US20050224585A1 - Radio frequency identification of a connector by a patch panel or other similar structure - Google Patents

Radio frequency identification of a connector by a patch panel or other similar structure Download PDF

Info

Publication number
US20050224585A1
US20050224585A1 US10/816,749 US81674904A US2005224585A1 US 20050224585 A1 US20050224585 A1 US 20050224585A1 US 81674904 A US81674904 A US 81674904A US 2005224585 A1 US2005224585 A1 US 2005224585A1
Authority
US
United States
Prior art keywords
transponder
fiber optic
antenna
connector
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/816,749
Other languages
English (en)
Inventor
Richard Durrant
Maurice Fitzgibbon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratos International Inc
Original Assignee
Stratos International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stratos International Inc filed Critical Stratos International Inc
Priority to US10/816,749 priority Critical patent/US20050224585A1/en
Assigned to STRATOS INTERNATIONAL, INC. reassignment STRATOS INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FITZGIBBON, MAURICE, DURRANT, RICHARD C. E.
Priority to US11/012,504 priority patent/US7165728B2/en
Priority to US11/078,532 priority patent/US7458517B2/en
Priority to US11/078,540 priority patent/US20050232636A1/en
Priority to AT05739860T priority patent/ATE513272T1/de
Priority to EP05739860A priority patent/EP1733335B1/de
Priority to PCT/US2005/011031 priority patent/WO2005099136A2/en
Priority to US11/225,724 priority patent/US7243837B2/en
Publication of US20050224585A1 publication Critical patent/US20050224585A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/385Accessories for testing or observation of connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3895Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre

Definitions

  • the present invention pertains to radio frequency identification devices.
  • the invention more particularly concerns the radio frequency identification of a connector by a patch panel.
  • Radio frequency identification devices are known in the art.
  • radio frequency identification systems incorporate an antenna or coil, a transceiver (with decoder), and a transponder (RF tag).
  • the transponder includes a transponder antenna and an integrated circuit chip attached to the transponder antenna.
  • the antenna or coil emits a radio wave which induces an electrical current in the antenna of the transponder.
  • the electrical current then activates the integrated circuit chip of the transponder.
  • the integrated circuit chip can then transmit information through the antenna of the transponder via radio waves back to the antenna or coil. Information can be stored on the integrated circuit as either read only memory or read/write memory.
  • Radio frequency identification devices can be either active or passive.
  • An active system includes a transponder which contains its own power source.
  • the transponder obtains the energy from the radio waves emanating from the antenna or coil so as to enable the transponder to operate and transmit information.
  • a transponder operating in accordance with the active system is able to transmit information to the antenna or coil over a greater distance than is a transponder operating in accordance. with the passive system.
  • the transponder operating in accordance with the active system is larger than the transponder operating in accordance with the passive system.
  • typically transponders operating in accordance with the passive system contain integrated circuit chips that have read only memory. Examples of radio frequency identification components are presented in U.S. Pat. Nos.
  • FIG. 1 is a perspective view of an electrical connector 120 attached to an electrically conductive cable 122 . Also shown is a complementary receptacle 130 into which the electrical connector 120 mates.
  • FIG. 1 is a perspective view of an electrical connector 120 attached to an electrically conductive cable 122 . Also shown is a complementary receptacle 130 into which the electrical connector 120 mates.
  • FIG. 2 is a perspective view of another version of an electrical connector 140 .
  • the connector 140 is shown from a first perspective and a second perspective.
  • FIG. 2 also discloses another version of a complementary receptacle 150 .
  • FIG. 3 is a perspective view of an optoelectronic device 160 which includes a fiber optic connector 170 and an electrical connector 180 .
  • the background material provided below concentrates on fiber optic connectors.
  • the front panel of a host device has many receptacles. Each receptacle accepts at least an individual fiber optic cable. The other end of the fiber optic cable connects to another device.
  • the fiber optic cable can have a length of a few meters or of a few kilometers.
  • a host device can accommodate a few hundred fiber optic cables.
  • U.S. Pat. Nos. 5,233,674, and 5,481,634 disclose a fiber optic cable having a fiber optic connector.
  • U.S. Pat. Nos. 5,233,674, and 5,481,634 are hereby incorporated herein by reference.
  • FIG. 4 is a perspective view of a fiber optic cable 30 having a fiber optic connector 10 . Attached to the fiber optic connector 10 is a strain relief boot 20 .
  • FIG. 5 is a perspective view of the fiber optic cable 30 of FIG. 4 taken from another angle where a ferrule 50 is exposed.
  • the fiber optic connector 10 conforms to the LC style of fiber optic connectors.
  • a fiber optic cable can be inadvertently detached from the host device, or that the optical fiber within the fiber optic cable breaks and the fiber optic cable no longer transmits light energy to the host device.
  • a worker must go and look at the panel of the host device and determine which cable is no longer transmitting light signals to the host device either because the optical fiber is broken or the fiber optic cable is detached from the host device.
  • the worker's job becomes very burdensome and time consuming since there are hundreds of fiber optic cables to examine.
  • a device or person is not receiving information conveyed by the malfunctioning fiber optic cable.
  • organization of the cables, including the fiber optic cables and the copper based cables, in the vicinity of the panel is of great interest to the operators of the host devices.
  • the device includes a cable, a transponder, a panel, an antenna, and a transceiver.
  • the transponder is attached to the cable.
  • the antenna is positioned adjacent to the panel.
  • the transceiver is electrically connected to the antenna. In operation, when the transponder is placed close enough to the antenna, the transceiver is able to activate the transponder thus enabling the transponder to read the information deposited with the transponder.
  • the cable can be a fiber optic cable or cable based on an electrically conductive material such as copper.
  • the device in another form of the invention, includes a cable, a transponder, a substrate, an antenna, and a transceiver.
  • the transponder is attached to the cable.
  • the antenna is attached to the substrate.
  • the substrate is adapted for attachment to a panel of a host device.
  • the transceiver is electrically connected to the antenna so as to form a reader or interrogator.
  • the cable can be a fiber optic cable or cable based on an electrically conductive material such as copper.
  • the device in still yet another form of the invention, includes a cable, a transponder, a substrate, an antenna, and a transceiver.
  • the cable includes a connector.
  • the transponder is attached to the connector.
  • the antenna is attached to the substrate.
  • the substrate is adapted for attachment to a panel of a host device.
  • the transceiver is electrically connected to the antenna so as to form a reader or interrogator which is capable of activating and interrogating the transponder when the transponder is sufficiently close to the antenna.
  • the cable can be a fiber optic cable or a cable based on an electrically conductive material such as copper.
  • the connector is a fiber optic connector when a fiber optic cable is used, and the connector is an electrically conductive connector when an electrically conductive cable is used.
  • the device includes an optoelectronic device, a transponder, a panel, an antenna, and a transceiver.
  • the optoelectronic device includes a connector which conveys energy along electrically conductive materials housed within the connector.
  • the transponder is attached to the optoelectronic device.
  • the antenna is positioned adjacent to the panel.
  • the transceiver is electrically connected to the antenna. In operation, when the transponder is placed close enough to the antenna, the transceiver is able to activate the transponder thus enabling the transponder to read the information deposited with the transponder.
  • the invention achieves the objectives set forth above.
  • the invention provides a device which is able to determine the association between a specific location on a panel and a specific connector or cable whether it be fiber optic or electrically conductive.
  • FIG. 1 is a perspective view of a copper based electrical connector and a complementary receptacle, the electrical connector is attached to a copper based electrical cable;
  • FIG. 2 is a perspective view of another version of the electrical connector and complementary receptacle of FIG. 1 ;
  • FIG. 3 is a perspective view of an optoelectronic transceiver which has an optical connector end and an electrical connector end;
  • FIG. 4 is a perspective view of a known fiber optic cable and connector assembly
  • FIG. 5 is a perspective view of the fiber optic cable and connector assembly of FIG. 4 taken from another angle;
  • FIG. 6 is a perspective view of the combination of the fiber optic cable and the transponder
  • FIG. 7 is a perspective view of the combination of the fiber optic cable and the transponder of FIG. 6 taken from another angle;
  • FIG. 8 is a front view of a panel of a patch panel or of a host device
  • FIG. 9 is a side view of the panel of FIG. 8 ;
  • FIG. 10 is a partial front view of a substrate having apertures and coils or antennas
  • FIG. 11 is a partial side view of the combination of the fiber optic cable having the transponder of FIGS. 6 and 7 connected to the panel of FIGS. 8 and 9 of a host device where the panel includes the substrate of FIG. 10 ;
  • FIG. 12 is an electrical schematic of the electromagnetic interaction between the transponder and the reader or interrogator
  • FIG. 13 is a perspective view of the combination of the electrically conductive, copper based cable of FIG. 1 and the transponder;
  • FIG. 14 is a perspective view of the combination of the electrically conductive, copper based cable of FIG. 2 and the transponder;
  • FIG. 15 is a perspective view of the combination of the optoelectronic device of FIG. 3 and the transponder.
  • FIG. 6 is a perspective view of a fiber optic cable 30 having a fiber optic connector 10 .
  • the fiber optic connector 10 includes a release lever 40 . Attached to the fiber optic connector 10 is a strain relief boot 20 . Also attached to, or mounted on or in, the fiber optic connector 10 is a transponder 70 .
  • the transponder 70 can be affixed to the fiber optic connector 10 with an adhesive material or a clip (not shown). The clip physically squeezes or clamps the transponder 70 to the fiber optic connector 10 .
  • the transponder 70 can be insert molded into the body of the fiber optic connector 10 .
  • the transponder 70 can be attached to fiber optic connectors which are already in-service.
  • FIG. 7 is a perspective view of a fiber optic cable 30 of FIG. 6 taken from another angle.
  • the view of the fiber optic cable 30 of FIG. 7 exposes the ferrule 50 .
  • the fiber optic connector 10 generally conforms to the LC standard, however, the fiber optic connector can also be constructed to conform to any other standard such as SC, and ST.
  • the ferrule 50 is a single fiber ferrule, however multi-fiber ferrules and connectors can also be employed. Additionally, the fiber optic connector can be of its own unique design.
  • the optical fiber terminated at the ferrule 50 can be any one of a single mode fiber, a multimode fiber, a polarization maintaining fiber, or any other type of optical fiber.
  • FIG. 8 is a front view of a panel 80 .
  • the panel 80 can belong to a patch panel device, a host device, or some other similar structure.
  • the panel 80 has a front surface or face 84 .
  • the panel 80 includes many apertures 82 , 83 , 87 , 88 , and 89 .
  • FIG. 9 is a side view of the panel 80 which exposes the rear edge 86 .
  • the aperture 82 allows the fiber optic connector 10 to pass beyond the front surface 84 of the panel 80 so as to gain access to the host device.
  • the release latch 40 of the fiber optical connector 10 is used to secure the fiber optic connector 10 to the host device. Upon depressing the release lever 40 the fiber optic connector 10 can be removed from the hot device.
  • FIG. 10 is a partial front view of a substrate 90 having apertures 92 , 94 , 96 , 98 , and coils or antennas 93 , 95 , 97 , 99 .
  • Each coil or antenna 93 , 95 , 97 , 99 surrounds a respective aperture 92 , 94 , 96 , 98 .
  • the coils or antennas 93 , 95 , 97 , 99 are made of a suitable electrically conductive material such as copper.
  • the coils or antennas 93 , 95 , 97 , 99 are adhered or attached to a substrate or are sandwiched between two substrates. Typically, the coils or antennas 93 , 95 , 97 , 99 are attached to the substrate with an adhesive material.
  • the substrates are typically made of non-conductive or insulative materials such as mylar or other suitable polymer materials. Any number of apertures may be used. However, in this application the number of apertures 92 , 94 , 96 , 98 of the substrate 90 should be of approximately the same size and have the same orientation and spacing as the apertures 87 , 88 , 89 , 83 of the panel 80 .
  • U.S. Pat. No. 4,972,050 discloses a method of constructing a substrate, where the substrate includes conductive paths such as coils or antennas. U.S. Pat. No. 4,972,050 is hereby incorporated herein by reference.
  • the antennas can be affixed originally to the panel 80 , or in an alternative, as explained above, the antennas are part of the substrate 90 which can be mounted to a panel 80 of a host device which is already in-service.
  • FIG. 11 is a partial side view of the substrate 90 being located adjacent to the front surface 84 of the panel 80 of the host device 110 where the fiber optic connector 10 is plugged into the host device 110 .
  • the substrate 90 can be placed adjacent to the front surface 84 of the panel 80 by an adhesive material or clips or other methods of attachment well known in the art.
  • a fiber optic connector 10 is inserted into and through aperture 92 of the substrate 90 and through aperture 87 of the panel 80 so as to engage the fiber optic connector 10 with the host device 110 .
  • the antenna or coil 93 encircles a portion of the fiber optic connector 10 in the plane of the substrate 90 .
  • the transponder 70 is close enough to the antenna or coil 93 so that the radio waves, or electromagnetic power 104 , emanating from antenna or coil 93 induce an electrical current in the transponder antenna 72 (see FIG. 12 ) of the transponder 70 .
  • the energy and frequency of the electrical signal running though the antenna or coil 93 is provided by a transceiver 102 (see FIG. 12 ) which is electrically connected to antennas or coils 93 , 95 , 97 , and 99 .
  • the combination of an antenna and a transceiver is known as a reader or interrogator.
  • FIG. 12 is an electrical schematic of the electromagnetic interaction between the transponder 70 and the reader or interrogator ( 93 , 102 ).
  • the transponder 70 Once the transponder 70 is energized by the power from the transceiver 102 , the transponder sends information, which was previously stored on its integrated circuit chip, to the transceiver 102 via radio waves. The radio waves leave the transponder antenna 72 and are received by the antenna or coil 92 . The induced electrical signal is then carried to the transceiver 102 for storage or manipulation of the data supplied by the transponder 70 .
  • Examples of information which can be stored in the transponder 70 include the following information: the length of the fiber optic cable to which the transponder is attached; the date of purchase of the fiber optic cable to which the transponder is attached; the type or style of fiber optic connector to which the transponder is attached; the type of warranty associated with the fiber optic cable to which the transponder is attached; the type, style, or grade of optic fiber housed within the fiber optic cable to which the transponder; and/or a unique identification number or serialization number or code which uniquely identifies a specific fiber optic cable.
  • the host device 110 can pinpoint the location of the malfunctioning fiber optic cable.
  • the malfunctioning fiber optic cable can then be repaired or replaced.
  • the device provides a system operator with the ability to monitor the number and location of the fiber optic connectors attached to the host device.
  • FIG. 13 is a perspective view of an electrical connector 120 to which is attached a transponder 70 .
  • the electrical connector 120 mates with a receptacle 130 which is mounted behind a panel (not shown).
  • the panel and, if necessary, the associated substrate are constructed and operate as discussed above in regard to the first embodiment of the invention.
  • the antenna or coil associated with the host device will receive information from the transponder 70 mounted to the electrical connector 120 .
  • the transponder 70 can be attached to the electrical connector 120 by way of an adhesive material, a clip, or the transponder 70 can be insert molded into the body of the electrical connector 120 .
  • the transponder 70 can be attached to electrical connectors out in the field.
  • FIG. 14 is a perspective view of another version of the electric connector shown in FIG. 13 .
  • FIG. 14 provides two perspective views of electric connector 140 to which is attached transponder 70 .
  • receptacle 150 which accepts electrical connector 140 .
  • the panel of the host device is not shown for reasons of clarity.
  • the disclosed electrical connectors 120 , 140 are used for illustration purposes only. The embodiment of the invention encompasses the attachment or mounting of a transponder to any type or style of electrical connector.
  • FIG. 15 is a perspective view of an optoelectronic device 160 to which is attached a transponder 70 .
  • the optoelectronic device 160 includes a fiber optic connector 170 and an electrical connector 180 .
  • the optoelectronic device 160 has its electrical connector 180 attached to host device through a panel of the host device similar to the attachment of the optical fibers to the host device as discussed above in the explanation of the first embodiment of the invention.
  • the antenna associated with the panel activates the transponder 70 of the optoelectronic device 160 .
  • the transponder 70 can be attached to optoelectronic devices 160 which are in use, or the transponder 70 can be insert molded or mounted within the housing of the optoelectronic device 160 .
  • the disclosed optoelectronic device 160 is used for illustration purposes only.
  • the embodiment of the invention encompasses the attachment or mounting of a transponder to any type or style of optoelectronic device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Light Guides In General And Applications Therefor (AREA)
US10/816,749 2004-04-02 2004-04-02 Radio frequency identification of a connector by a patch panel or other similar structure Abandoned US20050224585A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/816,749 US20050224585A1 (en) 2004-04-02 2004-04-02 Radio frequency identification of a connector by a patch panel or other similar structure
US11/012,504 US7165728B2 (en) 2004-04-02 2004-12-15 Radio frequency identification for transfer of component information in fiber optic testing
US11/078,532 US7458517B2 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
US11/078,540 US20050232636A1 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
AT05739860T ATE513272T1 (de) 2004-04-02 2005-04-01 Hochfrequenzidentifikation eines verbinders mittels schalttafel oder einer ähnlichen struktur
EP05739860A EP1733335B1 (de) 2004-04-02 2005-04-01 Hochfrequenzidentifikation eines verbinders mittels schalttafel oder einer ähnlichen struktur
PCT/US2005/011031 WO2005099136A2 (en) 2004-04-02 2005-04-01 Radio frequency identification of a connector by a patch panel or other similar structure
US11/225,724 US7243837B2 (en) 2004-04-02 2005-09-13 Media converter RFID security tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/816,749 US20050224585A1 (en) 2004-04-02 2004-04-02 Radio frequency identification of a connector by a patch panel or other similar structure

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/012,504 Continuation-In-Part US7165728B2 (en) 2004-04-02 2004-12-15 Radio frequency identification for transfer of component information in fiber optic testing
US11/078,540 Continuation US20050232636A1 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
US11/078,532 Continuation US7458517B2 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
US11/225,724 Continuation-In-Part US7243837B2 (en) 2004-04-02 2005-09-13 Media converter RFID security tag

Publications (1)

Publication Number Publication Date
US20050224585A1 true US20050224585A1 (en) 2005-10-13

Family

ID=35054366

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/816,749 Abandoned US20050224585A1 (en) 2004-04-02 2004-04-02 Radio frequency identification of a connector by a patch panel or other similar structure
US11/078,532 Expired - Fee Related US7458517B2 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
US11/078,540 Abandoned US20050232636A1 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/078,532 Expired - Fee Related US7458517B2 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure
US11/078,540 Abandoned US20050232636A1 (en) 2004-04-02 2005-03-13 Radio frequency identification of a connector by a patch panel or other similar structure

Country Status (4)

Country Link
US (3) US20050224585A1 (de)
EP (1) EP1733335B1 (de)
AT (1) ATE513272T1 (de)
WO (1) WO2005099136A2 (de)

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001767A1 (en) * 2003-07-03 2005-01-06 Thomas Wulff Insert molded antenna
US20050259930A1 (en) * 2004-05-24 2005-11-24 Elkins Robert B Ii Methods and apparatus for facilitating cable locating
US20060094291A1 (en) * 2004-11-03 2006-05-04 Caveney Jack E Method and apparatus for patch panel patch cord documentation and revision
US20060262727A1 (en) * 2005-05-19 2006-11-23 Panduit Corp. Method and apparatus for documenting network paths
WO2007011493A3 (en) * 2005-07-18 2007-05-24 Stratos Int Inc Digital certificate on connectors and other products using rfid tags and/or labels as well as rfid reader/interrogator
US20070116411A1 (en) * 2005-11-18 2007-05-24 Mark Benton Transceiver/fiber optic connector adaptor with patch cord id reading capability
US20070207666A1 (en) * 2006-02-14 2007-09-06 Panduit Corp. Method and Apparatus for Patch Panel Patch Cord Documentation and Revision
US20070221730A1 (en) * 2006-03-27 2007-09-27 Mcreynolds Alan RFID enabled cable tracking
US20080049627A1 (en) * 2005-06-14 2008-02-28 Panduit Corp. Method and Apparatus for Monitoring Physical Network Topology Information
US20080100440A1 (en) * 2006-10-31 2008-05-01 Downie John D Radio frequency identification transponder for communicating condition of a component
US20080143486A1 (en) * 2006-12-14 2008-06-19 Downie John D Signal-processing systems and methods for RFID-tag signals
US20080159738A1 (en) * 2006-12-29 2008-07-03 Lavranchuk James S Identifiable fibers optics
US20080220721A1 (en) * 2007-03-09 2008-09-11 Downie John D Passive RFID elements having visual indicators
US20090137152A1 (en) * 2005-10-07 2009-05-28 Matsushita Electric Works, Ltd. Memory card socket
US7656903B2 (en) 2002-01-30 2010-02-02 Panduit Corp. System and methods for documenting networks with electronic modules
US7760094B1 (en) 2006-12-14 2010-07-20 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US7768418B2 (en) 2005-12-06 2010-08-03 Panduit Corp. Power patch panel with guided MAC capability
US7772975B2 (en) 2006-10-31 2010-08-10 Corning Cable Systems, Llc System for mapping connections using RFID function
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20100245057A1 (en) * 2009-03-31 2010-09-30 Aravind Chamarti Components, systems, and methods for associating sensor data with component location
US7811119B2 (en) 2005-11-18 2010-10-12 Panduit Corp. Smart cable provisioning for a patch cord management system
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US7855697B2 (en) 2007-08-13 2010-12-21 Corning Cable Systems, Llc Antenna systems for passive RFID tags
US7938700B2 (en) 2008-02-21 2011-05-10 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US20110140856A1 (en) * 2009-11-30 2011-06-16 John David Downie RFID Condition Latching
US7969320B2 (en) 2005-08-08 2011-06-28 Panduit Corp. Systems and methods for detecting a patch cord end connection
US7978845B2 (en) 2005-09-28 2011-07-12 Panduit Corp. Powered patch panel
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8128428B2 (en) 2009-02-19 2012-03-06 Panduit Corp. Cross connect patch guidance system
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8248208B2 (en) 2008-07-15 2012-08-21 Corning Cable Systems, Llc. RFID-based active labeling system for telecommunication systems
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8267706B2 (en) 2008-11-12 2012-09-18 Panduit Corp. Patch cord with insertion detection and light illumination capabilities
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20120274452A1 (en) * 2011-04-26 2012-11-01 Aravind Chamarti Radio frequency (rf)-enabled latches and related components, assemblies, systems, and methods
US8306935B2 (en) 2008-12-22 2012-11-06 Panduit Corp. Physical infrastructure management system
US8325770B2 (en) 2003-08-06 2012-12-04 Panduit Corp. Network managed device installation and provisioning technique
US20130039624A1 (en) * 2010-04-29 2013-02-14 Christopher Briand Scherer Networking Cable Tracer System
US8477031B2 (en) 2007-10-19 2013-07-02 Panduit Corp. Communication port identification system
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
WO2014199136A1 (en) * 2013-06-12 2014-12-18 Tyco Electronics Uk Ltd. Flexible rfid tag assembly
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9049499B2 (en) 2005-08-26 2015-06-02 Panduit Corp. Patch field documentation and revision systems
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
EP3147828A4 (de) * 2014-05-23 2017-07-05 ZTE Corporation Passives rfid-etikett, optischer radiofrequenz-lese-/schreibkopf und rfid-system
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US20170315167A1 (en) * 2014-12-01 2017-11-02 Xiaoyang Bai Patch cord and management system and management method thereof
US9810859B2 (en) 2013-08-21 2017-11-07 Mertek Industries, Llc Traceable networking cables with remote-released connectors
US20180034192A1 (en) * 2015-02-27 2018-02-01 Hewlett Packard Enterprise Development Lp Cable assembly with conjoined one-lane cable assemblies
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10050389B2 (en) 2013-01-18 2018-08-14 Mertek Industries, Llc Field-terminable traceable cables, components, kits, and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10193277B2 (en) 2015-02-18 2019-01-29 Hewlett Packard Enterprise Development Lp Pull-tabs for disengaging a cable assembly from a receptacle
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10389068B2 (en) 2015-04-29 2019-08-20 Hewlett Packard Enterprise Development Lp Multiple cable housing assembly
US10522958B2 (en) 2014-09-26 2019-12-31 Hewlett Packard Enterprise Development Lp Receptacle for connecting a multi-lane or one-lane cable
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11689247B2 (en) 2019-01-16 2023-06-27 Mertek Industries, Llc Patch cord including wireless components

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7243837B2 (en) * 2004-04-02 2007-07-17 Stratos International, Inc. Media converter RFID security tag
JP4585324B2 (ja) * 2005-01-26 2010-11-24 株式会社日立製作所 電気機器の制御方法、及び電気機器の制御システム
KR20090010031A (ko) * 2006-03-22 2009-01-28 에이디씨 게엠베하 지능 패칭 확인 시스템 및 방법
US7479032B2 (en) * 2006-10-10 2009-01-20 Adc Gmbh Upgradeable telecommunications patch panel and method of upgrading same
WO2009072929A1 (fr) * 2007-12-06 2009-06-11 Yulia Alekseevna Yashukova Système de monitorage de raccords d'un système de câbles utilisant des étiquettes rfid
US8789747B2 (en) * 2008-01-31 2014-07-29 Boris A. Khozyainov Connection sensor for identifying the patch panel port
US8897637B2 (en) 2009-04-22 2014-11-25 Adc Gmbh Method and arrangement for identifying at least one object
EP2488907A1 (de) 2009-10-16 2012-08-22 ADC Telecommunications, INC. Konnektivitätsverwaltung in faseroptischen systemen und verfahren dafür
WO2011100632A2 (en) 2010-02-12 2011-08-18 Adc Telecommunications, Inc. Managed fiber connectivity systems
US8682172B2 (en) * 2010-08-09 2014-03-25 Finisar Corporation Optoelectronic communications assembly having an electrical and optical interface
CN103635842B (zh) 2011-04-15 2016-06-01 Adc电信公司 被管理的光纤连接性系统
WO2012158806A2 (en) 2011-05-17 2012-11-22 Adc Telecommunications, Inc. Component identification and tracking systems for telecommunication networks
US9219543B2 (en) 2012-07-11 2015-12-22 Commscope Technologies Llc Monitoring optical decay in fiber connectivity systems
US9453971B2 (en) 2012-07-11 2016-09-27 Commscope Technologies Llc Managed fiber connectivity systems
US9470742B2 (en) 2012-08-03 2016-10-18 Commscope Technologies Llc Managed fiber connectivity systems
CN103809252B (zh) * 2012-11-07 2015-12-16 华为技术有限公司 标识芯片收容装置、光纤熔配模块、光纤管理装置和装配方法
WO2014076198A2 (en) 2012-11-16 2014-05-22 Tyco Electronics Uk Ltd. Localized reading of rfid tags and rfid managed connectivity
US9285552B2 (en) 2013-02-05 2016-03-15 Commscope Technologies Llc Optical assemblies with managed connectivity
US9379501B2 (en) 2013-02-05 2016-06-28 Commscope Technologies Llc Optical assemblies with managed connectivity
US9423570B2 (en) 2013-02-05 2016-08-23 Commscope Technologies Llc Optical assemblies with managed connectivity
US9798096B2 (en) 2014-02-07 2017-10-24 Commscope Technologies Llc Managed fiber connectivity systems
US9500814B2 (en) 2014-03-26 2016-11-22 Commscope Technologies Llc Optical adapter module with managed connectivity
KR20170095314A (ko) * 2014-12-18 2017-08-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 식별 태그
BR102020008029A2 (pt) * 2020-04-22 2021-11-03 Furukawa Electric Latam S.A. Dispositivo identificador para cabos de conexão de paineis de ligação de redes de telecomunicação

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066091A (en) * 1988-12-22 1991-11-19 Kingston Technologies, Inc. Amorphous memory polymer alignment device with access means
US5161988A (en) * 1991-02-13 1992-11-10 Rit Technologies Ltd. Patching panel
US5206626A (en) * 1991-12-24 1993-04-27 Knogo Corporation Stabilized article surveillance responder
US5233674A (en) * 1991-11-21 1993-08-03 Methode Electronics, Inc. Fiber optic connector with sliding tab release
US5448110A (en) * 1992-06-17 1995-09-05 Micron Communications, Inc. Enclosed transceiver
US5473715A (en) * 1994-05-03 1995-12-05 Methode Electronics, Inc. Hybrid fiber optic/electrical connector
US5481634A (en) * 1994-06-24 1996-01-02 At&T Corp. Connector for optical fiber
US5854824A (en) * 1994-09-04 1998-12-29 Rit Technologies Ltd. Connectivity scanner
US6118379A (en) * 1997-12-31 2000-09-12 Intermec Ip Corp. Radio frequency identification transponder having a spiral antenna
US6147655A (en) * 1998-11-05 2000-11-14 Single Chip Systems Corporation Flat loop antenna in a single plane for use in radio frequency identification tags
US6238235B1 (en) * 1999-05-10 2001-05-29 Rit Technologies Ltd. Cable organizer
US6350063B1 (en) * 1999-12-13 2002-02-26 Stratos Lightwave, Inc. Pluggable optical transceiver module having a high speed serial data connector (HSSDC)
US6424263B1 (en) * 2000-12-01 2002-07-23 Microchip Technology Incorporated Radio frequency identification tag on a single layer substrate
US6429831B2 (en) * 1999-01-13 2002-08-06 Brady Worldwide, Inc. Laminate RFID label and method of manufacture
US6445297B1 (en) * 2000-10-10 2002-09-03 Escort Memory Systems Modular RFID antenna system
US6451154B1 (en) * 2000-02-18 2002-09-17 Moore North America, Inc. RFID manufacturing concepts
US6574586B1 (en) * 1999-04-06 2003-06-03 Itracs Corporation System for monitoring connection pattern of data ports
US6677917B2 (en) * 2002-02-25 2004-01-13 Koninklijke Philips Electronics N.V. Fabric antenna for tags
US6684179B1 (en) * 1999-04-06 2004-01-27 Itracs Corporation System for monitoring connection pattern of data ports
US6745971B1 (en) * 2000-09-20 2004-06-08 Toby K. Renzoni Spooling device for an optical fiber jumper cable
US6784802B1 (en) * 1999-11-04 2004-08-31 Nordx/Cdt, Inc. Real time monitoring of cable patch panel
US20040184747A1 (en) * 2003-02-13 2004-09-23 Fujikura Ltd. Cable
US6847856B1 (en) * 2003-08-29 2005-01-25 Lucent Technologies Inc. Method for determining juxtaposition of physical components with use of RFID tags
US6857897B2 (en) * 2003-04-29 2005-02-22 Hewlett-Packard Development Company, L.P. Remote cable assist

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483467A (en) * 1992-06-10 1996-01-09 Rit Technologies, Ltd. Patching panel scanner
US5910776A (en) 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
CA2162515C (en) * 1994-12-22 2000-03-21 Leonard George Cohen Jumper tracing system
US6222452B1 (en) * 1996-12-16 2001-04-24 Confidence International Ab Electronic identification tag
US6002331A (en) * 1998-07-20 1999-12-14 Laor; Herzel Method and apparatus for identifying and tracking connections of communication lines
DE19841738C2 (de) 1998-08-26 2001-05-17 Ifam Ingenieurbuero Fuer Appli Schaltsteckdose oder mobile Steckdoseneinheit
US6424710B1 (en) * 1999-02-10 2002-07-23 Avaya Technology Corp. Method and device for detecting the presence of a patch cord connector in a telecommunications patch system using passive detection sensors
US7239226B2 (en) * 2001-07-10 2007-07-03 American Express Travel Related Services Company, Inc. System and method for payment using radio frequency identification in contact and contactless transactions
KR20020030272A (ko) * 2000-03-28 2002-04-24 롤페스 요하네스 게라투스 알베르투스 집적 회로 및 이를 포함하는 트랜스폰더 및 시큐리티페이퍼 및 집적 회로 내의 메모리 프로그래밍 방법
US6751699B1 (en) * 2000-07-07 2004-06-15 Systran Corporation Fibre channel mini-hub powered by and supported within a host computer and directly controlled over a bus of the host computer
CN1196002C (zh) * 2000-07-31 2005-04-06 日本电气硝子株式会社 带光纤的光装置零件的预备材料,光纤短截棒及制造方法
US6742936B1 (en) * 2000-11-06 2004-06-01 Corning Cable Systems Llc Low-loss intermatable ferrules for optical fibers and a method of fabrication thereof
US7000834B2 (en) * 2001-02-21 2006-02-21 International Business Machines Corporation Method to address security and privacy issue of the use of RFID systems to track consumer products
US9454752B2 (en) 2001-07-10 2016-09-27 Chartoleaux Kg Limited Liability Company Reload protocol at a transaction processing entity
US7210855B2 (en) * 2001-08-06 2007-05-01 Pirelli & C. Spa Device for connecting an optical fibre
US6621417B2 (en) 2001-08-09 2003-09-16 Edgar Alan Duncan Passive RFID transponder/reader system and method for hidden obstacle detection and avoidance
JP4019674B2 (ja) * 2001-09-28 2007-12-12 住友電気工業株式会社 光モジュール
US6744939B2 (en) * 2002-05-20 2004-06-01 Fitel Usa Corp. Polarization maintaining optical fiber connector and method of tuning (PM connector)
US6808116B1 (en) * 2002-05-29 2004-10-26 At&T Corp. Fiber jumpers with data storage method and apparatus
US6933849B2 (en) 2002-07-09 2005-08-23 Fred Sawyer Method and apparatus for tracking objects and people
US20040008123A1 (en) 2002-07-15 2004-01-15 Battelle Memorial Institute System and method for tracking medical devices
JP4266319B2 (ja) * 2002-09-06 2009-05-20 株式会社精工技研 光コネクタプラグ及び光コネクタ
DE10244304B3 (de) 2002-09-23 2004-03-18 Data-Complex E.K. Anordnung zur Überwachung von Patchfeldern an Verteilerpunkten in Datennetzwerken
DE10245140B4 (de) 2002-09-27 2005-10-20 Dornier Medtech Laser Gmbh Intelligente Therapiefaser
IL152768A (en) 2002-11-11 2008-04-13 Rit Techn Ltd Retrofit kit for interconnect cabling system
US7221258B2 (en) * 2002-11-23 2007-05-22 Kathleen Lane Hierarchical electronic watermarks and method of use

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066091A (en) * 1988-12-22 1991-11-19 Kingston Technologies, Inc. Amorphous memory polymer alignment device with access means
US5161988A (en) * 1991-02-13 1992-11-10 Rit Technologies Ltd. Patching panel
US5233674A (en) * 1991-11-21 1993-08-03 Methode Electronics, Inc. Fiber optic connector with sliding tab release
US5206626A (en) * 1991-12-24 1993-04-27 Knogo Corporation Stabilized article surveillance responder
US5448110A (en) * 1992-06-17 1995-09-05 Micron Communications, Inc. Enclosed transceiver
US5473715A (en) * 1994-05-03 1995-12-05 Methode Electronics, Inc. Hybrid fiber optic/electrical connector
US5481634A (en) * 1994-06-24 1996-01-02 At&T Corp. Connector for optical fiber
US5854824A (en) * 1994-09-04 1998-12-29 Rit Technologies Ltd. Connectivity scanner
US6118379A (en) * 1997-12-31 2000-09-12 Intermec Ip Corp. Radio frequency identification transponder having a spiral antenna
US6147655A (en) * 1998-11-05 2000-11-14 Single Chip Systems Corporation Flat loop antenna in a single plane for use in radio frequency identification tags
US6429831B2 (en) * 1999-01-13 2002-08-06 Brady Worldwide, Inc. Laminate RFID label and method of manufacture
US6684179B1 (en) * 1999-04-06 2004-01-27 Itracs Corporation System for monitoring connection pattern of data ports
US6574586B1 (en) * 1999-04-06 2003-06-03 Itracs Corporation System for monitoring connection pattern of data ports
US6725177B2 (en) * 1999-04-06 2004-04-20 Itracs Corporation System for monitoring connection pattern of data ports
US6238235B1 (en) * 1999-05-10 2001-05-29 Rit Technologies Ltd. Cable organizer
US6784802B1 (en) * 1999-11-04 2004-08-31 Nordx/Cdt, Inc. Real time monitoring of cable patch panel
US6350063B1 (en) * 1999-12-13 2002-02-26 Stratos Lightwave, Inc. Pluggable optical transceiver module having a high speed serial data connector (HSSDC)
US6451154B1 (en) * 2000-02-18 2002-09-17 Moore North America, Inc. RFID manufacturing concepts
US6745971B1 (en) * 2000-09-20 2004-06-08 Toby K. Renzoni Spooling device for an optical fiber jumper cable
US6445297B1 (en) * 2000-10-10 2002-09-03 Escort Memory Systems Modular RFID antenna system
US6424263B1 (en) * 2000-12-01 2002-07-23 Microchip Technology Incorporated Radio frequency identification tag on a single layer substrate
US6677917B2 (en) * 2002-02-25 2004-01-13 Koninklijke Philips Electronics N.V. Fabric antenna for tags
US20040184747A1 (en) * 2003-02-13 2004-09-23 Fujikura Ltd. Cable
US6857897B2 (en) * 2003-04-29 2005-02-22 Hewlett-Packard Development Company, L.P. Remote cable assist
US6847856B1 (en) * 2003-08-29 2005-01-25 Lucent Technologies Inc. Method for determining juxtaposition of physical components with use of RFID tags

Cited By (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656903B2 (en) 2002-01-30 2010-02-02 Panduit Corp. System and methods for documenting networks with electronic modules
US7080787B2 (en) * 2003-07-03 2006-07-25 Symbol Technologies, Inc. Insert molded antenna
US20050001767A1 (en) * 2003-07-03 2005-01-06 Thomas Wulff Insert molded antenna
US7486243B2 (en) 2003-07-03 2009-02-03 Symbol Technologies, Inc. Insert molded antenna
US7354001B2 (en) 2003-07-03 2008-04-08 Symbol Technologies, Inc. Insert molded antenna
US8325770B2 (en) 2003-08-06 2012-12-04 Panduit Corp. Network managed device installation and provisioning technique
US20050259930A1 (en) * 2004-05-24 2005-11-24 Elkins Robert B Ii Methods and apparatus for facilitating cable locating
US7197214B2 (en) * 2004-05-24 2007-03-27 Corning Cable Systems Llc Methods and apparatus for facilitating cable locating
US7297018B2 (en) 2004-11-03 2007-11-20 Panduit Corp. Method and apparatus for patch panel patch cord documentation and revision
US20060094291A1 (en) * 2004-11-03 2006-05-04 Caveney Jack E Method and apparatus for patch panel patch cord documentation and revision
US7756047B2 (en) 2005-05-19 2010-07-13 Panduit Corp. Method and apparatus for documenting network paths
US20060262727A1 (en) * 2005-05-19 2006-11-23 Panduit Corp. Method and apparatus for documenting network paths
US20080049627A1 (en) * 2005-06-14 2008-02-28 Panduit Corp. Method and Apparatus for Monitoring Physical Network Topology Information
WO2007011493A3 (en) * 2005-07-18 2007-05-24 Stratos Int Inc Digital certificate on connectors and other products using rfid tags and/or labels as well as rfid reader/interrogator
US8482421B2 (en) 2005-08-08 2013-07-09 Panduit Corp. Systems and methods for detecting a patch cord end connection
US7969320B2 (en) 2005-08-08 2011-06-28 Panduit Corp. Systems and methods for detecting a patch cord end connection
US9049499B2 (en) 2005-08-26 2015-06-02 Panduit Corp. Patch field documentation and revision systems
US7978845B2 (en) 2005-09-28 2011-07-12 Panduit Corp. Powered patch panel
US20090137152A1 (en) * 2005-10-07 2009-05-28 Matsushita Electric Works, Ltd. Memory card socket
US20070116411A1 (en) * 2005-11-18 2007-05-24 Mark Benton Transceiver/fiber optic connector adaptor with patch cord id reading capability
US7226217B1 (en) * 2005-11-18 2007-06-05 Stratos International, Inc. Transceiver/fiber optic connector adaptor with patch cord ID reading capability
US7811119B2 (en) 2005-11-18 2010-10-12 Panduit Corp. Smart cable provisioning for a patch cord management system
US7768418B2 (en) 2005-12-06 2010-08-03 Panduit Corp. Power patch panel with guided MAC capability
US20070207666A1 (en) * 2006-02-14 2007-09-06 Panduit Corp. Method and Apparatus for Patch Panel Patch Cord Documentation and Revision
US20070221730A1 (en) * 2006-03-27 2007-09-27 Mcreynolds Alan RFID enabled cable tracking
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US20080100440A1 (en) * 2006-10-31 2008-05-01 Downie John D Radio frequency identification transponder for communicating condition of a component
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US8421626B2 (en) 2006-10-31 2013-04-16 Corning Cable Systems, Llc Radio frequency identification transponder for communicating condition of a component
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US7772975B2 (en) 2006-10-31 2010-08-10 Corning Cable Systems, Llc System for mapping connections using RFID function
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US7760094B1 (en) 2006-12-14 2010-07-20 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US7667574B2 (en) 2006-12-14 2010-02-23 Corning Cable Systems, Llc Signal-processing systems and methods for RFID-tag signals
US20080143486A1 (en) * 2006-12-14 2008-06-19 Downie John D Signal-processing systems and methods for RFID-tag signals
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US20080159738A1 (en) * 2006-12-29 2008-07-03 Lavranchuk James S Identifiable fibers optics
US8210755B2 (en) * 2006-12-29 2012-07-03 Alcatel Lucent Identifiable fiber optics
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20080220721A1 (en) * 2007-03-09 2008-09-11 Downie John D Passive RFID elements having visual indicators
US7965186B2 (en) 2007-03-09 2011-06-21 Corning Cable Systems, Llc Passive RFID elements having visual indicators
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US7855697B2 (en) 2007-08-13 2010-12-21 Corning Cable Systems, Llc Antenna systems for passive RFID tags
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8477031B2 (en) 2007-10-19 2013-07-02 Panduit Corp. Communication port identification system
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US9866458B2 (en) 2008-02-21 2018-01-09 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US8715001B2 (en) 2008-02-21 2014-05-06 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US8419465B2 (en) 2008-02-21 2013-04-16 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US8246397B2 (en) 2008-02-21 2012-08-21 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US7938700B2 (en) 2008-02-21 2011-05-10 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US8248208B2 (en) 2008-07-15 2012-08-21 Corning Cable Systems, Llc. RFID-based active labeling system for telecommunication systems
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US8414319B2 (en) 2008-11-12 2013-04-09 Panduit Corp. Patch cord with insertion detection and light illumination capabilities
US8267706B2 (en) 2008-11-12 2012-09-18 Panduit Corp. Patch cord with insertion detection and light illumination capabilities
US8708724B2 (en) 2008-11-12 2014-04-29 Panduit Corp. Patch cord insertion detection and light illumination capabilities
US10516580B2 (en) 2008-12-22 2019-12-24 Panduit Corp. Physical infrastructure management system
US8306935B2 (en) 2008-12-22 2012-11-06 Panduit Corp. Physical infrastructure management system
US8719205B2 (en) 2008-12-22 2014-05-06 Panduit Corp. Physical infrastructure management system
US9026486B2 (en) 2008-12-22 2015-05-05 Panduit Corp. Physical infrastructure management system
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8128428B2 (en) 2009-02-19 2012-03-06 Panduit Corp. Cross connect patch guidance system
US8721360B2 (en) 2009-02-19 2014-05-13 Panduit Corp. Methods for patch cord guidance
US8382511B2 (en) 2009-02-19 2013-02-26 Panduit Corp. Cross connect patch guidance system
US20100245057A1 (en) * 2009-03-31 2010-09-30 Aravind Chamarti Components, systems, and methods for associating sensor data with component location
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US20110140856A1 (en) * 2009-11-30 2011-06-16 John David Downie RFID Condition Latching
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US10178005B2 (en) 2010-04-29 2019-01-08 Mertek Industries, Llc Networking cable tracer system
US9196975B2 (en) * 2010-04-29 2015-11-24 Mertek Industries, Llc Networking cable tracer system
US10785136B2 (en) 2010-04-29 2020-09-22 Mertek Industries, Llc Networking cable tracer system
US9577904B2 (en) 2010-04-29 2017-02-21 Mertek Industries, Llc Networking cable tracer system
US20130039624A1 (en) * 2010-04-29 2013-02-14 Christopher Briand Scherer Networking Cable Tracer System
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US20120274452A1 (en) * 2011-04-26 2012-11-01 Aravind Chamarti Radio frequency (rf)-enabled latches and related components, assemblies, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US10050389B2 (en) 2013-01-18 2018-08-14 Mertek Industries, Llc Field-terminable traceable cables, components, kits, and methods
WO2014199136A1 (en) * 2013-06-12 2014-12-18 Tyco Electronics Uk Ltd. Flexible rfid tag assembly
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US10215935B2 (en) 2013-08-21 2019-02-26 Mertek Industries, Llc Traceable networking cables with remote-released connectors
US9810859B2 (en) 2013-08-21 2017-11-07 Mertek Industries, Llc Traceable networking cables with remote-released connectors
US10732364B2 (en) 2013-08-21 2020-08-04 Mertek Industries, Llc Traceable networking cables with remote-released connectors
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
EP3147828A4 (de) * 2014-05-23 2017-07-05 ZTE Corporation Passives rfid-etikett, optischer radiofrequenz-lese-/schreibkopf und rfid-system
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10522958B2 (en) 2014-09-26 2019-12-31 Hewlett Packard Enterprise Development Lp Receptacle for connecting a multi-lane or one-lane cable
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US20170315167A1 (en) * 2014-12-01 2017-11-02 Xiaoyang Bai Patch cord and management system and management method thereof
US10132851B2 (en) * 2014-12-01 2018-11-20 Corning Research & Development Corporation Patch cord and management system and management method thereof
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10193277B2 (en) 2015-02-18 2019-01-29 Hewlett Packard Enterprise Development Lp Pull-tabs for disengaging a cable assembly from a receptacle
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10741963B2 (en) * 2015-02-27 2020-08-11 Hewlett Packard Enterprise Development Lp Cable assembly with conjoined one-lane cable assemblies
US20180034192A1 (en) * 2015-02-27 2018-02-01 Hewlett Packard Enterprise Development Lp Cable assembly with conjoined one-lane cable assemblies
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10389068B2 (en) 2015-04-29 2019-08-20 Hewlett Packard Enterprise Development Lp Multiple cable housing assembly
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US11689247B2 (en) 2019-01-16 2023-06-27 Mertek Industries, Llc Patch cord including wireless components

Also Published As

Publication number Publication date
US20050232636A1 (en) 2005-10-20
EP1733335A2 (de) 2006-12-20
ATE513272T1 (de) 2011-07-15
EP1733335A4 (de) 2008-06-18
US20050231325A1 (en) 2005-10-20
WO2005099136A3 (en) 2005-12-15
EP1733335B1 (de) 2011-06-15
WO2005099136A2 (en) 2005-10-20
US7458517B2 (en) 2008-12-02

Similar Documents

Publication Publication Date Title
US7458517B2 (en) Radio frequency identification of a connector by a patch panel or other similar structure
US7165728B2 (en) Radio frequency identification for transfer of component information in fiber optic testing
US20070013487A1 (en) Digital certificate on connectors and other products using RFID tags and/or labels as well as RFID reader/interrogator
US7336883B2 (en) Indexing optical fiber adapter
US7243837B2 (en) Media converter RFID security tag
US7226217B1 (en) Transceiver/fiber optic connector adaptor with patch cord ID reading capability
US8428405B2 (en) Electrically traceable and identifiable fiber optic cables and connectors
US9946037B2 (en) RFID-enabled optical adapter for use with a patch panel
US8333518B2 (en) Radio frequency identification (RFID) in communication connections, including fiber optic components
CN102405476A (zh) 用于识别至少一个对象的方法和装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: STRATOS INTERNATIONAL, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DURRANT, RICHARD C. E.;FITZGIBBON, MAURICE;REEL/FRAME:015555/0642;SIGNING DATES FROM 20040628 TO 20040702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION