US20050275011A1 - NROM flash memory with a high-permittivity gate dielectric - Google Patents
NROM flash memory with a high-permittivity gate dielectric Download PDFInfo
- Publication number
- US20050275011A1 US20050275011A1 US11/210,288 US21028805A US2005275011A1 US 20050275011 A1 US20050275011 A1 US 20050275011A1 US 21028805 A US21028805 A US 21028805A US 2005275011 A1 US2005275011 A1 US 2005275011A1
- Authority
- US
- United States
- Prior art keywords
- ald
- oxide
- hfo
- substrate
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015654 memory Effects 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 4
- 229920005591 polysilicon Polymers 0.000 claims abstract description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 55
- 239000012212 insulator Substances 0.000 claims description 24
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 18
- 230000004888 barrier function Effects 0.000 claims description 17
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 16
- 150000002602 lanthanoids Chemical class 0.000 claims description 16
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 14
- 229910052772 Samarium Inorganic materials 0.000 claims description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 14
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 230000005641 tunneling Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 5
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 5
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 230000004044 response Effects 0.000 claims 1
- 239000002210 silicon-based material Substances 0.000 claims 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 description 27
- 239000010410 layer Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 10
- 239000003989 dielectric material Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000005684 electric field Effects 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 238000010849 ion bombardment Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910002244 LaAlO3 Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910000311 lanthanide oxide Inorganic materials 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229910019929 CrO2Cl2 Inorganic materials 0.000 description 1
- 241000501667 Etroplus Species 0.000 description 1
- 230000005689 Fowler Nordheim tunneling Effects 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910010386 TiI4 Inorganic materials 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- 229910006252 ZrON Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- -1 lanthanum aluminate Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- LHBNLZDGIPPZLL-UHFFFAOYSA-K praseodymium(iii) chloride Chemical compound Cl[Pr](Cl)Cl LHBNLZDGIPPZLL-UHFFFAOYSA-K 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
Definitions
- the present invention relates generally to memory devices and in particular the present invention relates to nitride read only memory (NROM) flash memory device architecture.
- NROM nitride read only memory
- Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory including random-access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), and flash memory.
- RAM random-access memory
- ROM read only memory
- DRAM dynamic random access memory
- SDRAM synchronous dynamic random access memory
- flash memory One type of flash memory is a nitride read only memory (NROM). NROM has some of the characteristics of flash memory but does not require the special fabrication processes of flash memory. NROM integrated circuits can be implemented using a standard CMOS process.
- Flash memory devices have developed into a popular source of non-volatile memory for a wide range of electronic applications. Flash memory devices typically use a one-transistor memory cell that allows for high memory densities, high reliability, and low power consumption. Common uses for flash memory include personal computers, personal digital assistants (PDAs), digital cameras, and cellular telephones. Program code and system data such as a basic input/output system (BIOS) are typically stored in flash memory devices for use in personal computer systems.
- BIOS basic input/output system
- the performance of flash memory transistors needs to increase as the performance of computer systems increases. To accomplish a performance increase, the transistors can be reduced in size. This has the effect of increased speed with decreased power requirements.
- flash memory cell technologies have some scaling limitations. For example, stress induced leakage typically requires a tunnel oxide above 60 ⁇ . This thickness results in a scaling limit on the gate length. Additionally, this gate oxide thickness limits the read current and may require large gate widths.
- the present invention encompasses an NROM flash memory transistor with a high permittivity gate dielectric.
- the transistor is comprised of a substrate with a plurality of source/drain regions.
- the source/drain regions have a different conductivity than the substrate into which they are doped.
- a high-k gate dielectric is formed on the substrate substantially between the plurality of source/drain regions.
- the gate dielectric has a high dielectric constant that is greater than silicon dioxide.
- the gate dielectric can be an atomic layer deposited and/or evaporated nanolaminate gate dielectric.
- a control gate is formed on top of the oxide insulator.
- FIG. 1 shows a cross-sectional view of one embodiment of an NROM flash memory cell transistor of the present invention.
- FIG. 2 shows an energy-band diagram in accordance with the transistor of FIG. 1 .
- FIG. 3 shows an energy-band diagram in accordance with a write operation to the transistor structure of FIG. 1 .
- FIG. 4 shows an energy-band diagram in accordance with an erase operation from the transistor structure of FIG. 1 .
- FIG. 5 shows a plot of tunneling current dependence on barrier height for various electric fields in accordance with the transistor structure of FIG. 1 .
- FIG. 6 shows a block diagram of an electronic system of the present invention.
- FIG. 1 illustrates a cross-sectional view of one embodiment of a nitride read only memory (NROM) flash memory cell transistor of the present invention.
- NROM nitride read only memory
- This NROM transistor uses the high-k dielectric layer of the present invention as a trapping layer.
- a trapping material with a lower conduction band edge (i.e., a higher electron affinity) to achieve a larger offset as well as to provide for programming by direct tunneling at low voltages.
- High permittivity dielectric materials such as HfO 2 and ZrO 2 have a lower conduction band edge than the prior art trapping material, silicon nitride. If HfO 2 were used as a trapping layer, the offset would be 1.7 eV that is much better than the 1.2 eV associated with a nitride trapping layer.
- the transistor is comprised of two source/drain regions 101 and 102 doped into the substrate 103 . In one embodiment, these are n+ regions and the substrate is p-type silicon. However, the present invention is not limited to any conductivity type.
- a tunnel oxide layer 105 is formed on the substrate 103 between the source/drain regions 101 and 102 .
- the high dielectric constant trapping layer 107 is formed on top of the tunnel oxide layer 105 and another oxide layer 109 is formed on top of the trapping layer 107 .
- the oxide—high-k dielectric—oxide layers 105 , 107 , and 109 form a composite gate insulator 100 under the polysilicon control gate 111 .
- the nanolaminate gate insulator 100 can be fabricated by the above-described ALD, the evaporated technique, or a combination of the two.
- nanolaminates with high-k dielectrics are oxide—high-k dielectric—oxide composites. Since silicon dioxide has a low electron affinity and high conduction band offset with respect to the conduction band of silicon, these nanolaminates have a high barrier, ⁇ , between the high-k dielectric and the oxide. If the trapping center energies, E t , in the high-k dielectrics illustrated in FIG. 2 are large then other high-k dielectrics with a smaller barrier can be used.
- oxide—high-k dieletric—oxide composites include: oxide—ALD HfO 2 —oxide, oxide—evaporated HfO 2 —oxide, oxide—ALD ZrO 2 —oxide, oxide—evaporated ZrO 2 —oxide, oxide—ALD ZrSnTiO—oxide, oxide—ALD ZrON—oxide, oxide—ALD ZrAlO—oxide, oxide—ALD ZrTiO 4 —oxide, oxide—ALD Al 2 O 3 —oxide, oxide—ALD La 2 O 3 —oxide, oxide—LaAlO 3 —oxide, oxide—evaporated LaAlO 3 —oxide, oxide—ALD HfAlO 3 —oxide, oxide—ALD HfSiON—oxide, oxide—evaporated Y 2 O 3 —oxide, oxide—evaporated Gd 2 O—oxide, oxide—ALD Ta 2 O 5 —oxide, oxide—ALD TiO 2 —
- Nanolaminates avoids tunneling between the trapping centers in the nitride layer of a conventional NROM device and the control gate.
- High-k dielectrics in one embodiment, can be used as the top layer in the gate insulator nanolaminate. Since they have a much higher dielectric constant than silicon oxide, these layers can be much thicker and still have the same capacitance. The thicker layers avoid tunneling to the control gate that is an exponential function of electric fields but have an equivalent oxide thickness that is much smaller than their physical thickness.
- Examples of this second category of nanolaminates include: oxide—nitride—ALD Al 2 O 3 , oxide—nitride—ALD HfO 2 , and oxide—nitride—ALD ZrO 2 .
- a third category of nanolaminates employs traps in the high-k dielectrics that have a larger energy depth with respect to the conduction band in the high-k trapping layer than those in the first category.
- large offsets are not required between the layers in the nanolaminates and a wide variety of different nanolaminates are possible using only high-k dielectrics in these nanolaminates.
- the energy depths of the traps can be adjusted by varying process conditions.
- Examples of this third category of nanolaminates include: ALD HfO 2 —ALD Ta 2 O 5 —ALD HfO 2 , ALD La 2 O 3 —ALD HfO 2 —ALD La 2 O 3 , ALD HfO 2 —ALD ZrO 2 —ALD HfO 2 , ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD ZrO 2 —ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, ALD Lanthanide Oxide—ALD HfO 2 —ALD Lanthanide Oxide, and ALD Lanthanide Oxide—evaporated HfO 2 —ALD Lanthanide Oxide.
- the high-k gate dielectric layer is fabricated using atomic layer deposition (ALD).
- ALD atomic layer deposition
- Gaseous precursors are introduced one at a time to the substrate surface and between the pulses the reactor is purged with an inert gas or evacuated.
- the precursor is saturatively chemisorbed at the substrate surface and during subsequent purging the precursor is removed from the reactor.
- the second step another precursor is introduced on the substrate and the desired films growth reaction takes place. After that reaction, byproducts and the precursor excess are purged from the reactor.
- the precursor chemistry is favorable, one ALD cycle can be performed in less than one second in a properly designed flow-type reactor.
- ALD is well suited for deposition of high-k dielectrics such as AlO x , LaAlO 3 , HfAlO 3 , Pr 2 O 3 , Lanthanide-doped TiO x , HfSiON, Zr—Sn—Ti—O films using TiCl 4 or TiI 4 , ZrON, HfO 2 /Hf, ZrAlXO y , CrTiO 3 , and ZrTiO 4 .
- high-k dielectrics such as AlO x , LaAlO 3 , HfAlO 3 , Pr 2 O 3 , Lanthanide-doped TiO x , HfSiON, Zr—Sn—Ti—O films using TiCl 4 or TiI 4 , ZrON, HfO 2 /Hf, ZrAlXO y , CrTiO 3 , and ZrTiO 4 .
- oxygen source materials for ALD are water, hydrogen peroxide, and ozone. Alcohols, oxygen and nitrous oxide have also been used. Of these, oxygen reacts very poorly at temperatures below 600° C. but the other oxygen sources are highly reactive with most of the metal compounds listed above.
- Source materials for the above-listed metals include: zirconium tetrachloride (ZrCl 4 ) for the Zr film, titanium tetraisopropoxide (Ti(OCH(CH 3 ) 2 ) 4 ) for the Ti film, trimethyl aluminum (Al(CH 3 ) 3 ) for the Al film, chromyl chromide (CrO 2 Cl 2 ) for the Cr film, praseodymium chloride (PrCl 3 ) for the Pr film, and hafnium chloride (HfCl 4 ) for the Hf film. Alternate embodiments use other source materials.
- Thin oxide films are deposited at a temperature that is high enough such that, when it is adsorbed to the substrate surface, the vaporized source material reacts with a molecular layer of a second source material or that the vaporized source material becomes adsorbed and reacts with the second source material directed to the substrate surface in the subsequent step.
- the temperature should be low enough such that thermal breakdown of the source material does not occur or that its significance in terms of the total growth rate of the film is very small.
- the ALD process is carried out at a temperature range of approximately 200-600° C. Alternate embodiments use other temperature ranges.
- the high-k dielectric layers can be fabricated using evaporation techniques. Various evaporation techniques are subsequently described for the high dielectric constant materials listed above.
- Very thin films of TiO 2 can be fabricated with electron-gun evaporation from a high purity TiO 2 slug (e.g., 99.9999%) in a vacuum evaporator in the presence of anion beam.
- an electron gun is centrally located toward the bottom of the chamber.
- a heat reflector and a heater surround the substrate holder.
- Under the substrate holder is an ozonizer ring with many small holes directed to the wafer for uniform distribution of ozone that is needed to compensate for the loss of oxygen in the evaporated TiO 2 film.
- An ion gun with a fairly large diameter (3-4 in. in diameter) is located above the electron gun and argon gas is used to generate Ar ions to bombard the substrate surface uniformly during the film deposition to compact the growing TiO 2 film.
- a two-step process is used in fabricating a high purity HfO 2 film.
- This method avoids the damage to the silicon surface by Ar ion bombardment, such as that encountered during Hf metal deposition using dc sputtering.
- a thin Hf film is deposited by simple thermal evaporation. In one embodiment, this is by electron-beam evaporation using a high purity Hf metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate (as in the case of sputtering), the original atomically smooth surface of the silicon substrate is maintained.
- the second step is oxidation to form the desired HfO 2 .
- the first step in the deposition of CoTi alloy film is by thermal evaporation.
- the second step is the low temperature oxidation of the CoTi film at 400° C. Electron beam deposition of the CoTi layer minimizes the effect of contamination during deposition.
- the CoTi films prepared from an electron gun possess the highest purity because of the high-purity starting material. The purity of zone—refined starting metals can be as high as 99.999%. Higher purity can be obtained in deposited films because of further purification during evaporation.
- a two step process in fabricating a high-purity ZrO 2 film avoids the damage to the silicon surface by Ar ion bombardment.
- a thin Zr film is deposited by simple thermal evaporation. In one embodiment, this is accomplished by electron beam evaporation using an ultra-high purity Zr metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained.
- the second step is the oxidation to form the desired ZrO 2 .
- Y 2 O 3 and Gd 2 O 3 films may be accomplished with a two step process.
- an electron gun provides evaporation of high purity (e.g., 99.9999%) Y or Gd metal followed by low-temperature oxidation technology by microwave excitation in a Kr/O 2 mixed high-density plasma at 400° C.
- the method of the present invention avoids damage to the silicon surface by Ar ion bombardment such as that encountered during Y or Gd metal deposition sputtering.
- a thin film of Y or Gd is deposited by thermal evaporation.
- an electron-beam evaporation technique is used with an ultra-high purity Y or Gd metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma or ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained.
- the second step is the oxidation to form the desired Y 2 O 3 or Gd 2 O 3 .
- the desired high purity of a PrO 2 film can be accomplished by depositing a thin film by simple thermal evaporation. In one embodiment, this is accomplished by an electron-beam evaporation technique using an ultra-high purity Pr metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained.
- the second step includes the oxidation to form the desired PrO 2 .
- the nitridation of the ZrO 2 samples comes after the low-temperature oxygen radical generated in high-density Krypton plasma.
- the next step is the nitridation of the samples at temperatures >700° C. in a rapid thermal annealing setup. Typical heating time of several minutes may be necessary, depending on the sample geometry.
- a Y—Si—O film may be accomplished in one step by co-evaporation of the metal (Y) and silicon dioxide (SiO 2 ) without consuming the substrate Si.
- Y metal
- SiO 2 silicon dioxide
- yttrium is evaporated from one source, and SiO 2 is from another source.
- a small oxygen leak may help reduce the oxygen deficiency in the film.
- the evaporation pressure ratio rates can be adjusted easily to adjust the Y—Si—O ratio.
- the prior art fabrication of lanthanum aluminate (LaAlO 3 ) films has been achieved by evaporating single crystal pellets on Si substrates in a vacuum using an electron-beam gun.
- the evaporation technique of the present invention uses a less expensive form of dry pellets of Al 2 O 3 and La 2 O 3 using two electron guns with two rate monitors. Each of the two rate monitors is set to control the composition.
- the composition of the film can be shifted toward the Al 2 O 3 or La 2 O 3 side depending upon the choice of dielectric constant.
- the wafer is annealed ex situ in an electric furnace at 700° C. for ten minutes in N 2 ambience. In an alternate embodiment, the wafer is annealed at 800°-900° C. in RTA for ten to fifteen seconds in N 2 ambience.
- FIG. 2 illustrates an energy-band diagram in accordance with the NROM flash transistor of FIG. 1 .
- the diagram shows the relationship between E C , ⁇ , and the energy difference with respect to the conduction band edge in the high-k trapping layer, E t .
- FIG. 3 illustrates an energy-band diagram in accordance with a write operation in the transistor structure of FIG. 1 while FIG. 4 is the energy-band diagram for an erase operation.
- the diagrams show the conduction band edge, E C , and the valence band edge, E V . Between E C and E V is the band gap where there are no states for electrons.
- the energy barrier, ⁇ is the discontinuity in the conduction bands.
- FIG. 5 illustrates a plot of tunneling current dependence on barrier height for various electric fields in accordance with the transistor structure of FIG. 1 . This plot shows that the tunneling current at a fixed electric field can be increased by orders of magnitude as a result of reducing the barriers.
- the constants depend on the effective mass and the electron barrier energy of the insulator and are scaled with the barrier energy, ⁇ , as A ⁇ (1/ ⁇ ) and B ⁇ ( ⁇ ) 3/2 .
- Curves of J versus the barrier energy, F are shown in FIG. 5 for several values of E.
- lower barriers require lower electric fields.
- an SiO 2 barrier of 3.2 eV has an electric field of 6 ⁇ 10 6 V/cm while for the same tunneling current, a high-k dielectric with a 1.08 eV barrier requires only an electric field of 7 ⁇ 10 5 V/cm. If the thicknesses of the two dielectrics are the same then the voltage required will be about 8.6 times less for the same current. If the high-k dielectric has a dielectric constant of 28, then the equivalent oxide thickness (EOT) will be 7 times less than the actual thickness of the high-k dielectric.
- EOT equivalent oxide thickness
- the NROM memory transistors of the present invention can thus be designed with very small equivalent oxide thicknesses and scaled into the 50 nm dimensions without drain turn-on problems, short-channel effects, and punchthrough. Additionally, retention times will decrease due to more thermal excitation and emission of electrons over the smaller barriers.
- FIG. 6 illustrates a functional block diagram of a memory device 600 that can incorporate the flash memory cells of the present invention.
- the memory device 600 is coupled to a processor 610 .
- the processor 610 may be a microprocessor or some other type of controlling circuitry.
- the memory device 600 and the processor 610 form part of an electronic system 620 .
- the memory device 600 has been simplified to focus on features of the memory that are helpful in understanding the present invention.
- the memory device includes an array of flash memory cells 630 that can be NROM flash memory cells.
- the memory array 630 is arranged in banks of rows and columns.
- the control gates of each row of memory cells is coupled with a wordline while the drain and source connections of the memory cells are coupled to bitlines.
- bitlines As is well known in the art, the connection of the cells to the bitlines depends on whether the array is a NAND architecture or a NOR architecture.
- An address buffer circuit 640 is provided to latch address signals provided on address input connections A 0 -Ax 642 . Address signals are received and decoded by a row decoder 644 and a column decoder 646 to access the memory array 630 . It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of the memory array 630 . That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts.
- the memory device 600 reads data in the memory array 630 by sensing voltage or current changes in the memory array columns using sense/buffer circuitry 650 .
- the sense/buffer circuitry in one embodiment, is coupled to read and latch a row of data from the memory array 630 .
- Data input and output buffer circuitry 660 is included for bi-directional data communication over a plurality of data connections 662 with the controller 610 .
- Write circuitry 655 is provided to write data to the memory array.
- Control circuitry 670 decodes signals provided on control connections 672 from the processor 610 . These signals are used to control the operations on the memory array 630 , including data read, data write, and erase operations.
- the control circuitry 670 may be a state machine, a sequencer, or some other type of controller.
- the memory device 600 of FIG. 6 may be an embedded device with a CMOS processor.
- the flash memory device illustrated in FIG. 6 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art.
- an NROM cell can use a high-k dielectric as the trapping layer.
- the high-k dielectric can be fabricated using atomic layer deposition, evaporation, or a combination of the two processes.
- the high-k dielectric enables smaller write and erase voltages to be used and eliminates drain turn-on problems, short-channel effects, and punchthrough.
- the NROM flash memory cells of the present invention may be NAND-type cells, NOR-type cells, or any other type of array architecture.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
A high permittivity gate dielectric is used in an NROM memory cell. The gate dielectric has a dielectric constant greater than silicon dioxide and is comprised of an atomic layer deposited and/or evaporated nanolaminate structure. The NROM memory cell has a substrate with doped source/drain regions. The high-k gate dielectric is formed above the substrate between a pair of the source/drain regions. A polysilicon control gate is formed on top of the gate dielectric. The gate dielectric can have an oxide—high-k dielectric—oxide composite structure, an oxide—nitride—high-k dielectric composite structure, or a high-k dielectric—high-k dielectric—high-k dielectric composite structure.
Description
- This Application is a Divisional of U.S. application Ser. No. 10/775,908, titled “NROM FLASH MEMORY WITH A HIGH-PERMITTIVITY GATE DIELECTRIC,” filed Feb. 10, 2004, (pending) which is commonly assigned and incorporated herein by reference.
- The present invention relates generally to memory devices and in particular the present invention relates to nitride read only memory (NROM) flash memory device architecture.
- Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory including random-access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), and flash memory. One type of flash memory is a nitride read only memory (NROM). NROM has some of the characteristics of flash memory but does not require the special fabrication processes of flash memory. NROM integrated circuits can be implemented using a standard CMOS process.
- Flash memory devices have developed into a popular source of non-volatile memory for a wide range of electronic applications. Flash memory devices typically use a one-transistor memory cell that allows for high memory densities, high reliability, and low power consumption. Common uses for flash memory include personal computers, personal digital assistants (PDAs), digital cameras, and cellular telephones. Program code and system data such as a basic input/output system (BIOS) are typically stored in flash memory devices for use in personal computer systems.
- The performance of flash memory transistors needs to increase as the performance of computer systems increases. To accomplish a performance increase, the transistors can be reduced in size. This has the effect of increased speed with decreased power requirements.
- However, a problem with decreased flash memory size is that flash memory cell technologies have some scaling limitations. For example, stress induced leakage typically requires a tunnel oxide above 60 Å. This thickness results in a scaling limit on the gate length. Additionally, this gate oxide thickness limits the read current and may require large gate widths.
- For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a more scalable, higher performance flash memory transistor.
- The above-mentioned problems with flash memory scaling and performance and other problems are addressed by the present invention and will be understood by reading and studying the following specification.
- The present invention encompasses an NROM flash memory transistor with a high permittivity gate dielectric. The transistor is comprised of a substrate with a plurality of source/drain regions. The source/drain regions have a different conductivity than the substrate into which they are doped.
- A high-k gate dielectric is formed on the substrate substantially between the plurality of source/drain regions. The gate dielectric has a high dielectric constant that is greater than silicon dioxide. The gate dielectric can be an atomic layer deposited and/or evaporated nanolaminate gate dielectric. A control gate is formed on top of the oxide insulator.
- Further embodiments of the invention include methods and apparatus of varying scope.
-
FIG. 1 shows a cross-sectional view of one embodiment of an NROM flash memory cell transistor of the present invention. -
FIG. 2 shows an energy-band diagram in accordance with the transistor ofFIG. 1 . -
FIG. 3 shows an energy-band diagram in accordance with a write operation to the transistor structure ofFIG. 1 . -
FIG. 4 shows an energy-band diagram in accordance with an erase operation from the transistor structure ofFIG. 1 . -
FIG. 5 shows a plot of tunneling current dependence on barrier height for various electric fields in accordance with the transistor structure ofFIG. 1 . -
FIG. 6 shows a block diagram of an electronic system of the present invention. - In the following detailed description of the invention, reference is made to the accompanying drawings that form a part hereof and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims and equivalents thereof.
-
FIG. 1 illustrates a cross-sectional view of one embodiment of a nitride read only memory (NROM) flash memory cell transistor of the present invention. This NROM transistor uses the high-k dielectric layer of the present invention as a trapping layer. In order to improve the programming speed and/or lower the programming voltage of an NROM device, it is desirable to use a trapping material with a lower conduction band edge (i.e., a higher electron affinity) to achieve a larger offset as well as to provide for programming by direct tunneling at low voltages. - High permittivity dielectric materials such as HfO2 and ZrO2 have a lower conduction band edge than the prior art trapping material, silicon nitride. If HfO2 were used as a trapping layer, the offset would be 1.7 eV that is much better than the 1.2 eV associated with a nitride trapping layer.
- The transistor is comprised of two source/
drain regions 101 and 102 doped into thesubstrate 103. In one embodiment, these are n+ regions and the substrate is p-type silicon. However, the present invention is not limited to any conductivity type. - A
tunnel oxide layer 105 is formed on thesubstrate 103 between the source/drain regions 101 and 102. The high dielectricconstant trapping layer 107 is formed on top of thetunnel oxide layer 105 and anotheroxide layer 109 is formed on top of thetrapping layer 107. The oxide—high-k dielectric—oxide layers composite gate insulator 100 under thepolysilicon control gate 111. In one embodiment, thenanolaminate gate insulator 100 can be fabricated by the above-described ALD, the evaporated technique, or a combination of the two. - The simplest nanolaminates with high-k dielectrics are oxide—high-k dielectric—oxide composites. Since silicon dioxide has a low electron affinity and high conduction band offset with respect to the conduction band of silicon, these nanolaminates have a high barrier, Φ, between the high-k dielectric and the oxide. If the trapping center energies, Et, in the high-k dielectrics illustrated in
FIG. 2 are large then other high-k dielectrics with a smaller barrier can be used. - Examples of oxide—high-k dieletric—oxide composites include: oxide—ALD HfO2—oxide, oxide—evaporated HfO2—oxide, oxide—ALD ZrO2—oxide, oxide—evaporated ZrO2—oxide, oxide—ALD ZrSnTiO—oxide, oxide—ALD ZrON—oxide, oxide—ALD ZrAlO—oxide, oxide—ALD ZrTiO4—oxide, oxide—ALD Al2O3—oxide, oxide—ALD La2O3—oxide, oxide—LaAlO3—oxide, oxide—evaporated LaAlO3—oxide, oxide—ALD HfAlO3—oxide, oxide—ALD HfSiON—oxide, oxide—evaporated Y2O3—oxide, oxide—evaporated Gd2O—oxide, oxide—ALD Ta2O5—oxide, oxide—ALD TiO2—oxide, oxide—evaporated TiO2—oxide, oxide—ALD PrO3—oxide, oxide—evaporated PrO3—oxide, oxide—evaporated CrTiO3—oxide, and oxide—evaporated YSiO—oxide.
- Another class of nanolaminates avoids tunneling between the trapping centers in the nitride layer of a conventional NROM device and the control gate. High-k dielectrics, in one embodiment, can be used as the top layer in the gate insulator nanolaminate. Since they have a much higher dielectric constant than silicon oxide, these layers can be much thicker and still have the same capacitance. The thicker layers avoid tunneling to the control gate that is an exponential function of electric fields but have an equivalent oxide thickness that is much smaller than their physical thickness.
- Examples of this second category of nanolaminates include: oxide—nitride—ALD Al2O3, oxide—nitride—ALD HfO2, and oxide—nitride—ALD ZrO2.
- A third category of nanolaminates employs traps in the high-k dielectrics that have a larger energy depth with respect to the conduction band in the high-k trapping layer than those in the first category. As a result, large offsets are not required between the layers in the nanolaminates and a wide variety of different nanolaminates are possible using only high-k dielectrics in these nanolaminates. The energy depths of the traps can be adjusted by varying process conditions.
- Examples of this third category of nanolaminates include: ALD HfO2—ALD Ta2O5—ALD HfO2, ALD La2O3—ALD HfO2—ALD La2O3, ALD HfO2—ALD ZrO2—ALD HfO2, ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD ZrO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, ALD Lanthanide Oxide—ALD HfO2—ALD Lanthanide Oxide, and ALD Lanthanide Oxide—evaporated HfO2—ALD Lanthanide Oxide.
- In one embodiment, the high-k gate dielectric layer is fabricated using atomic layer deposition (ALD). As is well known in the art, ALD is based on the sequential deposition of individual monolayers or fractions of a monolayer in a well controlled manner. Gaseous precursors are introduced one at a time to the substrate surface and between the pulses the reactor is purged with an inert gas or evacuated.
- In the first reaction step, the precursor is saturatively chemisorbed at the substrate surface and during subsequent purging the precursor is removed from the reactor. In the second step, another precursor is introduced on the substrate and the desired films growth reaction takes place. After that reaction, byproducts and the precursor excess are purged from the reactor. When the precursor chemistry is favorable, one ALD cycle can be performed in less than one second in a properly designed flow-type reactor.
- ALD is well suited for deposition of high-k dielectrics such as AlOx, LaAlO3, HfAlO3, Pr2O3, Lanthanide-doped TiOx, HfSiON, Zr—Sn—Ti—O films using TiCl4 or TiI4, ZrON, HfO2/Hf, ZrAlXOy, CrTiO3, and ZrTiO4.
- The most commonly used oxygen source materials for ALD are water, hydrogen peroxide, and ozone. Alcohols, oxygen and nitrous oxide have also been used. Of these, oxygen reacts very poorly at temperatures below 600° C. but the other oxygen sources are highly reactive with most of the metal compounds listed above.
- Source materials for the above-listed metals include: zirconium tetrachloride (ZrCl4) for the Zr film, titanium tetraisopropoxide (Ti(OCH(CH3)2)4) for the Ti film, trimethyl aluminum (Al(CH3)3) for the Al film, chromyl chromide (CrO2Cl2) for the Cr film, praseodymium chloride (PrCl3) for the Pr film, and hafnium chloride (HfCl4) for the Hf film. Alternate embodiments use other source materials.
- Thin oxide films are deposited at a temperature that is high enough such that, when it is adsorbed to the substrate surface, the vaporized source material reacts with a molecular layer of a second source material or that the vaporized source material becomes adsorbed and reacts with the second source material directed to the substrate surface in the subsequent step. On the other hand, the temperature should be low enough such that thermal breakdown of the source material does not occur or that its significance in terms of the total growth rate of the film is very small. Regarding the above-listed metals, the ALD process is carried out at a temperature range of approximately 200-600° C. Alternate embodiments use other temperature ranges.
- In another embodiment of the NROM memory transistor of the present invention, the high-k dielectric layers can be fabricated using evaporation techniques. Various evaporation techniques are subsequently described for the high dielectric constant materials listed above.
- Very thin films of TiO2 can be fabricated with electron-gun evaporation from a high purity TiO2 slug (e.g., 99.9999%) in a vacuum evaporator in the presence of anion beam. In one embodiment, an electron gun is centrally located toward the bottom of the chamber. A heat reflector and a heater surround the substrate holder. Under the substrate holder is an ozonizer ring with many small holes directed to the wafer for uniform distribution of ozone that is needed to compensate for the loss of oxygen in the evaporated TiO2 film. An ion gun with a fairly large diameter (3-4 in. in diameter) is located above the electron gun and argon gas is used to generate Ar ions to bombard the substrate surface uniformly during the film deposition to compact the growing TiO2 film.
- A two-step process is used in fabricating a high purity HfO2 film. This method avoids the damage to the silicon surface by Ar ion bombardment, such as that encountered during Hf metal deposition using dc sputtering. A thin Hf film is deposited by simple thermal evaporation. In one embodiment, this is by electron-beam evaporation using a high purity Hf metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate (as in the case of sputtering), the original atomically smooth surface of the silicon substrate is maintained. The second step is oxidation to form the desired HfO2.
- The first step in the deposition of CoTi alloy film is by thermal evaporation. The second step is the low temperature oxidation of the CoTi film at 400° C. Electron beam deposition of the CoTi layer minimizes the effect of contamination during deposition. The CoTi films prepared from an electron gun possess the highest purity because of the high-purity starting material. The purity of zone—refined starting metals can be as high as 99.999%. Higher purity can be obtained in deposited films because of further purification during evaporation.
- A two step process in fabricating a high-purity ZrO2 film avoids the damage to the silicon surface by Ar ion bombardment. A thin Zr film is deposited by simple thermal evaporation. In one embodiment, this is accomplished by electron beam evaporation using an ultra-high purity Zr metal slug (e.g., 99.9999%) at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step is the oxidation to form the desired ZrO2.
- The fabrication of Y2O3 and Gd2O3 films may be accomplished with a two step process. In one embodiment, an electron gun provides evaporation of high purity (e.g., 99.9999%) Y or Gd metal followed by low-temperature oxidation technology by microwave excitation in a Kr/O2 mixed high-density plasma at 400° C. The method of the present invention avoids damage to the silicon surface by Ar ion bombardment such as that encountered during Y or Gd metal deposition sputtering. A thin film of Y or Gd is deposited by thermal evaporation. In one embodiment, an electron-beam evaporation technique is used with an ultra-high purity Y or Gd metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma or ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step is the oxidation to form the desired Y2O3 or Gd2O3.
- The desired high purity of a PrO2 film can be accomplished by depositing a thin film by simple thermal evaporation. In one embodiment, this is accomplished by an electron-beam evaporation technique using an ultra-high purity Pr metal slug at a low substrate temperature (e.g., 150°-200° C.). Since there is no plasma and ion bombardment of the substrate, the original atomically smooth surface of the silicon substrate is maintained. The second step includes the oxidation to form the desired PrO2.
- The nitridation of the ZrO2 samples comes after the low-temperature oxygen radical generated in high-density Krypton plasma. The next step is the nitridation of the samples at temperatures >700° C. in a rapid thermal annealing setup. Typical heating time of several minutes may be necessary, depending on the sample geometry.
- The formation of a Y—Si—O film may be accomplished in one step by co-evaporation of the metal (Y) and silicon dioxide (SiO2) without consuming the substrate Si. Under a suitable substrate and two-source arrangement, yttrium is evaporated from one source, and SiO2 is from another source. A small oxygen leak may help reduce the oxygen deficiency in the film. The evaporation pressure ratio rates can be adjusted easily to adjust the Y—Si—O ratio.
- The prior art fabrication of lanthanum aluminate (LaAlO3) films has been achieved by evaporating single crystal pellets on Si substrates in a vacuum using an electron-beam gun. The evaporation technique of the present invention uses a less expensive form of dry pellets of Al2O3 and La2O3 using two electron guns with two rate monitors. Each of the two rate monitors is set to control the composition. The composition of the film, however, can be shifted toward the Al2O3 or La2O3 side depending upon the choice of dielectric constant. After deposition, the wafer is annealed ex situ in an electric furnace at 700° C. for ten minutes in N2 ambience. In an alternate embodiment, the wafer is annealed at 800°-900° C. in RTA for ten to fifteen seconds in N2 ambience.
-
FIG. 2 illustrates an energy-band diagram in accordance with the NROM flash transistor ofFIG. 1 . The diagram shows the relationship between EC, Φ, and the energy difference with respect to the conduction band edge in the high-k trapping layer, Et. -
FIG. 3 illustrates an energy-band diagram in accordance with a write operation in the transistor structure ofFIG. 1 whileFIG. 4 is the energy-band diagram for an erase operation. The diagrams show the conduction band edge, EC, and the valence band edge, EV. Between EC and EV is the band gap where there are no states for electrons. The energy barrier, Φ, is the discontinuity in the conduction bands. - The high-k tunnel gate dielectric of the present invention reduces the barriers between the substrate and gate insulator and/or between the floating gate and the gate insulator.
FIG. 5 illustrates a plot of tunneling current dependence on barrier height for various electric fields in accordance with the transistor structure ofFIG. 1 . This plot shows that the tunneling current at a fixed electric field can be increased by orders of magnitude as a result of reducing the barriers. - In the specific case of Fowler-Nordheim tunneling, the expression that describes the conduction in the insulator is J=AE2exp(−B/E) where J is the current density in amps/cm2, E is the electric field in the insulator in volts/cm and A and B are constants for a particular insulator. The constants depend on the effective mass and the electron barrier energy of the insulator and are scaled with the barrier energy, Φ, as A∝(1/Φ) and B∝ (Φ)3/2.
- For the case of the commonly used gate insulator, SiO2, the equation above renders A(SiO2—Si)=5.5×1016 amps/volt2 and B(SiO2—Si)=7.07×107 V/cm. If a new barrier of Φ=1.08 eV is utilized, likely values for A and B can be extrapolated from the above equations. In this case, A(Φ=1.08 eV)=1.76×10−15 amps/volt2 and B(Φ=1.08 eV)=1.24×107 V/cm.
- Curves of J versus the barrier energy, F, are shown in
FIG. 5 for several values of E. For a given tunneling current, lower barriers require lower electric fields. As an example, an SiO2 barrier of 3.2 eV has an electric field of 6×106 V/cm while for the same tunneling current, a high-k dielectric with a 1.08 eV barrier requires only an electric field of 7×105 V/cm. If the thicknesses of the two dielectrics are the same then the voltage required will be about 8.6 times less for the same current. If the high-k dielectric has a dielectric constant of 28, then the equivalent oxide thickness (EOT) will be 7 times less than the actual thickness of the high-k dielectric. - The NROM memory transistors of the present invention can thus be designed with very small equivalent oxide thicknesses and scaled into the 50 nm dimensions without drain turn-on problems, short-channel effects, and punchthrough. Additionally, retention times will decrease due to more thermal excitation and emission of electrons over the smaller barriers.
-
FIG. 6 illustrates a functional block diagram of amemory device 600 that can incorporate the flash memory cells of the present invention. Thememory device 600 is coupled to aprocessor 610. Theprocessor 610 may be a microprocessor or some other type of controlling circuitry. Thememory device 600 and theprocessor 610 form part of anelectronic system 620. Thememory device 600 has been simplified to focus on features of the memory that are helpful in understanding the present invention. - The memory device includes an array of
flash memory cells 630 that can be NROM flash memory cells. Thememory array 630 is arranged in banks of rows and columns. The control gates of each row of memory cells is coupled with a wordline while the drain and source connections of the memory cells are coupled to bitlines. As is well known in the art, the connection of the cells to the bitlines depends on whether the array is a NAND architecture or a NOR architecture. - An
address buffer circuit 640 is provided to latch address signals provided on address input connections A0-Ax 642. Address signals are received and decoded by arow decoder 644 and acolumn decoder 646 to access thememory array 630. It will be appreciated by those skilled in the art, with the benefit of the present description, that the number of address input connections depends on the density and architecture of thememory array 630. That is, the number of addresses increases with both increased memory cell counts and increased bank and block counts. - The
memory device 600 reads data in thememory array 630 by sensing voltage or current changes in the memory array columns using sense/buffer circuitry 650. The sense/buffer circuitry, in one embodiment, is coupled to read and latch a row of data from thememory array 630. Data input andoutput buffer circuitry 660 is included for bi-directional data communication over a plurality ofdata connections 662 with thecontroller 610. Writecircuitry 655 is provided to write data to the memory array. -
Control circuitry 670 decodes signals provided oncontrol connections 672 from theprocessor 610. These signals are used to control the operations on thememory array 630, including data read, data write, and erase operations. Thecontrol circuitry 670 may be a state machine, a sequencer, or some other type of controller. - Since the NROM memory cells of the present invention use a CMOS compatible process, the
memory device 600 ofFIG. 6 may be an embedded device with a CMOS processor. - The flash memory device illustrated in
FIG. 6 has been simplified to facilitate a basic understanding of the features of the memory. A more detailed understanding of internal circuitry and functions of flash memories are known to those skilled in the art. - In summary, an NROM cell can use a high-k dielectric as the trapping layer. The high-k dielectric can be fabricated using atomic layer deposition, evaporation, or a combination of the two processes. The high-k dielectric enables smaller write and erase voltages to be used and eliminates drain turn-on problems, short-channel effects, and punchthrough.
- The NROM flash memory cells of the present invention may be NAND-type cells, NOR-type cells, or any other type of array architecture.
- Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. Many adaptations of the invention will be apparent to those of ordinary skill in the art. Accordingly, this application is intended to cover any adaptations or variations of the invention. It is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
Claims (20)
1. An NROM memory transistor comprising:
a substrate having a plurality of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate;
a composite gate insulator layer formed on top of the substrate and substantially between the plurality of source/drain regions, the gate insulator comprises a composition of high-k—high-k—high-k dielectric layers of one of: HfO2—Ta2O5—HfO2 or HfO2—ZrO2—HfO2; and
a control gate formed on top of the gate insulator layer.
2. The transistor of claim 1 wherein the plurality of source/drain regions are comprised of an n+ type doped silicon.
3. The transistor of claim 1 wherein the control gate is a polysilicon material.
4. The transistor of claim 1 wherein the substrate is comprised of a p-type silicon material.
5. The transistor of claim 1 wherein one of metal layers Ta2O5 or ZrO2 acts as a charge trapping layer.
6. The transistor of claim 5 wherein the charge trapping layer comprises a metal that has a lower conduction band edge than silicon nitride.
7. The transistor of claim 1 wherein the composite gate insulator is comprised of one of: atomic layer deposited (ALD) La2O3—ALD HfO2—ALD La2O3, ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD ZrO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD HfO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, or ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—evaporated HfO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide.
8. The transistor of claim 1 wherein the composite gate insulator layer is formed by atomic layer deposition.
9. An electronic system comprising:
a processor that generates control signals; and
a memory array coupled to the processor, the array comprising a plurality of NROM memory cells, each NROM memory cell comprising:
a substrate having a pair of source/drain regions, the source/drain regions having a different conductivity than the remainder of the substrate;
a nanolaminate gate dielectric formed on top of the substrate substantially between each pair of the source/drain regions, the gate dielectric comprises a composition of high-k—high-k—high-k dielectric layers of one of: atomic layer deposited (ALD) HfO2—ALD Ta2O5—ALD HfO2 or ALD HfO2—ALD ZrO2—ALD HfO2; and
a control gate formed on top of the oxide insulator.
10. The system of claim 9 wherein the memory array is part of a memory device that is coupled to the processor through an address bus, a data bus, and a control bus.
11. The system of claim 9 and further including address circuitry coupled to row and column decoders that generate signals for accessing memory cells of the memory array.
12. The system of claim 9 wherein the pair of source/drain regions are n+ doped regions wherein each region can act as either a source region or a drain region.
13. A memory device comprising a plurality of NROM memory transistors fabricated on a substrate, each transistor comprising:
a pair of source/drain regions having a different conductivity than the remainder of the substrate;
a composite gate insulator layer formed on top of the substrate and substantially between the plurality of source/drain regions, the gate insulator comprises a composition of high-k—high-k—high-k dielectric layers of one of: atomic layer deposition (ALD) La2O3—ALD HfO2—ALD La2O3, ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD ZrO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—ALD HfO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide, or ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide—evaporated HfO2—ALD Lanthanide (Pr, Ne, Sm, Gd, and Dy) Oxide; and
a control gate formed on top of the gate insulator layer.
14. The memory device of claim 13 wherein the pair of source/drain regions are n+ doped regions in a p-type silicon substrate.
15. The memory device of claim 13 wherein the composite gate insulator is comprised of a composition such that barriers between the substrate and the gate insulator are reduced.
16. The memory device of claim 13 wherein the composite gate insulator is comprised of a floating gate layer such that an energy barrier between the floating gate layer and the remainder of the gate insulator are reduced.
17. The memory device of claim 16 wherein tunneling current increases in response to the floating gate layers of either HfO2 or ZrO2.
18. The memory device of claim 16 wherein the floating gate layer is either an atomic layer deposition metal or an evaporated metal.
19. The memory device of claim 13 wherein the high-k dielectric has a dielectric constant greater than silicon dioxide.
20. The memory device of claim 13 wherein the control gate is a polysilicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/210,288 US20050275011A1 (en) | 2004-02-10 | 2005-08-24 | NROM flash memory with a high-permittivity gate dielectric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/775,908 US7221018B2 (en) | 2004-02-10 | 2004-02-10 | NROM flash memory with a high-permittivity gate dielectric |
US11/210,288 US20050275011A1 (en) | 2004-02-10 | 2005-08-24 | NROM flash memory with a high-permittivity gate dielectric |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/775,908 Division US7221018B2 (en) | 2004-02-10 | 2004-02-10 | NROM flash memory with a high-permittivity gate dielectric |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050275011A1 true US20050275011A1 (en) | 2005-12-15 |
Family
ID=34827305
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/775,908 Expired - Lifetime US7221018B2 (en) | 2004-02-10 | 2004-02-10 | NROM flash memory with a high-permittivity gate dielectric |
US11/208,921 Expired - Lifetime US7479428B2 (en) | 2004-02-10 | 2005-08-22 | NROM flash memory with a high-permittivity gate dielectric |
US11/210,288 Abandoned US20050275011A1 (en) | 2004-02-10 | 2005-08-24 | NROM flash memory with a high-permittivity gate dielectric |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/775,908 Expired - Lifetime US7221018B2 (en) | 2004-02-10 | 2004-02-10 | NROM flash memory with a high-permittivity gate dielectric |
US11/208,921 Expired - Lifetime US7479428B2 (en) | 2004-02-10 | 2005-08-22 | NROM flash memory with a high-permittivity gate dielectric |
Country Status (1)
Country | Link |
---|---|
US (3) | US7221018B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050212065A1 (en) * | 2004-03-24 | 2005-09-29 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20080315288A1 (en) * | 2007-06-22 | 2008-12-25 | Shoko Kikuchi | Memory cell of nonvolatile semiconductor memory |
US7923381B2 (en) | 2002-12-04 | 2011-04-12 | Micron Technology, Inc. | Methods of forming electronic devices containing Zr-Sn-Ti-O films |
US7972974B2 (en) | 2006-01-10 | 2011-07-05 | Micron Technology, Inc. | Gallium lanthanide oxide films |
US20110256314A1 (en) * | 2009-10-23 | 2011-10-20 | Air Products And Chemicals, Inc. | Methods for deposition of group 4 metal containing films |
US8154066B2 (en) | 2004-08-31 | 2012-04-10 | Micron Technology, Inc. | Titanium aluminum oxide films |
US8445952B2 (en) | 2002-12-04 | 2013-05-21 | Micron Technology, Inc. | Zr-Sn-Ti-O films |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6921702B2 (en) | 2002-07-30 | 2005-07-26 | Micron Technology Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US7037863B2 (en) * | 2002-09-10 | 2006-05-02 | Samsung Electronics Co., Ltd. | Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices |
US20050242387A1 (en) * | 2004-04-29 | 2005-11-03 | Micron Technology, Inc. | Flash memory device having a graded composition, high dielectric constant gate insulator |
US20050259467A1 (en) * | 2004-05-18 | 2005-11-24 | Micron Technology, Inc. | Split gate flash memory cell with ballistic injection |
US7601649B2 (en) | 2004-08-02 | 2009-10-13 | Micron Technology, Inc. | Zirconium-doped tantalum oxide films |
US7081421B2 (en) | 2004-08-26 | 2006-07-25 | Micron Technology, Inc. | Lanthanide oxide dielectric layer |
US7235501B2 (en) | 2004-12-13 | 2007-06-26 | Micron Technology, Inc. | Lanthanum hafnium oxide dielectrics |
US7560395B2 (en) * | 2005-01-05 | 2009-07-14 | Micron Technology, Inc. | Atomic layer deposited hafnium tantalum oxide dielectrics |
KR100682932B1 (en) * | 2005-02-16 | 2007-02-15 | 삼성전자주식회사 | Nonvolatile memory device and fabrication method of the same |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7365027B2 (en) * | 2005-03-29 | 2008-04-29 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7446380B2 (en) * | 2005-04-29 | 2008-11-04 | International Business Machines Corporation | Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS |
US20060267113A1 (en) * | 2005-05-27 | 2006-11-30 | Tobin Philip J | Semiconductor device structure and method therefor |
US7572695B2 (en) | 2005-05-27 | 2009-08-11 | Micron Technology, Inc. | Hafnium titanium oxide films |
US7501336B2 (en) * | 2005-06-21 | 2009-03-10 | Intel Corporation | Metal gate device with reduced oxidation of a high-k gate dielectric |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US20070063252A1 (en) * | 2005-09-16 | 2007-03-22 | Yuan Diana D | Non-volatile memory and SRAM based on resonant tunneling devices |
US7592251B2 (en) * | 2005-12-08 | 2009-09-22 | Micron Technology, Inc. | Hafnium tantalum titanium oxide films |
US7615438B2 (en) | 2005-12-08 | 2009-11-10 | Micron Technology, Inc. | Lanthanide yttrium aluminum oxide dielectric films |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
KR101194839B1 (en) * | 2006-02-28 | 2012-10-25 | 삼성전자주식회사 | Memory device comprising nanocrystals and method for producing the same |
KR100717770B1 (en) * | 2006-04-24 | 2007-05-11 | 주식회사 하이닉스반도체 | Falsh memory device with stack dielectric layer including zirconium oxide and method for manufacturing the same |
US7727908B2 (en) * | 2006-08-03 | 2010-06-01 | Micron Technology, Inc. | Deposition of ZrA1ON films |
US7605030B2 (en) | 2006-08-31 | 2009-10-20 | Micron Technology, Inc. | Hafnium tantalum oxynitride high-k dielectric and metal gates |
US7759747B2 (en) | 2006-08-31 | 2010-07-20 | Micron Technology, Inc. | Tantalum aluminum oxynitride high-κ dielectric |
US7776765B2 (en) | 2006-08-31 | 2010-08-17 | Micron Technology, Inc. | Tantalum silicon oxynitride high-k dielectrics and metal gates |
US7544604B2 (en) | 2006-08-31 | 2009-06-09 | Micron Technology, Inc. | Tantalum lanthanide oxynitride films |
JP2008166528A (en) * | 2006-12-28 | 2008-07-17 | Spansion Llc | Semiconductor device and its manufacturing method |
US8686487B2 (en) | 2007-06-14 | 2014-04-01 | Micron Technology, Inc. | Semiconductor devices and electronic systems comprising floating gate transistors |
US8320191B2 (en) | 2007-08-30 | 2012-11-27 | Infineon Technologies Ag | Memory cell arrangement, method for controlling a memory cell, memory array and electronic device |
US8907059B2 (en) * | 2008-11-14 | 2014-12-09 | Bio-Rad Laboratories, Inc. | Phosphopeptide enrichment of compositions by fractionation on ceramic hydroxyapatite |
JP5443789B2 (en) * | 2009-03-09 | 2014-03-19 | 株式会社東芝 | Semiconductor device |
US8173507B2 (en) * | 2010-06-22 | 2012-05-08 | Micron Technology, Inc. | Methods of forming integrated circuitry comprising charge storage transistors |
CN102403342A (en) * | 2010-09-16 | 2012-04-04 | 北京有色金属研究总院 | Hafnium-based oxide high k gate dielectric layer and energy band adjustment and control method of hafnium-based oxide high k gate dielectric layer |
US8945996B2 (en) | 2011-04-12 | 2015-02-03 | Micron Technology, Inc. | Methods of forming circuitry components and methods of forming an array of memory cells |
US9318336B2 (en) | 2011-10-27 | 2016-04-19 | Globalfoundries U.S. 2 Llc | Non-volatile memory structure employing high-k gate dielectric and metal gate |
US8569822B2 (en) * | 2011-11-02 | 2013-10-29 | Macronix International Co., Ltd. | Memory structure |
TWI467577B (en) * | 2011-11-02 | 2015-01-01 | Macronix Int Co Ltd | Memory structure and fabricating method thereof |
US9305650B2 (en) * | 2014-02-14 | 2016-04-05 | International Business Machines Corporation | Junction field-effect floating gate memory switch with thin tunnel insulator |
US11489061B2 (en) * | 2018-09-24 | 2022-11-01 | Intel Corporation | Integrated programmable gate radio frequency (RF) switch |
Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184207A (en) * | 1978-01-27 | 1980-01-15 | Texas Instruments Incorporated | High density floating gate electrically programmable ROM |
US4755864A (en) * | 1984-12-25 | 1988-07-05 | Kabushiki Kaisha Toshiba | Semiconductor read only memory device with selectively present mask layer |
US4881114A (en) * | 1986-05-16 | 1989-11-14 | Actel Corporation | Selectively formable vertical diode circuit element |
US5241496A (en) * | 1991-08-19 | 1993-08-31 | Micron Technology, Inc. | Array of read-only memory cells, eacch of which has a one-time, voltage-programmable antifuse element constructed within a trench shared by a pair of cells |
US5330930A (en) * | 1992-12-31 | 1994-07-19 | Chartered Semiconductor Manufacturing Pte Ltd. | Formation of vertical polysilicon resistor having a nitride sidewall for small static RAM cell |
US5378647A (en) * | 1993-10-25 | 1995-01-03 | United Microelectronics Corporation | Method of making a bottom gate mask ROM device |
US5379253A (en) * | 1992-06-01 | 1995-01-03 | National Semiconductor Corporation | High density EEPROM cell array with novel programming scheme and method of manufacture |
US5397725A (en) * | 1993-10-28 | 1995-03-14 | National Semiconductor Corporation | Method of controlling oxide thinning in an EPROM or flash memory array |
US5467305A (en) * | 1992-03-12 | 1995-11-14 | International Business Machines Corporation | Three-dimensional direct-write EEPROM arrays and fabrication methods |
US5576236A (en) * | 1995-06-28 | 1996-11-19 | United Microelectronics Corporation | Process for coding and code marking read-only memory |
US5768192A (en) * | 1996-07-23 | 1998-06-16 | Saifun Semiconductors, Ltd. | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
US5792697A (en) * | 1997-01-07 | 1998-08-11 | United Microelectronics Corporation | Method for fabricating a multi-stage ROM |
US5858841A (en) * | 1997-01-20 | 1999-01-12 | United Microelectronics Corporation | ROM device having memory units arranged in three dimensions, and a method of making the same |
US5911106A (en) * | 1996-08-29 | 1999-06-08 | Nec Corporation | Semiconductor memory device and fabrication thereof |
US5946558A (en) * | 1997-02-05 | 1999-08-31 | United Microelectronics Corp. | Method of making ROM components |
US5966603A (en) * | 1997-06-11 | 1999-10-12 | Saifun Semiconductors Ltd. | NROM fabrication method with a periphery portion |
US5994745A (en) * | 1994-04-08 | 1999-11-30 | United Microelectronics Corp. | ROM device having shaped gate electrodes and corresponding code implants |
US6011725A (en) * | 1997-08-01 | 2000-01-04 | Saifun Semiconductors, Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6028342A (en) * | 1996-11-22 | 2000-02-22 | United Microelectronics Corp. | ROM diode and a method of making the same |
US6030871A (en) * | 1998-05-05 | 2000-02-29 | Saifun Semiconductors Ltd. | Process for producing two bit ROM cell utilizing angled implant |
US6044022A (en) * | 1999-02-26 | 2000-03-28 | Tower Semiconductor Ltd. | Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays |
US6081456A (en) * | 1999-02-04 | 2000-06-27 | Tower Semiconductor Ltd. | Bit line control circuit for a memory array using 2-bit non-volatile memory cells |
US6108102A (en) * | 1997-01-27 | 2000-08-22 | Canon Kabushiki Kaisha | Image processing method and apparatus, and image forming apparatus |
US6134156A (en) * | 1999-02-04 | 2000-10-17 | Saifun Semiconductors Ltd. | Method for initiating a retrieval procedure in virtual ground arrays |
US6133102A (en) * | 1998-06-19 | 2000-10-17 | Wu; Shye-Lin | Method of fabricating double poly-gate high density multi-state flat mask ROM cells |
US6147904A (en) * | 1999-02-04 | 2000-11-14 | Tower Semiconductor Ltd. | Redundancy method and structure for 2-bit non-volatile memory cells |
US6172396B1 (en) * | 1998-02-03 | 2001-01-09 | Worldwide Semiconductor Manufacturing Corp. | ROM structure and method of manufacture |
US6175523B1 (en) * | 1999-10-25 | 2001-01-16 | Advanced Micro Devices, Inc | Precharging mechanism and method for NAND-based flash memory devices |
US6174758B1 (en) * | 1999-03-03 | 2001-01-16 | Tower Semiconductor Ltd. | Semiconductor chip having fieldless array with salicide gates and methods for making same |
US6181597B1 (en) * | 1999-02-04 | 2001-01-30 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells with serial read operations |
US6184089B1 (en) * | 1999-01-27 | 2001-02-06 | United Microelectronics Corp. | Method of fabricating one-time programmable read only memory |
US6201737B1 (en) * | 2000-01-28 | 2001-03-13 | Advanced Micro Devices, Inc. | Apparatus and method to characterize the threshold distribution in an NROM virtual ground array |
US6204529B1 (en) * | 1999-08-27 | 2001-03-20 | Hsing Lan Lung | 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate |
US6208557B1 (en) * | 1999-05-21 | 2001-03-27 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
US6207504B1 (en) * | 1998-07-29 | 2001-03-27 | United Semiconductor Corp. | Method of fabricating flash erasable programmable read only memory |
US6215702B1 (en) * | 2000-02-16 | 2001-04-10 | Advanced Micro Devices, Inc. | Method of maintaining constant erasing speeds for non-volatile memory cells |
US6218695B1 (en) * | 1999-06-28 | 2001-04-17 | Tower Semiconductor Ltd. | Area efficient column select circuitry for 2-bit non-volatile memory cells |
US6222768B1 (en) * | 2000-01-28 | 2001-04-24 | Advanced Micro Devices, Inc. | Auto adjusting window placement scheme for an NROM virtual ground array |
US20010001075A1 (en) * | 1997-03-25 | 2001-05-10 | Vantis Corporation | Process for fabricating semiconductor memory device with high data retention including silicon nitride etch stop layer formed at high temperature with low hydrogen ion concentration |
US6240020B1 (en) * | 1999-10-25 | 2001-05-29 | Advanced Micro Devices | Method of bitline shielding in conjunction with a precharging scheme for nand-based flash memory devices |
US6243300B1 (en) * | 2000-02-16 | 2001-06-05 | Advanced Micro Devices, Inc. | Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell |
US20010004332A1 (en) * | 1998-05-20 | 2001-06-21 | Saifun Semiconductors Ltd. | NROM cell with improved programming, erasing and cycling |
US6251731B1 (en) * | 1998-08-10 | 2001-06-26 | Acer Semiconductor Manufacturing, Inc. | Method for fabricating high-density and high-speed nand-type mask roms |
US6256231B1 (en) * | 1999-02-04 | 2001-07-03 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells and method of implementing same |
US6255166B1 (en) * | 1999-08-05 | 2001-07-03 | Aalo Lsi Design & Device Technology, Inc. | Nonvolatile memory cell, method of programming the same and nonvolatile memory array |
US6266281B1 (en) * | 2000-02-16 | 2001-07-24 | Advanced Micro Devices, Inc. | Method of erasing non-volatile memory cells |
US6269023B1 (en) * | 2000-05-19 | 2001-07-31 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a current limiter |
US6272043B1 (en) * | 2000-01-28 | 2001-08-07 | Advanced Micro Devices, Inc. | Apparatus and method of direct current sensing from source side in a virtual ground array |
US6275414B1 (en) * | 2000-05-16 | 2001-08-14 | Advanced Micro Devices, Inc. | Uniform bitline strapping of a non-volatile memory cell |
US6282118B1 (en) * | 2000-10-06 | 2001-08-28 | Macronix International Co. Ltd. | Nonvolatile semiconductor memory device |
US6291854B1 (en) * | 1999-12-30 | 2001-09-18 | United Microelectronics Corp. | Electrically erasable and programmable read only memory device and manufacturing therefor |
US6297096B1 (en) * | 1997-06-11 | 2001-10-02 | Saifun Semiconductors Ltd. | NROM fabrication method |
US6303436B1 (en) * | 1999-09-21 | 2001-10-16 | Mosel Vitelic, Inc. | Method for fabricating a type of trench mask ROM cell |
US6348711B1 (en) * | 1998-05-20 | 2002-02-19 | Saifun Semiconductors Ltd. | NROM cell with self-aligned programming and erasure areas |
US6392930B2 (en) * | 2000-02-14 | 2002-05-21 | United Microelectronics Corp. | Method of manufacturing mask read-only memory cell |
US20020086548A1 (en) * | 2000-12-14 | 2002-07-04 | Chang Kent Kuohua | Method for forming gate dielectric layer in NROM |
US6417053B1 (en) * | 2001-11-20 | 2002-07-09 | Macronix International Co., Ltd. | Fabrication method for a silicon nitride read-only memory |
US6421275B1 (en) * | 2002-01-22 | 2002-07-16 | Macronix International Co. Ltd. | Method for adjusting a reference current of a flash nitride read only memory (NROM) and device thereof |
US6429063B1 (en) * | 1999-10-26 | 2002-08-06 | Saifun Semiconductors Ltd. | NROM cell with generally decoupled primary and secondary injection |
US6432778B1 (en) * | 2001-08-07 | 2002-08-13 | Macronix International Co. Ltd. | Method of forming a system on chip (SOC) with nitride read only memory (NROM) |
US6455890B1 (en) * | 2001-09-05 | 2002-09-24 | Macronix International Co., Ltd. | Structure of fabricating high gate performance for NROM technology |
US20020142569A1 (en) * | 2001-03-29 | 2002-10-03 | Chang Kent Kuohua | Method for fabricating a nitride read-only -memory (nrom) |
US20020146885A1 (en) * | 2001-04-04 | 2002-10-10 | Chia-Hsing Chen | Method of fabricating a nitride read only memory cell |
US20020151138A1 (en) * | 2001-04-13 | 2002-10-17 | Chien-Hung Liu | Method for fabricating an NROM |
US6469342B1 (en) * | 2001-10-29 | 2002-10-22 | Macronix International Co., Ltd. | Silicon nitride read only memory that prevents antenna effect |
US6468864B1 (en) * | 2001-06-21 | 2002-10-22 | Macronix International Co., Ltd. | Method of fabricating silicon nitride read only memory |
US20020155689A1 (en) * | 2001-04-20 | 2002-10-24 | Ahn Kie Y. | Highly reliable gate oxide and method of fabrication |
US6486028B1 (en) * | 2001-11-20 | 2002-11-26 | Macronix International Co., Ltd. | Method of fabricating a nitride read-only-memory cell vertical structure |
US6487050B1 (en) * | 1999-02-22 | 2002-11-26 | Seagate Technology Llc | Disc drive with wear-resistant ramp coating of carbon nitride or metal nitride |
US20020177275A1 (en) * | 2001-05-28 | 2002-11-28 | Chien-Hung Liu | Fabrication method for a silicon nitride read-only memory |
US6514831B1 (en) * | 2001-11-14 | 2003-02-04 | Macronix International Co., Ltd. | Nitride read only memory cell |
US6531887B2 (en) * | 2001-06-01 | 2003-03-11 | Macronix International Co., Ltd. | One cell programmable switch using non-volatile cell |
US6545309B1 (en) * | 2002-03-11 | 2003-04-08 | Macronix International Co., Ltd. | Nitride read-only memory with protective diode and operating method thereof |
US20030067807A1 (en) * | 2001-09-28 | 2003-04-10 | Hung-Sui Lin | Erasing method for p-channel NROM |
US20030067032A1 (en) * | 2001-10-08 | 2003-04-10 | Stmicroelectronics S.R.I. | Process for manufacturing a dual charge storage location memory cell |
US6552387B1 (en) * | 1997-07-30 | 2003-04-22 | Saifun Semiconductors Ltd. | Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6552287B2 (en) * | 1999-10-08 | 2003-04-22 | Itt Manufacturing Enterprises, Inc. | Electrical switch with snap action dome shaped tripper |
US6559013B1 (en) * | 2002-06-20 | 2003-05-06 | Macronix International Co., Ltd. | Method for fabricating mask ROM device |
US6576511B2 (en) * | 2001-05-02 | 2003-06-10 | Macronix International Co., Ltd. | Method for forming nitride read only memory |
US6580630B1 (en) * | 2002-04-02 | 2003-06-17 | Macronix International Co., Ltd. | Initialization method of P-type silicon nitride read only memory |
US6580135B2 (en) * | 2001-06-18 | 2003-06-17 | Macronix International Co., Ltd. | Silicon nitride read only memory structure and method of programming and erasure |
US20030117861A1 (en) * | 2001-12-20 | 2003-06-26 | Eduardo Maayan | NROM NOR array |
US6607957B1 (en) * | 2002-07-31 | 2003-08-19 | Macronix International Co., Ltd. | Method for fabricating nitride read only memory |
US6610586B1 (en) * | 2002-09-04 | 2003-08-26 | Macronix International Co., Ltd. | Method for fabricating nitride read-only memory |
US6617204B2 (en) * | 2001-08-13 | 2003-09-09 | Macronix International Co., Ltd. | Method of forming the protective film to prevent nitride read only memory cell charging |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US6713812B1 (en) * | 2002-10-09 | 2004-03-30 | Motorola, Inc. | Non-volatile memory device having an anti-punch through (APT) region |
US20040069990A1 (en) * | 2002-10-15 | 2004-04-15 | Matrix Semiconductor, Inc. | Thin film transistor with metal oxide layer and method of making same |
US6780708B1 (en) * | 2003-03-05 | 2004-08-24 | Advanced Micro Devices, Inc. | Method of forming core and periphery gates including two critical masking steps to form a hard mask in a core region that includes a critical dimension less than achievable at a resolution limit of lithography |
US6797567B2 (en) * | 2002-12-24 | 2004-09-28 | Macronix International Co., Ltd. | High-K tunneling dielectric for read only memory device and fabrication method thereof |
US6921702B2 (en) * | 2002-07-30 | 2005-07-26 | Micron Technology Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US20050212065A1 (en) * | 2004-03-24 | 2005-09-29 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420504A (en) * | 1980-12-22 | 1983-12-13 | Raytheon Company | Programmable read only memory |
US4513494A (en) | 1983-07-19 | 1985-04-30 | American Microsystems, Incorporated | Late mask process for programming read only memories |
JP2509706B2 (en) | 1989-08-18 | 1996-06-26 | 株式会社東芝 | Mask ROM manufacturing method |
JP3328416B2 (en) * | 1994-03-18 | 2002-09-24 | 富士通株式会社 | Semiconductor device manufacturing method and manufacturing apparatus |
US6013553A (en) * | 1997-07-24 | 2000-01-11 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
US6108240A (en) * | 1999-02-04 | 2000-08-22 | Tower Semiconductor Ltd. | Implementation of EEPROM using intermediate gate voltage to avoid disturb conditions |
US6157570A (en) | 1999-02-04 | 2000-12-05 | Tower Semiconductor Ltd. | Program/erase endurance of EEPROM memory cells |
US6660660B2 (en) * | 2000-10-10 | 2003-12-09 | Asm International, Nv. | Methods for making a dielectric stack in an integrated circuit |
US6444545B1 (en) * | 2000-12-19 | 2002-09-03 | Motorola, Inc. | Device structure for storing charge and method therefore |
US20020156885A1 (en) * | 2001-04-23 | 2002-10-24 | Thakkar Bina Kunal | Protocol emulator |
EP1263051A1 (en) | 2001-05-30 | 2002-12-04 | Infineon Technologies AG | Bitline contacts in a memory cell array |
US20020182829A1 (en) | 2001-05-31 | 2002-12-05 | Chia-Hsing Chen | Method for forming nitride read only memory with indium pocket region |
US6669990B2 (en) * | 2001-06-25 | 2003-12-30 | Samsung Electronics Co., Ltd. | Atomic layer deposition method using a novel group IV metal precursor |
KR100459895B1 (en) * | 2002-02-09 | 2004-12-04 | 삼성전자주식회사 | Memory device with quantum dot and method of manufacturing the same |
US6498377B1 (en) | 2002-03-21 | 2002-12-24 | Macronix International, Co., Ltd. | SONOS component having high dielectric property |
US6735123B1 (en) * | 2002-06-07 | 2004-05-11 | Advanced Micro Devices, Inc. | High density dual bit flash memory cell with non planar structure |
JP3643100B2 (en) * | 2002-10-04 | 2005-04-27 | 松下電器産業株式会社 | Semiconductor device |
-
2004
- 2004-02-10 US US10/775,908 patent/US7221018B2/en not_active Expired - Lifetime
-
2005
- 2005-08-22 US US11/208,921 patent/US7479428B2/en not_active Expired - Lifetime
- 2005-08-24 US US11/210,288 patent/US20050275011A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184207A (en) * | 1978-01-27 | 1980-01-15 | Texas Instruments Incorporated | High density floating gate electrically programmable ROM |
US4755864A (en) * | 1984-12-25 | 1988-07-05 | Kabushiki Kaisha Toshiba | Semiconductor read only memory device with selectively present mask layer |
US4881114A (en) * | 1986-05-16 | 1989-11-14 | Actel Corporation | Selectively formable vertical diode circuit element |
US5241496A (en) * | 1991-08-19 | 1993-08-31 | Micron Technology, Inc. | Array of read-only memory cells, eacch of which has a one-time, voltage-programmable antifuse element constructed within a trench shared by a pair of cells |
US5467305A (en) * | 1992-03-12 | 1995-11-14 | International Business Machines Corporation | Three-dimensional direct-write EEPROM arrays and fabrication methods |
US5379253A (en) * | 1992-06-01 | 1995-01-03 | National Semiconductor Corporation | High density EEPROM cell array with novel programming scheme and method of manufacture |
US5330930A (en) * | 1992-12-31 | 1994-07-19 | Chartered Semiconductor Manufacturing Pte Ltd. | Formation of vertical polysilicon resistor having a nitride sidewall for small static RAM cell |
US5378647A (en) * | 1993-10-25 | 1995-01-03 | United Microelectronics Corporation | Method of making a bottom gate mask ROM device |
US5397725A (en) * | 1993-10-28 | 1995-03-14 | National Semiconductor Corporation | Method of controlling oxide thinning in an EPROM or flash memory array |
US5994745A (en) * | 1994-04-08 | 1999-11-30 | United Microelectronics Corp. | ROM device having shaped gate electrodes and corresponding code implants |
US5576236A (en) * | 1995-06-28 | 1996-11-19 | United Microelectronics Corporation | Process for coding and code marking read-only memory |
US5768192A (en) * | 1996-07-23 | 1998-06-16 | Saifun Semiconductors, Ltd. | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
US5911106A (en) * | 1996-08-29 | 1999-06-08 | Nec Corporation | Semiconductor memory device and fabrication thereof |
US20010011755A1 (en) * | 1996-08-29 | 2001-08-09 | Kazuhiro Tasaka | Semiconductor memory device and fabrication thereof |
US6028342A (en) * | 1996-11-22 | 2000-02-22 | United Microelectronics Corp. | ROM diode and a method of making the same |
US5792697A (en) * | 1997-01-07 | 1998-08-11 | United Microelectronics Corporation | Method for fabricating a multi-stage ROM |
US5858841A (en) * | 1997-01-20 | 1999-01-12 | United Microelectronics Corporation | ROM device having memory units arranged in three dimensions, and a method of making the same |
US6108102A (en) * | 1997-01-27 | 2000-08-22 | Canon Kabushiki Kaisha | Image processing method and apparatus, and image forming apparatus |
US5946558A (en) * | 1997-02-05 | 1999-08-31 | United Microelectronics Corp. | Method of making ROM components |
US20010001075A1 (en) * | 1997-03-25 | 2001-05-10 | Vantis Corporation | Process for fabricating semiconductor memory device with high data retention including silicon nitride etch stop layer formed at high temperature with low hydrogen ion concentration |
US6297096B1 (en) * | 1997-06-11 | 2001-10-02 | Saifun Semiconductors Ltd. | NROM fabrication method |
US5966603A (en) * | 1997-06-11 | 1999-10-12 | Saifun Semiconductors Ltd. | NROM fabrication method with a periphery portion |
US6552387B1 (en) * | 1997-07-30 | 2003-04-22 | Saifun Semiconductors Ltd. | Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6011725A (en) * | 1997-08-01 | 2000-01-04 | Saifun Semiconductors, Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6172396B1 (en) * | 1998-02-03 | 2001-01-09 | Worldwide Semiconductor Manufacturing Corp. | ROM structure and method of manufacture |
US6030871A (en) * | 1998-05-05 | 2000-02-29 | Saifun Semiconductors Ltd. | Process for producing two bit ROM cell utilizing angled implant |
US6201282B1 (en) * | 1998-05-05 | 2001-03-13 | Saifun Semiconductors Ltd. | Two bit ROM cell and process for producing same |
US20010004332A1 (en) * | 1998-05-20 | 2001-06-21 | Saifun Semiconductors Ltd. | NROM cell with improved programming, erasing and cycling |
US6477084B2 (en) * | 1998-05-20 | 2002-11-05 | Saifun Semiconductors Ltd. | NROM cell with improved programming, erasing and cycling |
US6348711B1 (en) * | 1998-05-20 | 2002-02-19 | Saifun Semiconductors Ltd. | NROM cell with self-aligned programming and erasure areas |
US6133102A (en) * | 1998-06-19 | 2000-10-17 | Wu; Shye-Lin | Method of fabricating double poly-gate high density multi-state flat mask ROM cells |
US6207504B1 (en) * | 1998-07-29 | 2001-03-27 | United Semiconductor Corp. | Method of fabricating flash erasable programmable read only memory |
US6251731B1 (en) * | 1998-08-10 | 2001-06-26 | Acer Semiconductor Manufacturing, Inc. | Method for fabricating high-density and high-speed nand-type mask roms |
US6184089B1 (en) * | 1999-01-27 | 2001-02-06 | United Microelectronics Corp. | Method of fabricating one-time programmable read only memory |
US6147904A (en) * | 1999-02-04 | 2000-11-14 | Tower Semiconductor Ltd. | Redundancy method and structure for 2-bit non-volatile memory cells |
US6256231B1 (en) * | 1999-02-04 | 2001-07-03 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells and method of implementing same |
US6081456A (en) * | 1999-02-04 | 2000-06-27 | Tower Semiconductor Ltd. | Bit line control circuit for a memory array using 2-bit non-volatile memory cells |
US6134156A (en) * | 1999-02-04 | 2000-10-17 | Saifun Semiconductors Ltd. | Method for initiating a retrieval procedure in virtual ground arrays |
US6181597B1 (en) * | 1999-02-04 | 2001-01-30 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells with serial read operations |
US6487050B1 (en) * | 1999-02-22 | 2002-11-26 | Seagate Technology Llc | Disc drive with wear-resistant ramp coating of carbon nitride or metal nitride |
US6044022A (en) * | 1999-02-26 | 2000-03-28 | Tower Semiconductor Ltd. | Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays |
US6174758B1 (en) * | 1999-03-03 | 2001-01-16 | Tower Semiconductor Ltd. | Semiconductor chip having fieldless array with salicide gates and methods for making same |
US6208557B1 (en) * | 1999-05-21 | 2001-03-27 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
US6218695B1 (en) * | 1999-06-28 | 2001-04-17 | Tower Semiconductor Ltd. | Area efficient column select circuitry for 2-bit non-volatile memory cells |
US6255166B1 (en) * | 1999-08-05 | 2001-07-03 | Aalo Lsi Design & Device Technology, Inc. | Nonvolatile memory cell, method of programming the same and nonvolatile memory array |
US6204529B1 (en) * | 1999-08-27 | 2001-03-20 | Hsing Lan Lung | 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate |
US6303436B1 (en) * | 1999-09-21 | 2001-10-16 | Mosel Vitelic, Inc. | Method for fabricating a type of trench mask ROM cell |
US6552287B2 (en) * | 1999-10-08 | 2003-04-22 | Itt Manufacturing Enterprises, Inc. | Electrical switch with snap action dome shaped tripper |
US6175523B1 (en) * | 1999-10-25 | 2001-01-16 | Advanced Micro Devices, Inc | Precharging mechanism and method for NAND-based flash memory devices |
US6240020B1 (en) * | 1999-10-25 | 2001-05-29 | Advanced Micro Devices | Method of bitline shielding in conjunction with a precharging scheme for nand-based flash memory devices |
US6429063B1 (en) * | 1999-10-26 | 2002-08-06 | Saifun Semiconductors Ltd. | NROM cell with generally decoupled primary and secondary injection |
US6291854B1 (en) * | 1999-12-30 | 2001-09-18 | United Microelectronics Corp. | Electrically erasable and programmable read only memory device and manufacturing therefor |
US6272043B1 (en) * | 2000-01-28 | 2001-08-07 | Advanced Micro Devices, Inc. | Apparatus and method of direct current sensing from source side in a virtual ground array |
US6201737B1 (en) * | 2000-01-28 | 2001-03-13 | Advanced Micro Devices, Inc. | Apparatus and method to characterize the threshold distribution in an NROM virtual ground array |
US6222768B1 (en) * | 2000-01-28 | 2001-04-24 | Advanced Micro Devices, Inc. | Auto adjusting window placement scheme for an NROM virtual ground array |
US6392930B2 (en) * | 2000-02-14 | 2002-05-21 | United Microelectronics Corp. | Method of manufacturing mask read-only memory cell |
US6215702B1 (en) * | 2000-02-16 | 2001-04-10 | Advanced Micro Devices, Inc. | Method of maintaining constant erasing speeds for non-volatile memory cells |
US6243300B1 (en) * | 2000-02-16 | 2001-06-05 | Advanced Micro Devices, Inc. | Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell |
US6266281B1 (en) * | 2000-02-16 | 2001-07-24 | Advanced Micro Devices, Inc. | Method of erasing non-volatile memory cells |
US6275414B1 (en) * | 2000-05-16 | 2001-08-14 | Advanced Micro Devices, Inc. | Uniform bitline strapping of a non-volatile memory cell |
US6269023B1 (en) * | 2000-05-19 | 2001-07-31 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a current limiter |
US6282118B1 (en) * | 2000-10-06 | 2001-08-28 | Macronix International Co. Ltd. | Nonvolatile semiconductor memory device |
US20020086548A1 (en) * | 2000-12-14 | 2002-07-04 | Chang Kent Kuohua | Method for forming gate dielectric layer in NROM |
US6602805B2 (en) * | 2000-12-14 | 2003-08-05 | Macronix International Co., Ltd. | Method for forming gate dielectric layer in NROM |
US20020142569A1 (en) * | 2001-03-29 | 2002-10-03 | Chang Kent Kuohua | Method for fabricating a nitride read-only -memory (nrom) |
US6461949B1 (en) * | 2001-03-29 | 2002-10-08 | Macronix International Co. Ltd. | Method for fabricating a nitride read-only-memory (NROM) |
US20020146885A1 (en) * | 2001-04-04 | 2002-10-10 | Chia-Hsing Chen | Method of fabricating a nitride read only memory cell |
US20020151138A1 (en) * | 2001-04-13 | 2002-10-17 | Chien-Hung Liu | Method for fabricating an NROM |
US20020155689A1 (en) * | 2001-04-20 | 2002-10-24 | Ahn Kie Y. | Highly reliable gate oxide and method of fabrication |
US6576511B2 (en) * | 2001-05-02 | 2003-06-10 | Macronix International Co., Ltd. | Method for forming nitride read only memory |
US6613632B2 (en) * | 2001-05-28 | 2003-09-02 | Macronix International Co., Ltd. | Fabrication method for a silicon nitride read-only memory |
US20020177275A1 (en) * | 2001-05-28 | 2002-11-28 | Chien-Hung Liu | Fabrication method for a silicon nitride read-only memory |
US6531887B2 (en) * | 2001-06-01 | 2003-03-11 | Macronix International Co., Ltd. | One cell programmable switch using non-volatile cell |
US20030057997A1 (en) * | 2001-06-01 | 2003-03-27 | Macronix International Co., Ltd. | One cell programmable switch using non-volatile cell |
US6580135B2 (en) * | 2001-06-18 | 2003-06-17 | Macronix International Co., Ltd. | Silicon nitride read only memory structure and method of programming and erasure |
US6468864B1 (en) * | 2001-06-21 | 2002-10-22 | Macronix International Co., Ltd. | Method of fabricating silicon nitride read only memory |
US6432778B1 (en) * | 2001-08-07 | 2002-08-13 | Macronix International Co. Ltd. | Method of forming a system on chip (SOC) with nitride read only memory (NROM) |
US6617204B2 (en) * | 2001-08-13 | 2003-09-09 | Macronix International Co., Ltd. | Method of forming the protective film to prevent nitride read only memory cell charging |
US6455890B1 (en) * | 2001-09-05 | 2002-09-24 | Macronix International Co., Ltd. | Structure of fabricating high gate performance for NROM technology |
US20030067807A1 (en) * | 2001-09-28 | 2003-04-10 | Hung-Sui Lin | Erasing method for p-channel NROM |
US20030067032A1 (en) * | 2001-10-08 | 2003-04-10 | Stmicroelectronics S.R.I. | Process for manufacturing a dual charge storage location memory cell |
US6469342B1 (en) * | 2001-10-29 | 2002-10-22 | Macronix International Co., Ltd. | Silicon nitride read only memory that prevents antenna effect |
US6514831B1 (en) * | 2001-11-14 | 2003-02-04 | Macronix International Co., Ltd. | Nitride read only memory cell |
US6486028B1 (en) * | 2001-11-20 | 2002-11-26 | Macronix International Co., Ltd. | Method of fabricating a nitride read-only-memory cell vertical structure |
US6417053B1 (en) * | 2001-11-20 | 2002-07-09 | Macronix International Co., Ltd. | Fabrication method for a silicon nitride read-only memory |
US20030117861A1 (en) * | 2001-12-20 | 2003-06-26 | Eduardo Maayan | NROM NOR array |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US6421275B1 (en) * | 2002-01-22 | 2002-07-16 | Macronix International Co. Ltd. | Method for adjusting a reference current of a flash nitride read only memory (NROM) and device thereof |
US6545309B1 (en) * | 2002-03-11 | 2003-04-08 | Macronix International Co., Ltd. | Nitride read-only memory with protective diode and operating method thereof |
US6580630B1 (en) * | 2002-04-02 | 2003-06-17 | Macronix International Co., Ltd. | Initialization method of P-type silicon nitride read only memory |
US6559013B1 (en) * | 2002-06-20 | 2003-05-06 | Macronix International Co., Ltd. | Method for fabricating mask ROM device |
US6921702B2 (en) * | 2002-07-30 | 2005-07-26 | Micron Technology Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US6607957B1 (en) * | 2002-07-31 | 2003-08-19 | Macronix International Co., Ltd. | Method for fabricating nitride read only memory |
US6610586B1 (en) * | 2002-09-04 | 2003-08-26 | Macronix International Co., Ltd. | Method for fabricating nitride read-only memory |
US6713812B1 (en) * | 2002-10-09 | 2004-03-30 | Motorola, Inc. | Non-volatile memory device having an anti-punch through (APT) region |
US20040069990A1 (en) * | 2002-10-15 | 2004-04-15 | Matrix Semiconductor, Inc. | Thin film transistor with metal oxide layer and method of making same |
US6797567B2 (en) * | 2002-12-24 | 2004-09-28 | Macronix International Co., Ltd. | High-K tunneling dielectric for read only memory device and fabrication method thereof |
US6780708B1 (en) * | 2003-03-05 | 2004-08-24 | Advanced Micro Devices, Inc. | Method of forming core and periphery gates including two critical masking steps to form a hard mask in a core region that includes a critical dimension less than achievable at a resolution limit of lithography |
US20050212065A1 (en) * | 2004-03-24 | 2005-09-29 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7923381B2 (en) | 2002-12-04 | 2011-04-12 | Micron Technology, Inc. | Methods of forming electronic devices containing Zr-Sn-Ti-O films |
US8445952B2 (en) | 2002-12-04 | 2013-05-21 | Micron Technology, Inc. | Zr-Sn-Ti-O films |
US7265414B2 (en) | 2004-03-24 | 2007-09-04 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20050269652A1 (en) * | 2004-03-24 | 2005-12-08 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20050285185A1 (en) * | 2004-03-24 | 2005-12-29 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US7256452B2 (en) | 2004-03-24 | 2007-08-14 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US7256451B2 (en) | 2004-03-24 | 2007-08-14 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US7256450B2 (en) | 2004-03-24 | 2007-08-14 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20050212065A1 (en) * | 2004-03-24 | 2005-09-29 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20050272206A1 (en) * | 2004-03-24 | 2005-12-08 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US20050280045A1 (en) * | 2004-03-24 | 2005-12-22 | Micron Technology, Inc. | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals |
US8154066B2 (en) | 2004-08-31 | 2012-04-10 | Micron Technology, Inc. | Titanium aluminum oxide films |
US8541276B2 (en) | 2004-08-31 | 2013-09-24 | Micron Technology, Inc. | Methods of forming an insulating metal oxide |
US7972974B2 (en) | 2006-01-10 | 2011-07-05 | Micron Technology, Inc. | Gallium lanthanide oxide films |
US9129961B2 (en) | 2006-01-10 | 2015-09-08 | Micron Technology, Inc. | Gallium lathanide oxide films |
US9583334B2 (en) | 2006-01-10 | 2017-02-28 | Micron Technology, Inc. | Gallium lanthanide oxide films |
US7842996B2 (en) * | 2007-06-22 | 2010-11-30 | Kabushiki Kaisha Toshiba | Memory cell of nonvolatile semiconductor memory |
US20080315288A1 (en) * | 2007-06-22 | 2008-12-25 | Shoko Kikuchi | Memory cell of nonvolatile semiconductor memory |
US20110256314A1 (en) * | 2009-10-23 | 2011-10-20 | Air Products And Chemicals, Inc. | Methods for deposition of group 4 metal containing films |
Also Published As
Publication number | Publication date |
---|---|
US20060019453A1 (en) | 2006-01-26 |
US20050173755A1 (en) | 2005-08-11 |
US7221018B2 (en) | 2007-05-22 |
US7479428B2 (en) | 2009-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7479428B2 (en) | NROM flash memory with a high-permittivity gate dielectric | |
US7157769B2 (en) | Flash memory having a high-permittivity tunnel dielectric | |
US7265414B2 (en) | NROM memory device with a high-permittivity gate dielectric formed by the low temperature oxidation of metals | |
US7138681B2 (en) | High density stepped, non-planar nitride read only memory | |
US7190020B2 (en) | Non-planar flash memory having shielding between floating gates | |
US7672171B2 (en) | Non-planar flash memory array with shielded floating gates on silicon mesas | |
US7544989B2 (en) | High density stepped, non-planar flash memory | |
US7268031B2 (en) | Memory device with high dielectric constant gate dielectrics and metal floating gates | |
US7199023B2 (en) | Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed | |
US7198999B2 (en) | Flash memory device having a graded composition, high dielectric constant gate insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |