  • Water then flows up through the intake tube 16 and is drawn into the intake chamber 13 .
  • the water filled in the intake chamber 13 will overflow the partition wall 11 into the filtering chamber 12 if it has a sufficient height.
  • the filtration material provided in the filtering chamber 12 is used to filter the water. The filtered water then passes back into the aquarium tank.
  • the pump 14 will heat up. Since there is no circulating water in the pump 14 , the pump 14 will continue to generate heat. This heat may cause damage to the intake chamber 13 . Moreover, the failure of the filter to provide adequate filtration to the aquarium tank may cause damage and harm to the contents of the aquarium itself.
  • U.S. Pat. No. 4,761,227 discloses a self priming aquarium filter for overcoming the above drawback as illustrated in FIGS. 2A and 2B .
  • a narrow passageway 27 is provided in the partition wall 21 .
  • the cross-sectional area of the passageway 27 is less than that of the intake tube 26 . Accordingly, after the majority of water has flowed over the partition wall 21 (see FIG. 2B ), and when water level of the filtering chamber 22 has reached the upper end of the partition wall 21 , a small trickle flow will still flow through the passageway 27 from the filtering chamber 22 back into the intake chamber 23 . But the siphoning action of the intake tube 26 with respect to the intake chamber 23 will operate faster than the trickle flow.
  • the siphoning flow will cause the water to drain out of the intake chamber 23 faster than the trickle flow flows into the intake chamber 23 .
  • the water will deplete from the intake chamber 23 beneath the level of the impeller 25 .
  • the siphon breaks and no more water will flow outwardly from the intake chamber 23 .
  • the continuous trickle flow passing through the passageway 27 will now begin accumulating in the intake chamber 23 .
  • the intake chamber 23 is filled with sufficient priming water.
  • the filter and thus the impeller 25 will automatically start a normal operation without adding priming water manually.
  • the patent aids in permitting the siphoning action to break prior to providing a sufficient trickle flow to reprime the filter.
  • FIGS. 3A and 3B A check valve 32 is provided in a vertical portion of the intake tube 30 .
  • the pump 33 In operation (i.e., the pump 33 is energized) as shown in FIG. 3A , water flows from the aquarium tank to the intake chamber 31 via the intake tube 30 and the check valve 32 .
  • the inlet 34 of the check valve 32 In an inoperative state of the filter (i.e., the pump 33 is deenergized) as shown in FIG. 3B , the inlet 34 of the check valve 32 is completely blocked due to its spring mechanism.
  • an aquarium filter for mounting externally of an aquarium tank comprising an intake chamber for receiving contaminated water from the aquarium tank; a filtering chamber in flow communication with the intake chamber, the filtering chamber including a filtration member for filtering the contaminated water to return clean water back to the aquarium tank; a partition wall disposed between the intake chamber and the filtering chamber for overflowing water from the intake chamber into the filtering chamber; an intake tube for supplying water from the aquarium tank to the intake chamber; a flow resistive, porous member disposed between the partition wall and an inner wall of the aquarium filter; and pump means having an impeller for drawing water from the aquarium filter into the intake chamber through the intake tube, wherein responsive to stopping the pump means, water in the intake chamber begins to reversely flow out of the intake chamber into the aquarium tank through the intake tube due to a siphoning action, water in the filtering chamber flows back to the intake chamber through the porous member and over the porous member if a water level of the filtering chamber is higher than that of the intake chamber, the reverse
  • FIG. 1A is a perspective view of a well known aquarium filter
  • FIG. 1B shows the normal flow of the aquarium water through the well known filter
  • FIG. 1C shows a reversal of water flow due to a siphoning action when power to the pump is stopped so that the pump is no longer operating
  • FIG. 1D shows draining of the intake chamber that occurs with the well known filter due to the siphoning action
  • FIG. 2A shows the presence of the passageway in the partition wall which permits a continued trickle flow back from the filtering chamber to the intake chamber as disclosed in U.S. Pat. No. 4,761,227;
  • FIG. 2B shows the resultant water retained in the intake chamber for self-priming of the filter for restarting of the filter operation according to the patent shown in FIG. 2A ;
  • FIG. 3A is a sectional view showing the provision of a check valve in an intake tube according to Taiwanese Patent Application No. 93,112,070, where water normally flows through the intake tube;
  • FIG. 3B is a view similar to FIG. 3A , where a trickle flow is stopped by the closed check valve when the pump is deenergized;
  • FIG. 4 is an exploded view of a preferred embodiment of aquarium filter according to the invention.
  • FIG. 5 is a perspective view of a portion of the assembled aquarium filter shown in FIG. 4 ;
  • FIG. 6 is a schematic sectional view depicting a normal filtering operation of the aquarium filter according to the invention.
  • FIGS. 7, 8 , and 9 are views similar to FIG. 6 for illustrating water flow in the aquarium filter when the pump is deenergized.
  • FIGS. 4 and 5 there is shown an external aquarium filter constructed in accordance with the invention.
  • the filter comprises a filter housing 40 having an internal space divided into an intake chamber 43 and a filtering chamber 42 by a partition wall 41 , and a removable cover 50 snugly fitted onto a peripheral lip on a top of the filter housing 40 .
  • a pump 44 is provided under the intake chamber 43 .
  • An impeller 45 is disposed in the intake chamber 43 and is rotatably coupled to the pump 44 .
  • a filter cartridge 46 is vertically removably mounted in the filtering chamber 42 .
  • a spillway 47 is extended obliquely downwardly from a top edge of the filtering chamber 42 such that the aquarium filter is adapted to mount externally of an aquarium tank (not shown) by hanging the spillway 47 thereon.
  • An L-shaped intake tube 60 is held on a top notch of the frame of the intake chamber 43 and has one end positioned in the aquarium tank and the other end proximate the impeller 45 .
  • a flow-control valve 61 is provided in a horizontal section of the intake tube 60 .
  • two opposite vertical guide grooves 411 and 412 are disposed between the intake chamber 43 and the filtering chamber 42 in which one guide groove 411 is formed on an inner wall of the filter housing 40 and the other guide groove 412 is formed with the partition wall 41 .
  • a rectangular porous member (e.g., sponge) 48 is slid into and between the guide grooves 411 and 412 for positioning.
  • the provision of the porous member 48 aims at decreasing water flowing from the intake chamber 43 into the filtering chamber 42 (i.e., increased flow resistance) as compared with water flowed into the intake chamber 43 from the intake tube 60 .
  • water in the intake chamber 43 begins to reversely flow out of the intake chamber 43 into the aquarium tank through the intake tube 60 due to a siphoning action in the 1 intake tube 60 . Also, water in the filtering chamber 42 flows back to the intake chamber 43 over the porous member 48 and through the porous member 48 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

An external aquarium filter comprises a flow resistive, porous member disposed between a partition wall and the filter housing. Responsive to stopping the pump, water in the intake chamber begins to reversely flow out of the intake chamber into the aquarium tank through the intake tube due to siphoning, water in the filtering chamber flows back to the intake chamber through the porous member, the reverse flow is faster than water flowing into the intake chamber such that the siphoning breaks when the water level of the intake chamber drops below that of the filtering chamber, the water in the filtering chamber continues to flow back to the intake chamber through the porous member until both the filtering chamber and the intake chamber have the same water level, and sufficient priming water is thus stored in the intake chamber for a future restarting of the filter.

Description

    FIELD OF THE INVENTION
  • The present invention relates to aquarium filters and more particularly to an improved aquarium filter having a self-priming arrangement so as to restart the filter after the filter stops due to halting of the pump.
  • BACKGROUND OF THE INVENTION
  • Referring to FIGS. 1A and 1B, it shows the normal flow of aquarium water through a conventional filter. As illustrated, the filter housing 10 comprises an intake chamber 13 and a filtering chamber 12 which are separated by a partition wall 11. A pump 14 is provided under the intake chamber 13. An impeller 15 is disposed in the intake chamber 13 and is rotatably coupled to the pump 14. A U-shaped intake tube 16 has one end positioned in an aquarium tank (not shown) and the other end proximate the impeller 15. Upon energizing the pump 14 and thus the impeller 15, water from the aquarium tank is sucked into the intake tube 16. Water then flows up through the intake tube 16 and is drawn into the intake chamber 13. The water filled in the intake chamber 13 will overflow the partition wall 11 into the filtering chamber 12 if it has a sufficient height. The filtration material provided in the filtering chamber 12 is used to filter the water. The filtered water then passes back into the aquarium tank.
  • Referring to FIG. 1C, it is assumed that power outage has occurred or the impeller 15 failed to operate normally due to a piece of debris getting stuck therein. When such stoppage occurs, water in the intake chamber 13 begins to reversely flow out of the intake chamber 13 due to a siphoning action since the filter is provided at a level higher than the external aquarium tank. At the same time, water in the filtering chamber 12 flows backward over the partition wall 11 for filling the intake chamber 13 prior to flowing back to the aquarium tank through the intake tube 16.
  • Referring to FIG. 1D, water in the intake chamber 13 is completely drained after water has gradually flowed back into the aquarium tank through the intake tube 16 and the water level of the filtering chamber 12 is no more higher than that of the intake chamber 13. At this time, the siphoning action stops. If the power to the pump 14 resumes, the filter will not begin but will remain in the stage shown in FIG. 1D. In order for the filter to begin, it must be primed whereby sufficient water is placed in the intake chamber 13 to cover the impeller 15 so that the impeller 15 will be able to spread water out and cause a reduced pressure thereby sucking in additional water. In the absence of such priming water, the filter will not restart and will remain in the state shown in FIG. 1D. However, since the electricity will begin flowing to the pump 14, the pump 14 will heat up. Since there is no circulating water in the pump 14, the pump 14 will continue to generate heat. This heat may cause damage to the intake chamber 13. Moreover, the failure of the filter to provide adequate filtration to the aquarium tank may cause damage and harm to the contents of the aquarium itself.
  • U.S. Pat. No. 4,761,227 discloses a self priming aquarium filter for overcoming the above drawback as illustrated in FIGS. 2A and 2B. A narrow passageway 27 is provided in the partition wall 21. The cross-sectional area of the passageway 27 is less than that of the intake tube 26. Accordingly, after the majority of water has flowed over the partition wall 21 (see FIG. 2B), and when water level of the filtering chamber 22 has reached the upper end of the partition wall 21, a small trickle flow will still flow through the passageway 27 from the filtering chamber 22 back into the intake chamber 23. But the siphoning action of the intake tube 26 with respect to the intake chamber 23 will operate faster than the trickle flow. Hence, the siphoning flow will cause the water to drain out of the intake chamber 23 faster than the trickle flow flows into the intake chamber 23. As an end, the water will deplete from the intake chamber 23 beneath the level of the impeller 25. Thereafter, the siphon breaks and no more water will flow outwardly from the intake chamber 23. When this occurs, the continuous trickle flow passing through the passageway 27 will now begin accumulating in the intake chamber 23. As a result, the intake chamber 23 is filled with sufficient priming water. Upon resumption of power, the filter and thus the impeller 25 will automatically start a normal operation without adding priming water manually. The patent aids in permitting the siphoning action to break prior to providing a sufficient trickle flow to reprime the filter.
  • Taiwanese Patent Application No. 93,112,070, entitled “Aquarium Filter Having Check Valve”, as invented by the present inventor is shown in FIGS. 3A and 3B. A check valve 32 is provided in a vertical portion of the intake tube 30. In operation (i.e., the pump 33 is energized) as shown in FIG. 3A, water flows from the aquarium tank to the intake chamber 31 via the intake tube 30 and the check valve 32. In an inoperative state of the filter (i.e., the pump 33 is deenergized) as shown in FIG. 3B, the inlet 34 of the check valve 32 is completely blocked due to its spring mechanism. As such, a small trickle flow due to the siphoning action of the intake tube 30 will not flow through the check valve 32. As a result, sufficient water is placed in the intake chamber 31 for ensuring a self-priming of the filter when power resumes. While it is advantageous in the self-priming arrangement, the provision of the check valve 32 can increase the difficulty of assembly, the complexity of parts, and cost. Thus, the need for improvement still exists.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an aquarium filter for mounting externally of an aquarium tank comprising an intake chamber for receiving contaminated water from the aquarium tank; a filtering chamber in flow communication with the intake chamber, the filtering chamber including a filtration member for filtering the contaminated water to return clean water back to the aquarium tank; a partition wall disposed between the intake chamber and the filtering chamber for overflowing water from the intake chamber into the filtering chamber; an intake tube for supplying water from the aquarium tank to the intake chamber; a flow resistive, porous member disposed between the partition wall and an inner wall of the aquarium filter; and pump means having an impeller for drawing water from the aquarium filter into the intake chamber through the intake tube, wherein responsive to stopping the pump means, water in the intake chamber begins to reversely flow out of the intake chamber into the aquarium tank through the intake tube due to a siphoning action, water in the filtering chamber flows back to the intake chamber through the porous member and over the porous member if a water level of the filtering chamber is higher than that of the intake chamber, the reverse flow is faster than the water flowing into the intake chamber such that the siphoning action breaks when the water level of the intake chamber drops below that of the filtering chamber by a predetermined distance with the impeller being exposed, the water in the filtering chamber continues to flow back to the intake chamber through the porous member until the water level of the filtering chamber is equal to that of the intake chamber, and at this time a sufficient amount of water is stored in the intake chamber as priming water for a future restarting of the aquarium filter.
  • The above and other objects, features and advantages of the present invention will become apparent from the following detailed description taken with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of a well known aquarium filter;
  • FIG. 1B shows the normal flow of the aquarium water through the well known filter;
  • FIG. 1C shows a reversal of water flow due to a siphoning action when power to the pump is stopped so that the pump is no longer operating;
  • FIG. 1D shows draining of the intake chamber that occurs with the well known filter due to the siphoning action;
  • FIG. 2A shows the presence of the passageway in the partition wall which permits a continued trickle flow back from the filtering chamber to the intake chamber as disclosed in U.S. Pat. No. 4,761,227;
  • FIG. 2B shows the resultant water retained in the intake chamber for self-priming of the filter for restarting of the filter operation according to the patent shown in FIG. 2A;
  • FIG. 3A is a sectional view showing the provision of a check valve in an intake tube according to Taiwanese Patent Application No. 93,112,070, where water normally flows through the intake tube;
  • FIG. 3B is a view similar to FIG. 3A, where a trickle flow is stopped by the closed check valve when the pump is deenergized;
  • FIG. 4 is an exploded view of a preferred embodiment of aquarium filter according to the invention;
  • FIG. 5 is a perspective view of a portion of the assembled aquarium filter shown in FIG. 4;
  • FIG. 6 is a schematic sectional view depicting a normal filtering operation of the aquarium filter according to the invention; and
  • FIGS. 7, 8, and 9 are views similar to FIG. 6 for illustrating water flow in the aquarium filter when the pump is deenergized.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 4 and 5, there is shown an external aquarium filter constructed in accordance with the invention. The filter comprises a filter housing 40 having an internal space divided into an intake chamber 43 and a filtering chamber 42 by a partition wall 41, and a removable cover 50 snugly fitted onto a peripheral lip on a top of the filter housing 40. A pump 44 is provided under the intake chamber 43. An impeller 45 is disposed in the intake chamber 43 and is rotatably coupled to the pump 44. A filter cartridge 46 is vertically removably mounted in the filtering chamber 42. A spillway 47 is extended obliquely downwardly from a top edge of the filtering chamber 42 such that the aquarium filter is adapted to mount externally of an aquarium tank (not shown) by hanging the spillway 47 thereon. An L-shaped intake tube 60 is held on a top notch of the frame of the intake chamber 43 and has one end positioned in the aquarium tank and the other end proximate the impeller 45. A flow-control valve 61 is provided in a horizontal section of the intake tube 60. Moreover, two opposite vertical guide grooves 411 and 412 are disposed between the intake chamber 43 and the filtering chamber 42 in which one guide groove 411 is formed on an inner wall of the filter housing 40 and the other guide groove 412 is formed with the partition wall 41. A rectangular porous member (e.g., sponge) 48 is slid into and between the guide grooves 411 and 412 for positioning. The provision of the porous member 48 aims at decreasing water flowing from the intake chamber 43 into the filtering chamber 42 (i.e., increased flow resistance) as compared with water flowed into the intake chamber 43 from the intake tube 60.
  • Referring to FIG. 6, upon energizing the pump 24, water will be drawn from the aquarium tank into the intake chamber 43 through the intake tube 60. The water in the intake chamber 43 will overflow the porous member 48 into the filtering chamber 42 if it has a sufficient height. The filtration material of the filter cartridge 46 is used to filter the water in the filtering chamber 42. The filtered water then passes back into the aquarium tank through the spillway 47.
  • Referring to FIG. 7, if the pump 44 stops due to power outage, water in the intake chamber 43 begins to reversely flow out of the intake chamber 43 into the aquarium tank through the intake tube 60 due to a siphoning action in the 1 intake tube 60. Also, water in the filtering chamber 42 flows back to the intake chamber 43 over the porous member 48 and through the porous member 48.
  • Referring to FIG. 8, once the water level of the filtering chamber 42 falls below the top edge of the porous member 48 flow rate of water flowing back to the intake chamber 43 from the filtering chamber 42 will decrease because, as stated above, water passes the porous member 48. As such, water drawn out of the intake chamber 43 is more than water flowing into the intake chamber 43. As such, air is drawn into the intake tube 60. As a result, the siphoning action breaks (i.e., water is blocked from flowing back to the aquarium tank). At this time, the water level of the intake chamber 43 is lower than that of the filtering chamber 42.
  • Referring to FIG. 9, while the water is blocked from flowing back to the aquarium tank, water in the filtering chamber 42 continues to flow back to the intake chamber 43 through the porous member 48 until the water level of the filtering chamber 42 is equal to that of the intake chamber 43. The water level of the intake chamber 43 is higher than a joining portion of the intake tube 60 and the impeller 45 (i.e., covered the impeller 45) when water in the filtering chamber 42 stops flowing back to the intake chamber 43. In other words, there is sufficient priming water stored in the intake chamber 43. Therefore, if the power to the pump 24 resumes, the filter will automatically begin to operate normally without adding priming water manually.
  • While the invention herein disclosed has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.

Claims (4)

1. An aquarium filter for mounting externally of an aquarium tank, comprising:
an intake chamber for receiving contaminated water from the aquarium tank;
a filtering chamber in flow communication with the intake chamber, the filtering chamber including a filtration member for filtering the contaminated water to return clean water back to the aquarium tank;
a partition wall disposed between the intake chamber and the filtering chamber for overflowing water from the intake chamber into the filtering chamber;
an intake tube for supplying water from the aquarium tank to the intake chamber;
a flow resistive, porous member disposed between the partition wall and an inner wall of the aquarium filter; and
pump means having an impeller for drawing water from the aquarium filter into the intake chamber through the intake tube,
wherein responsive to stopping the pump means, water in the intake chamber begins to reversely flow out of the intake chamber into the aquarium tank through the intake tube due to a siphoning action, water in the filtering chamber flows back to the intake chamber through the porous member and over the porous member if a water level of the filtering chamber is higher than that of the intake chamber, the reverse flow is faster than the water flowing into the intake chamber such that the siphoning action breaks when the water level of the intake chamber drops below that of the filtering chamber by a predetermined distance with the impeller being exposed, the water in the filtering chamber continues to flow back to the intake chamber through the porous member until the water level of the filtering chamber is equal to that of the intake chamber, and at this time a sufficient amount of water is stored in the intake chamber as priming water for a future restarting of the aquarium filter.
2. The aquarium filter of claim 1, further comprising a first vertical guide § groove formed on the inner wall of the aquarium filter and a second opposite, vertical guide groove formed with the partition wall, and wherein the porous member is slid into and between the guide grooves for positioning.
3. The aquarium filter of claim 1, wherein the porous member is a sponge.
4. The aquarium filter of claim 1, further comprising a flow-control valve disposed in a predetermined position of the intake tube.
US10/938,344 2004-09-09 2004-09-09 Aquarium filter having self-priming arrangement Expired - Fee Related US7001509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/938,344 US7001509B1 (en) 2004-09-09 2004-09-09 Aquarium filter having self-priming arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/938,344 US7001509B1 (en) 2004-09-09 2004-09-09 Aquarium filter having self-priming arrangement

Publications (2)

Publication Number Publication Date
US7001509B1 US7001509B1 (en) 2006-02-21
US20060049087A1 true US20060049087A1 (en) 2006-03-09

Family

ID=35810569

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/938,344 Expired - Fee Related US7001509B1 (en) 2004-09-09 2004-09-09 Aquarium filter having self-priming arrangement

Country Status (1)

Country Link
US (1) US7001509B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124542A1 (en) * 2004-12-09 2006-06-15 Strawn John A Methods and apparatus for the removal of organic matter and related degradation products from water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE530065T1 (en) * 2006-08-25 2011-11-15 Tominaga Jyushi Kogyosho Kk OVERFLOW DEVICE FOR WATER TANK
US7604734B2 (en) * 2007-06-20 2009-10-20 Chris Hammond Water filtration system
US8632677B2 (en) 2011-01-17 2014-01-21 Wayne Sherman Aquarium bottom cleaner system
CA2810877A1 (en) * 2012-03-27 2013-09-27 Timothy Gordon Smith Water recycling unit
US9788533B2 (en) 2012-10-09 2017-10-17 Elive Llc Aquarium filter
US10638732B2 (en) 2017-11-21 2020-05-05 Spectrum Brands, Inc. Aquarium filter arrangement with control valve
US11412717B1 (en) 2020-05-05 2022-08-16 Central Garden & Pet Company Movable spout for an aquarium
US12144326B1 (en) 2020-05-05 2024-11-19 Central Garden & Pet Company Pumping arrangement for an aquarium
US11641848B1 (en) 2020-05-05 2023-05-09 Central Garden & Pet Company Variable flow spout for an aquarium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744635A (en) * 1972-03-28 1973-07-10 T Horvath Pump for aquarium filter tanks
US4285813A (en) * 1978-03-27 1981-08-25 Metaframe Corporation Aquarium filtration apparatus
US4761227A (en) * 1987-03-27 1988-08-02 Willinger Bros. Self priming aquarium filter
US5449454A (en) * 1993-01-13 1995-09-12 Aquaria, Inc. Gas expelling device for a canister type filter
US5728293A (en) * 1995-06-12 1998-03-17 Aquarium Systems, Inc. External filter assembly for aquariums
US6106709A (en) * 1997-06-05 2000-08-22 Hydor S.R.L. Filtering device for aquariums

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287559A (en) * 1996-04-22 1997-11-04 Toei Denki Kogyo Kk Pump device for water tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744635A (en) * 1972-03-28 1973-07-10 T Horvath Pump for aquarium filter tanks
US4285813A (en) * 1978-03-27 1981-08-25 Metaframe Corporation Aquarium filtration apparatus
US4761227A (en) * 1987-03-27 1988-08-02 Willinger Bros. Self priming aquarium filter
US5449454A (en) * 1993-01-13 1995-09-12 Aquaria, Inc. Gas expelling device for a canister type filter
US5728293A (en) * 1995-06-12 1998-03-17 Aquarium Systems, Inc. External filter assembly for aquariums
US6106709A (en) * 1997-06-05 2000-08-22 Hydor S.R.L. Filtering device for aquariums

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124542A1 (en) * 2004-12-09 2006-06-15 Strawn John A Methods and apparatus for the removal of organic matter and related degradation products from water

Also Published As

Publication number Publication date
US7001509B1 (en) 2006-02-21

Similar Documents

Publication Publication Date Title
US4761227A (en) Self priming aquarium filter
CN101588713B (en) Overflow device for water tank
US7001509B1 (en) Aquarium filter having self-priming arrangement
US7416659B2 (en) Filter apparatus with fluid bypass
US3579657A (en) Swimming pool cover drain
US6641718B2 (en) Aquarium filtering system
GB1372879A (en) Skimmer assembly
US20050258086A1 (en) Aquarium filter having check valve
CN111713422A (en) a pet water dispenser
US10718337B2 (en) Self-priming dedicated water feature pump
US5942105A (en) Float actuated water control valve
CN213992004U (en) Livestock-raising water curtain control device
JPH03145596A (en) Vertical shaft pump
JP3118073U (en) Backflow prevention structure of filtration device for aquarium for aquarium fish
US7513991B1 (en) Aquarium filter indicator
KR101149555B1 (en) Rack type filter
US5947058A (en) Aquarium pumping system having enough suction head
TWM557014U (en) Aquarium filter power-off restart device
JPH11141500A (en) Drain up pump for air conditioner
JP6057458B2 (en) Toilet bowl cleaning device
JP3340881B2 (en) Emergency water tank
CN213511220U (en) Water pump and air conditioner
JPH05168372A (en) Filter unit of water tank for ornamental fish
JPH05272483A (en) Pump capable of self-priming at operation resuming time
JP2002272314A (en) Dewatering-proof device for pump in purifier for aquarium water and water suction pipe

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100221