US20050224585A1 - Radio frequency identification of a connector by a patch panel or other similar structure - Google Patents
Radio frequency identification of a connector by a patch panel or other similar structure Download PDFInfo
- Publication number
- US20050224585A1 US20050224585A1 US10/816,749 US81674904A US2005224585A1 US 20050224585 A1 US20050224585 A1 US 20050224585A1 US 81674904 A US81674904 A US 81674904A US 2005224585 A1 US2005224585 A1 US 2005224585A1
- Authority
- US
- United States
- Prior art keywords
- transponder
- fiber optic
- antenna
- connector
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 claims description 98
- 239000000758 substrate Substances 0.000 claims description 32
- 239000013307 optical fiber Substances 0.000 claims description 11
- 230000003213 activating effect Effects 0.000 claims description 6
- 230000005693 optoelectronics Effects 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3833—Details of mounting fibres in ferrules; Assembly methods; Manufacture
- G02B6/385—Accessories for testing or observation of connectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/381—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3895—Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
- H04B10/25752—Optical arrangements for wireless networks
- H04B10/25758—Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
Definitions
- the present invention pertains to radio frequency identification devices.
- the invention more particularly concerns the radio frequency identification of a connector by a patch panel.
- Radio frequency identification devices are known in the art.
- radio frequency identification systems incorporate an antenna or coil, a transceiver (with decoder), and a transponder (RF tag).
- the transponder includes a transponder antenna and an integrated circuit chip attached to the transponder antenna.
- the antenna or coil emits a radio wave which induces an electrical current in the antenna of the transponder.
- the electrical current then activates the integrated circuit chip of the transponder.
- the integrated circuit chip can then transmit information through the antenna of the transponder via radio waves back to the antenna or coil. Information can be stored on the integrated circuit as either read only memory or read/write memory.
- Radio frequency identification devices can be either active or passive.
- An active system includes a transponder which contains its own power source.
- the transponder obtains the energy from the radio waves emanating from the antenna or coil so as to enable the transponder to operate and transmit information.
- a transponder operating in accordance with the active system is able to transmit information to the antenna or coil over a greater distance than is a transponder operating in accordance. with the passive system.
- the transponder operating in accordance with the active system is larger than the transponder operating in accordance with the passive system.
- typically transponders operating in accordance with the passive system contain integrated circuit chips that have read only memory. Examples of radio frequency identification components are presented in U.S. Pat. Nos.
- FIG. 1 is a perspective view of an electrical connector 120 attached to an electrically conductive cable 122 . Also shown is a complementary receptacle 130 into which the electrical connector 120 mates.
- FIG. 1 is a perspective view of an electrical connector 120 attached to an electrically conductive cable 122 . Also shown is a complementary receptacle 130 into which the electrical connector 120 mates.
- FIG. 2 is a perspective view of another version of an electrical connector 140 .
- the connector 140 is shown from a first perspective and a second perspective.
- FIG. 2 also discloses another version of a complementary receptacle 150 .
- FIG. 3 is a perspective view of an optoelectronic device 160 which includes a fiber optic connector 170 and an electrical connector 180 .
- the background material provided below concentrates on fiber optic connectors.
- the front panel of a host device has many receptacles. Each receptacle accepts at least an individual fiber optic cable. The other end of the fiber optic cable connects to another device.
- the fiber optic cable can have a length of a few meters or of a few kilometers.
- a host device can accommodate a few hundred fiber optic cables.
- U.S. Pat. Nos. 5,233,674, and 5,481,634 disclose a fiber optic cable having a fiber optic connector.
- U.S. Pat. Nos. 5,233,674, and 5,481,634 are hereby incorporated herein by reference.
- FIG. 4 is a perspective view of a fiber optic cable 30 having a fiber optic connector 10 . Attached to the fiber optic connector 10 is a strain relief boot 20 .
- FIG. 5 is a perspective view of the fiber optic cable 30 of FIG. 4 taken from another angle where a ferrule 50 is exposed.
- the fiber optic connector 10 conforms to the LC style of fiber optic connectors.
- a fiber optic cable can be inadvertently detached from the host device, or that the optical fiber within the fiber optic cable breaks and the fiber optic cable no longer transmits light energy to the host device.
- a worker must go and look at the panel of the host device and determine which cable is no longer transmitting light signals to the host device either because the optical fiber is broken or the fiber optic cable is detached from the host device.
- the worker's job becomes very burdensome and time consuming since there are hundreds of fiber optic cables to examine.
- a device or person is not receiving information conveyed by the malfunctioning fiber optic cable.
- organization of the cables, including the fiber optic cables and the copper based cables, in the vicinity of the panel is of great interest to the operators of the host devices.
- the device includes a cable, a transponder, a panel, an antenna, and a transceiver.
- the transponder is attached to the cable.
- the antenna is positioned adjacent to the panel.
- the transceiver is electrically connected to the antenna. In operation, when the transponder is placed close enough to the antenna, the transceiver is able to activate the transponder thus enabling the transponder to read the information deposited with the transponder.
- the cable can be a fiber optic cable or cable based on an electrically conductive material such as copper.
- the device in another form of the invention, includes a cable, a transponder, a substrate, an antenna, and a transceiver.
- the transponder is attached to the cable.
- the antenna is attached to the substrate.
- the substrate is adapted for attachment to a panel of a host device.
- the transceiver is electrically connected to the antenna so as to form a reader or interrogator.
- the cable can be a fiber optic cable or cable based on an electrically conductive material such as copper.
- the device in still yet another form of the invention, includes a cable, a transponder, a substrate, an antenna, and a transceiver.
- the cable includes a connector.
- the transponder is attached to the connector.
- the antenna is attached to the substrate.
- the substrate is adapted for attachment to a panel of a host device.
- the transceiver is electrically connected to the antenna so as to form a reader or interrogator which is capable of activating and interrogating the transponder when the transponder is sufficiently close to the antenna.
- the cable can be a fiber optic cable or a cable based on an electrically conductive material such as copper.
- the connector is a fiber optic connector when a fiber optic cable is used, and the connector is an electrically conductive connector when an electrically conductive cable is used.
- the device includes an optoelectronic device, a transponder, a panel, an antenna, and a transceiver.
- the optoelectronic device includes a connector which conveys energy along electrically conductive materials housed within the connector.
- the transponder is attached to the optoelectronic device.
- the antenna is positioned adjacent to the panel.
- the transceiver is electrically connected to the antenna. In operation, when the transponder is placed close enough to the antenna, the transceiver is able to activate the transponder thus enabling the transponder to read the information deposited with the transponder.
- the invention achieves the objectives set forth above.
- the invention provides a device which is able to determine the association between a specific location on a panel and a specific connector or cable whether it be fiber optic or electrically conductive.
- FIG. 1 is a perspective view of a copper based electrical connector and a complementary receptacle, the electrical connector is attached to a copper based electrical cable;
- FIG. 2 is a perspective view of another version of the electrical connector and complementary receptacle of FIG. 1 ;
- FIG. 3 is a perspective view of an optoelectronic transceiver which has an optical connector end and an electrical connector end;
- FIG. 4 is a perspective view of a known fiber optic cable and connector assembly
- FIG. 5 is a perspective view of the fiber optic cable and connector assembly of FIG. 4 taken from another angle;
- FIG. 6 is a perspective view of the combination of the fiber optic cable and the transponder
- FIG. 7 is a perspective view of the combination of the fiber optic cable and the transponder of FIG. 6 taken from another angle;
- FIG. 8 is a front view of a panel of a patch panel or of a host device
- FIG. 9 is a side view of the panel of FIG. 8 ;
- FIG. 10 is a partial front view of a substrate having apertures and coils or antennas
- FIG. 11 is a partial side view of the combination of the fiber optic cable having the transponder of FIGS. 6 and 7 connected to the panel of FIGS. 8 and 9 of a host device where the panel includes the substrate of FIG. 10 ;
- FIG. 12 is an electrical schematic of the electromagnetic interaction between the transponder and the reader or interrogator
- FIG. 13 is a perspective view of the combination of the electrically conductive, copper based cable of FIG. 1 and the transponder;
- FIG. 14 is a perspective view of the combination of the electrically conductive, copper based cable of FIG. 2 and the transponder;
- FIG. 15 is a perspective view of the combination of the optoelectronic device of FIG. 3 and the transponder.
- FIG. 6 is a perspective view of a fiber optic cable 30 having a fiber optic connector 10 .
- the fiber optic connector 10 includes a release lever 40 . Attached to the fiber optic connector 10 is a strain relief boot 20 . Also attached to, or mounted on or in, the fiber optic connector 10 is a transponder 70 .
- the transponder 70 can be affixed to the fiber optic connector 10 with an adhesive material or a clip (not shown). The clip physically squeezes or clamps the transponder 70 to the fiber optic connector 10 .
- the transponder 70 can be insert molded into the body of the fiber optic connector 10 .
- the transponder 70 can be attached to fiber optic connectors which are already in-service.
- FIG. 7 is a perspective view of a fiber optic cable 30 of FIG. 6 taken from another angle.
- the view of the fiber optic cable 30 of FIG. 7 exposes the ferrule 50 .
- the fiber optic connector 10 generally conforms to the LC standard, however, the fiber optic connector can also be constructed to conform to any other standard such as SC, and ST.
- the ferrule 50 is a single fiber ferrule, however multi-fiber ferrules and connectors can also be employed. Additionally, the fiber optic connector can be of its own unique design.
- the optical fiber terminated at the ferrule 50 can be any one of a single mode fiber, a multimode fiber, a polarization maintaining fiber, or any other type of optical fiber.
- FIG. 8 is a front view of a panel 80 .
- the panel 80 can belong to a patch panel device, a host device, or some other similar structure.
- the panel 80 has a front surface or face 84 .
- the panel 80 includes many apertures 82 , 83 , 87 , 88 , and 89 .
- FIG. 9 is a side view of the panel 80 which exposes the rear edge 86 .
- the aperture 82 allows the fiber optic connector 10 to pass beyond the front surface 84 of the panel 80 so as to gain access to the host device.
- the release latch 40 of the fiber optical connector 10 is used to secure the fiber optic connector 10 to the host device. Upon depressing the release lever 40 the fiber optic connector 10 can be removed from the hot device.
- FIG. 10 is a partial front view of a substrate 90 having apertures 92 , 94 , 96 , 98 , and coils or antennas 93 , 95 , 97 , 99 .
- Each coil or antenna 93 , 95 , 97 , 99 surrounds a respective aperture 92 , 94 , 96 , 98 .
- the coils or antennas 93 , 95 , 97 , 99 are made of a suitable electrically conductive material such as copper.
- the coils or antennas 93 , 95 , 97 , 99 are adhered or attached to a substrate or are sandwiched between two substrates. Typically, the coils or antennas 93 , 95 , 97 , 99 are attached to the substrate with an adhesive material.
- the substrates are typically made of non-conductive or insulative materials such as mylar or other suitable polymer materials. Any number of apertures may be used. However, in this application the number of apertures 92 , 94 , 96 , 98 of the substrate 90 should be of approximately the same size and have the same orientation and spacing as the apertures 87 , 88 , 89 , 83 of the panel 80 .
- U.S. Pat. No. 4,972,050 discloses a method of constructing a substrate, where the substrate includes conductive paths such as coils or antennas. U.S. Pat. No. 4,972,050 is hereby incorporated herein by reference.
- the antennas can be affixed originally to the panel 80 , or in an alternative, as explained above, the antennas are part of the substrate 90 which can be mounted to a panel 80 of a host device which is already in-service.
- FIG. 11 is a partial side view of the substrate 90 being located adjacent to the front surface 84 of the panel 80 of the host device 110 where the fiber optic connector 10 is plugged into the host device 110 .
- the substrate 90 can be placed adjacent to the front surface 84 of the panel 80 by an adhesive material or clips or other methods of attachment well known in the art.
- a fiber optic connector 10 is inserted into and through aperture 92 of the substrate 90 and through aperture 87 of the panel 80 so as to engage the fiber optic connector 10 with the host device 110 .
- the antenna or coil 93 encircles a portion of the fiber optic connector 10 in the plane of the substrate 90 .
- the transponder 70 is close enough to the antenna or coil 93 so that the radio waves, or electromagnetic power 104 , emanating from antenna or coil 93 induce an electrical current in the transponder antenna 72 (see FIG. 12 ) of the transponder 70 .
- the energy and frequency of the electrical signal running though the antenna or coil 93 is provided by a transceiver 102 (see FIG. 12 ) which is electrically connected to antennas or coils 93 , 95 , 97 , and 99 .
- the combination of an antenna and a transceiver is known as a reader or interrogator.
- FIG. 12 is an electrical schematic of the electromagnetic interaction between the transponder 70 and the reader or interrogator ( 93 , 102 ).
- the transponder 70 Once the transponder 70 is energized by the power from the transceiver 102 , the transponder sends information, which was previously stored on its integrated circuit chip, to the transceiver 102 via radio waves. The radio waves leave the transponder antenna 72 and are received by the antenna or coil 92 . The induced electrical signal is then carried to the transceiver 102 for storage or manipulation of the data supplied by the transponder 70 .
- Examples of information which can be stored in the transponder 70 include the following information: the length of the fiber optic cable to which the transponder is attached; the date of purchase of the fiber optic cable to which the transponder is attached; the type or style of fiber optic connector to which the transponder is attached; the type of warranty associated with the fiber optic cable to which the transponder is attached; the type, style, or grade of optic fiber housed within the fiber optic cable to which the transponder; and/or a unique identification number or serialization number or code which uniquely identifies a specific fiber optic cable.
- the host device 110 can pinpoint the location of the malfunctioning fiber optic cable.
- the malfunctioning fiber optic cable can then be repaired or replaced.
- the device provides a system operator with the ability to monitor the number and location of the fiber optic connectors attached to the host device.
- FIG. 13 is a perspective view of an electrical connector 120 to which is attached a transponder 70 .
- the electrical connector 120 mates with a receptacle 130 which is mounted behind a panel (not shown).
- the panel and, if necessary, the associated substrate are constructed and operate as discussed above in regard to the first embodiment of the invention.
- the antenna or coil associated with the host device will receive information from the transponder 70 mounted to the electrical connector 120 .
- the transponder 70 can be attached to the electrical connector 120 by way of an adhesive material, a clip, or the transponder 70 can be insert molded into the body of the electrical connector 120 .
- the transponder 70 can be attached to electrical connectors out in the field.
- FIG. 14 is a perspective view of another version of the electric connector shown in FIG. 13 .
- FIG. 14 provides two perspective views of electric connector 140 to which is attached transponder 70 .
- receptacle 150 which accepts electrical connector 140 .
- the panel of the host device is not shown for reasons of clarity.
- the disclosed electrical connectors 120 , 140 are used for illustration purposes only. The embodiment of the invention encompasses the attachment or mounting of a transponder to any type or style of electrical connector.
- FIG. 15 is a perspective view of an optoelectronic device 160 to which is attached a transponder 70 .
- the optoelectronic device 160 includes a fiber optic connector 170 and an electrical connector 180 .
- the optoelectronic device 160 has its electrical connector 180 attached to host device through a panel of the host device similar to the attachment of the optical fibers to the host device as discussed above in the explanation of the first embodiment of the invention.
- the antenna associated with the panel activates the transponder 70 of the optoelectronic device 160 .
- the transponder 70 can be attached to optoelectronic devices 160 which are in use, or the transponder 70 can be insert molded or mounted within the housing of the optoelectronic device 160 .
- the disclosed optoelectronic device 160 is used for illustration purposes only.
- the embodiment of the invention encompasses the attachment or mounting of a transponder to any type or style of optoelectronic device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Radar Systems Or Details Thereof (AREA)
- Light Guides In General And Applications Therefor (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/816,749 US20050224585A1 (en) | 2004-04-02 | 2004-04-02 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/012,504 US7165728B2 (en) | 2004-04-02 | 2004-12-15 | Radio frequency identification for transfer of component information in fiber optic testing |
US11/078,532 US7458517B2 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/078,540 US20050232636A1 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
AT05739860T ATE513272T1 (de) | 2004-04-02 | 2005-04-01 | Hochfrequenzidentifikation eines verbinders mittels schalttafel oder einer ähnlichen struktur |
EP05739860A EP1733335B1 (de) | 2004-04-02 | 2005-04-01 | Hochfrequenzidentifikation eines verbinders mittels schalttafel oder einer ähnlichen struktur |
PCT/US2005/011031 WO2005099136A2 (en) | 2004-04-02 | 2005-04-01 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/225,724 US7243837B2 (en) | 2004-04-02 | 2005-09-13 | Media converter RFID security tag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/816,749 US20050224585A1 (en) | 2004-04-02 | 2004-04-02 | Radio frequency identification of a connector by a patch panel or other similar structure |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/012,504 Continuation-In-Part US7165728B2 (en) | 2004-04-02 | 2004-12-15 | Radio frequency identification for transfer of component information in fiber optic testing |
US11/078,540 Continuation US20050232636A1 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/078,532 Continuation US7458517B2 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/225,724 Continuation-In-Part US7243837B2 (en) | 2004-04-02 | 2005-09-13 | Media converter RFID security tag |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050224585A1 true US20050224585A1 (en) | 2005-10-13 |
Family
ID=35054366
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/816,749 Abandoned US20050224585A1 (en) | 2004-04-02 | 2004-04-02 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/078,532 Expired - Fee Related US7458517B2 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/078,540 Abandoned US20050232636A1 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/078,532 Expired - Fee Related US7458517B2 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
US11/078,540 Abandoned US20050232636A1 (en) | 2004-04-02 | 2005-03-13 | Radio frequency identification of a connector by a patch panel or other similar structure |
Country Status (4)
Country | Link |
---|---|
US (3) | US20050224585A1 (de) |
EP (1) | EP1733335B1 (de) |
AT (1) | ATE513272T1 (de) |
WO (1) | WO2005099136A2 (de) |
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050001767A1 (en) * | 2003-07-03 | 2005-01-06 | Thomas Wulff | Insert molded antenna |
US20050259930A1 (en) * | 2004-05-24 | 2005-11-24 | Elkins Robert B Ii | Methods and apparatus for facilitating cable locating |
US20060094291A1 (en) * | 2004-11-03 | 2006-05-04 | Caveney Jack E | Method and apparatus for patch panel patch cord documentation and revision |
US20060262727A1 (en) * | 2005-05-19 | 2006-11-23 | Panduit Corp. | Method and apparatus for documenting network paths |
WO2007011493A3 (en) * | 2005-07-18 | 2007-05-24 | Stratos Int Inc | Digital certificate on connectors and other products using rfid tags and/or labels as well as rfid reader/interrogator |
US20070116411A1 (en) * | 2005-11-18 | 2007-05-24 | Mark Benton | Transceiver/fiber optic connector adaptor with patch cord id reading capability |
US20070207666A1 (en) * | 2006-02-14 | 2007-09-06 | Panduit Corp. | Method and Apparatus for Patch Panel Patch Cord Documentation and Revision |
US20070221730A1 (en) * | 2006-03-27 | 2007-09-27 | Mcreynolds Alan | RFID enabled cable tracking |
US20080049627A1 (en) * | 2005-06-14 | 2008-02-28 | Panduit Corp. | Method and Apparatus for Monitoring Physical Network Topology Information |
US20080100440A1 (en) * | 2006-10-31 | 2008-05-01 | Downie John D | Radio frequency identification transponder for communicating condition of a component |
US20080143486A1 (en) * | 2006-12-14 | 2008-06-19 | Downie John D | Signal-processing systems and methods for RFID-tag signals |
US20080159738A1 (en) * | 2006-12-29 | 2008-07-03 | Lavranchuk James S | Identifiable fibers optics |
US20080220721A1 (en) * | 2007-03-09 | 2008-09-11 | Downie John D | Passive RFID elements having visual indicators |
US20090137152A1 (en) * | 2005-10-07 | 2009-05-28 | Matsushita Electric Works, Ltd. | Memory card socket |
US7656903B2 (en) | 2002-01-30 | 2010-02-02 | Panduit Corp. | System and methods for documenting networks with electronic modules |
US7760094B1 (en) | 2006-12-14 | 2010-07-20 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US7768418B2 (en) | 2005-12-06 | 2010-08-03 | Panduit Corp. | Power patch panel with guided MAC capability |
US7772975B2 (en) | 2006-10-31 | 2010-08-10 | Corning Cable Systems, Llc | System for mapping connections using RFID function |
US7782202B2 (en) | 2006-10-31 | 2010-08-24 | Corning Cable Systems, Llc | Radio frequency identification of component connections |
US7787823B2 (en) | 2006-09-15 | 2010-08-31 | Corning Cable Systems Llc | Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same |
US20100245057A1 (en) * | 2009-03-31 | 2010-09-30 | Aravind Chamarti | Components, systems, and methods for associating sensor data with component location |
US7811119B2 (en) | 2005-11-18 | 2010-10-12 | Panduit Corp. | Smart cable provisioning for a patch cord management system |
US7848654B2 (en) | 2006-09-28 | 2010-12-07 | Corning Cable Systems Llc | Radio-over-fiber (RoF) wireless picocellular system with combined picocells |
US7855697B2 (en) | 2007-08-13 | 2010-12-21 | Corning Cable Systems, Llc | Antenna systems for passive RFID tags |
US7938700B2 (en) | 2008-02-21 | 2011-05-10 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US20110140856A1 (en) * | 2009-11-30 | 2011-06-16 | John David Downie | RFID Condition Latching |
US7969320B2 (en) | 2005-08-08 | 2011-06-28 | Panduit Corp. | Systems and methods for detecting a patch cord end connection |
US7978845B2 (en) | 2005-09-28 | 2011-07-12 | Panduit Corp. | Powered patch panel |
US8111998B2 (en) | 2007-02-06 | 2012-02-07 | Corning Cable Systems Llc | Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems |
US8128428B2 (en) | 2009-02-19 | 2012-03-06 | Panduit Corp. | Cross connect patch guidance system |
US8175459B2 (en) | 2007-10-12 | 2012-05-08 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
US8172468B2 (en) | 2010-05-06 | 2012-05-08 | Corning Incorporated | Radio frequency identification (RFID) in communication connections, including fiber optic components |
US8248208B2 (en) | 2008-07-15 | 2012-08-21 | Corning Cable Systems, Llc. | RFID-based active labeling system for telecommunication systems |
US8264355B2 (en) | 2006-12-14 | 2012-09-11 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US8267706B2 (en) | 2008-11-12 | 2012-09-18 | Panduit Corp. | Patch cord with insertion detection and light illumination capabilities |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US20120274452A1 (en) * | 2011-04-26 | 2012-11-01 | Aravind Chamarti | Radio frequency (rf)-enabled latches and related components, assemblies, systems, and methods |
US8306935B2 (en) | 2008-12-22 | 2012-11-06 | Panduit Corp. | Physical infrastructure management system |
US8325770B2 (en) | 2003-08-06 | 2012-12-04 | Panduit Corp. | Network managed device installation and provisioning technique |
US20130039624A1 (en) * | 2010-04-29 | 2013-02-14 | Christopher Briand Scherer | Networking Cable Tracer System |
US8477031B2 (en) | 2007-10-19 | 2013-07-02 | Panduit Corp. | Communication port identification system |
US8548330B2 (en) | 2009-07-31 | 2013-10-01 | Corning Cable Systems Llc | Sectorization in distributed antenna systems, and related components and methods |
US8644844B2 (en) | 2007-12-20 | 2014-02-04 | Corning Mobileaccess Ltd. | Extending outdoor location based services and applications into enclosed areas |
US8731405B2 (en) | 2008-08-28 | 2014-05-20 | Corning Cable Systems Llc | RFID-based systems and methods for collecting telecommunications network information |
US8867919B2 (en) | 2007-07-24 | 2014-10-21 | Corning Cable Systems Llc | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
WO2014199136A1 (en) * | 2013-06-12 | 2014-12-18 | Tyco Electronics Uk Ltd. | Flexible rfid tag assembly |
US9037143B2 (en) | 2010-08-16 | 2015-05-19 | Corning Optical Communications LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US9042732B2 (en) | 2010-05-02 | 2015-05-26 | Corning Optical Communications LLC | Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods |
US9049499B2 (en) | 2005-08-26 | 2015-06-02 | Panduit Corp. | Patch field documentation and revision systems |
US9112611B2 (en) | 2009-02-03 | 2015-08-18 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US9165232B2 (en) | 2012-05-14 | 2015-10-20 | Corning Incorporated | Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9184843B2 (en) | 2011-04-29 | 2015-11-10 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
US9219879B2 (en) | 2009-11-13 | 2015-12-22 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
US9240835B2 (en) | 2011-04-29 | 2016-01-19 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9258052B2 (en) | 2012-03-30 | 2016-02-09 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9325429B2 (en) | 2011-02-21 | 2016-04-26 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US9531452B2 (en) | 2012-11-29 | 2016-12-27 | Corning Optical Communications LLC | Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs) |
US9563832B2 (en) | 2012-10-08 | 2017-02-07 | Corning Incorporated | Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9621293B2 (en) | 2012-08-07 | 2017-04-11 | Corning Optical Communications Wireless Ltd | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
US9652707B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Radio frequency identification (RFID) connected tag communications protocol and related systems and methods |
US9652709B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods |
US9652708B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
EP3147828A4 (de) * | 2014-05-23 | 2017-07-05 | ZTE Corporation | Passives rfid-etikett, optischer radiofrequenz-lese-/schreibkopf und rfid-system |
US9715157B2 (en) | 2013-06-12 | 2017-07-25 | Corning Optical Communications Wireless Ltd | Voltage controlled optical directional coupler |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
US9807700B2 (en) | 2015-02-19 | 2017-10-31 | Corning Optical Communications Wireless Ltd | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
US20170315167A1 (en) * | 2014-12-01 | 2017-11-02 | Xiaoyang Bai | Patch cord and management system and management method thereof |
US9810859B2 (en) | 2013-08-21 | 2017-11-07 | Mertek Industries, Llc | Traceable networking cables with remote-released connectors |
US20180034192A1 (en) * | 2015-02-27 | 2018-02-01 | Hewlett Packard Enterprise Development Lp | Cable assembly with conjoined one-lane cable assemblies |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US9974074B2 (en) | 2013-06-12 | 2018-05-15 | Corning Optical Communications Wireless Ltd | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
US10032102B2 (en) | 2006-10-31 | 2018-07-24 | Fiber Mountain, Inc. | Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods |
US10050389B2 (en) | 2013-01-18 | 2018-08-14 | Mertek Industries, Llc | Field-terminable traceable cables, components, kits, and methods |
US10096909B2 (en) | 2014-11-03 | 2018-10-09 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement |
US10110308B2 (en) | 2014-12-18 | 2018-10-23 | Corning Optical Communications Wireless Ltd | Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10128951B2 (en) | 2009-02-03 | 2018-11-13 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
US10136200B2 (en) | 2012-04-25 | 2018-11-20 | Corning Optical Communications LLC | Distributed antenna system architectures |
US10135533B2 (en) | 2014-11-13 | 2018-11-20 | Corning Optical Communications Wireless Ltd | Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals |
US10187151B2 (en) | 2014-12-18 | 2019-01-22 | Corning Optical Communications Wireless Ltd | Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10193277B2 (en) | 2015-02-18 | 2019-01-29 | Hewlett Packard Enterprise Development Lp | Pull-tabs for disengaging a cable assembly from a receptacle |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
US10389068B2 (en) | 2015-04-29 | 2019-08-20 | Hewlett Packard Enterprise Development Lp | Multiple cable housing assembly |
US10522958B2 (en) | 2014-09-26 | 2019-12-31 | Hewlett Packard Enterprise Development Lp | Receptacle for connecting a multi-lane or one-lane cable |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
US11178609B2 (en) | 2010-10-13 | 2021-11-16 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
US11689247B2 (en) | 2019-01-16 | 2023-06-27 | Mertek Industries, Llc | Patch cord including wireless components |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7243837B2 (en) * | 2004-04-02 | 2007-07-17 | Stratos International, Inc. | Media converter RFID security tag |
JP4585324B2 (ja) * | 2005-01-26 | 2010-11-24 | 株式会社日立製作所 | 電気機器の制御方法、及び電気機器の制御システム |
KR20090010031A (ko) * | 2006-03-22 | 2009-01-28 | 에이디씨 게엠베하 | 지능 패칭 확인 시스템 및 방법 |
US7479032B2 (en) * | 2006-10-10 | 2009-01-20 | Adc Gmbh | Upgradeable telecommunications patch panel and method of upgrading same |
WO2009072929A1 (fr) * | 2007-12-06 | 2009-06-11 | Yulia Alekseevna Yashukova | Système de monitorage de raccords d'un système de câbles utilisant des étiquettes rfid |
US8789747B2 (en) * | 2008-01-31 | 2014-07-29 | Boris A. Khozyainov | Connection sensor for identifying the patch panel port |
US8897637B2 (en) | 2009-04-22 | 2014-11-25 | Adc Gmbh | Method and arrangement for identifying at least one object |
EP2488907A1 (de) | 2009-10-16 | 2012-08-22 | ADC Telecommunications, INC. | Konnektivitätsverwaltung in faseroptischen systemen und verfahren dafür |
WO2011100632A2 (en) | 2010-02-12 | 2011-08-18 | Adc Telecommunications, Inc. | Managed fiber connectivity systems |
US8682172B2 (en) * | 2010-08-09 | 2014-03-25 | Finisar Corporation | Optoelectronic communications assembly having an electrical and optical interface |
CN103635842B (zh) | 2011-04-15 | 2016-06-01 | Adc电信公司 | 被管理的光纤连接性系统 |
WO2012158806A2 (en) | 2011-05-17 | 2012-11-22 | Adc Telecommunications, Inc. | Component identification and tracking systems for telecommunication networks |
US9219543B2 (en) | 2012-07-11 | 2015-12-22 | Commscope Technologies Llc | Monitoring optical decay in fiber connectivity systems |
US9453971B2 (en) | 2012-07-11 | 2016-09-27 | Commscope Technologies Llc | Managed fiber connectivity systems |
US9470742B2 (en) | 2012-08-03 | 2016-10-18 | Commscope Technologies Llc | Managed fiber connectivity systems |
CN103809252B (zh) * | 2012-11-07 | 2015-12-16 | 华为技术有限公司 | 标识芯片收容装置、光纤熔配模块、光纤管理装置和装配方法 |
WO2014076198A2 (en) | 2012-11-16 | 2014-05-22 | Tyco Electronics Uk Ltd. | Localized reading of rfid tags and rfid managed connectivity |
US9285552B2 (en) | 2013-02-05 | 2016-03-15 | Commscope Technologies Llc | Optical assemblies with managed connectivity |
US9379501B2 (en) | 2013-02-05 | 2016-06-28 | Commscope Technologies Llc | Optical assemblies with managed connectivity |
US9423570B2 (en) | 2013-02-05 | 2016-08-23 | Commscope Technologies Llc | Optical assemblies with managed connectivity |
US9798096B2 (en) | 2014-02-07 | 2017-10-24 | Commscope Technologies Llc | Managed fiber connectivity systems |
US9500814B2 (en) | 2014-03-26 | 2016-11-22 | Commscope Technologies Llc | Optical adapter module with managed connectivity |
KR20170095314A (ko) * | 2014-12-18 | 2017-08-22 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 식별 태그 |
BR102020008029A2 (pt) * | 2020-04-22 | 2021-11-03 | Furukawa Electric Latam S.A. | Dispositivo identificador para cabos de conexão de paineis de ligação de redes de telecomunicação |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066091A (en) * | 1988-12-22 | 1991-11-19 | Kingston Technologies, Inc. | Amorphous memory polymer alignment device with access means |
US5161988A (en) * | 1991-02-13 | 1992-11-10 | Rit Technologies Ltd. | Patching panel |
US5206626A (en) * | 1991-12-24 | 1993-04-27 | Knogo Corporation | Stabilized article surveillance responder |
US5233674A (en) * | 1991-11-21 | 1993-08-03 | Methode Electronics, Inc. | Fiber optic connector with sliding tab release |
US5448110A (en) * | 1992-06-17 | 1995-09-05 | Micron Communications, Inc. | Enclosed transceiver |
US5473715A (en) * | 1994-05-03 | 1995-12-05 | Methode Electronics, Inc. | Hybrid fiber optic/electrical connector |
US5481634A (en) * | 1994-06-24 | 1996-01-02 | At&T Corp. | Connector for optical fiber |
US5854824A (en) * | 1994-09-04 | 1998-12-29 | Rit Technologies Ltd. | Connectivity scanner |
US6118379A (en) * | 1997-12-31 | 2000-09-12 | Intermec Ip Corp. | Radio frequency identification transponder having a spiral antenna |
US6147655A (en) * | 1998-11-05 | 2000-11-14 | Single Chip Systems Corporation | Flat loop antenna in a single plane for use in radio frequency identification tags |
US6238235B1 (en) * | 1999-05-10 | 2001-05-29 | Rit Technologies Ltd. | Cable organizer |
US6350063B1 (en) * | 1999-12-13 | 2002-02-26 | Stratos Lightwave, Inc. | Pluggable optical transceiver module having a high speed serial data connector (HSSDC) |
US6424263B1 (en) * | 2000-12-01 | 2002-07-23 | Microchip Technology Incorporated | Radio frequency identification tag on a single layer substrate |
US6429831B2 (en) * | 1999-01-13 | 2002-08-06 | Brady Worldwide, Inc. | Laminate RFID label and method of manufacture |
US6445297B1 (en) * | 2000-10-10 | 2002-09-03 | Escort Memory Systems | Modular RFID antenna system |
US6451154B1 (en) * | 2000-02-18 | 2002-09-17 | Moore North America, Inc. | RFID manufacturing concepts |
US6574586B1 (en) * | 1999-04-06 | 2003-06-03 | Itracs Corporation | System for monitoring connection pattern of data ports |
US6677917B2 (en) * | 2002-02-25 | 2004-01-13 | Koninklijke Philips Electronics N.V. | Fabric antenna for tags |
US6684179B1 (en) * | 1999-04-06 | 2004-01-27 | Itracs Corporation | System for monitoring connection pattern of data ports |
US6745971B1 (en) * | 2000-09-20 | 2004-06-08 | Toby K. Renzoni | Spooling device for an optical fiber jumper cable |
US6784802B1 (en) * | 1999-11-04 | 2004-08-31 | Nordx/Cdt, Inc. | Real time monitoring of cable patch panel |
US20040184747A1 (en) * | 2003-02-13 | 2004-09-23 | Fujikura Ltd. | Cable |
US6847856B1 (en) * | 2003-08-29 | 2005-01-25 | Lucent Technologies Inc. | Method for determining juxtaposition of physical components with use of RFID tags |
US6857897B2 (en) * | 2003-04-29 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Remote cable assist |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483467A (en) * | 1992-06-10 | 1996-01-09 | Rit Technologies, Ltd. | Patching panel scanner |
US5910776A (en) | 1994-10-24 | 1999-06-08 | Id Technologies, Inc. | Method and apparatus for identifying locating or monitoring equipment or other objects |
CA2162515C (en) * | 1994-12-22 | 2000-03-21 | Leonard George Cohen | Jumper tracing system |
US6222452B1 (en) * | 1996-12-16 | 2001-04-24 | Confidence International Ab | Electronic identification tag |
US6002331A (en) * | 1998-07-20 | 1999-12-14 | Laor; Herzel | Method and apparatus for identifying and tracking connections of communication lines |
DE19841738C2 (de) | 1998-08-26 | 2001-05-17 | Ifam Ingenieurbuero Fuer Appli | Schaltsteckdose oder mobile Steckdoseneinheit |
US6424710B1 (en) * | 1999-02-10 | 2002-07-23 | Avaya Technology Corp. | Method and device for detecting the presence of a patch cord connector in a telecommunications patch system using passive detection sensors |
US7239226B2 (en) * | 2001-07-10 | 2007-07-03 | American Express Travel Related Services Company, Inc. | System and method for payment using radio frequency identification in contact and contactless transactions |
KR20020030272A (ko) * | 2000-03-28 | 2002-04-24 | 롤페스 요하네스 게라투스 알베르투스 | 집적 회로 및 이를 포함하는 트랜스폰더 및 시큐리티페이퍼 및 집적 회로 내의 메모리 프로그래밍 방법 |
US6751699B1 (en) * | 2000-07-07 | 2004-06-15 | Systran Corporation | Fibre channel mini-hub powered by and supported within a host computer and directly controlled over a bus of the host computer |
CN1196002C (zh) * | 2000-07-31 | 2005-04-06 | 日本电气硝子株式会社 | 带光纤的光装置零件的预备材料,光纤短截棒及制造方法 |
US6742936B1 (en) * | 2000-11-06 | 2004-06-01 | Corning Cable Systems Llc | Low-loss intermatable ferrules for optical fibers and a method of fabrication thereof |
US7000834B2 (en) * | 2001-02-21 | 2006-02-21 | International Business Machines Corporation | Method to address security and privacy issue of the use of RFID systems to track consumer products |
US9454752B2 (en) | 2001-07-10 | 2016-09-27 | Chartoleaux Kg Limited Liability Company | Reload protocol at a transaction processing entity |
US7210855B2 (en) * | 2001-08-06 | 2007-05-01 | Pirelli & C. Spa | Device for connecting an optical fibre |
US6621417B2 (en) | 2001-08-09 | 2003-09-16 | Edgar Alan Duncan | Passive RFID transponder/reader system and method for hidden obstacle detection and avoidance |
JP4019674B2 (ja) * | 2001-09-28 | 2007-12-12 | 住友電気工業株式会社 | 光モジュール |
US6744939B2 (en) * | 2002-05-20 | 2004-06-01 | Fitel Usa Corp. | Polarization maintaining optical fiber connector and method of tuning (PM connector) |
US6808116B1 (en) * | 2002-05-29 | 2004-10-26 | At&T Corp. | Fiber jumpers with data storage method and apparatus |
US6933849B2 (en) | 2002-07-09 | 2005-08-23 | Fred Sawyer | Method and apparatus for tracking objects and people |
US20040008123A1 (en) | 2002-07-15 | 2004-01-15 | Battelle Memorial Institute | System and method for tracking medical devices |
JP4266319B2 (ja) * | 2002-09-06 | 2009-05-20 | 株式会社精工技研 | 光コネクタプラグ及び光コネクタ |
DE10244304B3 (de) | 2002-09-23 | 2004-03-18 | Data-Complex E.K. | Anordnung zur Überwachung von Patchfeldern an Verteilerpunkten in Datennetzwerken |
DE10245140B4 (de) | 2002-09-27 | 2005-10-20 | Dornier Medtech Laser Gmbh | Intelligente Therapiefaser |
IL152768A (en) | 2002-11-11 | 2008-04-13 | Rit Techn Ltd | Retrofit kit for interconnect cabling system |
US7221258B2 (en) * | 2002-11-23 | 2007-05-22 | Kathleen Lane | Hierarchical electronic watermarks and method of use |
-
2004
- 2004-04-02 US US10/816,749 patent/US20050224585A1/en not_active Abandoned
-
2005
- 2005-03-13 US US11/078,532 patent/US7458517B2/en not_active Expired - Fee Related
- 2005-03-13 US US11/078,540 patent/US20050232636A1/en not_active Abandoned
- 2005-04-01 EP EP05739860A patent/EP1733335B1/de not_active Not-in-force
- 2005-04-01 AT AT05739860T patent/ATE513272T1/de not_active IP Right Cessation
- 2005-04-01 WO PCT/US2005/011031 patent/WO2005099136A2/en active Application Filing
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066091A (en) * | 1988-12-22 | 1991-11-19 | Kingston Technologies, Inc. | Amorphous memory polymer alignment device with access means |
US5161988A (en) * | 1991-02-13 | 1992-11-10 | Rit Technologies Ltd. | Patching panel |
US5233674A (en) * | 1991-11-21 | 1993-08-03 | Methode Electronics, Inc. | Fiber optic connector with sliding tab release |
US5206626A (en) * | 1991-12-24 | 1993-04-27 | Knogo Corporation | Stabilized article surveillance responder |
US5448110A (en) * | 1992-06-17 | 1995-09-05 | Micron Communications, Inc. | Enclosed transceiver |
US5473715A (en) * | 1994-05-03 | 1995-12-05 | Methode Electronics, Inc. | Hybrid fiber optic/electrical connector |
US5481634A (en) * | 1994-06-24 | 1996-01-02 | At&T Corp. | Connector for optical fiber |
US5854824A (en) * | 1994-09-04 | 1998-12-29 | Rit Technologies Ltd. | Connectivity scanner |
US6118379A (en) * | 1997-12-31 | 2000-09-12 | Intermec Ip Corp. | Radio frequency identification transponder having a spiral antenna |
US6147655A (en) * | 1998-11-05 | 2000-11-14 | Single Chip Systems Corporation | Flat loop antenna in a single plane for use in radio frequency identification tags |
US6429831B2 (en) * | 1999-01-13 | 2002-08-06 | Brady Worldwide, Inc. | Laminate RFID label and method of manufacture |
US6684179B1 (en) * | 1999-04-06 | 2004-01-27 | Itracs Corporation | System for monitoring connection pattern of data ports |
US6574586B1 (en) * | 1999-04-06 | 2003-06-03 | Itracs Corporation | System for monitoring connection pattern of data ports |
US6725177B2 (en) * | 1999-04-06 | 2004-04-20 | Itracs Corporation | System for monitoring connection pattern of data ports |
US6238235B1 (en) * | 1999-05-10 | 2001-05-29 | Rit Technologies Ltd. | Cable organizer |
US6784802B1 (en) * | 1999-11-04 | 2004-08-31 | Nordx/Cdt, Inc. | Real time monitoring of cable patch panel |
US6350063B1 (en) * | 1999-12-13 | 2002-02-26 | Stratos Lightwave, Inc. | Pluggable optical transceiver module having a high speed serial data connector (HSSDC) |
US6451154B1 (en) * | 2000-02-18 | 2002-09-17 | Moore North America, Inc. | RFID manufacturing concepts |
US6745971B1 (en) * | 2000-09-20 | 2004-06-08 | Toby K. Renzoni | Spooling device for an optical fiber jumper cable |
US6445297B1 (en) * | 2000-10-10 | 2002-09-03 | Escort Memory Systems | Modular RFID antenna system |
US6424263B1 (en) * | 2000-12-01 | 2002-07-23 | Microchip Technology Incorporated | Radio frequency identification tag on a single layer substrate |
US6677917B2 (en) * | 2002-02-25 | 2004-01-13 | Koninklijke Philips Electronics N.V. | Fabric antenna for tags |
US20040184747A1 (en) * | 2003-02-13 | 2004-09-23 | Fujikura Ltd. | Cable |
US6857897B2 (en) * | 2003-04-29 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Remote cable assist |
US6847856B1 (en) * | 2003-08-29 | 2005-01-25 | Lucent Technologies Inc. | Method for determining juxtaposition of physical components with use of RFID tags |
Cited By (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7656903B2 (en) | 2002-01-30 | 2010-02-02 | Panduit Corp. | System and methods for documenting networks with electronic modules |
US7080787B2 (en) * | 2003-07-03 | 2006-07-25 | Symbol Technologies, Inc. | Insert molded antenna |
US20050001767A1 (en) * | 2003-07-03 | 2005-01-06 | Thomas Wulff | Insert molded antenna |
US7486243B2 (en) | 2003-07-03 | 2009-02-03 | Symbol Technologies, Inc. | Insert molded antenna |
US7354001B2 (en) | 2003-07-03 | 2008-04-08 | Symbol Technologies, Inc. | Insert molded antenna |
US8325770B2 (en) | 2003-08-06 | 2012-12-04 | Panduit Corp. | Network managed device installation and provisioning technique |
US20050259930A1 (en) * | 2004-05-24 | 2005-11-24 | Elkins Robert B Ii | Methods and apparatus for facilitating cable locating |
US7197214B2 (en) * | 2004-05-24 | 2007-03-27 | Corning Cable Systems Llc | Methods and apparatus for facilitating cable locating |
US7297018B2 (en) | 2004-11-03 | 2007-11-20 | Panduit Corp. | Method and apparatus for patch panel patch cord documentation and revision |
US20060094291A1 (en) * | 2004-11-03 | 2006-05-04 | Caveney Jack E | Method and apparatus for patch panel patch cord documentation and revision |
US7756047B2 (en) | 2005-05-19 | 2010-07-13 | Panduit Corp. | Method and apparatus for documenting network paths |
US20060262727A1 (en) * | 2005-05-19 | 2006-11-23 | Panduit Corp. | Method and apparatus for documenting network paths |
US20080049627A1 (en) * | 2005-06-14 | 2008-02-28 | Panduit Corp. | Method and Apparatus for Monitoring Physical Network Topology Information |
WO2007011493A3 (en) * | 2005-07-18 | 2007-05-24 | Stratos Int Inc | Digital certificate on connectors and other products using rfid tags and/or labels as well as rfid reader/interrogator |
US8482421B2 (en) | 2005-08-08 | 2013-07-09 | Panduit Corp. | Systems and methods for detecting a patch cord end connection |
US7969320B2 (en) | 2005-08-08 | 2011-06-28 | Panduit Corp. | Systems and methods for detecting a patch cord end connection |
US9049499B2 (en) | 2005-08-26 | 2015-06-02 | Panduit Corp. | Patch field documentation and revision systems |
US7978845B2 (en) | 2005-09-28 | 2011-07-12 | Panduit Corp. | Powered patch panel |
US20090137152A1 (en) * | 2005-10-07 | 2009-05-28 | Matsushita Electric Works, Ltd. | Memory card socket |
US20070116411A1 (en) * | 2005-11-18 | 2007-05-24 | Mark Benton | Transceiver/fiber optic connector adaptor with patch cord id reading capability |
US7226217B1 (en) * | 2005-11-18 | 2007-06-05 | Stratos International, Inc. | Transceiver/fiber optic connector adaptor with patch cord ID reading capability |
US7811119B2 (en) | 2005-11-18 | 2010-10-12 | Panduit Corp. | Smart cable provisioning for a patch cord management system |
US7768418B2 (en) | 2005-12-06 | 2010-08-03 | Panduit Corp. | Power patch panel with guided MAC capability |
US20070207666A1 (en) * | 2006-02-14 | 2007-09-06 | Panduit Corp. | Method and Apparatus for Patch Panel Patch Cord Documentation and Revision |
US20070221730A1 (en) * | 2006-03-27 | 2007-09-27 | Mcreynolds Alan | RFID enabled cable tracking |
US7787823B2 (en) | 2006-09-15 | 2010-08-31 | Corning Cable Systems Llc | Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same |
US7848654B2 (en) | 2006-09-28 | 2010-12-07 | Corning Cable Systems Llc | Radio-over-fiber (RoF) wireless picocellular system with combined picocells |
US20080100440A1 (en) * | 2006-10-31 | 2008-05-01 | Downie John D | Radio frequency identification transponder for communicating condition of a component |
US9652709B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods |
US7782202B2 (en) | 2006-10-31 | 2010-08-24 | Corning Cable Systems, Llc | Radio frequency identification of component connections |
US8421626B2 (en) | 2006-10-31 | 2013-04-16 | Corning Cable Systems, Llc | Radio frequency identification transponder for communicating condition of a component |
US9652708B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods |
US7772975B2 (en) | 2006-10-31 | 2010-08-10 | Corning Cable Systems, Llc | System for mapping connections using RFID function |
US9652707B2 (en) | 2006-10-31 | 2017-05-16 | Fiber Mountain, Inc. | Radio frequency identification (RFID) connected tag communications protocol and related systems and methods |
US10032102B2 (en) | 2006-10-31 | 2018-07-24 | Fiber Mountain, Inc. | Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods |
US7760094B1 (en) | 2006-12-14 | 2010-07-20 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US8264355B2 (en) | 2006-12-14 | 2012-09-11 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US7667574B2 (en) | 2006-12-14 | 2010-02-23 | Corning Cable Systems, Llc | Signal-processing systems and methods for RFID-tag signals |
US20080143486A1 (en) * | 2006-12-14 | 2008-06-19 | Downie John D | Signal-processing systems and methods for RFID-tag signals |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
US9130613B2 (en) | 2006-12-19 | 2015-09-08 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
US20080159738A1 (en) * | 2006-12-29 | 2008-07-03 | Lavranchuk James S | Identifiable fibers optics |
US8210755B2 (en) * | 2006-12-29 | 2012-07-03 | Alcatel Lucent | Identifiable fiber optics |
US8111998B2 (en) | 2007-02-06 | 2012-02-07 | Corning Cable Systems Llc | Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems |
US20080220721A1 (en) * | 2007-03-09 | 2008-09-11 | Downie John D | Passive RFID elements having visual indicators |
US7965186B2 (en) | 2007-03-09 | 2011-06-21 | Corning Cable Systems, Llc | Passive RFID elements having visual indicators |
US8867919B2 (en) | 2007-07-24 | 2014-10-21 | Corning Cable Systems Llc | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
US7855697B2 (en) | 2007-08-13 | 2010-12-21 | Corning Cable Systems, Llc | Antenna systems for passive RFID tags |
US8175459B2 (en) | 2007-10-12 | 2012-05-08 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
US8718478B2 (en) | 2007-10-12 | 2014-05-06 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
US8477031B2 (en) | 2007-10-19 | 2013-07-02 | Panduit Corp. | Communication port identification system |
US8644844B2 (en) | 2007-12-20 | 2014-02-04 | Corning Mobileaccess Ltd. | Extending outdoor location based services and applications into enclosed areas |
US9866458B2 (en) | 2008-02-21 | 2018-01-09 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US8715001B2 (en) | 2008-02-21 | 2014-05-06 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US8419465B2 (en) | 2008-02-21 | 2013-04-16 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US8246397B2 (en) | 2008-02-21 | 2012-08-21 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US7938700B2 (en) | 2008-02-21 | 2011-05-10 | Panduit Corp. | Intelligent inter-connect and cross-connect patching system |
US8248208B2 (en) | 2008-07-15 | 2012-08-21 | Corning Cable Systems, Llc. | RFID-based active labeling system for telecommunication systems |
US8731405B2 (en) | 2008-08-28 | 2014-05-20 | Corning Cable Systems Llc | RFID-based systems and methods for collecting telecommunications network information |
US9058529B2 (en) | 2008-08-28 | 2015-06-16 | Corning Optical Communications LLC | RFID-based systems and methods for collecting telecommunications network information |
US8414319B2 (en) | 2008-11-12 | 2013-04-09 | Panduit Corp. | Patch cord with insertion detection and light illumination capabilities |
US8267706B2 (en) | 2008-11-12 | 2012-09-18 | Panduit Corp. | Patch cord with insertion detection and light illumination capabilities |
US8708724B2 (en) | 2008-11-12 | 2014-04-29 | Panduit Corp. | Patch cord insertion detection and light illumination capabilities |
US10516580B2 (en) | 2008-12-22 | 2019-12-24 | Panduit Corp. | Physical infrastructure management system |
US8306935B2 (en) | 2008-12-22 | 2012-11-06 | Panduit Corp. | Physical infrastructure management system |
US8719205B2 (en) | 2008-12-22 | 2014-05-06 | Panduit Corp. | Physical infrastructure management system |
US9026486B2 (en) | 2008-12-22 | 2015-05-05 | Panduit Corp. | Physical infrastructure management system |
US9112611B2 (en) | 2009-02-03 | 2015-08-18 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US10153841B2 (en) | 2009-02-03 | 2018-12-11 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US10128951B2 (en) | 2009-02-03 | 2018-11-13 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
US9900097B2 (en) | 2009-02-03 | 2018-02-20 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US8128428B2 (en) | 2009-02-19 | 2012-03-06 | Panduit Corp. | Cross connect patch guidance system |
US8721360B2 (en) | 2009-02-19 | 2014-05-13 | Panduit Corp. | Methods for patch cord guidance |
US8382511B2 (en) | 2009-02-19 | 2013-02-26 | Panduit Corp. | Cross connect patch guidance system |
US20100245057A1 (en) * | 2009-03-31 | 2010-09-30 | Aravind Chamarti | Components, systems, and methods for associating sensor data with component location |
US8264366B2 (en) | 2009-03-31 | 2012-09-11 | Corning Incorporated | Components, systems, and methods for associating sensor data with component location |
US8548330B2 (en) | 2009-07-31 | 2013-10-01 | Corning Cable Systems Llc | Sectorization in distributed antenna systems, and related components and methods |
US9485022B2 (en) | 2009-11-13 | 2016-11-01 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
US9729238B2 (en) | 2009-11-13 | 2017-08-08 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
US9219879B2 (en) | 2009-11-13 | 2015-12-22 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
US9159012B2 (en) | 2009-11-30 | 2015-10-13 | Corning Incorporated | RFID condition latching |
US20110140856A1 (en) * | 2009-11-30 | 2011-06-16 | John David Downie | RFID Condition Latching |
US8831428B2 (en) | 2010-02-15 | 2014-09-09 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US9319138B2 (en) | 2010-02-15 | 2016-04-19 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
US10178005B2 (en) | 2010-04-29 | 2019-01-08 | Mertek Industries, Llc | Networking cable tracer system |
US9196975B2 (en) * | 2010-04-29 | 2015-11-24 | Mertek Industries, Llc | Networking cable tracer system |
US10785136B2 (en) | 2010-04-29 | 2020-09-22 | Mertek Industries, Llc | Networking cable tracer system |
US9577904B2 (en) | 2010-04-29 | 2017-02-21 | Mertek Industries, Llc | Networking cable tracer system |
US20130039624A1 (en) * | 2010-04-29 | 2013-02-14 | Christopher Briand Scherer | Networking Cable Tracer System |
US9270374B2 (en) | 2010-05-02 | 2016-02-23 | Corning Optical Communications LLC | Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US9042732B2 (en) | 2010-05-02 | 2015-05-26 | Corning Optical Communications LLC | Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods |
US9853732B2 (en) | 2010-05-02 | 2017-12-26 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US8333518B2 (en) | 2010-05-06 | 2012-12-18 | Corning Incorporated | Radio frequency identification (RFID) in communication connections, including fiber optic components |
US8172468B2 (en) | 2010-05-06 | 2012-05-08 | Corning Incorporated | Radio frequency identification (RFID) in communication connections, including fiber optic components |
US10014944B2 (en) | 2010-08-16 | 2018-07-03 | Corning Optical Communications LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US9037143B2 (en) | 2010-08-16 | 2015-05-19 | Corning Optical Communications LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US11671914B2 (en) | 2010-10-13 | 2023-06-06 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
US11212745B2 (en) | 2010-10-13 | 2021-12-28 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
US11224014B2 (en) | 2010-10-13 | 2022-01-11 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
US11178609B2 (en) | 2010-10-13 | 2021-11-16 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
US8913892B2 (en) | 2010-10-28 | 2014-12-16 | Coring Optical Communications LLC | Sectorization in distributed antenna systems, and related components and methods |
US9325429B2 (en) | 2011-02-21 | 2016-04-26 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
US9813164B2 (en) | 2011-02-21 | 2017-11-07 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
US10205538B2 (en) | 2011-02-21 | 2019-02-12 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
US20120274452A1 (en) * | 2011-04-26 | 2012-11-01 | Aravind Chamarti | Radio frequency (rf)-enabled latches and related components, assemblies, systems, and methods |
US9240835B2 (en) | 2011-04-29 | 2016-01-19 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
US9806797B2 (en) | 2011-04-29 | 2017-10-31 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
US9807722B2 (en) | 2011-04-29 | 2017-10-31 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
US10148347B2 (en) | 2011-04-29 | 2018-12-04 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
US9369222B2 (en) | 2011-04-29 | 2016-06-14 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
US9184843B2 (en) | 2011-04-29 | 2015-11-10 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
US9258052B2 (en) | 2012-03-30 | 2016-02-09 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9813127B2 (en) | 2012-03-30 | 2017-11-07 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US10349156B2 (en) | 2012-04-25 | 2019-07-09 | Corning Optical Communications LLC | Distributed antenna system architectures |
US10136200B2 (en) | 2012-04-25 | 2018-11-20 | Corning Optical Communications LLC | Distributed antenna system architectures |
US9165232B2 (en) | 2012-05-14 | 2015-10-20 | Corning Incorporated | Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems |
US9973968B2 (en) | 2012-08-07 | 2018-05-15 | Corning Optical Communications Wireless Ltd | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
US9621293B2 (en) | 2012-08-07 | 2017-04-11 | Corning Optical Communications Wireless Ltd | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
US9563832B2 (en) | 2012-10-08 | 2017-02-07 | Corning Incorporated | Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
US9531452B2 (en) | 2012-11-29 | 2016-12-27 | Corning Optical Communications LLC | Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs) |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
US10361782B2 (en) | 2012-11-30 | 2019-07-23 | Corning Optical Communications LLC | Cabling connectivity monitoring and verification |
US10050389B2 (en) | 2013-01-18 | 2018-08-14 | Mertek Industries, Llc | Field-terminable traceable cables, components, kits, and methods |
WO2014199136A1 (en) * | 2013-06-12 | 2014-12-18 | Tyco Electronics Uk Ltd. | Flexible rfid tag assembly |
US9974074B2 (en) | 2013-06-12 | 2018-05-15 | Corning Optical Communications Wireless Ltd | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
US11792776B2 (en) | 2013-06-12 | 2023-10-17 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
US11291001B2 (en) | 2013-06-12 | 2022-03-29 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
US9715157B2 (en) | 2013-06-12 | 2017-07-25 | Corning Optical Communications Wireless Ltd | Voltage controlled optical directional coupler |
US9526020B2 (en) | 2013-07-23 | 2016-12-20 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9967754B2 (en) | 2013-07-23 | 2018-05-08 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US10292056B2 (en) | 2013-07-23 | 2019-05-14 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
US10215935B2 (en) | 2013-08-21 | 2019-02-26 | Mertek Industries, Llc | Traceable networking cables with remote-released connectors |
US9810859B2 (en) | 2013-08-21 | 2017-11-07 | Mertek Industries, Llc | Traceable networking cables with remote-released connectors |
US10732364B2 (en) | 2013-08-21 | 2020-08-04 | Mertek Industries, Llc | Traceable networking cables with remote-released connectors |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
EP3147828A4 (de) * | 2014-05-23 | 2017-07-05 | ZTE Corporation | Passives rfid-etikett, optischer radiofrequenz-lese-/schreibkopf und rfid-system |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9807772B2 (en) | 2014-05-30 | 2017-10-31 | Corning Optical Communications Wireless Ltd. | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems |
US9929786B2 (en) | 2014-07-30 | 2018-03-27 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US10256879B2 (en) | 2014-07-30 | 2019-04-09 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US10397929B2 (en) | 2014-08-29 | 2019-08-27 | Corning Optical Communications LLC | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9929810B2 (en) | 2014-09-24 | 2018-03-27 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
US9788279B2 (en) | 2014-09-25 | 2017-10-10 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units |
US10522958B2 (en) | 2014-09-26 | 2019-12-31 | Hewlett Packard Enterprise Development Lp | Receptacle for connecting a multi-lane or one-lane cable |
US10096909B2 (en) | 2014-11-03 | 2018-10-09 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement |
US10523326B2 (en) | 2014-11-13 | 2019-12-31 | Corning Optical Communications LLC | Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals |
US10135533B2 (en) | 2014-11-13 | 2018-11-20 | Corning Optical Communications Wireless Ltd | Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals |
US20170315167A1 (en) * | 2014-12-01 | 2017-11-02 | Xiaoyang Bai | Patch cord and management system and management method thereof |
US10132851B2 (en) * | 2014-12-01 | 2018-11-20 | Corning Research & Development Corporation | Patch cord and management system and management method thereof |
US10135561B2 (en) | 2014-12-11 | 2018-11-20 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
US10110308B2 (en) | 2014-12-18 | 2018-10-23 | Corning Optical Communications Wireless Ltd | Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10187151B2 (en) | 2014-12-18 | 2019-01-22 | Corning Optical Communications Wireless Ltd | Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10523327B2 (en) | 2014-12-18 | 2019-12-31 | Corning Optical Communications LLC | Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10361783B2 (en) | 2014-12-18 | 2019-07-23 | Corning Optical Communications LLC | Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
US10193277B2 (en) | 2015-02-18 | 2019-01-29 | Hewlett Packard Enterprise Development Lp | Pull-tabs for disengaging a cable assembly from a receptacle |
US9807700B2 (en) | 2015-02-19 | 2017-10-31 | Corning Optical Communications Wireless Ltd | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
US10292114B2 (en) | 2015-02-19 | 2019-05-14 | Corning Optical Communications LLC | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
US10741963B2 (en) * | 2015-02-27 | 2020-08-11 | Hewlett Packard Enterprise Development Lp | Cable assembly with conjoined one-lane cable assemblies |
US20180034192A1 (en) * | 2015-02-27 | 2018-02-01 | Hewlett Packard Enterprise Development Lp | Cable assembly with conjoined one-lane cable assemblies |
US10009094B2 (en) | 2015-04-15 | 2018-06-26 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US10389068B2 (en) | 2015-04-29 | 2019-08-20 | Hewlett Packard Enterprise Development Lp | Multiple cable housing assembly |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
US11689247B2 (en) | 2019-01-16 | 2023-06-27 | Mertek Industries, Llc | Patch cord including wireless components |
Also Published As
Publication number | Publication date |
---|---|
US20050232636A1 (en) | 2005-10-20 |
EP1733335A2 (de) | 2006-12-20 |
ATE513272T1 (de) | 2011-07-15 |
EP1733335A4 (de) | 2008-06-18 |
US20050231325A1 (en) | 2005-10-20 |
WO2005099136A3 (en) | 2005-12-15 |
EP1733335B1 (de) | 2011-06-15 |
WO2005099136A2 (en) | 2005-10-20 |
US7458517B2 (en) | 2008-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7458517B2 (en) | Radio frequency identification of a connector by a patch panel or other similar structure | |
US7165728B2 (en) | Radio frequency identification for transfer of component information in fiber optic testing | |
US20070013487A1 (en) | Digital certificate on connectors and other products using RFID tags and/or labels as well as RFID reader/interrogator | |
US7336883B2 (en) | Indexing optical fiber adapter | |
US7243837B2 (en) | Media converter RFID security tag | |
US7226217B1 (en) | Transceiver/fiber optic connector adaptor with patch cord ID reading capability | |
US8428405B2 (en) | Electrically traceable and identifiable fiber optic cables and connectors | |
US9946037B2 (en) | RFID-enabled optical adapter for use with a patch panel | |
US8333518B2 (en) | Radio frequency identification (RFID) in communication connections, including fiber optic components | |
CN102405476A (zh) | 用于识别至少一个对象的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STRATOS INTERNATIONAL, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DURRANT, RICHARD C. E.;FITZGIBBON, MAURICE;REEL/FRAME:015555/0642;SIGNING DATES FROM 20040628 TO 20040702 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |