US20050204638A1 - Polishing composition and polishing method - Google Patents
Polishing composition and polishing method Download PDFInfo
- Publication number
- US20050204638A1 US20050204638A1 US11/083,565 US8356505A US2005204638A1 US 20050204638 A1 US20050204638 A1 US 20050204638A1 US 8356505 A US8356505 A US 8356505A US 2005204638 A1 US2005204638 A1 US 2005204638A1
- Authority
- US
- United States
- Prior art keywords
- polishing
- polishing composition
- conductor layer
- alumina
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 171
- 239000000203 mixture Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims description 14
- 239000004020 conductor Substances 0.000 claims abstract description 67
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 61
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 239000011347 resin Substances 0.000 claims abstract description 43
- 239000008139 complexing agent Substances 0.000 claims abstract description 28
- 239000007800 oxidant agent Substances 0.000 claims abstract description 19
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 17
- 235000008206 alpha-amino acids Nutrition 0.000 claims abstract description 15
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 15
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 27
- 229910052802 copper Inorganic materials 0.000 claims description 27
- 239000010949 copper Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 36
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 28
- 239000003822 epoxy resin Substances 0.000 description 15
- 229920000647 polyepoxide Polymers 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000006872 improvement Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 7
- 239000004471 Glycine Substances 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- -1 thyrosin Chemical compound 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- IVWWFWFVSWOTLP-YVZVNANGSA-N (3'as,4r,7'as)-2,2,2',2'-tetramethylspiro[1,3-dioxolane-4,6'-4,7a-dihydro-3ah-[1,3]dioxolo[4,5-c]pyran]-7'-one Chemical compound C([C@@H]1OC(O[C@@H]1C1=O)(C)C)O[C@]21COC(C)(C)O2 IVWWFWFVSWOTLP-YVZVNANGSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical compound CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- ZBALFGIGLVIXBV-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].OC(=O)CCC([O-])=O ZBALFGIGLVIXBV-UHFFFAOYSA-N 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910001648 diaspore Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000837 restrainer Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/26—Cleaning or polishing of the conductive pattern
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/025—Abrading, e.g. grinding or sand blasting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0779—Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
- H05K2203/0786—Using an aqueous solution, e.g. for cleaning or during drilling of holes
- H05K2203/0796—Oxidant in aqueous solution, e.g. permanganate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/12—Using specific substances
- H05K2203/121—Metallo-organic compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/04—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
- H05K3/045—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by making a conductive layer having a relief pattern, followed by abrading of the raised portions
Definitions
- the present invention relates to a polishing composition used, for example, in polishing for forming conductor wiring for a circuit board, and to a polishing method using such a polishing composition.
- a damascene process wherein a chemical mechanical polishing (CMP) technology is used has become the main method for forming conductor wiring for a circuit board.
- CMP chemical mechanical polishing
- a conductor layer is formed so that at least the trenches is filled with the conductor layer.
- at least a portion of the conductor layer positioned outside the trenches is removed by polishing so that a portion of the resin section between adjacent trenches is exposed. In this way, at least a part of the portion of the conductor layer positioned inside the trenches remains on the resin section, and the portion of the conductor layer which remains functions as conductor wiring.
- a polishing composition disclosed in Japanese Laid-Open Patent Publication No. 2003-257910 is used in polishing for forming conductor wiring.
- the polishing composition contains abrasive, a copper chelating agent, a copper etching agent, and an oxidizing agent.
- polishing rate of a conductor layer In order to enhance the efficiency of polishing for forming conductor wiring, it is important not only to raise the polishing quantity of a conductor layer per unit time (polishing rate of a conductor layer), but also to raise the polishing quantity of a resin section per unit time (polishing rate of a resin section). Nevertheless, the polishing composition described in Japanese Laid-Open Patent Publication No. 2003-257910 can polish a conductor layer in a high stock removal rate, but cannot polish a resin section in a high stock removal rate. Therefore, although the polishing rate of a conductor layer increases when the polishing composition is used in polishing for forming conductor wiring, the polishing rate of a resin section seldom improves.
- an object of the present invention is to provide a polishing composition which can raise the polishing rate of a conductor layer, and the polishing rate of a resin section.
- a polishing composition includes alumina, a complexing agent, and an oxidizing agent.
- the polishing composition is used in an application for polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer,
- the present invention also provides a polishing method.
- the method includes preparing the above polishing composition and polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer, by using the prepared polishing composition.
- FIGS. 1 and 2 are sectional views of an object to be polished for explaining a polishing method according to one embodiment of the present invention.
- FIGS. 1 and 2 An embodiment of the present invention will now be described with reference to FIGS. 1 and 2 .
- a conductor layer 13 is formed first on an insulating resin layer 11 (resin section) which is provided on a substrate 10 and has trenches 12 .
- the substrate 10 consists of, for example, ceramics or metal.
- the resin layer 11 may be formed with any of a glass epoxy resin, a polyimide resin, a paper epoxy resin, and a Bakelite resin.
- the trenches 12 are formed so as to have a predetermined designed pattern, for example, by well-known lithography technology and pattern-etching technology.
- the conductor layer 13 is formed on the resin layer 11 so as to fill at least the trenches 12 .
- the conductor layer 13 is formed, for example, by PVD, CVD, or plating, and consists of copper containing material such as copper, a copper-aluminum alloy, and a copper-titanium alloy.
- polishing for forming the conductor wiring 14 is performed by one time of polishing step.
- a polishing composition according to this embodiment contains alumina, a complexing agent, an oxidizing agent, and water, and is used in polishing for forming the conductor wiring 14 .
- Alumina in the polishing composition has a function of mechanically polishing an object to be polished.
- Alumina to be contained in the polishing composition may be produced by grinding and classification after heat-treating aluminum hydroxide, or it may be colloidal alumina or fumed alumina.
- the polishing composition may also contain two types of different alumina.
- the content of alumina in the polishing composition is preferably 0.1 mass % or more, more preferably 1 mass % or more, further preferably 5 mass % or more, and most preferably 7 mass % or more.
- the content of alumina is preferably 50 mass % or less, more preferably 30 mass % or less, and most preferably 20 mass % or less.
- the average particle diameter of the alumina measured by an electric resistance method is preferably 0.1 ⁇ m or more, and further preferably 1 ⁇ m or more.
- the average particle diameter of the alumina measured by the electric resistance method is preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
- the average particle diameter of the alumina measured by a laser diffraction method is preferably 0.1 ⁇ m or more.
- the average particle diameter of the alumina measured by the laser diffraction method is preferably 10 ⁇ m or less, and further preferably 1 ⁇ m or less.
- a complexing agent in the polishing composition has the function of catching metal generated in the polishing composition by the polishing of the conductor layer 13 and enhancing the polishing of the conductor layer 13 .
- a complexing agent to be contained in the polishing composition may be at least one compound selected from organic acids such as oxalic acid, citric acid, succinic acid, maleic acid, and tartaric acid; a-amino acids such as glycine and alanine; multiple valued amine such as ethylenediamine and triethylenetetramine; ammonia; and an ammonium salt.
- an ⁇ -amino acid, ammonia, or an ammonium salt is preferable since having a strong action of enhancing copper polishing when the conductor layer 13 consists of copper.
- At least one compound, selected from between the ammonia and ammonium salt, and the ⁇ -amino acid are contained as the complexing agent in the polishing composition.
- ⁇ -amino acids are neutral amino acids such as glycine, alanine, valine, leucine, isoleucine, alloisoleucine, serine, threonine, allothreonine, cysteine, methionine, phenylalanine, tryptophan, thyrosin, proline, and cystine; acidic amino acids such as glutamic acid and aspartic acid; and basic amino acids such as arginine and histidine. At least one compound is used among these. Especially, since procurement is easy and moreover the polishing rate of the conductor layer 13 is improved well, glycine and a-alanine acid are preferable, and glycine is more preferable.
- the ⁇ -amino acid may be any of an L-enantiomer and a D-enantiomer.
- the content of the ⁇ -amino acid in the polishing composition is preferably 0.01 mass % or more, and more preferably 0.1 mass % or more.
- the content of the ⁇ -amino acid is preferably 20 mass % or less, and is more preferably 10 mass % or less.
- ammonium salts are ammonium salts of inorganic acids such as ammonium carbonate, ammonium hydrogencarbonate, ammonium phosphate, ammonium nitrate, ammonium sulfate, and ammonium chloride; and ammonium salts of organic acids such as ammonium oxalate, ammonium citrate, succinic acid ammonium, and ammonium tartrate. At least one compound is used among these. Since ammonia has an action of polishing an object chemically and does not contain metal impurities, ammonia is preferable to be contained in the polishing composition as the complexing agent.
- sum of the content of the ammonia and ammonium salts in the polishing composition is preferably 0.1 mass % or more, and more preferably 1 mass % or more.
- the content is preferably 10 mass % or less, and more preferably 5 mass % or less.
- An oxidizing agent in the polishing composition makes the operation of enhancing the polishing of the conductor layer 13 by chemical polishing.
- An oxidizing agent to be contained in the polishing composition may be at least one compound selected from persulfuric acid, periodic acid, perchloric acid, peracetic acid, performic acid, nitric acid and a salt thereof, and hydrogen peroxide. Among them, hydrogen peroxide is preferable because hydrogen peroxide little contaminated with metal impurities is inexpensively and easily available.
- the content of the oxidizing agent in the polishing composition is preferably 0.01 mass % or more, more preferably 0.1 mass % or more, and further preferably 0.3 mass % or more.
- the content of the oxidizing agent is preferably 10 mass % or less, more preferably 6 mass % or less, and further preferably 3 mass % or less.
- Water in the polishing composition acts as a medium for dispersing or dissolving components in the polishing composition.
- Water to be contained in the polishing composition preferably contains as little impurity as possible so as not to hinder the actions of each component in the polishing composition, and preferably is deionized water, ultra pure water, or distilled water.
- the pH of the polishing composition is preferably 7 or more, more preferably 8.5 or more, and further preferably 9 or more.
- the pH is preferably less than 12, more preferably less than 11.5, and further preferably less than 11.
- the polishing composition contains at least one compound, selected from ammonia and ammonium salt, and an ⁇ -amino acid as the complexing agent, it is preferable to set the content of the complexing agent in consideration of the above-mentioned range of the pH.
- alumina sol may be added to the polishing composition according to this embodiment, as an aggregation restrainer.
- alumina sol is added to the polishing composition, it is possible to suppress the generation of hard caking, which becomes a cause of lowering the redispersibility of alumina, and the aggregation of alumina, which causes scratches generated on the polished object, because of an action of alumina sol dispersed colloidally in the polishing composition.
- alumina sol by dispersing hydrated alumina, such as boehmite, pseudo-boehmite, diaspore, gibbsite, and bayerite, or aluminum hydroxide colloidally in an aqueous acid.
- alumina sol obtained by dispersing boehmite or pseudo-boehmite in the aqueous acid is preferable.
- the content of alumina sol in the polishing composition is preferably 0.05 mass % or more, or preferably 0.1 mass % or more, and further preferably 0.5 mass % or more.
- the content of alumina sol is preferably 5 mass % or less, more preferably 3 mass % or less, and further preferably 2 mass % or less.
- the conductor layer 13 and resin layer 11 are mechanically polished by action of alumina in the polishing composition at a high stock removal rate.
- the polishing of the conductor layer 13 is performed at an especially high stock removal rate. Therefore, according to the polishing composition, it is possible to raise the polishing rate of the conductor layer 13 and the polishing rate of the resin layer 11 , and the efficiency of the polishing for forming the conductor wiring 14 improves.
- the polishing composition may be prepared by diluting a stock solution with water at the time of use.
- the stock solution is easy in storage and transportation.
- the polishing composition may be stored in the state where an oxidizing agent is separated from the other components.
- the polishing composition is provided for use after the oxidizing agent has been mixed with the other components. According to this, the oxidizing agent is prevented from decomposing in the polishing composition during storage.
- a well-known additive such as a surfactant, a thickener, an emulsifier, a antirust agent, a preservative, an antifungal agent, an antifoaming agent, and a pH adjuster may be added.
- the conductor layer 13 may be provided on a resin substrate (resin section) instead of being provided on the resin layer 11 provided on the substrate 10 .
- Each of an abrasive, a complexing agent, an oxidizing agent, and alumina sol was mixed to water as required in order to prepare polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8.
- the detail of the abrasive, complexing agent, oxidizing agent, and alumina sol in each polishing composition is as being shown in Table 1.
- measurements of pH of respective polishing compositions are -shown in Table 1.
- the unit of a value which indicates the content of each component in Table 1 is mass %.
- the average particle diameter of alumina was measured by the electric resistance method using “Coulter Multisizer” made by Beckman Coulter Inc., and the average particle diameters of colloidal alumina, fumed alumina, colloidal silica, and fumed silica were measured by the laser diffraction method using “N4 Plus Submicron Particle Sizer” made by Beckman Coulter Inc.
- G denotes glycine
- NH 3 denotes ammonia
- H 2 O 2 denotes hydrogen peroxide
- APS denotes ammonium sulfite
- a copper blanket-wafer and an epoxy resin blanket-wafers were polished for 1 minute under the following polishing conditions using respective polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8. Then, the polishing rate of copper and the polishing rate of epoxy resin were found on the basis of the following formulae. The results are shown in the column entitled “Polishing rate” of Table 2.
- each copper blanket-wafer has a copper film formed on an 8-inch silicon wafer with an electroplating method
- each epoxy resin blanket-wafer has a film consisting of an epoxy resin (ABF by Ajinomoto Co., Inc.) on an 8-inch silicon wafer with spin coating.
- Polishing apparatus single-sided CMP polishing machine, “ARW” made by MAT Corporation,
- Polishing pad multilayered polishing pad “IC-1000/Suba400” made of polyurethane and made by Rodel Corporation,
- Polishing pressure 28 kPa (about 6 psi)
- Feed rate of polishing composition 140 mL/min
- Rotational frequency of carrier for supporting wafer 95 min ⁇ 1
- Polishing rate of copper [ ⁇ m/min] (thickness of copper blanket-wafer before polishing [ ⁇ m] ⁇ thickness of copper blanket-wafer after polishing [ ⁇ m])/polishing time [min].
- the thickness of the copper blanket-wafers before and after polishing was measured using a sheet resistance measuring instrument, “VR-120” made by Kokusai Electric system service Co., Ltd.
- Polishing rate of epoxy resin [ ⁇ m/min] (weight of epoxy resin blanket-wafer before polishing [g] ⁇ weight of epoxy resin blanket-wafer after polishing [g])/specific gravity of epoxy resin [g/cm 3 ]/polishing area of epoxy resin blanket-wafer [cm 2 ]/polishing time [min]
- Patterned wafers which each had a copper conductor layer on a resin layer which was made of an epoxy resin and had trenches were prepared.
- the trenches include a trench with the depth of 20 ⁇ m and the width of 85 ⁇ m, a trench with the depth of 20 ⁇ m and the width of 300 ⁇ m, and a trench with the depth of 20 ⁇ m and the width of 500 ⁇ m.
- the patterned wafers were polished under the above-mentioned polishing conditions until a top face of a portion of each resin layer between adjacent trenches was exposed using each of the polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8. The time taken for the top face of the portion of each resin layer to be exposed is shown in the column entitled “Removing time” of Table 2.
- Dishing depth was measured in a region (W 85 ), in which a trench with the width of 85 ⁇ m is formed, a region (W 300 ), in which a trench with the width of 300 ⁇ m is formed, and a region (W 500 ), in which a trench with the width of 500 ⁇ m is formed, in each of the patterned wafers after polished using each polishing composition according to Examples 1 to 22 and Comparative Examples 1 to 8.
- the results are shown in the column entitled “Dishing depth” of Table 2.
- the measurement of the dishing depth was performed using a profiler “HRP340” which is a contact type surface measurement apparatus made by KLA-Tencor Corporation.
- the plus value of the dishing depth means that the portion of the conductor layer positioned inside the trench is depressed
- the minus value of the dishing depth means that the portion of the conductor layer positioned inside the trench protrudes.
- the redispersibility of abrasives was evaluated as follows using each of the polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8 which were charged in vessels made of polypropylene, and which were left as it is for ten days. Thus, they were evaluated to be excellent (E) when there was no precipitate or when precipitates disappeared by shaking within 1 minute even if the precipitates were in each polishing composition after having been left as it is for ten days, to be good (G) when the precipitates disappeared by shaking for 1 to 10 minutes, and to be defective (D) when the precipitates did not disappear even by shaking for 10 minutes or more. The results are shown in the column entitled “Redispersibility” of Table 2.
- the polishing rate of copper was high, that is, 3.0 ⁇ m/min or more, and the polishing rate of epoxy resin was also high, that is, 2.0 ⁇ m/min or more.
- the polishing rate of copper was less than 3.0 ⁇ m/min, or the polishing rate of epoxy resin was less than 2.0 ⁇ m/min.
- a reason why the polishing rate is low in Comparative Examples 1 and 2 is that the content of alumina in each polishing composition of Comparative Examples 1 and 2 is small.
- a reason why the polishing rate is low in Comparative Examples 3 to 8 is that each polishing composition of Comparative Examples 3 to 8 does not contain at least one among an abrasive, a complexing agent, and an oxidizing agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Disintegrating Or Milling (AREA)
- Weting (AREA)
Abstract
A polishing composition contains alumina, a complexing agent, and an oxidizing agent. It is preferable that the complexing agent is at least one compound selected from an α-amino acid, ammonia, and an ammonium salt. The polishing composition is preferably used in applications for polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer.
Description
- The present invention relates to a polishing composition used, for example, in polishing for forming conductor wiring for a circuit board, and to a polishing method using such a polishing composition.
- In recent years, it has been required that circuit boards such as semiconductor package substrates in which ICs, transistors, and the like are mounted, have various functions and high-performance in connection with the acceleration and high-integration of LSIS. A damascene process wherein a chemical mechanical polishing (CMP) technology is used has become the main method for forming conductor wiring for a circuit board. In the case of formation of conductor wiring, first, on a resin section which has trenches, a conductor layer is formed so that at least the trenches is filled with the conductor layer. Then, at least a portion of the conductor layer positioned outside the trenches is removed by polishing so that a portion of the resin section between adjacent trenches is exposed. In this way, at least a part of the portion of the conductor layer positioned inside the trenches remains on the resin section, and the portion of the conductor layer which remains functions as conductor wiring.
- A polishing composition disclosed in Japanese Laid-Open Patent Publication No. 2003-257910 is used in polishing for forming conductor wiring. The polishing composition contains abrasive, a copper chelating agent, a copper etching agent, and an oxidizing agent.
- In order to enhance the efficiency of polishing for forming conductor wiring, it is important not only to raise the polishing quantity of a conductor layer per unit time (polishing rate of a conductor layer), but also to raise the polishing quantity of a resin section per unit time (polishing rate of a resin section). Nevertheless, the polishing composition described in Japanese Laid-Open Patent Publication No. 2003-257910 can polish a conductor layer in a high stock removal rate, but cannot polish a resin section in a high stock removal rate. Therefore, although the polishing rate of a conductor layer increases when the polishing composition is used in polishing for forming conductor wiring, the polishing rate of a resin section seldom improves.
- Accordingly, an object of the present invention is to provide a polishing composition which can raise the polishing rate of a conductor layer, and the polishing rate of a resin section.
- To achieve the foregoing and other objectives and in accordance with the purpose of the present invention, a polishing composition is provided. The polishing composition includes alumina, a complexing agent, and an oxidizing agent. The polishing composition is used in an application for polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer,
- The present invention also provides a polishing method. The method includes preparing the above polishing composition and polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer, by using the prepared polishing composition.
- Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
- The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
-
FIGS. 1 and 2 are sectional views of an object to be polished for explaining a polishing method according to one embodiment of the present invention. - An embodiment of the present invention will now be described with reference to
FIGS. 1 and 2 . - First of all, a method for forming conductor wiring 14 (refer to
FIG. 2 ) for a wiring board will be explained. - In forming the
conductor wiring 14, as shown inFIG. 1 , aconductor layer 13 is formed first on an insulating resin layer 11 (resin section) which is provided on asubstrate 10 and hastrenches 12. Thesubstrate 10 consists of, for example, ceramics or metal. Theresin layer 11 may be formed with any of a glass epoxy resin, a polyimide resin, a paper epoxy resin, and a Bakelite resin. Thetrenches 12 are formed so as to have a predetermined designed pattern, for example, by well-known lithography technology and pattern-etching technology. Theconductor layer 13 is formed on theresin layer 11 so as to fill at least thetrenches 12. Theconductor layer 13 is formed, for example, by PVD, CVD, or plating, and consists of copper containing material such as copper, a copper-aluminum alloy, and a copper-titanium alloy. - Subsequently, at least a portion of the
conductor layer 13 positioned outside thetrenches 12 is removed by polishing so that theresin layer 11 is exposed. Thereby, at least a part of the portion of theconductor layer 13 positioned inside thetrenches 12 remains on theresin section 11, and the portion of theconductor layer 13 which remains functions asconductor wiring 14. As shown inFIG. 2 , after polishing, top faces of theconductor wiring 14 andresin layer 11 are exposed. The exposed top faces of theconductor wiring 14 and theresin layer 11 are mutually flush, and both are smooth. Polishing for forming theconductor wiring 14 is performed by one time of polishing step. A polishing composition according to this embodiment contains alumina, a complexing agent, an oxidizing agent, and water, and is used in polishing for forming theconductor wiring 14. - Alumina in the polishing composition has a function of mechanically polishing an object to be polished. Alumina to be contained in the polishing composition may be produced by grinding and classification after heat-treating aluminum hydroxide, or it may be colloidal alumina or fumed alumina. The polishing composition may also contain two types of different alumina.
- From the viewpoint of improvement in polishing rates of the
conductor layer 13 andresin layer 11, the content of alumina in the polishing composition is preferably 0.1 mass % or more, more preferably 1 mass % or more, further preferably 5 mass % or more, and most preferably 7 mass % or more. On the other hand, from the viewpoint of the improvement of dispersibility and solubility of each component in the polishing composition, the content of alumina is preferably 50 mass % or less, more preferably 30 mass % or less, and most preferably 20 mass % or less. - When the alumina contained in the polishing composition is alumina other than fumed alumina and colloidal alumina, from the viewpoint of improvement in the polishing rate of the
resin layer 11, the average particle diameter of the alumina measured by an electric resistance method (a Coulter method) is preferably 0.1 μm or more, and further preferably 1 μm or more. On the other hand, from the viewpoint of suppressing scratches (linear flaws) occurring while polishing, the average particle diameter of the alumina measured by the electric resistance method is preferably 50 μm or less, and more preferably 10 μm or less. - When the alumina contained in the polishing composition is fumed alumina or colloidal alumina, from the viewpoint of improvement in the polishing rate of the
resin layer 11, the average particle diameter of the alumina measured by a laser diffraction method is preferably 0.1 μm or more. On the other hand, from the viewpoint of suppressing scratches occurring while polishing, the average particle diameter of the alumina measured by the laser diffraction method is preferably 10 μm or less, and further preferably 1 μm or less. - A complexing agent in the polishing composition has the function of catching metal generated in the polishing composition by the polishing of the
conductor layer 13 and enhancing the polishing of theconductor layer 13. A complexing agent to be contained in the polishing composition may be at least one compound selected from organic acids such as oxalic acid, citric acid, succinic acid, maleic acid, and tartaric acid; a-amino acids such as glycine and alanine; multiple valued amine such as ethylenediamine and triethylenetetramine; ammonia; and an ammonium salt. Although a preferable complexing agent changes by a type of material constituting theconductor layer 13, an α-amino acid, ammonia, or an ammonium salt is preferable since having a strong action of enhancing copper polishing when theconductor layer 13 consists of copper. - When only at least one compound selected from between ammonia and an ammonium salt is contained as a complexing agent in the polishing composition, there is a possibility that corrosion may arise on the surface of the
conductor layer 13 depending on the content of a complexing agent. Moreover, when only an α-amino acid is contained as a complexing agent in the polishing composition, the polishing rate of copper does not become high depending on the content of the complexing agent in comparison with the case that only at least one compound selected from between the ammonia and ammonium salt is contained as a complexing agent in the polishing composition. Therefore, in order to make the suppression of corrosion of theconductor layer 13 and the improvement in the polishing rate of copper compatible, it is preferable that at least one compound, selected from between the ammonia and ammonium salt, and the α-amino acid are contained as the complexing agent in the polishing composition. - What are cited as specific examples of the α-amino acids are neutral amino acids such as glycine, alanine, valine, leucine, isoleucine, alloisoleucine, serine, threonine, allothreonine, cysteine, methionine, phenylalanine, tryptophan, thyrosin, proline, and cystine; acidic amino acids such as glutamic acid and aspartic acid; and basic amino acids such as arginine and histidine. At least one compound is used among these. Especially, since procurement is easy and moreover the polishing rate of the
conductor layer 13 is improved well, glycine and a-alanine acid are preferable, and glycine is more preferable. The α-amino acid may be any of an L-enantiomer and a D-enantiomer. When theconductor layer 13 consists of copper, from the viewpoint of improvement in the polishing rate of copper, the content of the α-amino acid in the polishing composition is preferably 0.01 mass % or more, and more preferably 0.1 mass % or more. On the other hand, from the viewpoint of cost effectiveness, the content of the α-amino acid is preferably 20 mass % or less, and is more preferably 10 mass % or less. - What are cited as specific examples of the ammonium salts are ammonium salts of inorganic acids such as ammonium carbonate, ammonium hydrogencarbonate, ammonium phosphate, ammonium nitrate, ammonium sulfate, and ammonium chloride; and ammonium salts of organic acids such as ammonium oxalate, ammonium citrate, succinic acid ammonium, and ammonium tartrate. At least one compound is used among these. Since ammonia has an action of polishing an object chemically and does not contain metal impurities, ammonia is preferable to be contained in the polishing composition as the complexing agent. When the
conductor layer 13 consists of copper, from the viewpoint of improvement in the polishing rate of copper, sum of the content of the ammonia and ammonium salts in the polishing composition is preferably 0.1 mass % or more, and more preferably 1 mass % or more. On the other hand, from the viewpoint of suppressing corrosion of theconductor layer 13, the content is preferably 10 mass % or less, and more preferably 5 mass % or less. - An oxidizing agent in the polishing composition makes the operation of enhancing the polishing of the
conductor layer 13 by chemical polishing. An oxidizing agent to be contained in the polishing composition may be at least one compound selected from persulfuric acid, periodic acid, perchloric acid, peracetic acid, performic acid, nitric acid and a salt thereof, and hydrogen peroxide. Among them, hydrogen peroxide is preferable because hydrogen peroxide little contaminated with metal impurities is inexpensively and easily available. - From the viewpoint of improvement in the polishing rate of the
conductor layer 13, the content of the oxidizing agent in the polishing composition is preferably 0.01 mass % or more, more preferably 0.1 mass % or more, and further preferably 0.3 mass % or more. On the other hand, from the viewpoint of cost effectiveness, the content of the oxidizing agent is preferably 10 mass % or less, more preferably 6 mass % or less, and further preferably 3 mass % or less. - Water in the polishing composition acts as a medium for dispersing or dissolving components in the polishing composition. Water to be contained in the polishing composition preferably contains as little impurity as possible so as not to hinder the actions of each component in the polishing composition, and preferably is deionized water, ultra pure water, or distilled water.
- From the viewpoint of improvement in the polishing rate of copper, the pH of the polishing composition is preferably 7 or more, more preferably 8.5 or more, and further preferably 9 or more. On the other hand, from the viewpoint of suppressing the corrosion of the
conductor layer 13, the pH is preferably less than 12, more preferably less than 11.5, and further preferably less than 11. In addition, when the polishing composition contains at least one compound, selected from ammonia and ammonium salt, and an α-amino acid as the complexing agent, it is preferable to set the content of the complexing agent in consideration of the above-mentioned range of the pH. - In order to suppress the aggregation of alumina in the polishing composition and to enhance redispersibility, alumina sol may be added to the polishing composition according to this embodiment, as an aggregation restrainer. When alumina sol is added to the polishing composition, it is possible to suppress the generation of hard caking, which becomes a cause of lowering the redispersibility of alumina, and the aggregation of alumina, which causes scratches generated on the polished object, because of an action of alumina sol dispersed colloidally in the polishing composition. It is possible to obtain alumina sol by dispersing hydrated alumina, such as boehmite, pseudo-boehmite, diaspore, gibbsite, and bayerite, or aluminum hydroxide colloidally in an aqueous acid. Especially, alumina sol obtained by dispersing boehmite or pseudo-boehmite in the aqueous acid is preferable. From the viewpoint of suppressing the aggregation of alumina, the content of alumina sol in the polishing composition is preferably 0.05 mass % or more, or preferably 0.1 mass % or more, and further preferably 0.5 mass % or more. On the other hand, from the viewpoint of the improvement of dispersibility and solubility of each component in the polishing composition, the content of alumina sol is preferably 5 mass % or less, more preferably 3 mass % or less, and further preferably 2 mass % or less.
- When polishing for forming the
conductor wiring 14 using the polishing composition according to this embodiment is performed, theconductor layer 13 andresin layer 11 are mechanically polished by action of alumina in the polishing composition at a high stock removal rate. Especially, since being enhanced by action of the complexing agent that catches metal generated in the polishing composition by the polishing of theconductor layer 13, and action of the oxidizing agent that has chemical polishing, the polishing of theconductor layer 13 is performed at an especially high stock removal rate. Therefore, according to the polishing composition, it is possible to raise the polishing rate of theconductor layer 13 and the polishing rate of theresin layer 11, and the efficiency of the polishing for forming theconductor wiring 14 improves. - It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the invention may be embodied in the following forms.
- The polishing composition may be prepared by diluting a stock solution with water at the time of use. The stock solution is easy in storage and transportation.
- The polishing composition may be stored in the state where an oxidizing agent is separated from the other components. In this case, the polishing composition is provided for use after the oxidizing agent has been mixed with the other components. According to this, the oxidizing agent is prevented from decomposing in the polishing composition during storage.
- Into the polishing composition, a well-known additive such as a surfactant, a thickener, an emulsifier, a antirust agent, a preservative, an antifungal agent, an antifoaming agent, and a pH adjuster may be added.
- The
conductor layer 13 may be provided on a resin substrate (resin section) instead of being provided on theresin layer 11 provided on thesubstrate 10. - In the next place, Examples and Comparative Examples according to the present invention will be described.
- Each of an abrasive, a complexing agent, an oxidizing agent, and alumina sol was mixed to water as required in order to prepare polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8. The detail of the abrasive, complexing agent, oxidizing agent, and alumina sol in each polishing composition is as being shown in Table 1. In conjunction with this, measurements of pH of respective polishing compositions are -shown in Table 1. Here, the unit of a value which indicates the content of each component in Table 1, is mass %.
TABLE 1 First Second complexing complexing Oxidizing Alumina Abrasive agent agent agent sol Kind Content Kind Content Kind Content Kind Content Content pH Ex. 1 A3 20 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 2 A3 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 3 A3 7 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 4 A1 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 5 A2 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 6 CA 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 7 PA 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 8 A3 15 G 0.01 NH3 2 H2O2 1 1.5 10.1 Ex. 9 A3 15 G 3 NH3 2 H2O2 1 1.5 10.1 Ex. 10 A3 15 — NH3 2 H2O2 1 1.5 10.1 Ex. 11 A3 15 A 0.2 NH3 2 H2O2 1 1.5 10.1 Ex. 12 A3 15 G 0.2 NH3 0.1 H2O2 1 1.5 9.2 Ex. 13 A3 15 G 0.2 NH3 5 H2O2 1 1.5 10.9 Ex. 14 A3 15 G 0.2 — H2O2 1 1.5 7.3 Ex. 15 A3 15 G 0.2 NH3 2 H2O2 0.1 1.5 10.1 Ex. 16 A3 15 G 0.2 NH3 2 H2O2 0.2 1.5 10.1 Ex. 17 A3 15 G 0.2 NH3 2 H2O2 0.5 1.5 10.1 Ex. 18 A3 15 G 0.2 NH3 2 H2O2 5 1.5 10.1 Ex. 19 A3 15 G 0.2 NH3 2 APS 1 1.5 10.1 Ex. 20 A3 15 G 0.2 NH3 2 H2O2 1 — 10.1 Ex. 21 A3 15 G 0.2 NH3 2 H2O2 1 0.015 10.1 Ex. 22 A3 15 G 0.2 NH3 2 H2O2 1 0.15 10.1 C. Ex. 1 A3 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 C. Ex. 2 A3 3 G 0.2 NH3 2 H2O2 1 1.5 10.1 C. Ex. 3 — G 0.2 NH3 2 H2O2 1 1.5 10.1 C. Ex. 4 CS 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 C. Ex. 5 FS 15 G 0.2 NH3 2 H2O2 1 1.5 10.1 C. Ex. 6 A3 15 — — H2O2 1 1.5 7.3 C. Ex. 7 A3 15 — — — 1.5 7.3 C. Ex. 8 A3 15 G 0.2 NH3 2 — 1.5 10.1
In the column entitled “Abrasive” of Table 1,
“A1” denotes alumina with the average particle diameter of 1.3 μm,
“A2” denotes alumina with the average particle diameter of 3.0 μm,
“A3” denotes alumina with the average particle diameter of 5.5 μm,
“CA” denotes colloidal alumina with the average particle diameter of 0.05 μm,
“FA” denotes fumed alumina with the average particle diameter of 0.2 μm,
“CS” denotes colloidal silica with the average particle diameter of 0.07 μm, and
“FS” denotes fumed silica with the average particle diameter of 0.2 μm.
- The average particle diameter of alumina was measured by the electric resistance method using “Coulter Multisizer” made by Beckman Coulter Inc., and the average particle diameters of colloidal alumina, fumed alumina, colloidal silica, and fumed silica were measured by the laser diffraction method using “N4 Plus Submicron Particle Sizer” made by Beckman Coulter Inc.
- In the columns entitled “First complexing agent” and “Second complexing agent” of Table 1,
- “G” denotes glycine,
- “A” denotes alanine, and
- “NH3” denotes ammonia.
- In the column entitled “Oxidizing agent” of Table 1,
- “H2O2” denotes hydrogen peroxide, and
- “APS” denotes ammonium sulfite.
- A copper blanket-wafer and an epoxy resin blanket-wafers were polished for 1 minute under the following polishing conditions using respective polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8. Then, the polishing rate of copper and the polishing rate of epoxy resin were found on the basis of the following formulae. The results are shown in the column entitled “Polishing rate” of Table 2. In addition, each copper blanket-wafer has a copper film formed on an 8-inch silicon wafer with an electroplating method, and each epoxy resin blanket-wafer has a film consisting of an epoxy resin (ABF by Ajinomoto Co., Inc.) on an 8-inch silicon wafer with spin coating.
- <Polishing Conditions>
- Polishing apparatus: single-sided CMP polishing machine, “ARW” made by MAT Corporation,
- Polishing pad: multilayered polishing pad “IC-1000/Suba400” made of polyurethane and made by Rodel Corporation,
- Polishing pressure: 28 kPa (about 6 psi),
- Rotational frequency of press platen: 90 min−1,
- Feed rate of polishing composition: 140 mL/min,
- Rotational frequency of carrier for supporting wafer: 95 min−1
- <Formula of Polishing Rate of Copper>
- Polishing rate of copper [μm/min]=(thickness of copper blanket-wafer before polishing [μm]−thickness of copper blanket-wafer after polishing [μm])/polishing time [min].
- In addition, the thickness of the copper blanket-wafers before and after polishing was measured using a sheet resistance measuring instrument, “VR-120” made by Kokusai Electric system service Co., Ltd.
- <Formula of Polishing Rate of Epoxy Resin>
- Polishing rate of epoxy resin [μm/min]=(weight of epoxy resin blanket-wafer before polishing [g]−weight of epoxy resin blanket-wafer after polishing [g])/specific gravity of epoxy resin [g/cm3]/polishing area of epoxy resin blanket-wafer [cm2]/polishing time [min]
- Patterned wafers which each had a copper conductor layer on a resin layer which was made of an epoxy resin and had trenches were prepared. The trenches include a trench with the depth of 20 μm and the width of 85 μm, a trench with the depth of 20 μm and the width of 300 μm, and a trench with the depth of 20 μm and the width of 500 μm. The patterned wafers were polished under the above-mentioned polishing conditions until a top face of a portion of each resin layer between adjacent trenches was exposed using each of the polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8. The time taken for the top face of the portion of each resin layer to be exposed is shown in the column entitled “Removing time” of Table 2.
- Dishing depth was measured in a region (W85), in which a trench with the width of 85 μm is formed, a region (W300), in which a trench with the width of 300 μm is formed, and a region (W500), in which a trench with the width of 500 μm is formed, in each of the patterned wafers after polished using each polishing composition according to Examples 1 to 22 and Comparative Examples 1 to 8. The results are shown in the column entitled “Dishing depth” of Table 2. The measurement of the dishing depth was performed using a profiler “HRP340” which is a contact type surface measurement apparatus made by KLA-Tencor Corporation. In addition, that the plus value of the dishing depth means that the portion of the conductor layer positioned inside the trench is depressed, and the minus value of the dishing depth means that the portion of the conductor layer positioned inside the trench protrudes.
- The redispersibility of abrasives was evaluated as follows using each of the polishing compositions according to Examples 1 to 22 and Comparative Examples 1 to 8 which were charged in vessels made of polypropylene, and which were left as it is for ten days. Thus, they were evaluated to be excellent (E) when there was no precipitate or when precipitates disappeared by shaking within 1 minute even if the precipitates were in each polishing composition after having been left as it is for ten days, to be good (G) when the precipitates disappeared by shaking for 1 to 10 minutes, and to be defective (D) when the precipitates did not disappear even by shaking for 10 minutes or more. The results are shown in the column entitled “Redispersibility” of Table 2.
TABLE 2 Polishing rate Re- [μm/min] mov- Ep- ing Cop- oxy time Dishing depth [μm] per resin [sec] W300 W500 W85 Redispersibility Ex. 1 5.2 6.7 150 −0.5 −0.7 −0.7 E Ex. 2 7.1 6.2 120 0.4 −0.3 −0.3 E Ex. 3 5.2 2.1 150 1.5 1.8 1.3 E Ex. 4 5.1 3.7 150 0.3 0.3 0.3 E Ex. 5 6.2 5 150 0.8 1.0 1.1 E Ex. 6 6.5 4.5 150 1.0 0.8 0.8 E Ex. 7 6.7 5 150 1.2 1.0 0.9 E Ex. 8 5.0 6.2 150 −0.5 −0.5 −0.3 E Ex. 9 7.6 6.2 120 0.5 0.4 0.3 E Ex. 10 5.2 6.2 150 −0.6 −0.4 −0.5 E Ex. 11 5.3 5.9 150 −0.7 −0.6 −0.6 E Ex. 12 4.2 6.2 180 −1.0 −0.8 −1.0 E Ex. 13 6.6 6.2 150 0.5 0.3 0.3 E Ex. 14 4.1 6.2 180 −0.9 −0.9 −1.1 E Ex. 15 3.1 6.2 180 −1.5 −1.7 −1.5 E Ex. 16 4.2 6.2 180 −1.1 −0.8 −0.7 E Ex. 17 5.4 6.2 150 −0.8 −0.8 −0.9 E Ex. 18 5.3 6.2 150 −0.3 −0.6 −0.6 E Ex. 19 3.1 6.2 180 −1.6 −2.0 −1.5 E Ex. 20 6.9 5.9 120 0.5 −0.3 −0.3 D Ex. 21 7.1 6.2 120 0.4 −0.3 −0.3 G Ex. 22 7.1 6.2 120 0.4 −0.3 −0.3 G C. Ex. 1 4.8 0 150 4.7 4.4 4.8 E C. Ex. 2 5.0 0 150 5.1 4.6 4.5 E C. Ex. 3 2.5 0 180 3.5 3.3 2.8 E C. Ex. 4 4.7 0.2 150 5.1 4.6 4.5 E C. Ex. 5 4.5 0.3 150 4.8 4.1 3.9 E C. Ex. 6 0.6 6.2 180 −3.3 −3.8 −4.3 E C. Ex. 7 0.9 6.2 240 −3.5 −4.2 −3.8 E C. Ex. 8 1.4 6.2 150 −1.5 −2 −2 E - As shown in Table 2, in Examples 1 to 22, the polishing rate of copper was high, that is, 3.0 μm/min or more, and the polishing rate of epoxy resin was also high, that is, 2.0 μm/min or more. On the other hand, in Comparative Examples 1 to 8, the polishing rate of copper was less than 3.0 μm/min, or the polishing rate of epoxy resin was less than 2.0 μm/min. A reason why the polishing rate is low in Comparative Examples 1 and 2 is that the content of alumina in each polishing composition of Comparative Examples 1 and 2 is small. In addition, a reason why the polishing rate is low in Comparative Examples 3 to 8 is that each polishing composition of Comparative Examples 3 to 8 does not contain at least one among an abrasive, a complexing agent, and an oxidizing agent.
- In order to obtain a favorable result about the removing time and dishing depth, it was found that it was preferable to set the content of alumina at nearly 15 mass % from the results of Examples 1 to 3, to set the content of the α-amino acid at 0.2 mass % or more from the results of Examples 2, 8, and 9, to set the content of ammonia at nearly 2 mass % from the results of Examples 2, 12, and 13, to use both the α-amino acid and ammonia as complexing agents from the results of Examples 13 and 14, and to set the content of hydrogen peroxide at nearly 1 mass % from the results of Examples 2, 15 to 18. From the results of Examples 2 and 11, it was confirmed that copper polishing is especially enhanced when glycine was used as a complexing agent. From the results of Examples 2, 20 to 22, it was confirmed that redispersibility is especially favorable when the content of alumina sol was set at 1.5 mass % or more.
- The present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims (10)
1. A polishing composition for use in an application for polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer, the polishing composition comprising alumina, a complexing agent, and an oxidizing agent.
2. The polishing composition according to claim 1 , wherein the resin section is a resin layer provided on a substrate.
3. The polishing composition according to claim 1 , wherein the complexing agent is at least one compound selected from an α-amino acid, ammonia, and an ammonium salt.
4. The polishing composition according to claim 1 , wherein the complexing agent is an α-amino acid and at least one compound selected from between ammonia and an ammonium salt.
5. The polishing composition according to claim 4 , wherein content of an α-amino acid in the polishing composition is 0.01 to 20 mass %.
6. The polishing composition according to claim 4 , wherein sum of content of ammonia and an ammonium salt in the polishing composition is 0.1 to 10 mass %.
7. The polishing composition according to claim 1 , further comprising alumina sol.
8. The polishing composition according to claim 1 , wherein a pH of the polishing composition is 7 or more.
9. A polishing composition for use in an application for polishing an object to be polished so as to form conductor wiring for a wiring board, wherein the object has an insulating resin section with a trench, and a copper conductor layer provided on the resin section so that at least the trench is filled with the conductor layer, the polishing composition comprising alumina, at least one compound selected from between ammonia and an ammonium salt, an α-amino acid, an oxidizing agent, and water.
10. A polishing method comprising:
preparing a polishing composition including alumina, a complexing agent, and an oxidizing agent; and
polishing an object having a resin section with a trench, and a conductor layer provided on the resin section so that at least the trench is filled with the conductor layer, by using the prepared polishing composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/948,793 US20080132156A1 (en) | 2004-03-19 | 2007-11-30 | Polishing composition and polishing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-81585 | 2004-03-19 | ||
JP2004081585A JP2005268666A (en) | 2004-03-19 | 2004-03-19 | Abrasive composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/948,793 Division US20080132156A1 (en) | 2004-03-19 | 2007-11-30 | Polishing composition and polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050204638A1 true US20050204638A1 (en) | 2005-09-22 |
Family
ID=34858359
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/083,565 Abandoned US20050204638A1 (en) | 2004-03-19 | 2005-03-18 | Polishing composition and polishing method |
US11/948,793 Abandoned US20080132156A1 (en) | 2004-03-19 | 2007-11-30 | Polishing composition and polishing method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/948,793 Abandoned US20080132156A1 (en) | 2004-03-19 | 2007-11-30 | Polishing composition and polishing method |
Country Status (9)
Country | Link |
---|---|
US (2) | US20050204638A1 (en) |
EP (1) | EP1580243B1 (en) |
JP (1) | JP2005268666A (en) |
KR (1) | KR101141174B1 (en) |
CN (1) | CN100516159C (en) |
AT (1) | ATE431389T1 (en) |
DE (1) | DE602005014407D1 (en) |
SG (1) | SG115787A1 (en) |
TW (1) | TW200535218A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140199A1 (en) * | 2006-05-31 | 2009-06-04 | Asahi Glass Company, Limited | Polishing compound and polishing method |
US20090291620A1 (en) * | 2008-05-22 | 2009-11-26 | Jsr Corporation | Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7897061B2 (en) * | 2006-02-01 | 2011-03-01 | Cabot Microelectronics Corporation | Compositions and methods for CMP of phase change alloys |
JP5459466B2 (en) * | 2008-06-05 | 2014-04-02 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board |
JP5459467B2 (en) * | 2008-06-13 | 2014-04-02 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board |
US20120003834A1 (en) * | 2010-07-01 | 2012-01-05 | Koo Ja-Ho | Method Of Polishing Chalcogenide Alloy |
CN102690608A (en) * | 2012-06-06 | 2012-09-26 | 复旦大学 | Polishing solution for metal molybdenum polishing technology |
JP2015203080A (en) * | 2014-04-15 | 2015-11-16 | 株式会社フジミインコーポレーテッド | polishing composition |
JP6924616B2 (en) * | 2017-05-25 | 2021-08-25 | ニッタ・デュポン株式会社 | Polishing slurry |
JP7064870B2 (en) * | 2017-12-26 | 2022-05-11 | ニッタ・デュポン株式会社 | Polishing composition |
JP7057662B2 (en) * | 2017-12-26 | 2022-04-20 | ニッタ・デュポン株式会社 | Polishing composition and method for adjusting polishing speed |
CN109015204B (en) * | 2018-08-29 | 2020-11-27 | 包头市利晨科技有限公司 | Polishing method suitable for CR39 resin lens |
WO2020196542A1 (en) | 2019-03-27 | 2020-10-01 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method, and method for producing substrate |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391258A (en) * | 1993-05-26 | 1995-02-21 | Rodel, Inc. | Compositions and methods for polishing |
US5428721A (en) * | 1990-02-07 | 1995-06-27 | Kabushiki Kaisha Toshiba | Data processing apparatus for editing image by using image conversion |
US5575885A (en) * | 1993-12-14 | 1996-11-19 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing semiconductor device |
US5770095A (en) * | 1994-07-12 | 1998-06-23 | Kabushiki Kaisha Toshiba | Polishing agent and polishing method using the same |
US5858813A (en) * | 1996-05-10 | 1999-01-12 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers and films |
US5954997A (en) * | 1996-12-09 | 1999-09-21 | Cabot Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US6126853A (en) * | 1996-12-09 | 2000-10-03 | Cabot Microelectronics Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US20010051746A1 (en) * | 2000-04-28 | 2001-12-13 | Toshiya Hagihara | Roll-off reducing agent |
US6428721B1 (en) * | 1998-12-01 | 2002-08-06 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6432828B2 (en) * | 1998-03-18 | 2002-08-13 | Cabot Microelectronics Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US6440186B1 (en) * | 2000-08-24 | 2002-08-27 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6568996B2 (en) * | 2000-10-02 | 2003-05-27 | Mitsubishi Denki Kabushiki Kaisha | Polishing agent for processing semiconductor, dispersant used therefor and process for preparing semiconductor device using above polishing agent for processing semiconductor |
US20030124862A1 (en) * | 2001-12-28 | 2003-07-03 | Fujikoshi Machinery Corp. | Method of polishing copper layer of substrate |
US20030166337A1 (en) * | 1999-08-13 | 2003-09-04 | Cabot Microelectronics, Corp. | Chemical mechanical polishing systems and methods for their use |
US20030178320A1 (en) * | 2001-03-14 | 2003-09-25 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US20030219982A1 (en) * | 2002-05-23 | 2003-11-27 | Hitachi Chemical Co., Ltd | CMP (chemical mechanical polishing) polishing liquid for metal and polishing method |
US6679929B2 (en) * | 2001-01-31 | 2004-01-20 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6689692B1 (en) * | 1996-12-30 | 2004-02-10 | Cabot Microelectronics Corporation | Composition for oxide CMP |
US20040084414A1 (en) * | 2002-08-19 | 2004-05-06 | Kenji Sakai | Polishing method and polishing composition used for polishing |
US6773476B2 (en) * | 2001-07-23 | 2004-08-10 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US20040186206A1 (en) * | 2002-12-26 | 2004-09-23 | Yasuhiro Yoneda | Polishing composition |
US6814767B2 (en) * | 2002-10-02 | 2004-11-09 | Fujimi Incorporated | Polishing composition |
US6838016B2 (en) * | 2000-11-24 | 2005-01-04 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US20050108949A1 (en) * | 2003-09-30 | 2005-05-26 | Tsuyoshi Matsuda | Polishing composition |
US20050136671A1 (en) * | 2003-12-22 | 2005-06-23 | Goldberg Wendy B. | Compositions and methods for low downforce pressure polishing of copper |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE68927116T2 (en) * | 1988-01-19 | 1997-02-06 | Fujimi Inc | Polishing compound |
US6046110A (en) * | 1995-06-08 | 2000-04-04 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing a semiconductor device |
US6319096B1 (en) * | 1999-11-15 | 2001-11-20 | Cabot Corporation | Composition and method for planarizing surfaces |
JP4187497B2 (en) * | 2002-01-25 | 2008-11-26 | Jsr株式会社 | Chemical mechanical polishing method for semiconductor substrate |
-
2004
- 2004-03-19 JP JP2004081585A patent/JP2005268666A/en active Pending
-
2005
- 2005-03-18 EP EP05006025A patent/EP1580243B1/en not_active Not-in-force
- 2005-03-18 KR KR1020050022625A patent/KR101141174B1/en not_active IP Right Cessation
- 2005-03-18 DE DE602005014407T patent/DE602005014407D1/en active Active
- 2005-03-18 US US11/083,565 patent/US20050204638A1/en not_active Abandoned
- 2005-03-18 SG SG200501805A patent/SG115787A1/en unknown
- 2005-03-18 AT AT05006025T patent/ATE431389T1/en not_active IP Right Cessation
- 2005-03-18 TW TW094108351A patent/TW200535218A/en unknown
- 2005-03-18 CN CNB2005100592522A patent/CN100516159C/en not_active Expired - Fee Related
-
2007
- 2007-11-30 US US11/948,793 patent/US20080132156A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428721A (en) * | 1990-02-07 | 1995-06-27 | Kabushiki Kaisha Toshiba | Data processing apparatus for editing image by using image conversion |
US5391258A (en) * | 1993-05-26 | 1995-02-21 | Rodel, Inc. | Compositions and methods for polishing |
US5476606A (en) * | 1993-05-26 | 1995-12-19 | Rodel, Inc. | Compositions and methods for polishing |
US5575885A (en) * | 1993-12-14 | 1996-11-19 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing semiconductor device |
US5770095A (en) * | 1994-07-12 | 1998-06-23 | Kabushiki Kaisha Toshiba | Polishing agent and polishing method using the same |
US5858813A (en) * | 1996-05-10 | 1999-01-12 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers and films |
US5954997A (en) * | 1996-12-09 | 1999-09-21 | Cabot Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US6126853A (en) * | 1996-12-09 | 2000-10-03 | Cabot Microelectronics Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US6689692B1 (en) * | 1996-12-30 | 2004-02-10 | Cabot Microelectronics Corporation | Composition for oxide CMP |
US6432828B2 (en) * | 1998-03-18 | 2002-08-13 | Cabot Microelectronics Corporation | Chemical mechanical polishing slurry useful for copper substrates |
US6428721B1 (en) * | 1998-12-01 | 2002-08-06 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US20030166337A1 (en) * | 1999-08-13 | 2003-09-04 | Cabot Microelectronics, Corp. | Chemical mechanical polishing systems and methods for their use |
US20010051746A1 (en) * | 2000-04-28 | 2001-12-13 | Toshiya Hagihara | Roll-off reducing agent |
US6440186B1 (en) * | 2000-08-24 | 2002-08-27 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6568996B2 (en) * | 2000-10-02 | 2003-05-27 | Mitsubishi Denki Kabushiki Kaisha | Polishing agent for processing semiconductor, dispersant used therefor and process for preparing semiconductor device using above polishing agent for processing semiconductor |
US6838016B2 (en) * | 2000-11-24 | 2005-01-04 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6679929B2 (en) * | 2001-01-31 | 2004-01-20 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US20030178320A1 (en) * | 2001-03-14 | 2003-09-25 | Applied Materials, Inc. | Method and composition for polishing a substrate |
US6773476B2 (en) * | 2001-07-23 | 2004-08-10 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US20030124862A1 (en) * | 2001-12-28 | 2003-07-03 | Fujikoshi Machinery Corp. | Method of polishing copper layer of substrate |
US20030219982A1 (en) * | 2002-05-23 | 2003-11-27 | Hitachi Chemical Co., Ltd | CMP (chemical mechanical polishing) polishing liquid for metal and polishing method |
US20040084414A1 (en) * | 2002-08-19 | 2004-05-06 | Kenji Sakai | Polishing method and polishing composition used for polishing |
US6814767B2 (en) * | 2002-10-02 | 2004-11-09 | Fujimi Incorporated | Polishing composition |
US20040186206A1 (en) * | 2002-12-26 | 2004-09-23 | Yasuhiro Yoneda | Polishing composition |
US20050108949A1 (en) * | 2003-09-30 | 2005-05-26 | Tsuyoshi Matsuda | Polishing composition |
US20050136671A1 (en) * | 2003-12-22 | 2005-06-23 | Goldberg Wendy B. | Compositions and methods for low downforce pressure polishing of copper |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140199A1 (en) * | 2006-05-31 | 2009-06-04 | Asahi Glass Company, Limited | Polishing compound and polishing method |
US20090291620A1 (en) * | 2008-05-22 | 2009-11-26 | Jsr Corporation | Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit |
US8262435B2 (en) * | 2008-05-22 | 2012-09-11 | Jsr Corporation | Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit |
Also Published As
Publication number | Publication date |
---|---|
CN100516159C (en) | 2009-07-22 |
KR101141174B1 (en) | 2012-05-02 |
ATE431389T1 (en) | 2009-05-15 |
KR20060044392A (en) | 2006-05-16 |
SG115787A1 (en) | 2005-10-28 |
CN1670117A (en) | 2005-09-21 |
US20080132156A1 (en) | 2008-06-05 |
DE602005014407D1 (en) | 2009-06-25 |
JP2005268666A (en) | 2005-09-29 |
EP1580243A1 (en) | 2005-09-28 |
EP1580243B1 (en) | 2009-05-13 |
TW200535218A (en) | 2005-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050204638A1 (en) | Polishing composition and polishing method | |
US7550388B2 (en) | Polishing composition and polishing method | |
EP1152046B1 (en) | Polishing composition and polishing method employing it | |
US8338303B2 (en) | Polishing liquid | |
US6773476B2 (en) | Polishing composition and polishing method employing it | |
EP1837903B1 (en) | Metal polishing slurry and use of said slurry | |
KR101074875B1 (en) | Polishing composition | |
KR101202720B1 (en) | Aqueous slurry composition for chemical mechanical polishing and chemical mechanical polishing method | |
US6679929B2 (en) | Polishing composition and polishing method employing it | |
US20130186850A1 (en) | Slurry for cobalt applications | |
US6436834B1 (en) | Chemical-mechanical abrasive composition and method | |
US8591763B2 (en) | Halide anions for metal removal rate control | |
US20100068883A1 (en) | Cmp slurry composition for forming metal wiring line | |
EP1670047B1 (en) | Polishing composition and polishing method | |
EP1526163B1 (en) | Method of second step polishing in copper CMP with a polishing fluid containing no oxidizing agent | |
JP2005159269A (en) | Chemical-mechanical polishing slurry and its using method | |
US20090140199A1 (en) | Polishing compound and polishing method | |
JPWO2016031485A1 (en) | Polishing composition and method for producing polishing composition | |
JP2016069522A (en) | Composition | |
JP2008227098A (en) | Metal polishing solution | |
KR100450986B1 (en) | Slurry for chemical mechanical polishing | |
US20100193728A1 (en) | Chemical Mechanical Polishing Composition | |
JP2005056879A (en) | Solution and method for polishing cooper-based metal | |
JP2008078577A (en) | Substrate processing method | |
JP2015028968A (en) | Aqueous dispersoid for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersoid for chemical mechanical polishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJIMI INCORPORATED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAMAI, KAZUSEI;YAMATO, YASUYUKI;REEL/FRAME:016582/0924;SIGNING DATES FROM 20050410 TO 20050420 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |