US20060011152A1 - Method and apparatus for cooling engines in buildings at oil well sites and the like - Google Patents

Method and apparatus for cooling engines in buildings at oil well sites and the like Download PDF

Info

Publication number
US20060011152A1
US20060011152A1 US11/182,256 US18225605A US2006011152A1 US 20060011152 A1 US20060011152 A1 US 20060011152A1 US 18225605 A US18225605 A US 18225605A US 2006011152 A1 US2006011152 A1 US 2006011152A1
Authority
US
United States
Prior art keywords
heat exchanger
auxiliary heat
engine
building
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/182,256
Inventor
Gerald Hayes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20060011152A1 publication Critical patent/US20060011152A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements

Definitions

  • This invention is in the field of cooling engines, and in particular for cooling stationary engines located inside a building at an oil well side or the like.
  • a typical oil and gas well site will often include an internal combustion engine to provide power for certain apparatuses present at the site such as a hydraulic pump which in turn powers a hydraulic motor, which will rotate a pump in the well.
  • These internal combustion engines are typically multi-cylinder engines such as inline 6s, V-6s and V-8s and commonly automobile engines that have been modified for stationary use. These engines are typically housed within a protective building at the well site location, where the engines typically run at a relatively low, steady RPM for extended periods of time.
  • the engines being stationary in a closed-in space and operating for extended periods of time, suffer from overheating problems during warm weather when the ambient temperature of the air surrounding the engine is high and the cooling system of the engine is insufficient to cool the engines.
  • a cooling system for an internal combustion engine comprises a heat exchanger provided by a radiator located just forward of the internal combustion engine. Liquid coolant is circulated through the internal combustion engine and out into the radiator where it is cooled by the air drawn through the radiator by a fan. This cooled coolant then passes back into the engine where it circulates through the engine again absorbing heat to cool the engine.
  • the radiator For internal combustion engines that are mounted in moving vehicles, the radiator is usually moving in a relatively open space. Thus the air being drawn through the radiator is always changing, and as well the movement of the vehicle increases air flow through the radiator increasing its effectiveness.
  • Stationary engines in enclosed spaces suffer from disadvantages usually not present in engines mounted in moving vehicles.
  • the stationary internal combustion engines near well sites are typically protected by buildings.
  • the buildings are typically vented to allow outside air to circulate through the building however the heat removed from the coolant by the radiator, and that generated by the engine itself, does not entirely dissipate and the temperature of the air within the building increases above the ambient outside temperature. On warm days the temperature inside these buildings can get quite high, reducing the effectiveness of the engine's cooling system and increasing the risk of overheating.
  • Such engines are generally protected such that they shut down when overheating is detected. Where the engine is operating a well pump, the pump shuts down, and production stops until the situation is detected and corrected. Often these well sites are only visited once a day and so considerable production can be lost. Where the production fluid pumped from the well comprises a considerable amount of sand, as is common in some areas, the sand can settle and make the pump difficult to restart, and possibly require that the well be flushed before the pump can be restarted.
  • the thermostats on the stationary internal combustion engine are often removed in an effort to increase the effectiveness of the internal combustion engine's cooling system. Such removal is not typically very effective since the thermostats are generally running wide open in any event.
  • the thermostats are generally running wide open in any event.
  • the protective building traps heat generated by the stationary engines, and beneficially maintains a warmer environment for the equipment, improving its operation.
  • the invention provides an apparatus for cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system.
  • the apparatus comprises an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger.
  • a supply conduit is adapted for operative connection to a pressurized portion of the cooling system at an input end thereof and is operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof.
  • a return conduit is adapted for operative connection to a suction portion of the cooling system at an output end thereof and is operatively connected to a return port of the auxiliary radiator at an output end thereof.
  • a fan is operative to draw air through the auxiliary heat exchanger.
  • the auxiliary heat exchanger, supply conduit, return conduit, and fan are configured such that the auxiliary heat exchanger can be located outside the building.
  • the invention provides an enclosed engine apparatus with auxiliary cooling.
  • the apparatus comprises an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system.
  • An auxiliary heat exchanger is operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and the auxiliary heat exchanger is located outside the building.
  • a supply conduit is operatively connected at an input end thereof to the cooling system at a heater supply fitting on the engine and is operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof.
  • a return conduit is operatively connected at an output end thereof to the cooling system at a heater return fitting on the engine and is operatively connected to a return port of the auxiliary heat exchanger at an input end thereof.
  • a fan is powered by the electrical system of the engine and is operative to draw air through the auxiliary heat exchanger.
  • the invention provides a method of cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system.
  • the method comprises providing an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and locating the auxiliary heat exchanger outside the building; connecting an input end of a supply conduit to the cooling system at a heater supply fitting on the engine and connecting an output end of the supply conduit to a supply port of the auxiliary heat exchanger; connecting an output end of a return conduit to the cooling system at a heater return fitting on the engine and connecting an input end of the return conduit to a return port of the auxiliary heat exchanger; and drawing air through the auxiliary heat exchanger with a fan powered by the electrical system of the engine.
  • the present invention provides an auxiliary cooling system that allows the stationary internal combustion engine to maintain all of the benefits of being housed within a building while at the same time reducing the problems that occur when an engine is operated in a warm confined space.
  • a portion of the engine's coolant is routed to an auxiliary heat exchanger or radiator located outside the building.
  • the coolant that is routed through the auxiliary heat exchanger passes through the auxiliary heat exchanger and is routed back into and through the internal combustion engine.
  • the auxiliary heat exchanger can be readily provided by an economically available conventional engine radiator of approximately the desired size, since precision in sizing is not contemplated to be critical. Further, many vehicle engines operate their conventional cooling fans with electric motors, and such electric powered fans are also readily available at an economical cost.
  • the auxiliary cooling system of the invention can thus be readily provided at an economical cost, and provide added cooling that reduces the risk of over-heating and engine shut down or damage.
  • the auxiliary heat exchanger does not suffer the disadvantages of the main radiator for the internal combustion engine. Unlike the main radiator or heat exchanger, which is located within a closed space, the auxiliary heat exchanger is out in the open which allows heat released into the surrounding air by the second heat exchanger to better dissipate.
  • auxiliary cooling system In colder weather the auxiliary cooling system can be moved inside the building to function as a heater inside the building.
  • FIG. 1 is a schematic view of a stationary internal combustion engine system wherein a stationary internal combustion engine is housed within a protective building and is connected to an auxiliary cooling system of the present invention.
  • FIG. 1 schematically illustrates a stationary internal combustion engine system, incorporating an auxiliary cooling system 10 of the present invention.
  • the stationary internal combustion engine system comprises a stationary internal combustion engine 15 located within a protective building 50 which serves to protect equipment including the engine 15 and typically other equipment.
  • the illustrated engine 15 is connected to an auxiliary cooling system 10 to provide added cooling of the engine and reduce over-heating.
  • the engine 15 is a stationary internal combustion engine and is used to power a device, for example a hydraulic pump 17 that drives a rotary pump in an oil well, that is connected to the drive shaft of the engine 15 .
  • the engine 15 has a cooling system comprising a heat exchanger in the form of a main radiator 20 connected to the intake 22 of a pump 24 .
  • the pump output 26 is connected to a thermostat valve 28 which initially at start up is closed and directs all coolant to flow through circulation passages 19 defined in the engine block and then back to the pump intake 22 .
  • the thermostat valve 28 opens such that a portion of the coolant from the pump output flows into the main radiator 20 at a radiator input 30 and then through the main radiator 20 to the pump intake 22 . Coolant passing through the main radiator 20 is mixed at the pump intake 22 with coolant flowing from the circulation passages 19 , thereby cooling the coolant.
  • the engines 15 used are typically commonly available and economical automobile engines which come in many varied sizes such that power requirements can be readily matched to engine size.
  • Such engines come equipped with fittings 32 , 34 that allow connection of the cooling system to a vehicle heater, typically by threading a connecting member into the fitting.
  • the vehicle heater comprises core through which warm coolant from the engine passes, and a heater fan blowing air through the heater core into the vehicle.
  • fittings 32 , 34 typically include a heater supply fitting 32 connected to the circulating passages 19 and a heater return fitting 34 connected to the pump intake 24 such that coolant is pumped through the heater core. In a typical stationary engine these fittings 32 , 34 are simply blocked off by a threaded plug.
  • the engine 15 includes an electrical system operatively connected to a battery 36 to supply the electrical needs of the engine 15 .
  • the auxiliary cooling system 10 comprises an auxiliary heat exchanger, provided by auxiliary radiator 40 , that is located outside the building.
  • Supply conduit 42 is connected to heater supply fitting 32 at an input end thereof and connected to a supply port 43 of the auxiliary radiator 40 at an output end thereof.
  • Return conduit 44 is connected to the heater return fitting 34 at an output end thereof and connected to a return port 45 of the auxiliary radiator 40 at an input end thereof.
  • the connection is substantially the same as a heater is connected in a vehicle engine. The connection thus conveniently requires no modification of the engine 15 . Coolant circulates through the auxiliary radiator 40 .
  • the auxiliary cooling system 10 will also comprise a fan 46 that is operated by an electric motor 48 connected to the electrical system of the engine 15 , typically to the battery 36 .
  • the fan 46 serves to increase the air flow passing through the auxiliary radiator 40 .
  • a portion of the coolant circulating under pressure from the pump 24 through the coolant circulation passages 19 will be routed out of the coolant circulation passages 19 through the heater supply conduit 42 to the auxiliary radiator 40 where heat is lost to the air passing through the auxiliary radiator in response to the fan 46 .
  • the coolant then returns from the auxiliary radiator 40 to a suction portion of the cooling system at the pump intake 22 through return conduit 44 and heater return fitting 34 .
  • Coolant will circulate through the main radiator, circulation passages 19 , and auxiliary radiator 40 .
  • heat is removed from the coolant through heat exchange with air at both the main radiator 20 and auxiliary radiator 40 , rather than only through heat exchange at the main radiator 20 .
  • added cooling of the engine coolant is provided, reducing the risk that the engine 15 will over-heat and either cause the engine 15 to shut down, or cause damage to the engine 15 .
  • auxiliary radiator 40 can be moved inside the building 50 .
  • the supply and return conduits 42 , 44 can be made long enough to locate the auxiliary radiator outside the building 50 in warm weather, and also allow the auxiliary radiator 40 to be moved to a location inside the building 50 away from the engine 15 to serve as a heater for a remote part of the building when the temperature outside the building is cold.
  • Such a winter configuration is schematically illustrated in phantom lines in FIG. 1 by auxiliary radiator 40 A, fan 46 A, supply conduit 42 A and return conduit 44 A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

An enclosed engine apparatus with auxiliary cooling includes a liquid cooled internal combustion engine located in a building. An auxiliary heat exchanger is operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and the auxiliary heat exchanger is located outside the building. A supply conduit connects to the engine cooling system at a heater supply fitting on the engine and to a supply port of the auxiliary heat exchanger, and a return conduit connects to the cooling system at a heater return fitting on the engine and to a return port of the auxiliary heat exchanger. An electric fan is powered draws air through the auxiliary heat exchanger.

Description

  • This application claims priority of Canadian Application No. 2,474,415, filed Jul. 15, 2004. The contents of which are hereby incorporated in their entireties by reference into this application.
  • This invention is in the field of cooling engines, and in particular for cooling stationary engines located inside a building at an oil well side or the like.
  • BACKGROUND
  • A typical oil and gas well site will often include an internal combustion engine to provide power for certain apparatuses present at the site such as a hydraulic pump which in turn powers a hydraulic motor, which will rotate a pump in the well. These internal combustion engines are typically multi-cylinder engines such as inline 6s, V-6s and V-8s and commonly automobile engines that have been modified for stationary use. These engines are typically housed within a protective building at the well site location, where the engines typically run at a relatively low, steady RPM for extended periods of time. The engines, being stationary in a closed-in space and operating for extended periods of time, suffer from overheating problems during warm weather when the ambient temperature of the air surrounding the engine is high and the cooling system of the engine is insufficient to cool the engines.
  • Internal combustions engines are relatively inefficient and tend to lose a lot of energy in the form of heat. This loss of energy in the form of heat necessitates the use of a cooling system for the internal combustion engine. Typically a cooling system for an internal combustion engine comprises a heat exchanger provided by a radiator located just forward of the internal combustion engine. Liquid coolant is circulated through the internal combustion engine and out into the radiator where it is cooled by the air drawn through the radiator by a fan. This cooled coolant then passes back into the engine where it circulates through the engine again absorbing heat to cool the engine.
  • For internal combustion engines that are mounted in moving vehicles, the radiator is usually moving in a relatively open space. Thus the air being drawn through the radiator is always changing, and as well the movement of the vehicle increases air flow through the radiator increasing its effectiveness. Stationary engines in enclosed spaces suffer from disadvantages usually not present in engines mounted in moving vehicles. The stationary internal combustion engines near well sites are typically protected by buildings. The buildings are typically vented to allow outside air to circulate through the building however the heat removed from the coolant by the radiator, and that generated by the engine itself, does not entirely dissipate and the temperature of the air within the building increases above the ambient outside temperature. On warm days the temperature inside these buildings can get quite high, reducing the effectiveness of the engine's cooling system and increasing the risk of overheating.
  • Such engines are generally protected such that they shut down when overheating is detected. Where the engine is operating a well pump, the pump shuts down, and production stops until the situation is detected and corrected. Often these well sites are only visited once a day and so considerable production can be lost. Where the production fluid pumped from the well comprises a considerable amount of sand, as is common in some areas, the sand can settle and make the pump difficult to restart, and possibly require that the well be flushed before the pump can be restarted.
  • In order to reduce the risk of over-heating, the thermostats on the stationary internal combustion engine are often removed in an effort to increase the effectiveness of the internal combustion engine's cooling system. Such removal is not typically very effective since the thermostats are generally running wide open in any event. In order to reduce the temperature of the ambient air around the radiator it is also known to remove the building's roof, or completely removing the buildings in the summer, so the stationary internal combustion engines are in the open. Removing the roof or building exposes the equipment inside to the elements, and is time consuming and involves considerable labor.
  • In very cold winter weather, in addition to shielding equipment from the elements, the protective building traps heat generated by the stationary engines, and beneficially maintains a warmer environment for the equipment, improving its operation.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a cooling apparatus for engines housed in buildings that overcomes problems in the prior art.
  • In a first embodiment the invention provides an apparatus for cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system. The apparatus comprises an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger. A supply conduit is adapted for operative connection to a pressurized portion of the cooling system at an input end thereof and is operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof. A return conduit is adapted for operative connection to a suction portion of the cooling system at an output end thereof and is operatively connected to a return port of the auxiliary radiator at an output end thereof. A fan is operative to draw air through the auxiliary heat exchanger. The auxiliary heat exchanger, supply conduit, return conduit, and fan are configured such that the auxiliary heat exchanger can be located outside the building.
  • In a second embodiment the invention provides an enclosed engine apparatus with auxiliary cooling. The apparatus comprises an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system. An auxiliary heat exchanger is operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and the auxiliary heat exchanger is located outside the building. A supply conduit is operatively connected at an input end thereof to the cooling system at a heater supply fitting on the engine and is operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof. A return conduit is operatively connected at an output end thereof to the cooling system at a heater return fitting on the engine and is operatively connected to a return port of the auxiliary heat exchanger at an input end thereof. A fan is powered by the electrical system of the engine and is operative to draw air through the auxiliary heat exchanger.
  • In a third embodiment the invention provides a method of cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system. The method comprises providing an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and locating the auxiliary heat exchanger outside the building; connecting an input end of a supply conduit to the cooling system at a heater supply fitting on the engine and connecting an output end of the supply conduit to a supply port of the auxiliary heat exchanger; connecting an output end of a return conduit to the cooling system at a heater return fitting on the engine and connecting an input end of the return conduit to a return port of the auxiliary heat exchanger; and drawing air through the auxiliary heat exchanger with a fan powered by the electrical system of the engine.
  • The present invention provides an auxiliary cooling system that allows the stationary internal combustion engine to maintain all of the benefits of being housed within a building while at the same time reducing the problems that occur when an engine is operated in a warm confined space. A portion of the engine's coolant is routed to an auxiliary heat exchanger or radiator located outside the building. The coolant that is routed through the auxiliary heat exchanger passes through the auxiliary heat exchanger and is routed back into and through the internal combustion engine. Because these stationary internal combustion engines are typically slightly modified vehicle engines and the plumbing for a heater core is in place, it is economical and convenient to connect the auxiliary cooling system to the stationary internal combustion engine using the heater hose connections.
  • The auxiliary heat exchanger can be readily provided by an economically available conventional engine radiator of approximately the desired size, since precision in sizing is not contemplated to be critical. Further, many vehicle engines operate their conventional cooling fans with electric motors, and such electric powered fans are also readily available at an economical cost. The auxiliary cooling system of the invention can thus be readily provided at an economical cost, and provide added cooling that reduces the risk of over-heating and engine shut down or damage.
  • Because the auxiliary heat exchanger is located outside the building, the auxiliary heat exchanger does not suffer the disadvantages of the main radiator for the internal combustion engine. Unlike the main radiator or heat exchanger, which is located within a closed space, the auxiliary heat exchanger is out in the open which allows heat released into the surrounding air by the second heat exchanger to better dissipate.
  • In colder weather the auxiliary cooling system can be moved inside the building to function as a heater inside the building.
  • DESCRIPTION OF THE DRAWINGS:
  • While the invention is claimed in the concluding portions hereof, preferred embodiments are provided in the accompanying detailed description which may be best understood in conjunction with the accompanying diagram where:
  • FIG. 1 is a schematic view of a stationary internal combustion engine system wherein a stationary internal combustion engine is housed within a protective building and is connected to an auxiliary cooling system of the present invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS:
  • FIG. 1 schematically illustrates a stationary internal combustion engine system, incorporating an auxiliary cooling system 10 of the present invention. The stationary internal combustion engine system comprises a stationary internal combustion engine 15 located within a protective building 50 which serves to protect equipment including the engine 15 and typically other equipment. The illustrated engine 15 is connected to an auxiliary cooling system 10 to provide added cooling of the engine and reduce over-heating.
  • The engine 15 is a stationary internal combustion engine and is used to power a device, for example a hydraulic pump 17 that drives a rotary pump in an oil well, that is connected to the drive shaft of the engine 15. The engine 15 has a cooling system comprising a heat exchanger in the form of a main radiator 20 connected to the intake 22 of a pump 24. The pump output 26 is connected to a thermostat valve 28 which initially at start up is closed and directs all coolant to flow through circulation passages 19 defined in the engine block and then back to the pump intake 22. As the engine temperature rises, the thermostat valve 28 opens such that a portion of the coolant from the pump output flows into the main radiator 20 at a radiator input 30 and then through the main radiator 20 to the pump intake 22. Coolant passing through the main radiator 20 is mixed at the pump intake 22 with coolant flowing from the circulation passages 19, thereby cooling the coolant.
  • The engines 15 used are typically commonly available and economical automobile engines which come in many varied sizes such that power requirements can be readily matched to engine size. Such engines come equipped with fittings 32, 34 that allow connection of the cooling system to a vehicle heater, typically by threading a connecting member into the fitting. The vehicle heater comprises core through which warm coolant from the engine passes, and a heater fan blowing air through the heater core into the vehicle. Although the location may vary, such fittings 32, 34 typically include a heater supply fitting 32 connected to the circulating passages 19 and a heater return fitting 34 connected to the pump intake 24 such that coolant is pumped through the heater core. In a typical stationary engine these fittings 32, 34 are simply blocked off by a threaded plug.
  • The engine 15 includes an electrical system operatively connected to a battery 36 to supply the electrical needs of the engine 15.
  • The auxiliary cooling system 10 comprises an auxiliary heat exchanger, provided by auxiliary radiator 40, that is located outside the building. Supply conduit 42 is connected to heater supply fitting 32 at an input end thereof and connected to a supply port 43 of the auxiliary radiator 40 at an output end thereof. Return conduit 44 is connected to the heater return fitting 34 at an output end thereof and connected to a return port 45 of the auxiliary radiator 40 at an input end thereof. The connection is substantially the same as a heater is connected in a vehicle engine. The connection thus conveniently requires no modification of the engine 15. Coolant circulates through the auxiliary radiator 40.
  • Typically the auxiliary cooling system 10 will also comprise a fan 46 that is operated by an electric motor 48 connected to the electrical system of the engine 15, typically to the battery 36. The fan 46 serves to increase the air flow passing through the auxiliary radiator 40.
  • A portion of the coolant circulating under pressure from the pump 24 through the coolant circulation passages 19 will be routed out of the coolant circulation passages 19 through the heater supply conduit 42 to the auxiliary radiator 40 where heat is lost to the air passing through the auxiliary radiator in response to the fan 46. The coolant then returns from the auxiliary radiator 40 to a suction portion of the cooling system at the pump intake 22 through return conduit 44 and heater return fitting 34. Coolant will circulate through the main radiator, circulation passages 19, and auxiliary radiator 40. Thus heat is removed from the coolant through heat exchange with air at both the main radiator 20 and auxiliary radiator 40, rather than only through heat exchange at the main radiator 20. Thus added cooling of the engine coolant is provided, reducing the risk that the engine 15 will over-heat and either cause the engine 15 to shut down, or cause damage to the engine 15.
  • While the illustrated embodiment shows that convenient connection of the auxiliary radiator 40 to the cooling system is provided by connecting to the heater fittings 32, 34, it will be readily apparent to those skilled in the art that many of the various connections illustrated in FIG. 1 could be located in a number of places and the invention will still operate.
  • Since the auxiliary cooling system 10 is only needed when the outside temperature is warm, in winter the auxiliary radiator 40 can be moved inside the building 50. The supply and return conduits 42, 44 can be made long enough to locate the auxiliary radiator outside the building 50 in warm weather, and also allow the auxiliary radiator 40 to be moved to a location inside the building 50 away from the engine 15 to serve as a heater for a remote part of the building when the temperature outside the building is cold. Such a winter configuration is schematically illustrated in phantom lines in FIG. 1 by auxiliary radiator 40A, fan 46A, supply conduit 42A and return conduit 44A.
  • The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous changes and modifications will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all such suitable changes or modifications in structure or operation which may be resorted to are intended to fall within the scope of the claimed invention.

Claims (10)

1. An apparatus for cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system, the apparatus comprising:
an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger;
a supply conduit adapted for operative connection to a pressurized portion of the cooling system at an input end thereof and operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof;
a return conduit adapted for operative connection to a suction portion of the cooling system at an output end thereof and operatively connected to a return port of the auxiliary radiator at an output end thereof; and
a fan operative to draw air through the auxiliary heat exchanger;
wherein the auxiliary heat exchanger, supply conduit, return conduit, and fan are configured such that the auxiliary heat exchanger can be located outside the building.
2. The apparatus of claim 1 wherein the input end of the supply conduit is connected to the cooling system at a heater supply fitting on the engine.
3. The apparatus of claim 1 wherein the output end of the return conduit is connected to the cooling system at a heater return fitting on the engine.
4. The apparatus of claim 1 wherein the fan is driven by an electric motor powered by an electrical system of the engine.
5. The apparatus of claim 1 wherein the auxiliary heat exchanger, supply conduit, return conduit, and fan are configured such that the auxiliary heat exchanger can further be located inside the building.
6. An enclosed engine apparatus with auxiliary cooling, the apparatus comprising:
an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system;
an oil well pumping apparatus driven by the engine;
an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, wherein the auxiliary heat exchanger is located outside the building;
a supply conduit operatively connected at an input end thereof to the cooling system at a heater supply fitting on the engine and operatively connected to a supply port of the auxiliary heat exchanger at an output end thereof;
a return conduit operatively connected at an output end thereof to the cooling system at a heater return fitting on the engine and operatively connected to a return port of the auxiliary heat exchanger at an input end thereof; and
a fan powered by the electrical system of the engine and operative to draw air through the auxiliary heat exchanger.
7. The apparatus of claim 6 wherein the auxiliary heat exchanger, supply conduit, return conduit, and fan are configured such that the auxiliary heat exchanger can be moved to a location inside the building.
8. A method of cooling an internal combustion engine located in a building, the engine including a liquid coolant circulating cooling system and an electrical system, the method comprising:
providing an auxiliary heat exchanger operative to transfer heat from a liquid coolant flowing through the auxiliary heat exchanger to an air stream passing through the auxiliary heat exchanger, and locating the auxiliary heat exchanger outside the building;
connecting an input end of a supply conduit to the cooling system at a heater supply fitting on the engine and connecting an output end of the supply conduit to a supply port of the auxiliary heat exchanger;
connecting an output end of a return conduit to the cooling system at a heater return fitting on the engine and connecting an input end of the return conduit to a return port of the auxiliary heat exchanger; and
drawing air through the auxiliary heat exchanger with a fan powered by the electrical system of the engine.
9. The method of claim 8 further comprising heating an area of the building interior in cold weather by moving the auxiliary heat exchanger and fan to a location inside the building adjacent to the area to be heated.
10. The method of claim 8 wherein the building is located at an oil well site and wherein the engine is operative to drive an oil well pumping apparatus.
US11/182,256 2004-07-15 2005-07-15 Method and apparatus for cooling engines in buildings at oil well sites and the like Abandoned US20060011152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002474415A CA2474415A1 (en) 2004-07-15 2004-07-15 Auxillary cooler for an engine located in a building
CA2,474,415 2004-07-15

Publications (1)

Publication Number Publication Date
US20060011152A1 true US20060011152A1 (en) 2006-01-19

Family

ID=35598122

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/182,256 Abandoned US20060011152A1 (en) 2004-07-15 2005-07-15 Method and apparatus for cooling engines in buildings at oil well sites and the like

Country Status (2)

Country Link
US (1) US20060011152A1 (en)
CA (1) CA2474415A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000310A1 (en) * 2007-05-25 2009-01-01 Bell Lon E System and method for distributed thermoelectric heating and cooling
US20090148316A1 (en) * 2006-05-31 2009-06-11 Jorg Lengert Pump Device
US20100101239A1 (en) * 2008-10-23 2010-04-29 Lagrandeur John Multi-mode hvac system with thermoelectric device
US20100155018A1 (en) * 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US20100287952A1 (en) * 2009-05-18 2010-11-18 Lakhi Nandlal Goenka Temperature control system with thermoelectric device
US20100291414A1 (en) * 2009-05-18 2010-11-18 Bsst Llc Battery Thermal Management System
US20100313575A1 (en) * 2005-04-08 2010-12-16 Goenka Lakhi N Thermoelectric-based heating and cooling system
US20100313576A1 (en) * 2006-08-02 2010-12-16 Lakhi Nandlal Goenka Hybrid vehicle temperature control systems and methods
US20110107773A1 (en) * 2004-05-10 2011-05-12 Gawthrop Peter R Climate control system for hybrid vehicles using thermoelectric devices
US20110209740A1 (en) * 2002-08-23 2011-09-01 Bsst, Llc High capacity thermoelectric temperature control systems
US8722222B2 (en) 2011-07-11 2014-05-13 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US20160017779A1 (en) * 2014-07-21 2016-01-21 Ge Jenbacher Gmbh & Co Og Exhaust gas aftertreatment apparatus
US9435261B2 (en) * 2012-10-05 2016-09-06 Sikorsky Aircraft Corporation Redundant cooling for fluid cooled systems
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
WO2016155081A1 (en) * 2015-03-31 2016-10-06 广东申菱空调设备有限公司 Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653221A (en) * 1970-07-17 1972-04-04 Frank M Angus Latent storage air-conditioning system
US4362131A (en) * 1980-12-10 1982-12-07 The Garrett Corporation Engine cooling system
US4649710A (en) * 1984-12-07 1987-03-17 Trinity Industrial Corporation Method of operating an air conditioner
US4805689A (en) * 1986-05-29 1989-02-21 Aisin Seiki Kabushiki Kaisha Outdoor unit for a heat pump
US4996874A (en) * 1989-01-04 1991-03-05 Colomer John T Method and apparatus for treating coolant for internal combustion engine
US5020320A (en) * 1989-12-20 1991-06-04 Gas Research Institute Engine driven heat pump system
US5309870A (en) * 1991-12-06 1994-05-10 Valeo Thermique Moteur Method and apparatus for cooling a heat engine of widely variable power
US5419287A (en) * 1992-09-18 1995-05-30 Evans; John W. Engine cooling system and heater circuit therefor
US5613472A (en) * 1994-11-10 1997-03-25 Voith Turbo Gmbh Drive unit with internal combustion engine and hydrodynamic retarder
US5727396A (en) * 1995-12-15 1998-03-17 Gas Research Institute Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US5915343A (en) * 1997-02-10 1999-06-29 Angelantoni Industrie Spa System for the rapid cooling of engines on a test bench and relative device
US6182643B1 (en) * 2000-01-31 2001-02-06 Caterpillar Inc. Internal combustion engine with cooling circuit
US20020007636A1 (en) * 2000-03-01 2002-01-24 Eli Hay Thermal energy retrieval system for internal combustion engines
US20030168518A1 (en) * 2002-03-08 2003-09-11 Beida Rodney T. Wellhead heating apparatus and method
US6840056B2 (en) * 2002-07-09 2005-01-11 Denso Corporation Cooling system with adsorption refrigerator
US6880495B2 (en) * 2000-03-17 2005-04-19 Peugeot Citroen Automobiles Sa Method and device for cooling a motor vehicle engine
US6883314B2 (en) * 2002-08-01 2005-04-26 Caterpillar Inc. Cooling of engine combustion air
US6899162B2 (en) * 2001-07-20 2005-05-31 Robert Bosch Gmbh Device for cooling and heating a motor vehicle
US20050167090A1 (en) * 2002-01-29 2005-08-04 Gino Kennedy Load management auxiliary power system
US6957689B2 (en) * 1998-07-09 2005-10-25 Behr Gmbh & Co. Heat exchanger arrangement particularly for motor vehicle
US6976479B1 (en) * 2004-08-10 2005-12-20 Electro-Motive Diesel, Inc. Engine with optimized engine charge air-cooling system
US7049707B2 (en) * 2002-11-21 2006-05-23 Energy & Engine Technology Corporation Auxiliary power unit for a diesel powered transport vehicle

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653221A (en) * 1970-07-17 1972-04-04 Frank M Angus Latent storage air-conditioning system
US4362131A (en) * 1980-12-10 1982-12-07 The Garrett Corporation Engine cooling system
US4649710A (en) * 1984-12-07 1987-03-17 Trinity Industrial Corporation Method of operating an air conditioner
US4805689A (en) * 1986-05-29 1989-02-21 Aisin Seiki Kabushiki Kaisha Outdoor unit for a heat pump
US4996874A (en) * 1989-01-04 1991-03-05 Colomer John T Method and apparatus for treating coolant for internal combustion engine
US5020320A (en) * 1989-12-20 1991-06-04 Gas Research Institute Engine driven heat pump system
US5309870A (en) * 1991-12-06 1994-05-10 Valeo Thermique Moteur Method and apparatus for cooling a heat engine of widely variable power
US5419287A (en) * 1992-09-18 1995-05-30 Evans; John W. Engine cooling system and heater circuit therefor
US5613472A (en) * 1994-11-10 1997-03-25 Voith Turbo Gmbh Drive unit with internal combustion engine and hydrodynamic retarder
US5727396A (en) * 1995-12-15 1998-03-17 Gas Research Institute Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US5915343A (en) * 1997-02-10 1999-06-29 Angelantoni Industrie Spa System for the rapid cooling of engines on a test bench and relative device
US6957689B2 (en) * 1998-07-09 2005-10-25 Behr Gmbh & Co. Heat exchanger arrangement particularly for motor vehicle
US6182643B1 (en) * 2000-01-31 2001-02-06 Caterpillar Inc. Internal combustion engine with cooling circuit
US20020007636A1 (en) * 2000-03-01 2002-01-24 Eli Hay Thermal energy retrieval system for internal combustion engines
US6880495B2 (en) * 2000-03-17 2005-04-19 Peugeot Citroen Automobiles Sa Method and device for cooling a motor vehicle engine
US6899162B2 (en) * 2001-07-20 2005-05-31 Robert Bosch Gmbh Device for cooling and heating a motor vehicle
US20050167090A1 (en) * 2002-01-29 2005-08-04 Gino Kennedy Load management auxiliary power system
US20030168518A1 (en) * 2002-03-08 2003-09-11 Beida Rodney T. Wellhead heating apparatus and method
US6840056B2 (en) * 2002-07-09 2005-01-11 Denso Corporation Cooling system with adsorption refrigerator
US6883314B2 (en) * 2002-08-01 2005-04-26 Caterpillar Inc. Cooling of engine combustion air
US7049707B2 (en) * 2002-11-21 2006-05-23 Energy & Engine Technology Corporation Auxiliary power unit for a diesel powered transport vehicle
US6976479B1 (en) * 2004-08-10 2005-12-20 Electro-Motive Diesel, Inc. Engine with optimized engine charge air-cooling system

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209740A1 (en) * 2002-08-23 2011-09-01 Bsst, Llc High capacity thermoelectric temperature control systems
US9365090B2 (en) 2004-05-10 2016-06-14 Gentherm Incorporated Climate control system for vehicles using thermoelectric devices
US20110107773A1 (en) * 2004-05-10 2011-05-12 Gawthrop Peter R Climate control system for hybrid vehicles using thermoelectric devices
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
US8915091B2 (en) 2005-04-08 2014-12-23 Gentherm Incorporated Thermoelectric-based thermal management system
US8408012B2 (en) 2005-04-08 2013-04-02 Bsst Llc Thermoelectric-based heating and cooling system
US20100313575A1 (en) * 2005-04-08 2010-12-16 Goenka Lakhi N Thermoelectric-based heating and cooling system
US8147217B2 (en) * 2006-05-31 2012-04-03 Siemens Aktiengesellschaft Pump device
US20090148316A1 (en) * 2006-05-31 2009-06-11 Jorg Lengert Pump Device
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US8631659B2 (en) 2006-08-02 2014-01-21 Bsst Llc Hybrid vehicle temperature control systems and methods
US20100313576A1 (en) * 2006-08-02 2010-12-16 Lakhi Nandlal Goenka Hybrid vehicle temperature control systems and methods
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US20100052374A1 (en) * 2007-05-25 2010-03-04 Bsst Llc System and method for climate control within a passenger compartment of a vehicle
US20090000310A1 (en) * 2007-05-25 2009-01-01 Bell Lon E System and method for distributed thermoelectric heating and cooling
US9366461B2 (en) * 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
US20100101238A1 (en) * 2008-10-23 2010-04-29 Lagrandeur John Heater-cooler with bithermal thermoelectric device
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
US20100101239A1 (en) * 2008-10-23 2010-04-29 Lagrandeur John Multi-mode hvac system with thermoelectric device
US20100155018A1 (en) * 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US9038400B2 (en) 2009-05-18 2015-05-26 Gentherm Incorporated Temperature control system with thermoelectric device
US20100291414A1 (en) * 2009-05-18 2010-11-18 Bsst Llc Battery Thermal Management System
US20100287952A1 (en) * 2009-05-18 2010-11-18 Lakhi Nandlal Goenka Temperature control system with thermoelectric device
US9666914B2 (en) 2009-05-18 2017-05-30 Gentherm Incorporated Thermoelectric-based battery thermal management system
US11203249B2 (en) 2009-05-18 2021-12-21 Gentherm Incorporated Temperature control system with thermoelectric device
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
US10106011B2 (en) 2009-05-18 2018-10-23 Gentherm Incorporated Temperature control system with thermoelectric device
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
US8722222B2 (en) 2011-07-11 2014-05-13 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US9435261B2 (en) * 2012-10-05 2016-09-06 Sikorsky Aircraft Corporation Redundant cooling for fluid cooled systems
US10458299B2 (en) * 2014-07-21 2019-10-29 Innio Jenbacher Gmbh & Co Og Exhaust gas aftertreatment apparatus
US20160017779A1 (en) * 2014-07-21 2016-01-21 Ge Jenbacher Gmbh & Co Og Exhaust gas aftertreatment apparatus
US11358433B2 (en) 2014-12-19 2022-06-14 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
WO2016155081A1 (en) * 2015-03-31 2016-10-06 广东申菱空调设备有限公司 Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
US10356949B2 (en) * 2015-03-31 2019-07-16 Guangdong Shenling Environmental Systems Co., Ltd. Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
US20180042140A1 (en) * 2015-03-31 2018-02-08 Guangdong Shenling Air-conditioning Equipment Co., Ltd. Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Also Published As

Publication number Publication date
CA2474415A1 (en) 2006-01-15

Similar Documents

Publication Publication Date Title
US20060011152A1 (en) Method and apparatus for cooling engines in buildings at oil well sites and the like
CA2811829C (en) Self-contained flameless heat transfer fluid heating system
US7037105B2 (en) Heating apparatus for wells
US6151891A (en) Heat exchanger for a motor vehicle exhaust
US4756359A (en) Auxiliary air conditioning, heating and engine warming system for vehicles
KR101601236B1 (en) Engine system having coolant control valve
US5408960A (en) Pre-heater for liquid-cooled internal combustion engines
KR20090009953A (en) Vehicle cooling system with directed flows
JPS63503557A (en) Auxiliary air conditioning, heating and engine warming equipment for trucks
EP2463597A2 (en) Air conditioning device utilizing temperature differentiation of exhausted air to even temperature of external heat exchanger
US8596201B2 (en) Engine warming system for a multi-engine machine
CN104832268A (en) Cooling device for engine and engine cooling system and method
US5577661A (en) Pool water heating and circulating system
CN104802618A (en) Heat exchange control system and method for automobile air conditioner
CA2247759C (en) Heat exchanger for a motor vehicle exhaust
CA2512238A1 (en) Method and apparatus for cooling engines in buildings at oil well sites and the like
CN113733895A (en) Hybrid vehicle and thermal management system thereof
JP2003314281A (en) Engine coolant circulation system
JP3355737B2 (en) Engine cooling device
CN106894905A (en) Hybrid vehicle and its cooling system
EP3047124A2 (en) An engine cooling system
KR100482430B1 (en) Dual impeller water pump for automobile
CA2504002C (en) Heating apparatus for wells
KR20170052017A (en) Coolant water pump
SU1115927A1 (en) Heating device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION