US20050221205A1 - Method for fabricating color filter substrate - Google Patents

Method for fabricating color filter substrate Download PDF

Info

Publication number
US20050221205A1
US20050221205A1 US11/095,539 US9553905A US2005221205A1 US 20050221205 A1 US20050221205 A1 US 20050221205A1 US 9553905 A US9553905 A US 9553905A US 2005221205 A1 US2005221205 A1 US 2005221205A1
Authority
US
United States
Prior art keywords
film
color filter
mask
patterns
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/095,539
Other versions
US7615320B2 (en
Inventor
Young Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Philips LCD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Philips LCD Co Ltd filed Critical LG Philips LCD Co Ltd
Assigned to LG.PHILIPS LCD CO., LTD. reassignment LG.PHILIPS LCD CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, YOUNG SEOK
Publication of US20050221205A1 publication Critical patent/US20050221205A1/en
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LG.PHILIPS LCD CO., LTD.
Priority to US12/588,052 priority Critical patent/US8580467B2/en
Application granted granted Critical
Publication of US7615320B2 publication Critical patent/US7615320B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Definitions

  • the present invention relates to a method for fabricating a liquid crystal display (LCD) device, and more particularly, to a method for fabricating a color filter substrate.
  • LCD liquid crystal display
  • LCD liquid crystal displays
  • ELD electroluminescence displays
  • VFD vacuum fluorescent displays
  • PDP plasma display panels
  • the LCD device has been most widely used due to the advantageous characteristics of thin profile, lightness in weight, and low power consumption. Accordingly, the LCD devices are used for a mobile-mounting type monitor and a monitor of a color television as well as a laptop computer and a pocket computer.
  • the LCD device having the aforementioned characteristics includes an upper substrate of a color filter array substrate, a lower substrate of a thin film transistor TFT array substrate, and a liquid crystal layer. At this time, the liquid crystal layer is formed between the lower and upper substrates, wherein the liquid crystal layer has the dielectric anisotropy.
  • the color filter substrate is comprised of a color filter layer having red R, green G and blue B color filter patterns, a black matrix layer, and a common electrode.
  • color filter layer has the R, G and B patterns arranged in order, to represent various colors.
  • the black matrix layer divides R, G and B cells, and prevents light from being incident on predetermined portions of the color filter substrate.
  • the common electrode provides a voltage to a liquid crystal cell.
  • FIG. 1A to FIG. 1G are cross sectional views of the process for fabricating a color filter substrate according to the related art.
  • a metal thin layer of chrom Cr, having an optical density OD of 3.5 or more, or an organic layer of carbon type is deposited on the glass substrate, and patterned by photolithography, thereby forming a black matrix 13 .
  • the black matrix 13 is formed in correspondence with an edge of a unit pixel region, and an area for forming a thin film transistor TFT, thereby preventing light from leaking through the edge of the unit pixel region and the area for forming the thin film transistor TFT, which have a relatively unstable electric field.
  • a color resist is coated on an entire surface of the glass substrate 11 including the black matrix 13 , to represent various colors. That is, a first color resist 14 a of a red color is coated to completely cover the entire surface of the black matrix 13 .
  • the first color resist 14 a having a changed photochemical structure by exposure, is cured at a high temperature of about 230° C., and then is dipped into a developing solution, thereby forming a first color pattern 15 a of red color.
  • the developing process may be performed in any one of dipping, puddle and shower spraying.
  • a second color resist 14 b of a green color is coated on the entire surface of the glass substrate having the first color pattern 15 a of red color. Then, after masking predetermined portions of the second color resist 14 b with the light-shielding parts of the mask 17 , ultraviolet rays are irradiated thereon, thereby partially exposing the second color resist 14 b. At this time, the mask 17 is the same one used when exposing the first color resist 14 a. That is, after exposing the first color resist 14 a, the mask 17 is shifted to expose the second color resist 14 b.
  • the second color resist 14 b having a changed photochemical structure by exposure, is developed, as shown in FIG. 1E , thereby forming a second color pattern 15 b of green color.
  • the second color pattern 15 b is formed in one pixel region adjacent to another pixel region having the first color pattern 15 a, wherein the black matrix 13 is formed between the two pixel regions of the first color pattern 15 a and the second color pattern 15 b.
  • a third color resist 14 c of a blue color is coated on the entire surface of the glass substrate including the second color pattern 15 b. Then, after masking predetermined portions of the third color resist 14 c with the light-shielding parts of the mask 17 , ultraviolet rays are irradiated thereon, thereby partially exposing the third color resist 14 c. At this time, the mask 17 is the same one-used when exposing the first and second color resists 14 a and 14 b. That is, after exposing the first and second color resists 14 a and 14 b, the mask 17 is shifter to expose the third color resist 14 c.
  • the third color resist 14 c having a changed photochemical structure by exposure, is developed, as shown in FIG. 1F , thereby forming a third color pattern 15 c of blue color.
  • the third color pattern 15 c is formed in one pixel region adjacent to another pixel region having the second color pattern 15 b, wherein the black matrix 13 is formed between the two pixel regions of the second color pattern 15 b and the third color pattern 15 c, thereby completing a color filter layer 15 of R, G and B patterns.
  • the color filter layer 115 is formed in order of R, G and B patterns.
  • a planarization layer is coated on the entire surface of the glass substrate including the color filter layer 15 , to protect the color filter layer 15 and to planarize the entire surface of the color filter layer 15 , thereby forming an overcoat layer 16 .
  • the planarization layer is formed in a method of coating acrylic resin or polyimide-type resin by spin coating.
  • a transparent electrode material such as ITO (Indium-Tin-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics, is deposited on the overcoat layer 16 by sputtering, thereby forming a common electrode 18 .
  • ITO Indium-Tin-Oxide
  • the common electrode 18 drives a liquid crystal cell with a pixel electrode formed on a TFT array substrate.
  • a common electrode is formed on a TFT array substrate, and a black matrix, a color filter layer and an overcoat layer are formed on a color filter substrate.
  • IPS In-Plane Switching
  • the method for fabricating the color filter substrate according to the related art has the following disadvantages.
  • the method for fabricating the color filter substrate it is necessary to change the color resist by R, G and B, in order to change the chromatic coordinates of the color filter layer. That is, the patterning process for forming the R, G and B patterns is performed several times. In addition, the overcoat layer is additionally formed to planarize the irregular color filter layer. Accordingly, the fabrication process is complicated, and the fabrication time increases.
  • the present invention is directed to a method for fabricating a color filter substrate that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method for fabricating a color filter substrate, to realize the simplified fabrication process by forming a film-type color filter layer.
  • a method for fabricating a color filter substrate includes preparing a mask having patterns for forming color filter layers and a black matrix layer; positioning the mask above a film, and irradiating light to the film through the mask; developing the film to form the film-type color filter layers and the black matrix layer; and adhering the developed film onto a substrate.
  • a method for fabricating a color filter substrate includes adhering a film onto a substrate; preparing a mask having patterns for forming color filter layers and a black matrix layer; positioning the mask above the film, and irradiating light to the film through the mask; and developing the film to form the film-type color filter layers and the black matrix layer.
  • a method for fabricating a color filter substrate includes preparing a mask having a light-transmitting part and a light-shielding part; positioning the mask above a film; irradiating visible rays of a first wavelength onto the film through the light-transmitting part of the mask; shifting the mask; irradiating visible rays of a second wavelength onto the film through the light-transmitting part of the mask; shifting the mask; irradiating visible rays of a third wavelength onto the film through the light-transmitting part of the mask; and forming film-type color filter layers by developing the film.
  • FIG. 1A to FIG. 1G are cross sectional views of the process for fabricating a color filter substrate according to the related art
  • FIG. 2A and FIG. 2B are cross sectional views of the process for fabricating a color filter substrate according to the first embodiment of the present invention
  • FIG. 3A and FIG. 3B are cross sectional views of the process for fabricating a color substrate according to the second embodiment of the present invention.
  • FIG. 4A and FIG. 4D are cross sectional views of the process for fabricating a color filter substrate according to the third embodiment of the present invention.
  • FIG. 2A and FIG. 2B are cross sectional views of the process for fabricating a color filter substrate according to the first embodiment of the present invention.
  • a mask 117 is positioned above a film 115 , and then light is irradiated onto the film 115 through the mask 117 , thereby exposing the film 115 with the same pattern as the mask 117 .
  • the film 115 is formed of a photosensitive material.
  • the mask 117 has a transparent substrate (not shown), a black pattern BL on the transparent substrate except a pixel region, and red R, green G and blue B patterns on the transparent substrate corresponding to the pixel region.
  • the exposure process may use visible rays and ultraviolet rays. That is, when light is irradiated to the mask 117 , R, G, B and BL colors are emitted to corresponding areas of R, G, B and BL on the mask 115 .
  • the exposed film 115 has the black matrix layer BM and the R, G and B color filter layers in the same pattern as the mask 117 . Accordingly, the black matrix layer BM substitutes for a related art black matrix, so that the fabrication process is simplified. In addition, it is possible to prevent misalignment between the black matrix layer and the color filter layer, or to prevent misalignment of the R, G and B patterns of the color filter layer, whereby it is unnecessary to perform a compensation process.
  • the film-type color filter layer is completed.
  • in order to change the chromatic coordinates there is a requirement for changing color resists.
  • a process for changing the chromatic coordinates is unnecessary, thereby simplifying the fabrication process.
  • the film 115 has the positive characteristics, whereby the pattern having the same colors as those of the mask pattern is formed on the film 115 .
  • the film 115 has the negative characteristics, the pattern having the opposite colors as those of the mask pattern, complementary colors, is formed on the film 115 .
  • substrates may be formed of various materials such as plastic, as well as glass.
  • the developed film 115 is adhered on a transparent substrate 111 by tape. Then, a common electrode 118 is formed on the film 115 , wherein the common electrode 118 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics, by sputtering.
  • a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide)
  • FIG. 3A and FIG. 3B are cross sectional views of the process for fabricating a color filter substrate according to the second embodiment of the present invention.
  • a mask 217 is positioned above a film 215 , and then light is irradiated onto the film 215 through the mask 217 , thereby exposing the film 215 with the same pattern as the mask 217 .
  • the film 215 is formed of a photosensitive material.
  • the film 215 has the negative characteristics, whereby the pattern having the opposite colors as those of the mask pattern, that is, complementary colors, is formed on the film 215 .
  • the pattern having the opposite colors as those of the mask pattern, that is, complementary colors is formed on the film 215 .
  • visible rays as well as ultraviolet rays may be used.
  • the mask 217 is provided with a light-shielding area having no color therein, and cyan C, magenta M and yellow Y patterns, wherein the light-shielding area corresponds to the edge of unit pixel region, and the C, M and Y patterns correspond to the respective pixel regions between the light-shielding areas.
  • the light-shielding layer is expressed as a black color on the developed negative film.
  • the exposed film 215 has the black matrix layer BM and the R, G and B color filter layers. That is, the R, G and B color filter layers are formed with the complementary colors of C, M and Y, and the black matrix layer BM is formed with the masked area of the light-shielding area. Accordingly, the fabrication process is simplified since there is no requirement for performing a process for fabricating an additional black matrix.
  • the film-type color filter layer is completed.
  • in order to change the chromatic coordinates there is a requirement for changing color resists. Howerver, in case of the present invention, a process for changing the chromatic coordinates is unnecessary, thereby simplifying the fabrication process.
  • substrates may be formed of various materials such as plastic, as well as glass.
  • the developed film 215 is adhered on a transparent substrate 211 by tape. Then, a common electrode 218 is formed on the film 215 , wherein the common electrode 218 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics by sputtering.
  • a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide)
  • FIG. 4A and FIG. 4D are cross sectional views of the process for fabricating a color filter substrate according to the third embodiment of the present invention.
  • a mask 317 is positioned above a film 315 . Then, in state a predetermined portion of the film 315 for forming a red color is exposed, visible rays of red color are irradiated to the predetermined portion of the film 315 for forming the red color, whereby a pattern of the red color is formed on the predetermined portion of the film 315 .
  • the film 315 is formed of a photosensitive material.
  • the mask 317 is shifted to a predetermined portion of the film 315 for forming a green color.
  • the predetermined portion of the film 315 for forming the green color is exposed, visible rays of green color are irradiated to the predetermined portion for the green color on the film 315 , whereby a pattern of the green color is formed on the predetermined portion of the film 315 .
  • the mask 317 is shifted to a predetermined portion of the film 315 for forming a blue color.
  • the predetermined portion of the film 315 for forming the blue color is exposed, visible rays of blue color are irradiated to the predetermined portion for the blue color on the film 315 , whereby a pattern of the blue color is formed on the predetermined portion of the film 315 .
  • the light having particular wavelengths is used in the aforementioned process. Except the case of using the ultraviolet rays with the visible rays, it is impossible to use the ultraviolet rays since the ultraviolet rays cannot represent the colors.
  • the patterns formed on the film 315 are in order of R, G and B. Also, the area formed between each of the R, G and B patterns, on which the light is not irradiated, is formed of a black matrix layer BM. Accordingly, it is unnecessary to perform an addition process for forming the black matrix layer, thereby simplifying the fabrication process.
  • the film 315 has the positive characteristics, whereby the pattern having the same colors as those of the mask pattern is formed on the film 315 .
  • the film 315 has the negative characteristics, it is possible to form the R, G and B patterns by irradiating the visible rays of cyan C, magenta M and yellow Y, complementary colors of the R, G and B, on the film 315 .
  • substrates may be formed of various materials such as plastic, as well as glass.
  • the developed film 315 is adhered on a transparent substrate 311 by tape.
  • a common electrode 118 is formed on the film 315 , wherein the common electrode 318 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductively and stable chemical and thermal characteristics by sputtering.
  • the common electrode 318 of the color filter substrate and a pixel electrode of a TFT array substrate drive liquid crystal cells.
  • the method for fabricating the color filter substrate according to the preferred embodiments of the present invention has the following advantages.
  • visible rays as well as ultraviolet rays may be used.
  • the black pattern BL of the film-type color filter layer substitutes for the related art black matrix layer, whereby it is unnecessary to form the additional black matrix layer, thereby simplifying the fabrication process.
  • the pattern of the mask is printed on the film, so that it is easy to form the color filter layer having the particular pattern.
  • substrates may be formed of various materials such as plastic, as well as glass.

Abstract

A method for fabricating a color filter substrate is disclosed, to realize the simplified fabrication process by forming a film-type color filter layer, which includes preparing a mask having patterns for forming color filter layers and a black matrix layer; positioning the mask above a film; irradiating light to the film through the mask; developing the film to form the film-type color filter layers and the black matrix layer; and adhering the developed film onto a substrate.

Description

  • This application claims the benefit of the Korean Application No. P2003-68812 filed on Oct. 2, 2003, which is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for fabricating a liquid crystal display (LCD) device, and more particularly, to a method for fabricating a color filter substrate.
  • 2. Discussion of the Related Art
  • With the recent development in display devices of advanced technology and skills such as high definition televisions, various flat display devices have been actively researched, for example, liquid crystal displays (LCD), electroluminescence displays (ELD), vacuum fluorescent displays (VFD), and plasma display panels (PDP), which can substitute for cathode ray tubes (CRT).
  • Among the various flat display devices, the LCD device has been most widely used due to the advantageous characteristics of thin profile, lightness in weight, and low power consumption. Accordingly, the LCD devices are used for a mobile-mounting type monitor and a monitor of a color television as well as a laptop computer and a pocket computer.
  • The LCD device having the aforementioned characteristics includes an upper substrate of a color filter array substrate, a lower substrate of a thin film transistor TFT array substrate, and a liquid crystal layer. At this time, the liquid crystal layer is formed between the lower and upper substrates, wherein the liquid crystal layer has the dielectric anisotropy.
  • In more detail, the color filter substrate is comprised of a color filter layer having red R, green G and blue B color filter patterns, a black matrix layer, and a common electrode. At this time, color filter layer has the R, G and B patterns arranged in order, to represent various colors. Then, the black matrix layer divides R, G and B cells, and prevents light from being incident on predetermined portions of the color filter substrate. Also, the common electrode provides a voltage to a liquid crystal cell. As the R, G and B patterns of the color filter layer are driven seperately, the color of one pixel is represented by combination of the three R, G and B patterns.
  • Hereinafter, a method for fabricating a color filter substrate according to the related art will be described with reference to the accompanying drawings.
  • FIG. 1A to FIG. 1G are cross sectional views of the process for fabricating a color filter substrate according to the related art.
  • First, after cleaning a glass substrate 11, as shown in FIG. 1A, a metal thin layer of chrom Cr, having an optical density OD of 3.5 or more, or an organic layer of carbon type is deposited on the glass substrate, and patterned by photolithography, thereby forming a black matrix 13.
  • The black matrix 13 is formed in correspondence with an edge of a unit pixel region, and an area for forming a thin film transistor TFT, thereby preventing light from leaking through the edge of the unit pixel region and the area for forming the thin film transistor TFT, which have a relatively unstable electric field.
  • After forming the black matrix 13, a color resist is coated on an entire surface of the glass substrate 11 including the black matrix 13, to represent various colors. That is, a first color resist 14 a of a red color is coated to completely cover the entire surface of the black matrix 13.
  • Subsequently, as shown in FIG. 1B, after masking predetermined portions of the first color resist 14 a with light-shielding parts of a mask 17, ultraviolet rays are irradiated thereon, thereby partially exposing the first color resist 14 a.
  • Next, as shown in FIG. 1C, the first color resist 14 a, having a changed photochemical structure by exposure, is cured at a high temperature of about 230° C., and then is dipped into a developing solution, thereby forming a first color pattern 15 a of red color. At this time, the developing process may be performed in any one of dipping, puddle and shower spraying.
  • As shown in FIG. 1D, a second color resist 14 b of a green color is coated on the entire surface of the glass substrate having the first color pattern 15 a of red color. Then, after masking predetermined portions of the second color resist 14 b with the light-shielding parts of the mask 17, ultraviolet rays are irradiated thereon, thereby partially exposing the second color resist 14 b. At this time, the mask 17 is the same one used when exposing the first color resist 14 a. That is, after exposing the first color resist 14 a, the mask 17 is shifted to expose the second color resist 14 b.
  • The second color resist 14 b, having a changed photochemical structure by exposure, is developed, as shown in FIG. 1E, thereby forming a second color pattern 15 b of green color.
  • The second color pattern 15 b is formed in one pixel region adjacent to another pixel region having the first color pattern 15 a, wherein the black matrix 13 is formed between the two pixel regions of the first color pattern 15 a and the second color pattern 15 b.
  • Subsequently, a third color resist 14 c of a blue color is coated on the entire surface of the glass substrate including the second color pattern 15 b. Then, after masking predetermined portions of the third color resist 14 c with the light-shielding parts of the mask 17, ultraviolet rays are irradiated thereon, thereby partially exposing the third color resist 14 c. At this time, the mask 17 is the same one-used when exposing the first and second color resists 14 a and 14 b. That is, after exposing the first and second color resists 14 a and 14 b, the mask 17 is shifter to expose the third color resist 14 c.
  • The third color resist 14 c, having a changed photochemical structure by exposure, is developed, as shown in FIG. 1F, thereby forming a third color pattern 15 c of blue color.
  • The third color pattern 15 c is formed in one pixel region adjacent to another pixel region having the second color pattern 15 b, wherein the black matrix 13 is formed between the two pixel regions of the second color pattern 15 b and the third color pattern 15 c, thereby completing a color filter layer 15 of R, G and B patterns.
  • Generally, the color filter layer 115 is formed in order of R, G and B patterns.
  • After that, as shown in FIG. 1G, a planarization layer is coated on the entire surface of the glass substrate including the color filter layer 15, to protect the color filter layer 15 and to planarize the entire surface of the color filter layer 15, thereby forming an overcoat layer 16. At this time, the planarization layer is formed in a method of coating acrylic resin or polyimide-type resin by spin coating.
  • Then, a transparent electrode material such as ITO (Indium-Tin-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics, is deposited on the overcoat layer 16 by sputtering, thereby forming a common electrode 18. When forming the common electrode 18, it is unnecessary to perform an additional patterning process. The common electrode 18 drives a liquid crystal cell with a pixel electrode formed on a TFT array substrate.
  • Accordingly, it is possible to complete a color filter substrate having the black matrix 13, the color filter layer 15, the overcoat layer 16 and the common electrode 18.
  • For reference, in case of an In-Plane Switching (IPS) mode LCD device, a common electrode is formed on a TFT array substrate, and a black matrix, a color filter layer and an overcoat layer are formed on a color filter substrate.
  • However, the method for fabricating the color filter substrate according to the related art has the following disadvantages.
  • In case of the method for fabricating the color filter substrate according to the related art, it is necessary to change the color resist by R, G and B, in order to change the chromatic coordinates of the color filter layer. That is, the patterning process for forming the R, G and B patterns is performed several times. In addition, the overcoat layer is additionally formed to planarize the irregular color filter layer. Accordingly, the fabrication process is complicated, and the fabrication time increases.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a method for fabricating a color filter substrate that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method for fabricating a color filter substrate, to realize the simplified fabrication process by forming a film-type color filter layer.
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for fabricating a color filter substrate includes preparing a mask having patterns for forming color filter layers and a black matrix layer; positioning the mask above a film, and irradiating light to the film through the mask; developing the film to form the film-type color filter layers and the black matrix layer; and adhering the developed film onto a substrate.
  • In another aspect, a method for fabricating a color filter substrate includes adhering a film onto a substrate; preparing a mask having patterns for forming color filter layers and a black matrix layer; positioning the mask above the film, and irradiating light to the film through the mask; and developing the film to form the film-type color filter layers and the black matrix layer.
  • In another aspect, a method for fabricating a color filter substrate includes preparing a mask having a light-transmitting part and a light-shielding part; positioning the mask above a film; irradiating visible rays of a first wavelength onto the film through the light-transmitting part of the mask; shifting the mask; irradiating visible rays of a second wavelength onto the film through the light-transmitting part of the mask; shifting the mask; irradiating visible rays of a third wavelength onto the film through the light-transmitting part of the mask; and forming film-type color filter layers by developing the film.
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • FIG. 1A to FIG. 1G are cross sectional views of the process for fabricating a color filter substrate according to the related art;
  • FIG. 2A and FIG. 2B are cross sectional views of the process for fabricating a color filter substrate according to the first embodiment of the present invention;
  • FIG. 3A and FIG. 3B are cross sectional views of the process for fabricating a color substrate according to the second embodiment of the present invention; and
  • FIG. 4A and FIG. 4D are cross sectional views of the process for fabricating a color filter substrate according to the third embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • Hereinafter, a method for fabricating a color filter substrate according to the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
  • First Embodiment
  • FIG. 2A and FIG. 2B are cross sectional views of the process for fabricating a color filter substrate according to the first embodiment of the present invention.
  • First, as shown in FIG. 2A, a mask 117 is positioned above a film 115, and then light is irradiated onto the film 115 through the mask 117, thereby exposing the film 115 with the same pattern as the mask 117. Herein, the film 115 is formed of a photosensitive material.
  • At this time, the mask 117 has a transparent substrate (not shown), a black pattern BL on the transparent substrate except a pixel region, and red R, green G and blue B patterns on the transparent substrate corresponding to the pixel region.
  • By one exposure process of using the mask 117, it is possible to form a black matrix layer BM and R, G and B color filter layers at the same time. The exposure process may use visible rays and ultraviolet rays. That is, when light is irradiated to the mask 117, R, G, B and BL colors are emitted to corresponding areas of R, G, B and BL on the mask 115.
  • On completion of a development process, the exposed film 115 has the black matrix layer BM and the R, G and B color filter layers in the same pattern as the mask 117. Accordingly, the black matrix layer BM substitutes for a related art black matrix, so that the fabrication process is simplified. In addition, it is possible to prevent misalignment between the black matrix layer and the color filter layer, or to prevent misalignment of the R, G and B patterns of the color filter layer, whereby it is unnecessary to perform a compensation process.
  • In case of using the aforementioned mask 117, it is easy to form the color filter layer having a particular pattern. That is, since the mask of having the particular pattern is positioned above the film, and the particular pattern is printed onto the film, it is unnecessary to perform a complicated mask fabrication process according to the related art.
  • Accordingly, the film-type color filter layer is completed. In the related art, in order to change the chromatic coordinates, there is a requirement for changing color resists. However, in case of the present invention, a process for changing the chromatic coordinates is unnecessary, thereby simplifying the fabrication process.
  • In the meantime, the film 115 has the positive characteristics, whereby the pattern having the same colors as those of the mask pattern is formed on the film 115. At this time, if the film 115 has the negative characteristics, the pattern having the opposite colors as those of the mask pattern, complementary colors, is formed on the film 115.
  • Furthermore, in case of the related art, there is a requirement for performing a curing process before developing the exposed color resists. In the present invention, since the film-type color filter layer is not fabricated at a high temperature, substrates may be formed of various materials such as plastic, as well as glass.
  • As shown in FIG. 2B, the developed film 115 is adhered on a transparent substrate 111 by tape. Then, a common electrode 118 is formed on the film 115, wherein the common electrode 118 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics, by sputtering. At this time, the common electrode 118 of the color filter substrate and a pixel electrode of a TFT array substrate drive liquid crystal cells.
  • Also, it is unnecessary to form an additional overcoat layer since the film-type color filter layer has a flat surface, thereby decreasing the fabrication cost.
  • Herein, instead of adhering the film 115 on the transparent substrate 111 by tape, it is possible to print the pattern of the mask on the film 115 after adhering the film 115 on the transparent substrate 111.
  • As a result, it is possible to complete the color filter substrate having the film-type color filter layer and the common electrode, according to the first embodiment of the present invention.
  • Second Embodiment
  • FIG. 3A and FIG. 3B are cross sectional views of the process for fabricating a color filter substrate according to the second embodiment of the present invention.
  • First, as shown in FIG. 3A, a mask 217 is positioned above a film 215, and then light is irradiated onto the film 215 through the mask 217, thereby exposing the film 215 with the same pattern as the mask 217. Herein, the film 215 is formed of a photosensitive material.
  • At this time, the film 215 has the negative characteristics, whereby the pattern having the opposite colors as those of the mask pattern, that is, complementary colors, is formed on the film 215. In this case, in order to perform an exposure process, visible rays as well as ultraviolet rays may be used.
  • At this time, the mask 217 is provided with a light-shielding area having no color therein, and cyan C, magenta M and yellow Y patterns, wherein the light-shielding area corresponds to the edge of unit pixel region, and the C, M and Y patterns correspond to the respective pixel regions between the light-shielding areas. At this time, the light-shielding layer is expressed as a black color on the developed negative film.
  • By one exposure process of using the mask 217, it is possible to form a black matrix layer BM and R, G and B color filter layers at the same time. As light is irradiated to the mask 217, C, M and Y colors are emitted to corresponding areas of C, M and Y on the mask 215.
  • On completion of a development process, the exposed film 215 has the black matrix layer BM and the R, G and B color filter layers. That is, the R, G and B color filter layers are formed with the complementary colors of C, M and Y, and the black matrix layer BM is formed with the masked area of the light-shielding area. Accordingly, the fabrication process is simplified since there is no requirement for performing a process for fabricating an additional black matrix.
  • In addition, it is possible to prevent misalignment between the black matrix layer and the color filter layer, or to prevent misalignment of the R, G and B patterns of the color filter layer, whereby it is unnecessary to perform a compensation process.
  • Accordingly, the film-type color filter layer is completed. In the related art, in order to change the chromatic coordinates, there is a requirement for changing color resists. Howerver, in case of the present invention, a process for changing the chromatic coordinates is unnecessary, thereby simplifying the fabrication process.
  • Furthermore, in case of the related art, there is a requirement for performing a curing process before developing the exposed color resists. In the present invention, since the film-type color filter layer is not fabricated at a high temperature, substrates may be formed of various materials such as plastic, as well as glass.
  • As shown in FIG. 3B, the developed film 215 is adhered on a transparent substrate 211 by tape. Then, a common electrode 218 is formed on the film 215, wherein the common electrode 218 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductivity and stable chemical and thermal characteristics by sputtering. At this time, the common electrode 218 of the color filter substrate and a pixel electrode of a TFT array substrate drive liquid crystal cells.
  • Also, it is unnecessary to form an additional overcoat layer since the film-type color filter layer has a flat surface, thereby decreasing the fabrication cost.
  • Herein, instead of adhering the film 215 on the transparent substrate 211 by tape, it is possible to print the pattern of the mask on the film 215 after adhering the film 215 on the transparent substrate 211.
  • As a result, it is possible to complete the color filter substrate having the film-type color filter layer and the common electrode, according to the second embodiment of the present invention.
  • Third Embodiment
  • FIG. 4A and FIG. 4D are cross sectional views of the process for fabricating a color filter substrate according to the third embodiment of the present invention.
  • First, as shown in FIG. 4A, a mask 317 is positioned above a film 315. Then, in state a predetermined portion of the film 315 for forming a red color is exposed, visible rays of red color are irradiated to the predetermined portion of the film 315 for forming the red color, whereby a pattern of the red color is formed on the predetermined portion of the film 315. Herein, the film 315 is formed of a photosensitive material.
  • Next, as shown in FIG. 4B, the mask 317 is shifted to a predetermined portion of the film 315 for forming a green color. In state the predetermined portion of the film 315 for forming the green color is exposed, visible rays of green color are irradiated to the predetermined portion for the green color on the film 315, whereby a pattern of the green color is formed on the predetermined portion of the film 315.
  • After that, as shown in FIG. 4C, the mask 317 is shifted to a predetermined portion of the film 315 for forming a blue color. In state the predetermined portion of the film 315 for forming the blue color is exposed, visible rays of blue color are irradiated to the predetermined portion for the blue color on the film 315, whereby a pattern of the blue color is formed on the predetermined portion of the film 315.
  • At this time, since there is a requirement for using the visible rays having particular colors, the light having particular wavelengths is used in the aforementioned process. Except the case of using the ultraviolet rays with the visible rays, it is impossible to use the ultraviolet rays since the ultraviolet rays cannot represent the colors.
  • Subsequently, as developing the film 315 having the patterns of R, G and B thereon, it is possible to form the film-type color filter layer having the R, G and B patterns.
  • Generally, the patterns formed on the film 315 are in order of R, G and B. Also, the area formed between each of the R, G and B patterns, on which the light is not irradiated, is formed of a black matrix layer BM. Accordingly, it is unnecessary to perform an addition process for forming the black matrix layer, thereby simplifying the fabrication process.
  • In addition, it is possible to prevent misalignment between the black matrix layer and the color filter layer, or to prevent misalignment of the R, G and B patterns of the color filter layer, whereby it is unnecessary to perform a compensation process.
  • In the meantime, the film 315 has the positive characteristics, whereby the pattern having the same colors as those of the mask pattern is formed on the film 315. At this time, if the film 315 has the negative characteristics, it is possible to form the R, G and B patterns by irradiating the visible rays of cyan C, magenta M and yellow Y, complementary colors of the R, G and B, on the film 315.
  • Furthermore, in case of the related art, there is a requirement for performing a curing process before developing the exposed color resists. In the present invention, since the film-type color filter layer is not fabricated at a high temperature, substrates may be formed of various materials such as plastic, as well as glass.
  • As shown in FIG. 4B, the developed film 315 is adhered on a transparent substrate 311 by tape. Then, a common electrode 118 is formed on the film 315, wherein the common electrode 318 is formed in a method of depositing a transparent electrode material such as ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide), having great transmittance, high conductively and stable chemical and thermal characteristics by sputtering. At this time, the common electrode 318 of the color filter substrate and a pixel electrode of a TFT array substrate drive liquid crystal cells.
  • Also, it is unnecessary to form an additional overcoat layer since the film-type color filter layer has a flat surface, thereby decreasing the fabrication cost.
  • Herein, instead of adhering the film 315 on the transparent substrate 311 by tape, it is possible to print the pattern of the mask on the film 315 after adhering the film 315 on the transparent substrate 311.
  • As a result, it is possible to complete the color filter substrate having the film-type color filter layer and the common electrode, according to the third embodiment of the present invention.
  • As mentioned above, the method for fabricating the color filter substrate according to the preferred embodiments of the present invention has the following advantages.
  • First, in order to perform the exposure process, visible rays as well as ultraviolet rays may be used.
  • Also, the black pattern BL of the film-type color filter layer substitutes for the related art black matrix layer, whereby it is unnecessary to form the additional black matrix layer, thereby simplifying the fabrication process.
  • In addition, it is possible to prevent misalignment between the black matrix layer and the color filter layer, or to prevent misalignment of the R, G and B patterns of the color filter layer, whereby it is unnecessary to perform the compensation process.
  • In the related art, in order to change the chromatic coordinates, there is a requirement for changing color resists. However, in case of the present invention, the process for changing the chromatic coordinates is unnecessary, thereby simplifying the fabrication process.
  • In the method for fabricating the color filter substrate according to the present invention, the pattern of the mask is printed on the film, so that it is easy to form the color filter layer having the particular pattern.
  • In the present invention, since the film-type color filter layer is not fabricated at a high temperature, substrates may be formed of various materials such as plastic, as well as glass.
  • Also, there is no requirement for forming the additional overcoat layer since the film-type color filter layer has the flat surface, thereby decreasing the fabrication cost.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (24)

1. A method for fabricating a color filter substrate comprising:
preparing a mask having patterns for forming color filter layers and a black matrix layer;
positioning the mask above a film;
irradiating light onto the film through the mask;
developing the film to form the film-type color filter layers and the black matrix layer; and
adhering the developed film onto a substrate.
2. The method of claim 1, wherein the mask has a transparent substrate, and red R, green G and blue B patterns on the transparent substrate corresponding to a pixel region.
3. The method of claim 2, wherein the mask has a black pattern on the transparent substrate between each of red R, green G and blue B patterns.
4. The method of claim 2, wherein the film has the positive characteristics.
5. The method of claim 1, wherein the mask has a transparent substrate, and cyan C, magenta M and yellow Y patterns on the transparent substrate corresponding to a pixel region.
6. The method of claim 5, wherein the mask has a light-shielding layer between each of cyan C, magenta M and yellow Y patterns.
7. The method of claim 5, wherein the film has the negative characteristics.
8. The method of claim 1, wherein the light includes UV rays or visible rays.
9. The method of claim 1, further comprising:
forming a common electrode on the film-type color filter layers, after adhering the film-type color filter layers on the substrate.
10. A method for fabricating a color filter substrate comprising:
adhering a film onto a substrate;
preparing a mask having patterns for forming color filter layers and a black matrix layer;
positioning the mask above the film;
irradiating light onto the film through the mask; and
developing the film to form the film-type color filter layers and the black matrix layer.
11. The method of claim 10, wherein the mask has a transparent substrate, red R, green G, blue B patterns on the transparent substrate corresponding to a pixel region, and a black BL pattern on the transparent substrate between each of red R, green G and blue B patterns.
12. The method of claim 11, wherein the film has the positive characteristics.
13. The method of claim 10, wherein the mask has a transparent substrate, cyan C, magenta M and yellow Y patterns on the transparent substrate corresponding to a pixel region, and a light-shielding layer between each of the cyan C, magenta M and yellow Y patterns.
14. The method of claim 13, wherein the film has the negative characteristics.
15. The method of claim 10, wherein the light includes UV rays or visible rays.
16. The method of claim 10, further comprising:
forming a common electrode on the film-type color filter layers, after forming the film-type color filter layers and the black matrix layer.
17. A method for fabricating a color filter substrate comprising:
preparing a mask having a light-transmitting part and a light-shielding part;
positioning the mask above a film;
irradiating visible rays of a first wavelength onto the film through the light-transmitting part of the mask;
shifting the mask;
irradiating visible rays of a second wavelength onto the film through the light-transmitting part of the mask;
shifting the mask;
irradiating visible rays of a third wavelength onto the film through the light-transmitting part of the mask; and
forming film-type color filter layers by developing the film.
18. The method of claim 17, wherein the film has the positive characteristics.
19. The method of 18, wherein the visible rays of the first, second and third wavelengths correspond to red R, green G and blue B colors, respectively.
20. The method of claim 17, wherein the film has the negative characteristics.
21. The method of claim 20, wherein the visible rays of the first, second and third wavelengths correspond to cyan C, magenta M and yellow Y, respectively.
22. The method of claim 17, further comprising:
forming a common electrode on the film-type color filter layer.
23. The method of claim 17, further comprising:
adhering the film-type color filter layer on a substrate, after forming the film-type color filter layer.
24. The method of claim 17, wherein the film is adhered on the substrate, before positioning the mask above the film.
US11/095,539 2003-10-02 2005-04-01 Method for fabricating color filler substrate Expired - Fee Related US7615320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/588,052 US8580467B2 (en) 2003-10-02 2009-10-01 Method for fabricating color filter substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KRP2003-68812 2003-10-02
KR1020030068812A KR100672645B1 (en) 2003-10-02 2003-10-02 Method For Fabricating A Color Filter Substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/588,052 Division US8580467B2 (en) 2003-10-02 2009-10-01 Method for fabricating color filter substrate

Publications (2)

Publication Number Publication Date
US20050221205A1 true US20050221205A1 (en) 2005-10-06
US7615320B2 US7615320B2 (en) 2009-11-10

Family

ID=35054738

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/095,539 Expired - Fee Related US7615320B2 (en) 2003-10-02 2005-04-01 Method for fabricating color filler substrate
US12/588,052 Expired - Fee Related US8580467B2 (en) 2003-10-02 2009-10-01 Method for fabricating color filter substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/588,052 Expired - Fee Related US8580467B2 (en) 2003-10-02 2009-10-01 Method for fabricating color filter substrate

Country Status (2)

Country Link
US (2) US7615320B2 (en)
KR (1) KR100672645B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136656A2 (en) * 2006-05-19 2007-11-29 Eastman Kodak Company Colored masking for forming transparent structures
WO2009067154A1 (en) * 2007-11-20 2009-05-28 Eastman Kodak Company Multicolored mask process for making display circuitry
WO2012162933A1 (en) * 2011-06-03 2012-12-06 深圳市华星光电技术有限公司 Method for manufacturing color filter substrate, optical mask, and photoreaction layer
CN104965337A (en) * 2015-07-21 2015-10-07 深圳市华星光电技术有限公司 Color filter preparation method
US20150316843A1 (en) * 2014-05-04 2015-11-05 Shenzhen China Star Optoelectronics Technology Co. Ltd. Color filter and method of making the same
CN106940490A (en) * 2017-05-17 2017-07-11 京东方科技集团股份有限公司 A kind of color membrane substrates and preparation method thereof, display device
CN107870472A (en) * 2016-09-22 2018-04-03 三星显示有限公司 Display device and its manufacture method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588866B2 (en) 2005-06-01 2009-09-15 Kinoptics Technologies Inc. Filter arrays for liquid crystal displays and methods of making the same
KR100791022B1 (en) * 2005-06-03 2008-01-03 세끼스이화인켐 주식회사 Method of taking shape simultaneously both column spacer and overcoat on color filter of LCD and negative photoresist composition usable thereto
KR101222953B1 (en) * 2005-11-28 2013-01-17 엘지디스플레이 주식회사 Method For Fabricating Color Filter Array Substrate
CN102819155A (en) * 2012-09-14 2012-12-12 深圳市华星光电技术有限公司 Dual-TFT (Thin Film Transistor) substrate blue phase liquid crystal display panel
US9128340B2 (en) 2012-09-14 2015-09-08 Shenzhen China Star Optoelectronics Technology Co., Ltd. Dual-TFT-substrate blue-phase liquid crystal display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462822A (en) * 1993-03-11 1995-10-31 Agfa-Gevaert N. V. Photographic print material suited for the production of a multicolor liquid crystal display
US5800953A (en) * 1995-11-22 1998-09-01 Fuji Photo Film Co., Ltd. Method for producing color filter using a silver halide color photosensitive material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042921B2 (en) * 1979-12-25 1985-09-25 富士写真フイルム株式会社 Color filter manufacturing method
JPS60221728A (en) * 1984-04-18 1985-11-06 Sanyo Electric Co Ltd Liquid crystal display device
DE68917911T2 (en) * 1989-04-13 1995-01-26 Agfa Gevaert Nv Method of manufacturing a multicolor liquid crystal display device.
JPH07244212A (en) * 1994-01-11 1995-09-19 Fuji Photo Film Co Ltd Photosensitive material for color filter and production of color filter using the same
JPH0954207A (en) * 1995-08-16 1997-02-25 Sony Corp Production of color filter of display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462822A (en) * 1993-03-11 1995-10-31 Agfa-Gevaert N. V. Photographic print material suited for the production of a multicolor liquid crystal display
US5800953A (en) * 1995-11-22 1998-09-01 Fuji Photo Film Co., Ltd. Method for producing color filter using a silver halide color photosensitive material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136656A2 (en) * 2006-05-19 2007-11-29 Eastman Kodak Company Colored masking for forming transparent structures
WO2007136656A3 (en) * 2006-05-19 2008-07-10 Eastman Kodak Co Colored masking for forming transparent structures
WO2009067154A1 (en) * 2007-11-20 2009-05-28 Eastman Kodak Company Multicolored mask process for making display circuitry
EP2256554A3 (en) * 2007-11-20 2011-07-06 Eastman Kodak Company Multicolored mask process for making display circuitry
WO2012162933A1 (en) * 2011-06-03 2012-12-06 深圳市华星光电技术有限公司 Method for manufacturing color filter substrate, optical mask, and photoreaction layer
US20150316843A1 (en) * 2014-05-04 2015-11-05 Shenzhen China Star Optoelectronics Technology Co. Ltd. Color filter and method of making the same
US9494719B2 (en) * 2014-05-04 2016-11-15 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color filter and method of making the same
CN104965337A (en) * 2015-07-21 2015-10-07 深圳市华星光电技术有限公司 Color filter preparation method
US10073292B2 (en) * 2015-07-21 2018-09-11 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color filter and method for manufacturing the same
CN107870472A (en) * 2016-09-22 2018-04-03 三星显示有限公司 Display device and its manufacture method
CN106940490A (en) * 2017-05-17 2017-07-11 京东方科技集团股份有限公司 A kind of color membrane substrates and preparation method thereof, display device
WO2018210168A1 (en) * 2017-05-17 2018-11-22 京东方科技集团股份有限公司 Color film substrate, preparation method thereof and display device
US10908332B2 (en) 2017-05-17 2021-02-02 Beijing Boe Optoelectronics Technology Co., Ltd. Color film substrate, method for manufacturing the same, and display device

Also Published As

Publication number Publication date
US7615320B2 (en) 2009-11-10
KR100672645B1 (en) 2007-01-23
US8580467B2 (en) 2013-11-12
US20100055583A1 (en) 2010-03-04
KR20050032836A (en) 2005-04-08

Similar Documents

Publication Publication Date Title
US8580467B2 (en) Method for fabricating color filter substrate
US7212262B2 (en) Liquid crystal display device and method of fabricating the same
US7826010B2 (en) Color filter substrate and method of manufacturing the same
US20090161047A1 (en) Color filter substrate for liquid crystal display and method for manufacturing the same
US7639321B2 (en) Method of manufacturing a color filter substrate with trenches for a black matrix
US20050110922A1 (en) Color filter panel and its fabrication method using back exposure
US8228466B2 (en) Color filter array panel and method for fabricating the same
KR20070071293A (en) Liquid crystal display device and fabricating method
KR102003269B1 (en) Method of manufacturing an optical filter and method of manufacturing an organic light emitting display device having an optical filter
US5783338A (en) Method for manufacturing black matrix of active matrix liquid crystal display
US7470491B2 (en) Method of fabricating color filter panel using back exposure and structure of color filter panel
KR101222953B1 (en) Method For Fabricating Color Filter Array Substrate
JP2008083364A (en) Color filter and manufacturing method thereof
KR101022552B1 (en) Device and the fabrication method for lcd
US20070148565A1 (en) Method for manufacturing a color filter
CN100456099C (en) Liquid crystal display device
KR20070065065A (en) Method for manufacturing transflective type liquid crystal display device
KR0145904B1 (en) Color filter and its manufacturing method for liquid crystal display
KR20070076286A (en) Color filter substrate and method of manufacturing the same
US7316873B2 (en) Method of manufacturing color filter substrate of liquid crystal display device
US7378200B2 (en) Method of fabricating color filter substrate
JP2009181089A (en) Color filter
KR100710141B1 (en) Method for fabricating a color filter substrate
KR101107707B1 (en) Method For Fabricating Liquid Crystal Display Device
KR960014295B1 (en) Color filter fabrication method for lcd device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG.PHILIPS LCD CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, YOUNG SEOK;REEL/FRAME:016714/0504

Effective date: 20050613

AS Assignment

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20211110