US20050175759A1 - Newborn infant formulas and feeding methods - Google Patents

Newborn infant formulas and feeding methods Download PDF

Info

Publication number
US20050175759A1
US20050175759A1 US10/806,169 US80616904A US2005175759A1 US 20050175759 A1 US20050175759 A1 US 20050175759A1 US 80616904 A US80616904 A US 80616904A US 2005175759 A1 US2005175759 A1 US 2005175759A1
Authority
US
United States
Prior art keywords
formula
weight
birth
infant
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/806,169
Inventor
Atul Singhal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University College London
Original Assignee
University College London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/GB2004/000518 external-priority patent/WO2004068968A1/en
Application filed by University College London filed Critical University College London
Priority to US10/806,169 priority Critical patent/US20050175759A1/en
Assigned to UNIVERSITY COLLEGE LONDON reassignment UNIVERSITY COLLEGE LONDON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUCAS, ALAN, SINGHAL, ATUL
Publication of US20050175759A1 publication Critical patent/US20050175759A1/en
Priority to US11/822,078 priority patent/US7998501B2/en
Priority to US12/318,678 priority patent/US8815279B2/en
Priority to US13/176,682 priority patent/US8703173B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S426/00Food or edible material: processes, compositions, and products
    • Y10S426/801Pediatric

Definitions

  • the present invention relates to infant formulas and methods for using the formulas in feeding newborn infants.
  • infant nutritional formulas that are commercially available or otherwise known in the infant formula art. These infant formulas comprise a range of nutrients to meet the nutritional needs of the growing infant, and typically include lipids, carbohydrates, protein, vitamins, minerals, and other nutrients helpful for optimal infant growth and development.
  • human milk changes over the first few weeks following delivery of an infant.
  • Human milk is referred to as colostrum during the first 5 days after birth, transition milk during days 6-14 after birth, and mature milk thereafter, and during each stage of lactation, the corresponding human milk composition differs considerably.
  • Colostrum and transition milk for example, have lower caloric densities than mature milk, as well as higher protein and lower carbohydrate concentrations. Vitamin and mineral concentrations also vary in the three defined human milk groups.
  • the present invention is directed to newborn infant formulas comprising fat, carbohydrate, and from about 0.5 to about 2.5 g of protein per 100 ml of formula, wherein the formula has a caloric density of from about 25 to about 50 kcal per 100 ml of formula.
  • the present invention is also directed to newborn infant formulas having a caloric density of from about 25 to about 50 kcal per 100 ml of formula, said formula comprising fat, carbohydrate, and from about 0.5 to 2.5 g of protein per 100 ml of formula, wherein the protein represents from about 4 to about 40% of the total calories and the carbohydrate represents less than about 40% of the total calories, in the formula.
  • the present invention is also directed to a method of providing nutrition to newborn infants, said method comprising the administration of the newborn infant formulas of the present invention to newborn infants during the first three months of life, preferably during at least about the first few weeks of life.
  • the present invention is also directed to a method of providing long-term health benefits in individuals by feeding methods directed to those individuals as newborn infants. These methods include a method of reducing the occurrence or extent of insulin resistance in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula of the present invention. These methods also include a method of reducing the occurrence or extent of atherosclerosis or coronary artery disease in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula of the present invention.
  • the present invention is based upon an observed relationship between feeding and growth rates among newborn infants and certain biochemical markers suggestive of long-term health effects of those infants later in life.
  • biochemical markers suggestive of long-term health effects of those infants later in life.
  • rapid growth rates of newborn infants appear to correlate with certain biochemical markers that are suggestive of an increased potential development of long-term adverse health effects in those infants later in life such as atherosclerosis or coronary artery disease and insulin resistance or non-insulin dependent diabetes.
  • a more controlled growth rate of newborn infants may result in long term health benefits.
  • the infant feeding formula of the present invention may include those compositions comprising from 0.5 to 1.00 grams of protein per 100 ml of formula and 25 to 50 kilocalories per 100 ml of formula. These compositions include those in which the protein component is selected from bovine caseins, whey proteins and individual proteins thereof, alpha-casein, ⁇ -lactoglobulin, serum albumin, lactoferrin, immunoglobulins and combinations of these proteins and also mixtures with other proteins. In these embodiments, the infant feeding formulas may contain energy in the form of carbohydrate and fat.
  • the present invention is also directed to a liquid infant feeding formula which comprises water and the above-described infant feeding formula.
  • the infant formulas and methods of the present invention are therefore directed to the formulation and administration of defined protein concentrations/amounts and energy content, for example the formulation and use of an infant formula comprising per 100 ml of said formula, from 0.5 to 2.5 grams of protein and from 25 to 50 kcals of energy.
  • This particular combination of protein and energy is much different than that found in conventional term and preterm infant formulas.
  • the newborn infant formulas of the present invention comprise lower energy densities and a higher relative amount of protein, with a preferred reduction in relative concentration/amount of carbohydrate.
  • the newborn infant formula and methods of the present invention are directed to the formulation and use of defined amounts of macronutrients, i.e., protein, carbohydrate, and fat, and energy in newborn infants.
  • macronutrients i.e., protein, carbohydrate, and fat, and energy in newborn infants.
  • newborn infant as used herein, unless otherwise specified, means term infants less than about 3 months of age, including infants from zero to about 2 weeks of age.
  • a “term infant” refers to individuals born at or beyond 37 weeks gestation, unless otherwise specified.
  • fat and “lipid” are used interchangeably herein, and unless otherwise specified, refer generally to fats, oils, and combinations thereof.
  • infant formula and “nutritional formula” are used interchangeably herein and refer to nutritional compositions designed for infants, which preferably contain sufficient protein, carbohydrate, lipid, vitamins, minerals, and electrolytes to potentially serve as the sole source of nutrition when provided in sufficient quantities.
  • synthetic nutritional formulas and therefore specifically exclude human milk, cows milk, or any other natural whole milk product, except when such natural whole milk product is modified by manufacturing processes to form a modified milk product, e.g., milk-based infant formula.
  • Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, 5, 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
  • compositions and methods of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations of the invention described herein, as well as any additional or optional ingredients, components, or limitations described herein or otherwise useful in nutritional infant formula applications.
  • the newborn infant formulas of the present invention have low energy content relative to conventional term and preterm infant formulas, wherein these newborn infant formulas comprise or otherwise provide a caloric density of from about 25 to about 50 kcal per 100 ml, including from about 35 to about 45 kcal per 100 ml, also including from about 37 to about 42 kcal per 100 ml.
  • the caloric density of the newborn infant formulas of the present invention are easily distinguished from that of conventional term and preterm infant formulas, wherein such conventional formulas typically have a caloric density or energy content of from 66 to 88 kcal per 100 ml (i.e., 19-25 kcal/fl oz).
  • the powder is intended for reconstitution prior to use to obtain the above-noted caloric densities and other nutrient requirements.
  • the infant formulas of the present invention are in a concentrated liquid form, then the concentrate is intended for dilution prior to use to obtain the requisite caloric densities and nutrient requirements.
  • the newborn infant formulas can also be formulated as ready-to-feed liquids already having the requisite caloric densities and nutrient requirements.
  • the newborn infant formulas of the present invention are preferably administered to newborn infants in accordance with the methods described herein. Such methods may include feedings with the newborn infant formulas in accordance with the daily formula intake volumes described hereinafter.
  • the energy component of the newborn infant formula is most typically provided by a combination of fat, protein, and carbohydrate nutrients.
  • the protein may comprise from about 4 to about 40% of the total calories, including from about 10 to about 30%, also including from about 15 to about 25%;
  • the carbohydrate may comprise less than 40% of the total calories, including from about 5 to about 37%, also including less than about 36%, and also including from about 20 to about 33%;
  • the fat may comprise the remainder of the formula calories, most typically less than about 60% of the calories, including from about 30 to about 60%.
  • the newborn infant formulas of the present invention comprise protein in the requisite amounts as described hereinbefore relative to the total energy content of the formula. Any known or otherwise suitable protein or protein source may be used in the newborn infant formulas of the present invention, provided that such proteins are suitable for feeding infants, especially newborn infants.
  • the newborn infant formulas of the present invention may typically comprise or otherwise provide from about 0.5 to about 2.5 g, including from about 0.5 g to about 1.0 g, and also from about 1.0 to about 2.5 g, also including from about 1.5 to about 2.2 g, of protein per 100 ml of formula.
  • the protein component of the formulas may therefore represent from about 4 to about 40%, including from about 10 to about 30%, also including from about 15 to about 25%, of the total calories in the newborn infant formulas.
  • Proteins or protein sources for use in the infant formulas of the present invention may include intact or non-hydrolyzed protein, hydrolyzed protein, partially hydrolyzed protein, free amino acids, and combinations thereof, which protein or protein source may be derived from any known or otherwise suitable source such as milk (e.g., casein, whey, milk protein isolates), animal (e.g., meat, fish), cereal (e.g., rice, corn), vegetable (e.g., soy), or combinations thereof.
  • milk e.g., casein, whey, milk protein isolates
  • animal e.g., meat, fish
  • cereal e.g., rice, corn
  • vegetable e.g., soy
  • the protein can include, or be entirely or partially replaced by, free amino acids which are known or otherwise suitable for use in nutritional products, non-limiting examples of which include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-carnitine, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-taurine, L-threonine, L-tryptophan, L-tyrosine, L-valine, and combinations thereof.
  • free amino acids which are known or otherwise suitable for use in nutritional products, non-limiting examples of which include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-carnitine, L-cystine, L-glutamic acid, L
  • the newborn infant formulas of the present invention comprise fat and carbohydrate nutrients in addition to the protein nutrients described hereinbefore, and preferably further comprise still other nutrients such as vitamins, minerals, and combinations thereof, of sufficient types and amounts to help meet the special nutritional needs of the newborn infant.
  • the newborn infant formulas may be used as the sole source of nutrition during the initial weeks or months of life, and can be used in combination with human milk during that same period.
  • the newborn infant formulas comprise a fat or lipid component, the amount of which may represent less than about 60%, including from about 30 to about 60%, of the total calories in the formula.
  • fats suitable for use in the newborn infant formulas include coconut oil, soy oil, corn oil, olive oil, safflower oil, high oleic safflower oil, MCT oil (medium chain triglycerides), sunflower oil, high oleic sunflower oil, structured triglycerides, palm and palm kernel oils, palm olein, canola oil, marine oils, cottonseed oils, and combinations thereof.
  • suitable fats or related materials include those that provide specific fatty acids, including arachidonic acid, docosahexaenoic acid, and mixtures thereof. These materials are known to provide beneficial effects in infants such as enhanced brain and vision development, descriptions of which are set forth in U.S. Pat. No. 5,492,938 (Kyle et al.), which descriptions are incorporated herein by reference.
  • Non-limiting sources of arachidonic acid and docosahexaenoic acid include marine oil, egg derived oils, fungal oil, algal oil, and combinations thereof. Eicosapentoic acid (EPA) can also be added to the infant formula.
  • the newborn infant formulas of the present invention also comprise carbohydrates, the amount of which may represent less than about 40%, including from about 5 to about 37%, also including less than about 36%, and also including from about 20 to about 33%, of the total calories in the formulas.
  • Non-limiting examples of suitable carbohydrates or carbohydrate sources include hydrolyzed or intact, naturally and/or chemically modified, starches sourced from corn, tapioca, rice or potato, in waxy or non-waxy forms.
  • Other non-limiting examples of suitable carbohydrates or carbohydrate sources include hydrolyzed cornstarch, maltodextrin (i.e. non-sweet, nutritive polysaccharide having a DE value less than 20), glucose polymers, sucrose, corn syrup, corn syrup solids (i.e., polysaccharide having a DE value greater than 20), glucose, rice syrup, fructose, high fructose corn syrup, indigestible oligosaccharides such as fructooligosaccharides (FOS), and combinations thereof.
  • the carbohydrates can comprise lactose or can be substantially free of lactose.
  • the newborn infant formulas may further comprise any of a variety of vitamins, non-limiting examples of which include vitamin A, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, pyridoxine, vitamin B 12 , niacin, folic acid, pantothenic acid, biotin, vitamin C, choline, inositol, salts and derivatives thereof, and combinations thereof.
  • vitamins non-limiting examples of which include vitamin A, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, pyridoxine, vitamin B 12 , niacin, folic acid, pantothenic acid, biotin, vitamin C, choline, inositol, salts and derivatives thereof, and combinations thereof.
  • the newborn infant formulas also include those embodiments that comprise per 100 kcal of formula one or more of the following: vitamin A (from about 400 to about 2000 IU), vitamin D (from about 40 to about 100 IU), vitamin K (greater than about 4 ⁇ g), vitamin E (at least about 1.0 IU), vitamin C (at least about 8 mg), thiamine (at least about 50 ⁇ g), vitamin B 12 (at least about 0.15 ⁇ g), niacin (at least about 300 ⁇ g), folic acid (at least about 8 ⁇ g), pantothenic acid (at least about 400 ⁇ g), biotin (at least about 3 ⁇ g), choline (at least about 7 mg), and inositol (at least about 2 mg).
  • vitamin A from about 400 to about 2000 IU
  • vitamin D from about 40 to about 100 IU
  • vitamin K greater than about 4 ⁇ g
  • vitamin E at least about 1.0 IU
  • vitamin C at least about 8 mg
  • thiamine at least about 50 ⁇ g
  • the newborn infant formulas may further comprise any of a variety of minerals known or otherwise suitable for us in infant nutrition formulas, non-limiting examples of which include calcium, phosphorus, magnesium, iron, zinc, manganese, copper, iodine, sodium, potassium, chloride, selenium, and combinations thereof.
  • the newborn infant formulas also include those embodiments containing per 100 kcal of formula one or more of the following: calcium (at least about 50 mg), phosphorus (at least about 25 mg), magnesium (at least about 6 mg), iron (at least about 0.15 mg), iodine (at least about 5 ⁇ g), zinc (at least about 0.5 mg), copper (at least about 60 ⁇ g), manganese (at least about 5 ⁇ g), sodium (from about 20 to about 60 mg), potassium (from about 80 to about 200 mg), chloride (from about 55 to about 150 mg) and selenium (at least about 0.5 ⁇ g).
  • the newborn infant formulas of the present invention can be prepared in any of a variety of product forms, but will most typically be in the form of a ready-to-feed liquid, a liquid concentrate for dilution prior to consumption, or a powder that is reconstituted prior to consumption.
  • the newborn infant formulas of the present invention can therefore include ready-to-feed formulas that comprise the requisite nutrient and energy requirements, or product forms that can otherwise provide for such requirements upon reconstitution or dilution prior to use.
  • the present invention is also directed to a method of providing nutrition to a newborn infant, said method comprising the administration or feeding to a newborn infant the newborn infant formula of the present invention.
  • Such methods include the daily administration of the newborn infant formulas, including administration at the daily intake volumes and relative daily macronutrient intakes, as described hereinbefore.
  • Such methods therefore include the daily administration to a newborn infant a formula having a caloric density of from about 25 to 50 kcal per 100 ml, including from about 35 to about 45 kcal per 100 ml, also including from about 37.5 kcal per 100 ml to about 42.5 kcal per 100 ml.
  • the methods of the present invention may further comprise average feeding volumes as described herein, wherein the newborn infants are provided increasing formula volumes during the initial weeks of life.
  • Such volumes most typically range up to about 100 ml/day on average during the first day or so of life; up to about 200 to about 700 ml/day, including from about 200 to about 600 ml/day, and also including from about 250 to 500 ml/day, on average during the first two weeks; and thereafter up to about 1100 ml/day, including from about 600 to about 1100 ml/day, and also including from about 800 to about 1000 ml/day, on average during the remainder of the 3 month newborn feeding period. It is understood, however, that such volumes can vary considerably depending upon the particular newborn infant and their unique nutritional needs during the initial weeks or months of life, as well as the specific nutrients and caloric density of the formulated newborn infant formula.
  • Such methods may therefore also provide the infants with optimal daily amounts of protein, carbohydrate, and lipids, such that the protein represents at least about 4% of the total daily calories, including from about 10% to about 40%, also including from about 15% to about 25%; the carbohydrate represents less than 40% of the total calories, including less than about 36%, and also including from about 20% to about 33%; and the fat represents the most or all of the remainder of the formula calories, most typically less than about 60% of the calories, including from about 30 to about 60%, of the calories.
  • the methods of the present invention preferably involve average daily feeding volumes and caloric intake similar to that of breastfed infants during the initial weeks or months of life.
  • the methods of the present invention are directed to newborn infants during the initial weeks or months of life, preferably during at least the first week of life, more preferably during at least the first two weeks of life, and including up to about 3 months of life. Thereafter, the infant is preferably switched to a conventional infant formula, alone or in combination with human milk.
  • the present invention is also directed to a method of reducing the extent or occurrence of insulin resistance in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula described herein, all in accordance with the above-described method.
  • the term “later in life” refers to the phase in an individuals life beyond the newborn infant stage, including the period beginning thereafter, and also including the period from about 9 years to 14 years of age, and also including the period from about 14 years to about 18 years of age, and also including the adult phase at and beyond 18 years of life.
  • the present invention is also directed to a method of reducing the extent or occurrence of atherosclerosis or coronary artery disease in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula described herein, all in accordance with the above-described methods.
  • the corresponding method may further comprise reconstituting the powder with an aqueous vehicle, most typically water or human milk, to form the desired caloric density, which is then orally or enterally fed to the newborn infant to provide the desired nutrition.
  • an aqueous vehicle most typically water or human milk
  • each is reconstituted with a sufficient quantity of water or other suitable fluid such as human milk to produce the desired caloric density, as well as the desired feeding volume suitable for one infant feeding.
  • the newborn infant formulas of the present invention may further comprise other optional ingredients or characteristics that may modify the physical, chemical, aesthetic or processing characteristics of the formulas or serve as pharmaceutical or additional nutritional components when used in the newborn infant population.
  • Many such optional ingredients are known for use in food and nutritional products, including infant formulas, and may also be used in the newborn infant formulas for use in the method of the present invention, provided that such optional materials are compatible with the essential materials described herein, are safe and effective for their intended use, and do not otherwise unduly impair product performance as described herein.
  • Non-limiting examples of such optional ingredients include preservatives, anti-oxidants, emulsifying agents, buffers, colorants, flavors, nucleotides and nucleosides, thickening agents, fiber, stabilizers, prebiotics, probiotics, and so forth.
  • the newborn infant formulas of the present invention may be prepared by any known or otherwise effective technique suitable for making and formulating infant or similar other nutritional formulas. Many such methods are described in the relevant arts or are otherwise well known to those skilled in the nutrition formula art, and are easily reapplied by one of ordinary skill in the formulation arts to the newborn infant formulas of the present invention.
  • the newborn infant formulas of the present invention can be prepared by any of a variety of known or otherwise effective methods. These methods most typically involve the initial formation of an aqueous slurry containing carbohydrates, proteins, lipids, stabilizers or other formulation aids, vitamins, minerals, or combinations thereof.
  • the slurry is emulsified, pasteurized, homogenized, and cooled.
  • Various other solutions, mixtures, or other materials may be added to the resulting emulsion before, during, or after further processing.
  • This emulsion can then be further diluted, heat-treated, and packaged to form a ready-to-feed or concentrated liquid, or it can be heat-treated and subsequently processed and packaged as a reconstitutable powder, e.g., spray dried, dry mixed, agglomerated.
  • a reconstitutable powder e.g., spray dried, dry mixed, agglomerated.
  • Each product form is further characterized by a nutrient profile similar to the target profile as set forth in the following Nutrient Profile table.
  • Nutrient Profile Newborn Infant Formula Nutrients per 100 kcal of Nutrients per liter newborn infant formula of newborn infant formula 1 Energy kcal 100 398 Protein (g) 5 20 Lipid (g) 5.5 22 Carbohydrate 8 30 Volume 251 1000 Vitamins A (IU) 700 2789 D (IU) 60 239 E (IU) 2 8 K ( ⁇ g) 8 g 32 Thiamine ( ⁇ g) 100 398 Niacin ( ⁇ g) 500 1992 Riboflavin ( ⁇ g) 100 398 B5 ( ⁇ g) 450 1793 B6 ( ⁇ g) 60 239 B12 ( ⁇ g) 0.25 1 Folate ( ⁇ g) 15 60 Biotin ( ⁇ g) 4.4 17.5 Ascorbic 10 40 Acid (mg) Minerals Calcium (mg) 150 600 Phosphorus (mg) 151 300 Magnesium (mg) 10 40 Iron (mg) 3.0 12 Zinc (mg) 1.8 7.0 Manganese ( ⁇ g) 7.5 30 Copper( ⁇ g) 176 700 Iodine ( ⁇
  • the exemplified formulas of the present invention are prepared by conventional manufacturing methods, using conventional fat (e.g., blend of high oleic sunflower, coconut and soy oil), carbohydrate (e.g., blend of lactose, maltodextrin, and corn syrup), protein (e.g., milk protein isolate or soy protein isolate), minerals, vitamins, and other common ingredients, to achieve the targeted nutrition profile.
  • conventional fat e.g., blend of high oleic sunflower, coconut and soy oil
  • carbohydrate e.g., blend of lactose, maltodextrin, and corn syrup
  • protein e.g., milk protein isolate or soy protein isolate
  • One such formula in liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide the fat, protein, and energy profile of the above-described Nutrient Profile table: water, nonfat milk, corn syrup solids, lactose, medium-chain triglycerides, whey protein concentrate, soy oil, coconut oil; C. cohnii oil, M.
  • Another such formula in concentrated liquid form includes the following ingredients, formulated by conventional methods for making concentrated liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, corn syrup, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil, starch; C. cohnii oil, M.
  • alpina oil calcium phosphate, potassium citrate, potassium chloride, mono- and diglycerides, soy lecithin, magnesium chloride, carrageenan, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ferrous sulfate, m-inositol, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, beta-carotene, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, vitamin D3 and cyanocobalamin.
  • Yet another such formula in ready-to-feed liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, corn syrup, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil; C. cohnii oil, M.
  • alpina oil calcium citrate, potassium citrate, calcium phosphate, potassium phosphate, potassium chloride, mono- and diglycerides, soy lecithin, magnesium chloride, carrageenan, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ferrous sulfate, m-inositol, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, beta-carotene, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, vitamin D3 and cyanocobalamin.
  • Yet another such formula in powder form includes the following ingredients, formulated by conventional methods for making powder infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: corn syrup solids, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil; C. cohnii oil, M.
  • alpina oil calcium phosphate, potassium citrate, soy lecithin, potassium chloride, magnesium chloride, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ascorbyl palmitate, ferrous sulfate, m-inositol, mixed tocopherols, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, beta-carotene, vitamin D3 and cyanocobalamin.
  • Another exemplified formula in a ready-to-feed liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate, C. cohnii oil, M.
  • Another exemplified formula in a concentrated liquid form includes the following ingredients, formulated by conventional methods for making concentrated liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate, C. cohnii oil, M.
  • Another such formula in powder form includes the following ingredients, formulated by conventional methods for making powder formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate; C. cohnii oil, M.
  • C. cohnii oil and M. alpina oil provides each formula with a source of docosahexaenoic acid (DHA) and arachidonic acid (ARA).
  • DHA docosahexaenoic acid
  • ARA arachidonic acid
  • Each of the exemplified formulas is then fed to newborn infants, or otherwise diluted or reconstituted prior to such feeding, in accordance with the methods of the present invention, wherein such feeding is administered by a conventional infant formula bottle at a daily average volume of from about a 200 ml/day to about 700 ml/day on average during the first two weeks of life, and from 600 to about 100 ml/day on average during the remaining first 3 months of life, and wherein the daily feeding provides the infants with optimal nutrition, and further provides for a reduction in the occurrence or extent of insulin resistance, a reduction in the occurrence or extent of atherosclerosis or coronary artery disease, or both, in those individuals later in life.
  • compositions and methods of the present invention are based primarily upon the findings of a clinical study directed toward infant feedings and the subsequent clinical evaluation of those infants several years later. A brief description of the study is described hereinafter.
  • Subjects were part of a cohort of 926 who were born preterm and participated in studies that investigated the effects of early diet on later cognitive function and cardiovascular disease. Between 1982 and 1985, babies free from major congenital anomalies and below 1850 g in birth weight were recruited in 5 centres (Norwich, Cambridge, Sheffield, Ipswich and King's Lynn). A reference group of subjects of the same age, but born at term and with birth weight above the 10th percentile, was also recruited from schools in the same communities as those born preterm.
  • Trials 1 and 2 the diets were randomly assigned in two strata; A) the trial as diets alone and B) in mothers who elected to express their own milk, the trial diets were assigned as supplements to mother's milk (see Table 1).
  • Trials 1 and 2 (and strata A and B within each trial) have been combined as a balanced addition, thereby preserving randomization. Random assignment to diets occurred within 48 hours of birth using sealed envelopes. Ethical approval for the trial was obtained from each centre and informed consent obtained from each parent (no parent refused consent).
  • preterm formula was enriched in protein and fat (2.0 g protein and 4.9 g fat per 100 ml preterm formula compared to 1.5 g protein and 3.8 g fat per 100 ml of term formula) but not carbohydrate (7.0 g per 100 ml) in both formulas.
  • Preterm formula was also enriched in vitamins, zinc and copper.
  • protein and energy intakes were estimated from 600 donor milk pools collected from multiple donors (approximately 1.1 g protein, 2 g fat and 7 g carbohydrate per 100 ml).
  • Mother's own expressed milk composition was measured in 4935 complete 24-hour collections (approximately 1.5 g protein, 3 g fat, and 7 g carbohydrate).
  • FMD Flow-Mediated endothelial dependent Dilation
  • the transducer was then fixed using a stereotactic clamp and fine position adjustments made when necessary using micrometer screws.
  • a pneumatic cuff was inflated around the forearm to 300 mm Hg for 5 minutes followed by rapid deflation causing a large increase in blood flow (reactive hyperaemia).
  • the resting and post-hyperaernic blood flow velocities in the centre of the imaged artery were determined using pulsed Doppler. End diastolic B-mode images were digitized and stored off-line sequentially every 3 seconds throughout the scan procedure for arterial diameter measurements immediately after the scan procedure (for 1 minute resting, 5 minutes cuff inflation, and 3 minutes post cuff deflation).
  • FMD was expressed as the absolute maximal change between pre- and post-hyperaemic brachial artery diameter adjusted for pre-hyperaernic diameter (using regression analysis) and as the absolute change in diameter expressed as a percentage of pre-hyperaemic diameter (FMD %).
  • Tanner staging was performed in private by self-assessment using standard Tanner stage photographs.
  • Social class was based on the occupation of the parent providing the main financial support for the family (or if both parents worked the father's occupation) according to the Registrar General's Classification.
  • Plasma samples were obtained by venopuncture between 0900 and 1100 a.m. after an overnight fast. Plasma was separated immediately, stored initially at ⁇ 20° C. and then at ⁇ 80° C., and thawed only once immediately before analysis. Plasma concentrations of LDL cholesterol were determined using standard laboratory methods.
  • Neonatal weight gain was expressed as the absolute value and as the standard deviation score from expected weight (z score) using percentiles for infants bom preterm. Growth beyond the neonatal period was calculated as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, and 9-12 years and 13-16 years. All regression analyses were adjusted for potential confounding factors (age, sex, neonatal morbidity ⁇ number of days in >30% oxygen and the number of days of ventilation ⁇ and social class, and for height, weight, serum LDL cholesterol concentration at follow-up, and room temperature).
  • FMD was significantly related to birth weight z score and this association remained significant after adjustment for potential confounding factors (age, sex, height, weight, fasting LDL concentrations, room temperature, social class and neonatal morbidity expressed as the number of days of ventilation or days in >30% oxygen) (see Table 2).
  • the period between birth and discharge was divided into two (between birth and the second week and between the second week and discharge).
  • greater weight gain in the first 2 weeks postnatally was associated with lower FMD in adolescence (see Table 1a) independent of birth weight, gestation and possible confounding factors (as above) (see Table 2).
  • mean FMD in preterm subjects with early weight gain above the population median did not significantly differ from control subjects born at term.
  • the subjects were the same as in Study 1 and subjected to the same regime and trials and 32-33 split insulin concentrations (as a measure of insulin resistance was measured).
  • Sample size was estimated to exclude half a standard deviation in outcomes between randomized dietary groups in each of the trials and we required a maximum sub sample of around 250 subjects from our original cohort to detect this difference (with two parallel trials) at 80% power and 5% significance; and a minimum sample of around 200 subjects for 70% power and 5% significance.
  • Trials 1 and 2 combined this sample was sufficient to detect a 0.4 SD difference in fasting 32-33 split proinsulin concentration between randomized groups with 80% power and at 5% significance.
  • Ethical approval for the follow-up study was obtained from national and local research ethics committees and written consent was obtained from all children, parents and their guardians.
  • Plasma Blood was obtained by venopuncture between 0900 and 1100 (a.m.) after an overnight fast. Plasma was separated immediately, stored initially at ⁇ 20° C. and then at ⁇ 80° C., and thawed only once immediately before analysis. Glucose concentration was measured using a hexokinase method. 32-33 split proinsulin, intact proinsulin and insulin concentrations were measured in the laboratories of Professor Hales in Cambridge. Insulin concentration was measured using a one step chemiluminescent immunoenzymatic assay. Cross-reactivity with intact proinsulin was less than 0.2% at 400 pmol/L and with 32-33 split proinsulin, less than 1% at 400 pmol/L.
  • Intact proinsulin and 32-33 split proinsulin concentrations were assayed using a time resolved fluorometric assay (Delfia).
  • the labeled antibody used in the 32-33 split proinsulin assay was donated by Dako Diagnostics Ltd.
  • Intact proinsulin was supplied by the National Institute for Biological Standards and Controls (1st International Reagent 84/611), and chromatography purified 32-33 split proinsulin donated by Lilly Research Labs.
  • the antibodies were labeled with Europium using the Delfia Europium labeling kit 1244-302 (Wallac, UK Ltd).
  • the intact proinsulin assay typically shows less than 1% cross-reactivity with insulin and 32-33 split proinsulin at 2500 pmol/L and 400 pmol/L respectively.
  • the 32-33 split proinsulin assay shows less than 1% cross-reactivity with insulin at 2500 pmol/L.
  • Neonatal weight gain was expressed as the absolute value and as the standard deviation score from expected weight (z score) using percentages for infants born preterm. Growth beyond the neonatal period was calculated as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, and 9-12 and 13-16 years.
  • Current body mass index (BMI) was expressed as the standard deviation score from expected BMI (z score) using national reference percentages. The distributions of 32-33 split proinsulin, proinsulin, and insulin concentrations were log transformed and then multiplied by 100.
  • log standard deviation multiplied by 100 represented the coefficient of variation and the coefficient in regression analyses represented the mean percentage change in insulin concentration per unit change in independent variable.
  • regression analyses were adjusted for potential confounding factors (sex, age, and BMI z score at current follow-up and neonatal morbidity ⁇ number of days in >30% oxygen and the number of days of ventilation ⁇ and social class at birth). Statistical significance was taken as p ⁇ 0.05 for all significance tests, which were two tailed
  • Subject Characteristics there were no statistically significant differences in birth weight, gestation, standard deviation scores for birth and discharge weight, and clinical parameters between children who were or were not reviewed at age 13-16 years (see Table 1). As expected, the percentage of adolescents from a non-manual social background was greater at follow-up than at birth for both trials (see Table 1). However, there were no significant differences in neonatal characteristics, anthropometry, Tanner stage (median 4, inter-quartile range: 4-5), or social class between randomized dietary groups at follow-up (see Table 3).
  • a greater neonatal growth rate (expressed as a continuous variable: the change in z score for weight between birth and discharge) was associated with higher fasting 32-33 split proinsulin and intact proinsulin in adolescence independent of birth weight, gestation and potential confounding factors (see statistical methods above) (see Table 5).
  • To better define the period of neonatal growth that influenced later proinsulin concentrations the period between birth and discharge was divided into two (between birth and the second week, and between the second week and discharge). Only growth in the first 2 weeks was associated with higher fasting 32-33 split and intact proinsulin concentrations in adolescence (see Table 5).

Abstract

Disclosed are newborn infant formulas comprising fat, carbohydrate, and from 0.5 to 2.5 g of protein per 100 ml of formula, wherein the formula has a caloric density of from 25 to 50 kcal per 100 ml of formula. Also disclosed are methods of administering the infant formulas to provide newborns with optimal nutrition, to reduce the occurrence or extent of insulin resistance in an individual later in life, to reduce the occurrence or extent of atherosclerosis or coronary artery disease in an individual later in life, or combinations thereof, by feeding newborn infants the newborn infant formula described herein.

Description

    FIELD OF INVENTION
  • The present invention relates to infant formulas and methods for using the formulas in feeding newborn infants.
  • BACKGROUND OF THE INVENTION
  • There are many different infant nutritional formulas that are commercially available or otherwise known in the infant formula art. These infant formulas comprise a range of nutrients to meet the nutritional needs of the growing infant, and typically include lipids, carbohydrates, protein, vitamins, minerals, and other nutrients helpful for optimal infant growth and development.
  • Most of these nutritional infant formulas are designed to assimilate or duplicate the composition and function of human milk. It is generally recognized, however, that human milk is preferred over synthetic infant formulas for the feeding of infants. It is also known that human milk provides improved immunological benefits to the breastfed infant, as well as long-term benefits in the area of certain cognitive developments.
  • It is also well known that the composition of human milk changes over the first few weeks following delivery of an infant. Human milk is referred to as colostrum during the first 5 days after birth, transition milk during days 6-14 after birth, and mature milk thereafter, and during each stage of lactation, the corresponding human milk composition differs considerably. Colostrum and transition milk, for example, have lower caloric densities than mature milk, as well as higher protein and lower carbohydrate concentrations. Vitamin and mineral concentrations also vary in the three defined human milk groups.
  • Most commercial infant formulas are similar in composition, although not identical, to mature human milk, and are used in both newborns as well as older infants. It is generally believed that the nutrient composition and higher energy content of mature milk, and thus the nutrient composition and higher energy content of most commercial infant formulas, benefit newborn infants given the rapid growth rate of infants during the initial weeks of life. In short, it has heretofore been accepted that the feeding of newborn infants should be conducted with an emphasis on encouraging infant growth, and that such growth is best accomplished via the feeding with commercial infant formulas having a similar nutrient and energy content to mature human milk.
  • It has now been observed, however, that formula-fed newborn infants might benefit from a feeding having a lower energy density, and perhaps more importantly, from a feeding that provides fewer calories during the initial weeks or months of life than would otherwise be provided from a feeding with a conventional infant formula. We have found from our long term infant studies that rapid early growth, achieved in large part from nutrient enriched feedings from conventional infant formulas, may result in long-term adverse health effects in individuals later in life, particularly with regard to long-term vascular health relevant to the development of atherosclerosis and to the later propensity to insulin resistance and non-insulin dependent diabetes mellitus (NIDDM), while slower growth in newborn infants, achieved in large part from feeding human milk or formula with a modified carbohydrate, fat and protein calorie distribution (e.g., higher protein, lower caloric density), can have a beneficial effect in the form of reduced occurrence of markers of adult morbidity.
  • It was also observed in the infant studies described herein that formula fed infants had a greater weight gain during the initial weeks of life than breastfed infants, and so it could be that the suggested long-term beneficial effects of breast-feeding on cardiovascular health could be a consequence of the lower nutrient intake of breastfed infants during this critical early window, e.g., the initial weeks or months of life.
  • It is therefore an object of the present invention to provide an infant formula designed for newborn infants that provides for optimal nutrition of these children, especially during the initial weeks or months of life, including the first few weeks of life. It is a further object of the present invention to provide an infant formula having a nutrient composition designed for optimal long-term health benefits, especially as such a formula is directed to the newborn infant population. It is a further object of the present invention to provide a method for providing such nutrition to newborn infants, and further to provide a method of reducing the occurrence or extent of insulin resistance later in the life of those infants, and further to provide a method of reducing the occurrence of atherosclerosis or coronary artery disease in those infants later in life, wherein all such methods are directed to the use of the newborn infant formulas of the present invention.
  • These and other objectives of the present invention are described hereinafter in greater detail.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to newborn infant formulas comprising fat, carbohydrate, and from about 0.5 to about 2.5 g of protein per 100 ml of formula, wherein the formula has a caloric density of from about 25 to about 50 kcal per 100 ml of formula.
  • The present invention is also directed to newborn infant formulas having a caloric density of from about 25 to about 50 kcal per 100 ml of formula, said formula comprising fat, carbohydrate, and from about 0.5 to 2.5 g of protein per 100 ml of formula, wherein the protein represents from about 4 to about 40% of the total calories and the carbohydrate represents less than about 40% of the total calories, in the formula.
  • The present invention is also directed to a method of providing nutrition to newborn infants, said method comprising the administration of the newborn infant formulas of the present invention to newborn infants during the first three months of life, preferably during at least about the first few weeks of life.
  • The present invention is also directed to a method of providing long-term health benefits in individuals by feeding methods directed to those individuals as newborn infants. These methods include a method of reducing the occurrence or extent of insulin resistance in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula of the present invention. These methods also include a method of reducing the occurrence or extent of atherosclerosis or coronary artery disease in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula of the present invention.
  • The present invention is based upon an observed relationship between feeding and growth rates among newborn infants and certain biochemical markers suggestive of long-term health effects of those infants later in life. In particular, it has been observed that rapid growth rates of newborn infants appear to correlate with certain biochemical markers that are suggestive of an increased potential development of long-term adverse health effects in those infants later in life such as atherosclerosis or coronary artery disease and insulin resistance or non-insulin dependent diabetes. It now appears that a more controlled growth rate of newborn infants may result in long term health benefits. These controlled growth rates are made possible by administration of the infant formulas of the present invention in accordance with the corresponding methods described herein.
  • The infant feeding formula of the present invention may include those compositions comprising from 0.5 to 1.00 grams of protein per 100 ml of formula and 25 to 50 kilocalories per 100 ml of formula. These compositions include those in which the protein component is selected from bovine caseins, whey proteins and individual proteins thereof, alpha-casein, β-lactoglobulin, serum albumin, lactoferrin, immunoglobulins and combinations of these proteins and also mixtures with other proteins. In these embodiments, the infant feeding formulas may contain energy in the form of carbohydrate and fat. The present invention is also directed to a liquid infant feeding formula which comprises water and the above-described infant feeding formula.
  • The infant formulas and methods of the present invention are therefore directed to the formulation and administration of defined protein concentrations/amounts and energy content, for example the formulation and use of an infant formula comprising per 100 ml of said formula, from 0.5 to 2.5 grams of protein and from 25 to 50 kcals of energy. This particular combination of protein and energy is much different than that found in conventional term and preterm infant formulas. Unlike conventional infant formulas, the newborn infant formulas of the present invention comprise lower energy densities and a higher relative amount of protein, with a preferred reduction in relative concentration/amount of carbohydrate.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The newborn infant formula and methods of the present invention are directed to the formulation and use of defined amounts of macronutrients, i.e., protein, carbohydrate, and fat, and energy in newborn infants. These and other essential or optional characteristics or components of the formulation and methods of the present invention are described in greater detail hereinafter.
  • The term “newborn infant” as used herein, unless otherwise specified, means term infants less than about 3 months of age, including infants from zero to about 2 weeks of age. As used herein, a “term infant” refers to individuals born at or beyond 37 weeks gestation, unless otherwise specified.
  • The terms “fat” and “lipid” are used interchangeably herein, and unless otherwise specified, refer generally to fats, oils, and combinations thereof.
  • The terms “infant formula” and “nutritional formula” are used interchangeably herein and refer to nutritional compositions designed for infants, which preferably contain sufficient protein, carbohydrate, lipid, vitamins, minerals, and electrolytes to potentially serve as the sole source of nutrition when provided in sufficient quantities. These terms refer to synthetic nutritional formulas and therefore specifically exclude human milk, cows milk, or any other natural whole milk product, except when such natural whole milk product is modified by manufacturing processes to form a modified milk product, e.g., milk-based infant formula.
  • All percentages, parts and ratios as used herein are by weight of the total composition, unless otherwise specified. All such weights as they pertain to listed ingredients are based upon the active level and, therefore, do not include solvents or by-products that may be included in commercially available materials, unless otherwise specified.
  • Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, 5, 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
  • Numerical ranges as used herein are also intended to include the term “about” to modify the numerical end points of each range.
  • All references to singular characteristics or limitations of the present invention shall include the corresponding plural characteristic or limitation, and vice versa, unless otherwise specified or clearly implied to the contrary by the context in which the reference is made.
  • All combinations of method or process steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
  • The compositions and methods of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations of the invention described herein, as well as any additional or optional ingredients, components, or limitations described herein or otherwise useful in nutritional infant formula applications.
  • Energy
  • The newborn infant formulas of the present invention have low energy content relative to conventional term and preterm infant formulas, wherein these newborn infant formulas comprise or otherwise provide a caloric density of from about 25 to about 50 kcal per 100 ml, including from about 35 to about 45 kcal per 100 ml, also including from about 37 to about 42 kcal per 100 ml. The caloric density of the newborn infant formulas of the present invention are easily distinguished from that of conventional term and preterm infant formulas, wherein such conventional formulas typically have a caloric density or energy content of from 66 to 88 kcal per 100 ml (i.e., 19-25 kcal/fl oz).
  • When the newborn infant formulas of the present invention are in powder form, then the powder is intended for reconstitution prior to use to obtain the above-noted caloric densities and other nutrient requirements. Likewise, when the infant formulas of the present invention are in a concentrated liquid form, then the concentrate is intended for dilution prior to use to obtain the requisite caloric densities and nutrient requirements. The newborn infant formulas can also be formulated as ready-to-feed liquids already having the requisite caloric densities and nutrient requirements.
  • The newborn infant formulas of the present invention are preferably administered to newborn infants in accordance with the methods described herein. Such methods may include feedings with the newborn infant formulas in accordance with the daily formula intake volumes described hereinafter.
  • The energy component of the newborn infant formula is most typically provided by a combination of fat, protein, and carbohydrate nutrients. The protein may comprise from about 4 to about 40% of the total calories, including from about 10 to about 30%, also including from about 15 to about 25%; the carbohydrate may comprise less than 40% of the total calories, including from about 5 to about 37%, also including less than about 36%, and also including from about 20 to about 33%; and the fat may comprise the remainder of the formula calories, most typically less than about 60% of the calories, including from about 30 to about 60%.
  • Each of the fat, protein, and carbohydrate nutrient components is described hereinafter in greater detail.
  • Protein
  • The newborn infant formulas of the present invention comprise protein in the requisite amounts as described hereinbefore relative to the total energy content of the formula. Any known or otherwise suitable protein or protein source may be used in the newborn infant formulas of the present invention, provided that such proteins are suitable for feeding infants, especially newborn infants.
  • The newborn infant formulas of the present invention may typically comprise or otherwise provide from about 0.5 to about 2.5 g, including from about 0.5 g to about 1.0 g, and also from about 1.0 to about 2.5 g, also including from about 1.5 to about 2.2 g, of protein per 100 ml of formula. The protein component of the formulas may therefore represent from about 4 to about 40%, including from about 10 to about 30%, also including from about 15 to about 25%, of the total calories in the newborn infant formulas.
  • Proteins or protein sources for use in the infant formulas of the present invention may include intact or non-hydrolyzed protein, hydrolyzed protein, partially hydrolyzed protein, free amino acids, and combinations thereof, which protein or protein source may be derived from any known or otherwise suitable source such as milk (e.g., casein, whey, milk protein isolates), animal (e.g., meat, fish), cereal (e.g., rice, corn), vegetable (e.g., soy), or combinations thereof. The protein can include, or be entirely or partially replaced by, free amino acids which are known or otherwise suitable for use in nutritional products, non-limiting examples of which include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-carnitine, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-taurine, L-threonine, L-tryptophan, L-tyrosine, L-valine, and combinations thereof.
  • Other Nutrients
  • The newborn infant formulas of the present invention comprise fat and carbohydrate nutrients in addition to the protein nutrients described hereinbefore, and preferably further comprise still other nutrients such as vitamins, minerals, and combinations thereof, of sufficient types and amounts to help meet the special nutritional needs of the newborn infant. The newborn infant formulas may be used as the sole source of nutrition during the initial weeks or months of life, and can be used in combination with human milk during that same period.
  • Many different sources and types of carbohydrates, lipids, proteins, minerals and vitamins are known and can be used in the infant formulas and methods of the present invention, provided that such nutrients are compatible with the added ingredients in the selected formulation, are safe and effective for their intended use, and do not otherwise unduly impair product performance.
  • The newborn infant formulas comprise a fat or lipid component, the amount of which may represent less than about 60%, including from about 30 to about 60%, of the total calories in the formula. Non-limiting examples of fats suitable for use in the newborn infant formulas include coconut oil, soy oil, corn oil, olive oil, safflower oil, high oleic safflower oil, MCT oil (medium chain triglycerides), sunflower oil, high oleic sunflower oil, structured triglycerides, palm and palm kernel oils, palm olein, canola oil, marine oils, cottonseed oils, and combinations thereof.
  • Still other suitable fats or related materials include those that provide specific fatty acids, including arachidonic acid, docosahexaenoic acid, and mixtures thereof. These materials are known to provide beneficial effects in infants such as enhanced brain and vision development, descriptions of which are set forth in U.S. Pat. No. 5,492,938 (Kyle et al.), which descriptions are incorporated herein by reference. Non-limiting sources of arachidonic acid and docosahexaenoic acid include marine oil, egg derived oils, fungal oil, algal oil, and combinations thereof. Eicosapentoic acid (EPA) can also be added to the infant formula.
  • The newborn infant formulas of the present invention also comprise carbohydrates, the amount of which may represent less than about 40%, including from about 5 to about 37%, also including less than about 36%, and also including from about 20 to about 33%, of the total calories in the formulas.
  • Non-limiting examples of suitable carbohydrates or carbohydrate sources include hydrolyzed or intact, naturally and/or chemically modified, starches sourced from corn, tapioca, rice or potato, in waxy or non-waxy forms. Other non-limiting examples of suitable carbohydrates or carbohydrate sources include hydrolyzed cornstarch, maltodextrin (i.e. non-sweet, nutritive polysaccharide having a DE value less than 20), glucose polymers, sucrose, corn syrup, corn syrup solids (i.e., polysaccharide having a DE value greater than 20), glucose, rice syrup, fructose, high fructose corn syrup, indigestible oligosaccharides such as fructooligosaccharides (FOS), and combinations thereof. The carbohydrates can comprise lactose or can be substantially free of lactose.
  • The newborn infant formulas may further comprise any of a variety of vitamins, non-limiting examples of which include vitamin A, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, pyridoxine, vitamin B12, niacin, folic acid, pantothenic acid, biotin, vitamin C, choline, inositol, salts and derivatives thereof, and combinations thereof.
  • The newborn infant formulas also include those embodiments that comprise per 100 kcal of formula one or more of the following: vitamin A (from about 400 to about 2000 IU), vitamin D (from about 40 to about 100 IU), vitamin K (greater than about 4 μg), vitamin E (at least about 1.0 IU), vitamin C (at least about 8 mg), thiamine (at least about 50 μg), vitamin B12 (at least about 0.15 μg), niacin (at least about 300 μg), folic acid (at least about 8 μg), pantothenic acid (at least about 400 μg), biotin (at least about 3 μg), choline (at least about 7 mg), and inositol (at least about 2 mg).
  • The newborn infant formulas may further comprise any of a variety of minerals known or otherwise suitable for us in infant nutrition formulas, non-limiting examples of which include calcium, phosphorus, magnesium, iron, zinc, manganese, copper, iodine, sodium, potassium, chloride, selenium, and combinations thereof.
  • The newborn infant formulas also include those embodiments containing per 100 kcal of formula one or more of the following: calcium (at least about 50 mg), phosphorus (at least about 25 mg), magnesium (at least about 6 mg), iron (at least about 0.15 mg), iodine (at least about 5 μg), zinc (at least about 0.5 mg), copper (at least about 60 μg), manganese (at least about 5 μg), sodium (from about 20 to about 60 mg), potassium (from about 80 to about 200 mg), chloride (from about 55 to about 150 mg) and selenium (at least about 0.5 μg).
  • Product Form
  • The newborn infant formulas of the present invention can be prepared in any of a variety of product forms, but will most typically be in the form of a ready-to-feed liquid, a liquid concentrate for dilution prior to consumption, or a powder that is reconstituted prior to consumption.
  • The newborn infant formulas of the present invention can therefore include ready-to-feed formulas that comprise the requisite nutrient and energy requirements, or product forms that can otherwise provide for such requirements upon reconstitution or dilution prior to use.
  • Method of Use
  • The present invention is also directed to a method of providing nutrition to a newborn infant, said method comprising the administration or feeding to a newborn infant the newborn infant formula of the present invention. Such methods include the daily administration of the newborn infant formulas, including administration at the daily intake volumes and relative daily macronutrient intakes, as described hereinbefore.
  • Such methods therefore include the daily administration to a newborn infant a formula having a caloric density of from about 25 to 50 kcal per 100 ml, including from about 35 to about 45 kcal per 100 ml, also including from about 37.5 kcal per 100 ml to about 42.5 kcal per 100 ml.
  • The methods of the present invention may further comprise average feeding volumes as described herein, wherein the newborn infants are provided increasing formula volumes during the initial weeks of life. Such volumes most typically range up to about 100 ml/day on average during the first day or so of life; up to about 200 to about 700 ml/day, including from about 200 to about 600 ml/day, and also including from about 250 to 500 ml/day, on average during the first two weeks; and thereafter up to about 1100 ml/day, including from about 600 to about 1100 ml/day, and also including from about 800 to about 1000 ml/day, on average during the remainder of the 3 month newborn feeding period. It is understood, however, that such volumes can vary considerably depending upon the particular newborn infant and their unique nutritional needs during the initial weeks or months of life, as well as the specific nutrients and caloric density of the formulated newborn infant formula.
  • Such methods may therefore also provide the infants with optimal daily amounts of protein, carbohydrate, and lipids, such that the protein represents at least about 4% of the total daily calories, including from about 10% to about 40%, also including from about 15% to about 25%; the carbohydrate represents less than 40% of the total calories, including less than about 36%, and also including from about 20% to about 33%; and the fat represents the most or all of the remainder of the formula calories, most typically less than about 60% of the calories, including from about 30 to about 60%, of the calories.
  • The methods of the present invention preferably involve average daily feeding volumes and caloric intake similar to that of breastfed infants during the initial weeks or months of life.
  • The methods of the present invention are directed to newborn infants during the initial weeks or months of life, preferably during at least the first week of life, more preferably during at least the first two weeks of life, and including up to about 3 months of life. Thereafter, the infant is preferably switched to a conventional infant formula, alone or in combination with human milk.
  • The present invention is also directed to a method of reducing the extent or occurrence of insulin resistance in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula described herein, all in accordance with the above-described method. In the context of the present invention, the term “later in life” refers to the phase in an individuals life beyond the newborn infant stage, including the period beginning thereafter, and also including the period from about 9 years to 14 years of age, and also including the period from about 14 years to about 18 years of age, and also including the adult phase at and beyond 18 years of life.
  • The present invention is also directed to a method of reducing the extent or occurrence of atherosclerosis or coronary artery disease in an individual later in life, said method comprising the administration to an individual as a newborn infant the newborn infant formula described herein, all in accordance with the above-described methods.
  • In the context of the methods of the present invention as applied to newborn infant formulas in powder form, the corresponding method may further comprise reconstituting the powder with an aqueous vehicle, most typically water or human milk, to form the desired caloric density, which is then orally or enterally fed to the newborn infant to provide the desired nutrition. For powdered newborn infant formula embodiments of the present invention, each is reconstituted with a sufficient quantity of water or other suitable fluid such as human milk to produce the desired caloric density, as well as the desired feeding volume suitable for one infant feeding.
  • Optional Ingredients
  • The newborn infant formulas of the present invention may further comprise other optional ingredients or characteristics that may modify the physical, chemical, aesthetic or processing characteristics of the formulas or serve as pharmaceutical or additional nutritional components when used in the newborn infant population. Many such optional ingredients are known for use in food and nutritional products, including infant formulas, and may also be used in the newborn infant formulas for use in the method of the present invention, provided that such optional materials are compatible with the essential materials described herein, are safe and effective for their intended use, and do not otherwise unduly impair product performance as described herein.
  • Non-limiting examples of such optional ingredients include preservatives, anti-oxidants, emulsifying agents, buffers, colorants, flavors, nucleotides and nucleosides, thickening agents, fiber, stabilizers, prebiotics, probiotics, and so forth.
  • Method of Manufacture
  • The newborn infant formulas of the present invention may be prepared by any known or otherwise effective technique suitable for making and formulating infant or similar other nutritional formulas. Many such methods are described in the relevant arts or are otherwise well known to those skilled in the nutrition formula art, and are easily reapplied by one of ordinary skill in the formulation arts to the newborn infant formulas of the present invention.
  • The newborn infant formulas of the present invention, including the exemplified formulas described hereinafter, can be prepared by any of a variety of known or otherwise effective methods. These methods most typically involve the initial formation of an aqueous slurry containing carbohydrates, proteins, lipids, stabilizers or other formulation aids, vitamins, minerals, or combinations thereof. The slurry is emulsified, pasteurized, homogenized, and cooled. Various other solutions, mixtures, or other materials may be added to the resulting emulsion before, during, or after further processing. This emulsion can then be further diluted, heat-treated, and packaged to form a ready-to-feed or concentrated liquid, or it can be heat-treated and subsequently processed and packaged as a reconstitutable powder, e.g., spray dried, dry mixed, agglomerated.
  • Other methods for making infant nutrition formulas are described, for example, in U.S. Pat. No. 6,365,218 (Borschel), which description is incorporated herein by reference.
  • EXAMPLES
  • The following examples illustrate specific embodiments of the newborn infant formula and corresponding methods of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. The exemplified products are prepared in three different product forms: ready-to-feed liquid, liquid concentrate, and powder.
  • Each product form is further characterized by a nutrient profile similar to the target profile as set forth in the following Nutrient Profile table.
  • Nutrient Profile: Newborn Infant Formula
    Nutrients per 100 kcal of Nutrients per liter
    newborn infant formula of newborn infant formula1
    Energy kcal 100 398
    Protein (g) 5 20
    Lipid (g) 5.5 22
    Carbohydrate 8 30
    Volume 251 1000
    Vitamins
    A (IU) 700 2789
    D (IU) 60 239
    E (IU) 2 8
    K (μg) 8 g 32
    Thiamine (μg) 100 398
    Niacin (μg) 500 1992
    Riboflavin (μg) 100 398
    B5 (μg) 450 1793
    B6 (μg) 60 239
    B12 (μg) 0.25 1
    Folate (μg) 15 60
    Biotin (μg) 4.4 17.5
    Ascorbic 10 40
    Acid (mg)
    Minerals
    Calcium (mg) 150 600
    Phosphorus (mg) 151 300
    Magnesium (mg) 10 40
    Iron (mg) 3.0 12
    Zinc (mg) 1.8 7.0
    Manganese (μg) 7.5 30
    Copper(μg) 176 700
    Iodine (μg) 10 41
    Sodium (mg) 50 200
    Potassium (mg) 178 710
    Chloride (mg) 126 500
    Selenium (μg) 5.0 20

    1Concentration prior to use as ready-to-feed liquid, diluted liquid concentrate, or reconstituted powder
  • The exemplified formulas of the present invention are prepared by conventional manufacturing methods, using conventional fat (e.g., blend of high oleic sunflower, coconut and soy oil), carbohydrate (e.g., blend of lactose, maltodextrin, and corn syrup), protein (e.g., milk protein isolate or soy protein isolate), minerals, vitamins, and other common ingredients, to achieve the targeted nutrition profile.
  • One such formula in liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide the fat, protein, and energy profile of the above-described Nutrient Profile table: water, nonfat milk, corn syrup solids, lactose, medium-chain triglycerides, whey protein concentrate, soy oil, coconut oil; C. cohnii oil, M. alpina oil, calcium phosphate, ascorbic acid, potassium citrate, magnesium chloride, sodium citrate, soy lecithin, mono- and diglycerides, carrageenan, calcium carbonate, choline bitartrate, m-inositol, taurine, niacinamide, choline chloride, alpha-tocopheryl acetate, L-carnitine, zinc sulfate, calcium pantothenate, potassium chloride, ferrous sulfate, vitamin A palmitate, cupric sulfate, riboflavin, thiamine chloride hydrochloride, pyridoxine hydrochloride, folic acid, beta-carotene, manganese sulfate, biotin, phylloquinone, sodium selenate, vitamin D3, cyanocobalamin, and nucleotides (cytidine 5′-monophosphate, disodium guanosine 5′-monophosphate, disodium uridine 5′-monophosphate, adenosine 5′-monophosphate).
  • Another such formula in concentrated liquid form includes the following ingredients, formulated by conventional methods for making concentrated liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, corn syrup, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil, starch; C. cohnii oil, M. alpina oil, calcium phosphate, potassium citrate, potassium chloride, mono- and diglycerides, soy lecithin, magnesium chloride, carrageenan, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ferrous sulfate, m-inositol, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, beta-carotene, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, vitamin D3 and cyanocobalamin.
  • Yet another such formula in ready-to-feed liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, corn syrup, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil; C. cohnii oil, M. alpina oil, calcium citrate, potassium citrate, calcium phosphate, potassium phosphate, potassium chloride, mono- and diglycerides, soy lecithin, magnesium chloride, carrageenan, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ferrous sulfate, m-inositol, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, beta-carotene, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, vitamin D3 and cyanocobalamin.
  • And yet another such formula in powder form includes the following ingredients, formulated by conventional methods for making powder infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: corn syrup solids, soy protein isolate, high-oleic safflower oil, sugar (sucrose), soy oil, coconut oil; C. cohnii oil, M. alpina oil, calcium phosphate, potassium citrate, soy lecithin, potassium chloride, magnesium chloride, sodium chloride, ascorbic acid, choline chloride, L-methionine, taurine, ascorbyl palmitate, ferrous sulfate, m-inositol, mixed tocopherols, zinc sulfate, alpha-tocopheryl acetate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, vitamin A palmitate, riboflavin, pyridoxine hydrochloride, folic acid, potassium iodide, phylloquinone, biotin, sodium selenate, beta-carotene, vitamin D3 and cyanocobalamin.
  • Another exemplified formula in a ready-to-feed liquid form includes the following ingredients, formulated by conventional methods for making liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate, C. cohnii oil, M. alpina oil, potassium citrate, calcium carbonate, ascorbic acid, mono- and diglycerides, soy lecithin, carrageenan, potassium chloride, magnesium chloride, sodium chloride, ferrous sulfate, choline chloride, choline bitartrate, taurine, m-inositol, alpha-tocopheryl acetate, L-carnitine, zinc sulfate, niacinamide, calcium pantothenate, riboflavin, vitamin A palmitate, cupric sulfate, thiamine chloride hydrochloride, pyridoxine hydrochloride, beta-carotene, folic acid, manganese sulfate, phylloquinone, biotin, sodium selenate, vitamin D3, cyanocobalamin and nucleotides (adenosine 5′-monophosphate, cytidine 5′-monophosphate, disodium guanosine 5′-monophosphate, disodium uridine 5′-monophosphate).
  • Another exemplified formula in a concentrated liquid form includes the following ingredients, formulated by conventional methods for making concentrated liquid infant formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: water, nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate, C. cohnii oil, M. alpina oil, potassium citrate, calcium carbonate, ascorbic acid, mono- and diglycerides, soy lecithin, carrageenan, potassium chloride, choline bitartrate, magnesium chloride, choline chloride, sodium chloride, ferrous sulfate, taurine, m-inositol, alpha-tocopheryl acetate, L-carnitine, zinc sulfate, niacinamide, riboflavin, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, pyridoxine hydrochloride, beta-carotene, folic acid, manganese sulfate, phylloquinone, biotin, sodium selenate, vitamin D3, cyanocobalamin and nucleotides (adenosine 5′-monophosphate, cytidine 5′-monophosphate, disodium guanosine 5′-monophosphate, disodium uridine 5′-monophosphate).
  • Another such formula in powder form includes the following ingredients, formulated by conventional methods for making powder formulas, and modified again by conventional methods, to provide prior to use the fat, protein, and energy profile of the above-described Nutrient Profile: nonfat milk, lactose, high-oleic safflower oil, soy oil, coconut oil, whey protein concentrate; C. cohnii oil, M. alpina oil, potassium citrate, calcium carbonate, ascorbic acid, potassium chloride, choline bitartrate, magnesium chloride, choline chloride, ferrous sulfate, ascorbyl palmitate, taurine, m-inositol, alpha-tocopheryl acetate, L-carnitine, mixed tocopherols, sodium chloride, zinc sulfate, niacinamide, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, beta-carotene, folic acid, manganese sulfate, phylloquinone, biotin, sodium selenate, vitamin D3, cyanocobalamin and nucleotides (adenosine 5′-monophosphate, cytidine 5′-monophosphate, disodium guanosine 5′-monophosphate, disodium uridine 5′-monophosphate.
  • In the exemplified formulas described above, the combination of C. cohnii oil and M. alpina oil provides each formula with a source of docosahexaenoic acid (DHA) and arachidonic acid (ARA).
  • Each of the exemplified formulas is then fed to newborn infants, or otherwise diluted or reconstituted prior to such feeding, in accordance with the methods of the present invention, wherein such feeding is administered by a conventional infant formula bottle at a daily average volume of from about a 200 ml/day to about 700 ml/day on average during the first two weeks of life, and from 600 to about 100 ml/day on average during the remaining first 3 months of life, and wherein the daily feeding provides the infants with optimal nutrition, and further provides for a reduction in the occurrence or extent of insulin resistance, a reduction in the occurrence or extent of atherosclerosis or coronary artery disease, or both, in those individuals later in life.
  • Clinical Study
  • The compositions and methods of the present invention are based primarily upon the findings of a clinical study directed toward infant feedings and the subsequent clinical evaluation of those infants several years later. A brief description of the study is described hereinafter.
  • Study 1
  • Subjects were part of a cohort of 926 who were born preterm and participated in studies that investigated the effects of early diet on later cognitive function and cardiovascular disease. Between 1982 and 1985, babies free from major congenital anomalies and below 1850 g in birth weight were recruited in 5 centres (Norwich, Cambridge, Sheffield, Ipswich and King's Lynn). A reference group of subjects of the same age, but born at term and with birth weight above the 10th percentile, was also recruited from schools in the same communities as those born preterm.
  • Infants born preterm were randomly assigned, in two parallel-randomized trials, to different diets at birth. These trials compared a nutrient enriched preterm formula (Farley's Osterprem, Farley's Health Care, a division of HJ Heinz Company, Ltd, Stockley Park, Uxbridge, UK) versus the relatively low nutrient diets available at the time. In Trial 1, the preterm formula was compared versus banked breast milk donated by unrelated lactating women and in Trial 2 the same preterm formula was compared against a standard term formula (Farley's OsterTnilk).
  • Within each trial (Trials 1 and 2) the diets were randomly assigned in two strata; A) the trial as diets alone and B) in mothers who elected to express their own milk, the trial diets were assigned as supplements to mother's milk (see Table 1). To compare the nutrient enriched preterm formula versus the lower nutrient diets, as originally planned, Trials 1 and 2 (and strata A and B within each trial) have been combined as a balanced addition, thereby preserving randomization. Random assignment to diets occurred within 48 hours of birth using sealed envelopes. Ethical approval for the trial was obtained from each centre and informed consent obtained from each parent (no parent refused consent).
  • The assigned diets were given until the infant weighed 2000 g or was discharged home. Compared with standard term formula, preterm formula was enriched in protein and fat (2.0 g protein and 4.9 g fat per 100 ml preterm formula compared to 1.5 g protein and 3.8 g fat per 100 ml of term formula) but not carbohydrate (7.0 g per 100 ml) in both formulas. Preterm formula was also enriched in vitamins, zinc and copper. For infants fed banked donated milk, protein and energy intakes were estimated from 600 donor milk pools collected from multiple donors (approximately 1.1 g protein, 2 g fat and 7 g carbohydrate per 100 ml). Mother's own expressed milk composition was measured in 4935 complete 24-hour collections (approximately 1.5 g protein, 3 g fat, and 7 g carbohydrate).
  • Extensive demographic, social, anthropometric, biochemical and clinical data were collected throughout the hospital admission. Infants were weighed daily by trained staff and a mean weight for each week post-natally was calculated to reduce inaccuracies arising from daily fluctuations in weight. Weights were also available at discharge from the neonatal unit, at age 18 months, 9-12 years and 13-16 years. Social class was based on the occupation of the parent providing the main financial support for the family (or if both parents worked the father's occupation) according to the Registrar Generals Classification as described.
  • Follow-up
  • The present follow-up at 13-16 years of age involved measurement of four key variables (blood pressure, flow-mediated endothelial dependent dilation, lipid profile and 32-33 split insulin concentrations-as a measure of insulin resistance—see Study 2). Sample size was estimated to exclude a half standard deviation (0.5D) difference in outcomes between randomized dietary groups in each of the two trials. We required a maximum sub-sample of around 250 subjects from our original cohort to detect this difference (with two parallel trials) at 80% power and 5% significance; and a minimum sample of around 200 subjects for 70% power and 5% significance.
  • FMD Measurement
  • We measured brachial artery Flow-Mediated endothelial dependent Dilation (FMD), an indicator of endothelial dysfunction relevant to the atherosclerotic process in a population subject to neonatal under nutrition and in healthy controls. This was determined by researchers who were unaware of the subject's gestational age. Subjects were rested supine for 10 minutes prior to the ultrasound scan, which was conducted by a single observer in a temperature controlled (22-24° C.), darkened room, between 0900 (a.m.) and 1300 (p.m.). The brachial artery was imaged in longitudinal section, 5-10 cm above the elbow, using a 7 MHz linear array transducer and an Acuson 128XP/10 system. The transducer was then fixed using a stereotactic clamp and fine position adjustments made when necessary using micrometer screws. A pneumatic cuff was inflated around the forearm to 300 mm Hg for 5 minutes followed by rapid deflation causing a large increase in blood flow (reactive hyperaemia). The resting and post-hyperaernic blood flow velocities in the centre of the imaged artery were determined using pulsed Doppler. End diastolic B-mode images were digitized and stored off-line sequentially every 3 seconds throughout the scan procedure for arterial diameter measurements immediately after the scan procedure (for 1 minute resting, 5 minutes cuff inflation, and 3 minutes post cuff deflation). Blood pressure was monitored using an automated oscillometric device (Accutorr, Datascope Corp., New Jersey, USA) and heart rate recorded using a three-lead electrocardiogram (ECG) linked to the ultrasound machine. The reproducibility and detailed methodology for measuring FMD has been previously described. FMD was expressed as the absolute maximal change between pre- and post-hyperaemic brachial artery diameter adjusted for pre-hyperaernic diameter (using regression analysis) and as the absolute change in diameter expressed as a percentage of pre-hyperaemic diameter (FMD %).
  • Anthropometry and Biochemistry at Follow-up
  • Height was measured using a portable stadiometer accurate to 1 mm (Holtain Instruments Ltd., Crymmych, UK) and weight using electronic scales accurate to 0.1 kg (Seca, Hamburg, Germany). Measurements were made using standard protocols by one of two observers trained in the techniques involved. Tanner staging was performed in private by self-assessment using standard Tanner stage photographs. Social class was based on the occupation of the parent providing the main financial support for the family (or if both parents worked the father's occupation) according to the Registrar General's Classification.
  • Blood was obtained by venopuncture between 0900 and 1100 a.m. after an overnight fast. Plasma was separated immediately, stored initially at −20° C. and then at −80° C., and thawed only once immediately before analysis. Plasma concentrations of LDL cholesterol were determined using standard laboratory methods.
  • Statistical Analysis
  • Multiple linear regression analyses were used to assess associations between the rate of neonatal and childhood growth (weight gain) and later FMD. Neonatal weight gain was expressed as the absolute value and as the standard deviation score from expected weight (z score) using percentiles for infants bom preterm. Growth beyond the neonatal period was calculated as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, and 9-12 years and 13-16 years. All regression analyses were adjusted for potential confounding factors (age, sex, neonatal morbidity−number of days in >30% oxygen and the number of days of ventilation−and social class, and for height, weight, serum LDL cholesterol concentration at follow-up, and room temperature). To compare the influence of the yearly growth on later FMD in adolescents born preterm with term subjects, the preterm population was divided into 2 groups by their early growth (median for weight gain in the first 2 postnatal weeks). Mean FMD in these two groups was compared with control subjects born at term using analysis of variance and p values were adjusted for multiple comparisons using Bonferroni's corrections. Statistical significance was taken as p<0.05 for all analyses.
  • Results
  • Subjects reviewed at age 13-16 years were representative of those recruited at birth in terms of birth weight, gestation, birth weight z score, discharge weight z score, social class and neonatal morbidity. There were no statistically significant differences in mean FMD between randomized dietary groups and this justifies combining all feed groups in the analyses below. Some background characteristics of subjects are given in Table 1a.
  • Birth Weight for Gestation and Later FMD
  • FMD was significantly related to birth weight z score and this association remained significant after adjustment for potential confounding factors (age, sex, height, weight, fasting LDL concentrations, room temperature, social class and neonatal morbidity expressed as the number of days of ventilation or days in >30% oxygen) (see Table 2).
  • Birth Weight for Gestation and Early Postnatal Growth
  • As expected, a low birth weight z score was associated with greater weight gain from birth to the second week postnatally (regression coefficient=−51.6 g per z score increase in birth weight; 95% Cl: −61.6 to −41.5 g; p<0.001), and from birth to discharge (median age 4.4 weeks) (regression coefficient=−75.1 g per z score increase in birth weight; 95% Cl: −114.9 to −35.3 g; p<0.001). These associations remained significant after adjustment for gestation, sex, neonatal morbidity (as above), social class or dietary group (standard versus nutrient enriched diet) (data not presented).
  • Postnatal Growth and Later FMD
  • Subjects who showed weight gain in the first 2 weeks of life had lower FMD % in adolescence (mean, SD: 5.5%, 2.6%; n=65) than those who had early weight loss (7.1%, 3.5%, n=37; 95% Cl for difference=−2.4% to 0.7%; p<0.001). Similar significant results were obtained after adjustment for birth weight and gestation (p=0.01) (data not presented), or after the analysis was confined to subjects without intra-uterine growth retardation (weight above the 10th percentile for gestation) or to subjects with a birth weight above the mean for the population (1.4 kg) (data not presented). A greater neonatal growth rate (expressed as the change in z score for weight between birth and discharge or between birth and age 4 weeks) was associated with lower FMD in adolescence and these associations remained significant after adjustment for potential confounding factors (as above) (see Table 2). In contrast, growth expressed as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, or between 9-12 years and 13-16 years was not related to later FMD (see Table 2).
  • To better define the period of neonatal growth that influenced later FMD, the period between birth and discharge was divided into two (between birth and the second week and between the second week and discharge). A greater growth rate between birth and the second week, but not between the second week and discharge, was associated with lower FMD in adolescence and this association remained significant after adjustment for potential confounding factors (as above) (se Table 2). Similarly, greater weight gain in the first 2 weeks postnatally was associated with lower FMD in adolescence (see Table 1a) independent of birth weight, gestation and possible confounding factors (as above) (see Table 2).
  • To exclude the possibility that postnatal weight loss due to fluid shifts rather than postnatal weight gain influenced later FMD, two further analyses were performed. First, we assessed the association of weight gain between the minimum weight afterbirth and the weight in the second week with later FMD. Greater weight gain during this period was associated with lower FMD in adolescence independent of birth weight, gestation and potential confounding factors (see above) (see Table 2). Second, greater length gain between birth and the second week, unlikely to be related to postnatal fluid loss, was associated with lower FMD in adolescence independent of birth weight, gestation and potential confounding factors (see Table 2).
  • Early Postnatal Growth and Later FMD: Group Comparisons
  • Mean FMD was greater in adolescents born preterm with weight gain in the first 2 postnatal weeks below the population median (−51.0 g) (mean: 7.4%; SD: 3.4%) than those with weight gain above the median (mean: 5.7%; SD: 2.9%; p<0.001) or control subjects born at term (mean 6.1%; SD 2.8%; p=0.027) (see FIG. 2). However, mean FMD in preterm subjects with early weight gain above the population median did not significantly differ from control subjects born at term.
  • Relative Contribution of Intra-uterine and Early Postnatal Growth to Later FMD
  • There was no significant interaction between birth weight z score and weight change from birth to the second week on later FMD (p=0.56). All measures of postnatal growth (as shown in Table 2), potential confounding factors (as above), and birth weight z score were included in a stepwise multiple regression model. Only the change in weight between birth and the second week, and room temperature were statistically significantly related to later FMD (regression coefficients=−0.027 mm change per 100 g weight increase; 95% Cl: −0.042 to −0.012 mm; p=0.001; and 0.009 mm change per 1° C. rise in room temperature; 95 % Cl: 0.002 to 0.016 mm; p=0.009).
  • A greater rate of weight gain during a critical window in the first two weeks after birth was associated with endothelial dysfunction up to 16 years later. Our data indicate in humans that rapid growth immediately after birth has adverse consequences later in life. FMD was greater in preterm infants who had a slower rate of growth than in those with the greatest growth, or, importantly, in control subjects born at term (FMD in these latter 2 groups did not significantly differ).
  • Our findings, therefore, now show that growth impairment during a brief window after birth may have long-term benefits to health. Our data shows that improvement in some aspects of long-term health can be achieved by early under nutrition. The first 2 weeks after birth appeared to be the sensitive period. Adolescents with the greatest weight gain during this period had 4.0% lower FMD than those with the lowest weight gain; a substantial effect on FMD, similar to that of insulin dependent diabetes (4%) and smoking (6%) in adults.
  • Study 2—The Effect of Under Nutrition on Insulin Resistance
  • The subjects were the same as in Study 1 and subjected to the same regime and trials and 32-33 split insulin concentrations (as a measure of insulin resistance was measured).
  • Sample size was estimated to exclude half a standard deviation in outcomes between randomized dietary groups in each of the trials and we required a maximum sub sample of around 250 subjects from our original cohort to detect this difference (with two parallel trials) at 80% power and 5% significance; and a minimum sample of around 200 subjects for 70% power and 5% significance. A subset of 216 subjects, which met our minimum criteria, agreed to participate at our initial attempt at recruitment and was found to be representative of the original population. For comparison of a nutrient enhanced versus standard neonatal diet (Trials 1 and 2 combined) this sample was sufficient to detect a 0.4 SD difference in fasting 32-33 split proinsulin concentration between randomized groups with 80% power and at 5% significance. Ethical approval for the follow-up study was obtained from national and local research ethics committees and written consent was obtained from all children, parents and their guardians.
  • Biochemistry
  • Blood was obtained by venopuncture between 0900 and 1100 (a.m.) after an overnight fast. Plasma was separated immediately, stored initially at −20° C. and then at −80° C., and thawed only once immediately before analysis. Glucose concentration was measured using a hexokinase method. 32-33 split proinsulin, intact proinsulin and insulin concentrations were measured in the laboratories of Professor Hales in Cambridge. Insulin concentration was measured using a one step chemiluminescent immunoenzymatic assay. Cross-reactivity with intact proinsulin was less than 0.2% at 400 pmol/L and with 32-33 split proinsulin, less than 1% at 400 pmol/L. Intact proinsulin and 32-33 split proinsulin concentrations were assayed using a time resolved fluorometric assay (Delfia). The solid phase antibody, bound to a microtitre plate, was the same in each case. The labeled antibody used in the 32-33 split proinsulin assay was donated by Dako Diagnostics Ltd. Intact proinsulin was supplied by the National Institute for Biological Standards and Controls (1st International Reagent 84/611), and chromatography purified 32-33 split proinsulin donated by Lilly Research Labs. The antibodies were labeled with Europium using the Delfia Europium labeling kit 1244-302 (Wallac, UK Ltd). The intact proinsulin assay typically shows less than 1% cross-reactivity with insulin and 32-33 split proinsulin at 2500 pmol/L and 400 pmol/L respectively. The 32-33 split proinsulin assay shows less than 1% cross-reactivity with insulin at 2500 pmol/L.
  • Statistical Analysis
  • The principal outcome was 32-33 split proinsulin concentration. Comparisons of normally distributed variables between randomized groups were made with Student's t test. Simultaneous multiple linear regression analyses were used to adjust differences between randomized groups for possible baseline differences. Infants born preterm and randomized to the lower nutrient diet were compared to adolescents born at term using Student's t test.
  • Multiple linear regression analyses were used to assess associations between the rate of neonatal and childhood growth (weight gain) and later insulin concentrations. Neonatal weight gain was expressed as the absolute value and as the standard deviation score from expected weight (z score) using percentages for infants born preterm. Growth beyond the neonatal period was calculated as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, and 9-12 and 13-16 years. Current body mass index (BMI) was expressed as the standard deviation score from expected BMI (z score) using national reference percentages. The distributions of 32-33 split proinsulin, proinsulin, and insulin concentrations were log transformed and then multiplied by 100. Therefore the log standard deviation multiplied by 100 represented the coefficient of variation and the coefficient in regression analyses represented the mean percentage change in insulin concentration per unit change in independent variable. Regression analyses were adjusted for potential confounding factors (sex, age, and BMI z score at current follow-up and neonatal morbidity−number of days in >30% oxygen and the number of days of ventilation−and social class at birth). Statistical significance was taken as p<0.05 for all significance tests, which were two tailed
  • Results
  • Analysis in Adolescents Born Preterm
  • Subject Characteristics: there were no statistically significant differences in birth weight, gestation, standard deviation scores for birth and discharge weight, and clinical parameters between children who were or were not reviewed at age 13-16 years (see Table 1). As expected, the percentage of adolescents from a non-manual social background was greater at follow-up than at birth for both trials (see Table 1). However, there were no significant differences in neonatal characteristics, anthropometry, Tanner stage (median 4, inter-quartile range: 4-5), or social class between randomized dietary groups at follow-up (see Table 3).
  • Main Effect: Comparison Between Randomized Dietga Groups
  • As planned, adolescents born preterm and randomized to a nutrient enriched diet (preterm formula) were compared with those randomized to the lower nutrient diet (banked breast milk or standard term formula). Fasting 32-33 split proinsulin (but not intact proinsulin, insulin or glucose concentration) was greater in adolescents randomized to the nutrient enriched diet than those randomized to one of the two lower nutrient diets (see Table 4). The effect sizes were similar in adolescents randomized to preterm formula compared to banked breast milk (Trial 1), or preterm formula versus term formula (Trial 2) (see Table 4) as evidenced by the lack of a significant diet by thai interaction for later 32-33 split proinsulin concentration (p=0.5), intact proinsulin (p=0.3) and insulin concentration (p=0.8). This further justifies combining Trials I and 2. There was no sex difference in the effect of diet on fasting 32-33 split proinsulin concentration (the interaction between diet and sex on fasting 32-33 split proinsulin concentrations was not statistically significant; p=0.07).
  • In an explanatory analyses, the effect of diet on 32-33 split proinsulin concentrations remained significant after adjustment for birth weight and gestation, and potential confounding factors (see statistical methods above) (regression coefficient=18.4%; 95% Cl of difference: 3.5% to 33.2%; p=0.016). In the subsequent analyses only 32-33 split and intact proinsulin, but not insulin or glucose concentrations were significantly related to the early factors of interest (other data are not presented).
  • Effect of Early Postnatal Growth Programmed Later Proinsulin Concentrations
  • Because diet has a major influence on neonatal growth (see Table 3) we tested the hypothesis that postnatal growth programmed later 32-33 split and intact proinsulin concentrations. This was done in two ways: taking early postnatal growth as a continuous variable or as a dichotomous variable.
  • A greater neonatal growth rate (expressed as a continuous variable: the change in z score for weight between birth and discharge) was associated with higher fasting 32-33 split proinsulin and intact proinsulin in adolescence independent of birth weight, gestation and potential confounding factors (see statistical methods above) (see Table 5). To better define the period of neonatal growth that influenced later proinsulin concentrations the period between birth and discharge was divided into two (between birth and the second week, and between the second week and discharge). Only growth in the first 2 weeks was associated with higher fasting 32-33 split and intact proinsulin concentrations in adolescence (see Table 5).
  • Neonatal growth was taken as a dichotomous variable by comparing subjects who showed weight gain in the first 2 weeks of life (n=60) with those who had weight loss. Fasting 32-33 split proinsulin concentration was greater in subjects with early neonatal weight gain (geometric mean: 7.6 pmol/L, Coefficient of Variation, CV: 60%) compared to those with weight loss (5.9 pmol/L, CV 54%; mean difference 24%; 95% Cl for difference =6.6% to 41.5%; p=0.007). Similar results were obtained for intact proinsulin (p=0.0003) (data not shown). The differences in 32-33 split proinsulin or intact proinsulin concentrations between neonatal weight gain groups remained significant after adjustment for birth weight and gestation (p=0.02 for 32-33 split proinsulin and p=0.03 for intact proinsulin).
  • To exclude the possibility that postnatal weight loss due to fluid shifts rather than postnatal weight gain influenced later fasting insulin concentrations, we assessed the association of weight gain between the minimum weight after birth and the weight in the second week with later proinsulin concentrations. Greater weight gain during this period was associated with higher 32-33 split and intact proinsulin concentration in adolescence independent of birth weight, gestation and potential confounding factors (as above) (see Table 5).
  • To assess the influence of postnatal growth beyond the neonatal period on later proinsulin concentrations, growth was expressed as the change in z score for weight between discharge and age 18 months, 18 months and 9-12 years, or between 9-12 years and 13-16 years. These variables were not significantly related to later, 32-33 split or intact proinsulin concentrations. Furthermore more rapid growth in the first 2 weeks post-natally was associated with greater 32-33 split proinsulin concentration in adolescence, without or without adjustment for current BMI z score (data not presented). Thus the influence of early growth on later 32-33 split proinsulin concentration was independent of weight gain during childhood.
  • Effect of Antenatal Growth Programmed Proinsulin Concentrations
  • To explore the influence of antenatal. growth we assessed the associations between birth weight for gestation and later proinsulin concentrations. Only fasting proinsulin (but not 32-33 split proinsulin) concentration in adolescence was negatively associated with birth weight z score independent of potential confounding factors (as above) (see Table 5).
  • Our prospective experimental study was designed to assess the influence of early nutrition on later cardiovascular risk factors. We found that adolescents born preterm who were randomized to a lower nutrient diet, now recognized as sub optimal in terms of growth, had lower fasting 32-33 split proinsulin concentration, a marker of insulin resistance, than those randomized to a nutrient rich diet. Further analysis suggested that these dietary effects, seen up to 16 years after dietary randomization, were likely to operate by influencing neonatal growth rate. We suggest therefore that a reduced early growth rate as a consequence of relative under nutrition programs a lower insulin resistance and, by inference, a lower propensity to non-insulin dependent diabetes mellitus.
  • Data Tables
    TABLE 1
    Characteristics of Children Born Preterm who were
    Followed-up and not Followed-up In Adolescence1
    Trial 1: Preterm Formula Trial 2: Preterm Formula
    versus Banked Breast Milk versus Term Formula
    Not Not
    Followed up followed up Followed up followed up
    (n = 130)2 (n = 372) (n = 86) (n = 338)
    Variable mean SD mean SD mean SD mean SD
    Growth
    Birth weigth 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3
    (kg)
    (range) (0.7 to 1.8) (0.6 to 1.8) (0.7 to 1.8) (0.5 to 1.8)
    Gestation 31.1 2.6 30.7 2.9 30.7 2.8 30.8 2.9
    (weeks)
    (range) (26-38) (25 to 39) (26 to 37) (24 to 39)
    Birth weight z −1.0 1.2 −0.7 1.3 −0.8 1.1 −0.7 1.3
    score
    Discharge −2.1 1.0 −2.0 1.1 −2.1 1.0 −2.1 1.0
    weight z score
    Demo-
    graphical/
    clinical
    Social Class 3.4 1.5 3.6 1.9 3.5 1.6 3.8 1.8
    No. (%) 53 (41) 111 (30)4 35 (40) 97 (29)4
    non-manual3
    Apgar at 5 min. 8.3 1.7 8.0 1.9 7.8 1.8 8.0 2.0
    of age
    Days 0 0-4 1 0-5 1 0-4  1 0-6 
    ventilation5
    Days in >30% 2 0-7 4 1-8 2 0-16 3 0-10
    oxygen5
  • TABLE 2
    Regression Analyses on Endothelial Function in 216* Subjects
    (post-hyperaemic change in brachial artery diameter, mm)
    Unadjusted Adjusted1
    Regression Regression
    Variable coef (mm) 95% CI p coefficient (mm) 95% CI p
    Birth weight z score 0.13 0.001 to 0.026 0.035 0.016 0.002 to 0.029 0.021
    Change in
    weight z score between:
    1. Birth and discharge −0.026 −0.046 to −0.007 0.007 −0.030 −0.055 to −0.006 0.016
    Birth and 4 weeks −0.037 −0.066 to −0.008 0.012 −0.035 −0.068 to −0.002 0.037
    Birth and 2 weeks −0.057 −0.087 to −0.024 0.001 −0.062 −0.096 to −0.028 <0.001
    2. 2 weeks and discharge −0.025 −0.056 to 0.005  0.10 −0.013 −0.052 to 0.026  0.52
    3. Discharge and 18 months 0.006 −0.006 to 0.018  0.34 0.007 −0.007 to 0.021  0.35
    4. 18 months and 9-12 yrs −0.005 −0.019 to 0.008  0.46 −0.009 −0.023 to 0.006  0.27
    5. 9-12 yrs and 13-16 yrs −0.003 −0.027 to 0.022  0.82 −0.007 −0.034 to 0.019  0.57
    2Weight Change Between:
    1. Birth and 2nd week −0.026 −0.040 to −0.012 <0.001 −0.024 −0.043 to −0.006 0.009
    (100 g)
    2. Minimum weight and −0.037 −0.065 to −0.009 0.010 −0.035 −0.069 to 0.000  0.050
    2nd week (100 g)
    2Length change between −0.002 −0.004 to 0.000  0.03 −0.002 −0.004 to 0.000  0.041
    birth and 2nd week (cm)3

    Each line represents a separate regression model. All analyses adjusted for pre-hyperaemic brachial artery diameter.

    *Slight loss of n in some models.

    1Adjusted for age, sex, height, weight, fasting serum LDL cholesterol concentrations, room temperature, social class, and indices of neonatal morbidity (number of days of ventilation or days in >30% oxygen).

    2Adjusted for confounding variables (as above) and birth weight and gestation.

    3n = 100
  • TABLE 3
    Comparison Characteristics of Preterm and Randomized to Different Diets at Birth
    Trials 1 and 2 Combined Trial 1 Trial 2
    Banked Breast Preterm
    Preterm Formula Lower Nutrient Preterm Formula Milk Formula Term Formula
    (n = 106) Diet1 (n = 110) (n = 64) (n = 66) (n = 42) (n = 44)
    Variable mean SD mean SD mean SD mean SD mean SD mean SD
    Sex: No. males (%)2 45 (42) 52 (57) 32 (50) 32 (49) 13 (31) 20 (45)
    Age (years) 15.0 0.9 15.0 0.9 15.1 1.0 15.2 0.9 14.8 0.8 14.8 0.8
    Weight (kg) 55.0 11.3 55.8 10.0 55.0 12.2 53.9 9.9 54.9 10.1 58.6 9.7
    161.2 161.2 8.6 161.8 9.7 160.8 9.4 161.3 10.2 161.9 7.3 162.5 8.9
    Body mass index 21.0 3.6 21.3 3.8 21.1 3.9 20.8 3.9 20.9 3.2 22.2 3.5
    (kg/m2)
    Sum of skin folds 52 30-74 50 34-71 52 30-77 44 30-62 52 31-73 57 47-78
    (mm3)
    Neonatal
    Social 3.4 1.4 3.5 1.7 3.5 1.3 3.4 1.7 3.4 1.7 3.6 1.6
    No. (%) non-manual2 43 (41) 45 (41) 25 (39) 28 (42) 18 (43) 17 (39)
    Birth weight (kg) 1.4 0.3 1.4 0.3 1.3 0.3 1.4 0.3 1.4 0.4 1.3 0.3
    Gestation (weeks) 31.1 2.7 30.9 2.7 31.2 2.6 31.1 2.5 30.9 2.8 30.6 2.9
    Apgar at 5 minutes 8.3 1.8 7.9 1.8 8.4 1.9 8.2 1.6 8.2 1.5 7.5 1.9
    of age
    Days in >30% oxygen3 2 0-9 3 0-7 3 0-7 2 0-7 2  0-17 4  0-15
    Days in ventilation3 0 0-4 0 0-4 0 0-4 0 0-3 1 0-4 1 0-4
    z score birth weight −0.9 1.2 −0.8 1.2 −1.1 1.2 −0.8 1.2 −0.7 1.1 −0.8 1.1
    z score discharge −1.9 1.0 −2.2 0.9* −2.0 1.0 −2.1 1.0 −1.8 0.9 −2.3 0.8*
    weight
    Growth
    Change in weight z
    score between:
    Birth and discharge −1.0 0.7 −1.4 0.7*** −0.9 0.7 −1.3 0.6** −1.1 0.8 −1.5 0.8*
    Birth and 2 weeks −1.0 0.5 −1.1 0.4** −0.9 0.5 −1.1 0.4* −1.0 0.5 −1.2 0.5
    2 weeks and discharge −0.01 0.5 −0.3 0.5*** 0.05 0.5 −0.2 0.4** −0.1 0.5 −0.4 0.5*
  • TABLE 5
    Regression Analyses of Early Growth and Later Proinsulin Concentrations In Adolescents born Preterm
    Unadjusted Adjusted1
    Regression Regression
    Coefficient Coefficient
    Variable (%) 95% CI (%) p (%) 95% CI (%) p
    32-33 Split Proinsulin
    Birth weight z score −5.9 −12.6 to 0.7 0.08 −4.9 −11.3 TO 1.5 0.1
    Change in weight z score between2
    1. Birth and discharge 13.6 3.2 to 24.1 0.01 21.1 5.8 to 36.4 0.007
    2. Birth and 2 weeks 26.7 9.5 to 43.9 0.003 44.0 18.4 to 69.6 0.0009
    3. 2 weeks and discharge 8.4 −8.6 to 25.4 0.3 8.6 −11.7 to 28.8 0.4
    Weight Change between2
    1. Birth and 2nd week 13.2 5.4 to 20.9 0.01 15.6 6.3 to 24.8 0.001
    (per 100 g)
    2. Min. weight and 2nd week 19.0 3.3 to 34.8 0.02 22.9 5.4 to 40.4 0.01
    (per 100 g)
    Proinsulin
    Birth weight z score −7.2 −21.9 to −1.6 0.001 −5.9 −11.5 to −0.2 0.04
    Change in weight z score between2
    1. Birth and discharge 16.0 7.1 to 24.8 0.0005 14.9 1.5 to 28.2 0.03
    2. Birth and 2 weeks 31.2 16.9 to 45.5 <0.0001 37.3 154.4 to 59.1 0.0009
    3. 2 weeks and discharge 11.0 −3.5 to 25.4 0.1 2.3 −15.4 to 19.5 0.8
    Weight Change between2
    1. Birth and 2nd week 15.1 8.7 to 21.5 <0.0001 14.9 7.1 to 22.7 <0.0002
    (per 100 g)
    2. Min. weight and 2nd week 28.6 15.5 to 4.2 <0.0001 24.5 9.6 to 39.4 0.001
    (per 100 g)

    Each line represents a separate regression model.

    1Adjusted for: age, sex, current body mass index z score, social class, indices of neonatal morbidity (number of days of ventilation or days in >30% oxygen.)

    2Adjusted for confounding factors (as above) together with birth weight and gestation. Small loss of n in some models.

Claims (8)

1. An infant feeding formula which comprises from 0.5 to 1.00 grams of protein per 100 ml of formula and 25 to 50 kilocalories per 100 ml of formula.
2. An infant feeding formulas as claimed in claim 1 in which the protein is selected from bovine caseins, whey proteins and individual proteins thereof, alpha-casein, β-lactoglobulin, serum albumin, lactoferrin, immunoglobulins and combinations of these proteins and also mixtures with other proteins.
3. An infant feeding formula as claimed in claims 1 in which the energy is in the form of carbohydrate and fat.
4. An infant feeding formula as claimed in claim 2 in which the energy is in the form of carbohydrate and fat.
5. A liquid infant feeding formula which comprises water and a feeding formula as claimed in claim 1.
6. A liquid infant feeding formula which comprises water and a feeding formula as claimed in claim 2.
7. A liquid infant feeding formula which comprises water and a feeding formula as claimed in claim 3.
8. A liquid infant feeding formula which comprises water and a feeding formula as claimed in claim 4.
US10/806,169 2003-02-10 2004-03-23 Newborn infant formulas and feeding methods Abandoned US20050175759A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/806,169 US20050175759A1 (en) 2004-02-09 2004-03-23 Newborn infant formulas and feeding methods
US11/822,078 US7998501B2 (en) 2003-02-10 2007-07-02 Newborn infant formulas and feeding methods
US12/318,678 US8815279B2 (en) 2003-02-10 2009-01-06 Baby feeding formula and system
US13/176,682 US8703173B2 (en) 2003-02-10 2011-07-05 Newborn infant formulas and feeding methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/GB2004/000518 WO2004068968A1 (en) 2003-02-10 2004-02-09 Baby feeding formula and system
US10/806,169 US20050175759A1 (en) 2004-02-09 2004-03-23 Newborn infant formulas and feeding methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/000518 Continuation-In-Part WO2004068968A1 (en) 2003-02-10 2004-02-09 Baby feeding formula and system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/822,078 Division US7998501B2 (en) 2003-02-10 2007-07-02 Newborn infant formulas and feeding methods

Publications (1)

Publication Number Publication Date
US20050175759A1 true US20050175759A1 (en) 2005-08-11

Family

ID=34827705

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/806,169 Abandoned US20050175759A1 (en) 2003-02-10 2004-03-23 Newborn infant formulas and feeding methods
US11/822,078 Expired - Fee Related US7998501B2 (en) 2003-02-10 2007-07-02 Newborn infant formulas and feeding methods
US13/176,682 Expired - Fee Related US8703173B2 (en) 2003-02-10 2011-07-05 Newborn infant formulas and feeding methods

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/822,078 Expired - Fee Related US7998501B2 (en) 2003-02-10 2007-07-02 Newborn infant formulas and feeding methods
US13/176,682 Expired - Fee Related US8703173B2 (en) 2003-02-10 2011-07-05 Newborn infant formulas and feeding methods

Country Status (1)

Country Link
US (3) US20050175759A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080026105A1 (en) * 2006-07-28 2008-01-31 Bristol-Myers Squibb Company Nutritional formulations containing octenyl succinate anhydride-modified tapioca starch
WO2008033520A2 (en) * 2006-09-15 2008-03-20 The Regents Of The University Of California Bifidobacterial gene sequences and their use
WO2008127733A1 (en) * 2007-04-13 2008-10-23 The Trustees Of The University Of Pennsylvania Method and system for evaluating feeding performance of individual neonates
US20090117256A1 (en) * 2007-11-07 2009-05-07 Bristol-Myers Squibb Company Method for decreasing bitterness and improving taste of protein-free and hydrolyzed infant formulas
US20090186803A1 (en) * 2005-12-23 2009-07-23 Renate Maria Louise Zwijsen Use of nutritional compositions with phospholipid, sphingolipid and cholesterol.
WO2010011927A1 (en) * 2008-07-25 2010-01-28 Noventis, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
WO2012092085A1 (en) * 2010-12-30 2012-07-05 Abbott Laboratories Low calorie infant formula with improved physical attributes
US20130064940A1 (en) * 2005-09-20 2013-03-14 Prolacta Bioscience, Inc. Methods for testing milk
CN103209604A (en) * 2010-11-15 2013-07-17 雀巢产品技术援助有限公司 Age-tailored nutritional formula with particularly adapted caloric density for infants and children
CN103269607A (en) * 2010-12-30 2013-08-28 雅培制药有限公司 Improved tolerance in a low calorie infant formula
EP2661180B1 (en) 2011-01-05 2016-09-28 MJN U.S. Holdings LLC Composition comprising heat labile milk proteins and process for preparing same
EP2836084B1 (en) 2012-04-10 2016-12-21 Hero AG A nutritional composition
US9572810B2 (en) 2010-07-22 2017-02-21 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
US20190254994A1 (en) * 2015-12-14 2019-08-22 Nestec S.A. Nutritional composition and infant formula for promoting myelination of the brain
RU2762984C2 (en) * 2005-10-21 2021-12-24 Н.В. Нютрисиа Method for stimulating intestinal flora
EP3645023B1 (en) * 2017-06-30 2022-09-14 N.V. Nutricia Synbiotic composition for preventing hyperinsulinemia and insulin resistance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815279B2 (en) * 2003-02-10 2014-08-26 University College London Baby feeding formula and system
US20050175759A1 (en) 2004-02-09 2005-08-11 Atul Singhal Newborn infant formulas and feeding methods
US9439885B2 (en) * 2008-06-03 2016-09-13 Mead Johnson Nutrition Company Method for inhibiting the growth of bacteria
WO2010070613A2 (en) * 2008-12-18 2010-06-24 University College London Baby feeding formula and system
US10602752B2 (en) * 2009-04-15 2020-03-31 N.V. Nutricia Anti-reflux infant nutrition
WO2012091542A1 (en) * 2010-12-28 2012-07-05 N.V. Nutricia Combination of components for the prevention and treatment of frailty
WO2012092082A1 (en) * 2010-12-30 2012-07-05 Abbott Laboratories Reduced buffering capacity of a low calorie infant formula
WO2012092083A1 (en) * 2010-12-30 2012-07-05 Abbott Laboratories Improved rate of protein digestion in a low calorie infant formula
WO2013057061A1 (en) * 2011-10-18 2013-04-25 Nestec S.A. Composition for use in increasing insulin sensitivity and/or reducing insulin resistance
WO2013083140A1 (en) * 2011-12-07 2013-06-13 N.V. Nutricia Beta-lactoglobulin peptides for treating cow's milk protein allergy
US20140170259A1 (en) * 2012-12-14 2014-06-19 Mead Johnson Nutrition Company Nutritional composition for promoting satiety
US20140328970A1 (en) * 2013-05-03 2014-11-06 Mead Johnson Nutrition Company Nutritional Composition Comprising Whey and Hydrolyzed Casein and Uses Thereof
WO2015085557A1 (en) * 2013-12-12 2015-06-18 Nestec S.A. Array of age-tailored infant formula with optimum protein content and lactose content
WO2015085555A1 (en) * 2013-12-12 2015-06-18 Nestec S.A. Array of age-tailored infant formula with optimum protein content and lactose content

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1607844A (en) * 1922-03-24 1926-11-23 Abbott Lab Infant's food
US5093143A (en) * 1990-01-26 1992-03-03 Milchwerke Westfalen Eg Dietetic nutrient compositions for patients with kidney insufficiency
US5756680A (en) * 1994-01-05 1998-05-26 Sepragen Corporation Sequential separation of whey proteins and formulations thereof
US6096870A (en) * 1994-01-05 2000-08-01 Sepragen Corporation Sequential separation of whey
US20040214791A1 (en) * 2003-04-25 2004-10-28 Nancy Auestad High lactose infant nutrition formula

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR911522A (en) 1945-05-23 1946-07-10 Application of dosimetric divisions to food products, more particularly for powdered milk intended for infants or the sick; and their presentation for consumption
US3649295A (en) 1970-06-01 1972-03-14 American Home Prod Humanized fat compositions and infant formulas thereof
CH621048A5 (en) 1977-04-27 1981-01-15 Nestle Sa
US5021245A (en) 1990-05-22 1991-06-04 Abbott Laboratories Infant formula containing a soy polysaccharide fiber source
EP0739207B1 (en) 1994-01-10 2008-10-01 Abbott Laboratories Enteral formula with ribo-nucleotides
US5492899A (en) * 1994-01-10 1996-02-20 Abbott Laboratories Infant nutritional formula with ribo-nucleotides
US5602109A (en) 1994-01-10 1997-02-11 Abbott Laboratories Method to enhance the immune system of a human
US5550106A (en) 1994-03-04 1996-08-27 Bristol-Myers Squibb Company Low buffer nutritional composition
SE523432C2 (en) 2000-01-12 2004-04-20 Mjoelkkannan Foervaltning Ab C Nutritional Drink
US6596302B2 (en) * 2000-04-13 2003-07-22 Abbott Laboratories Infant formulas containing long-chain polyunsaturated fatty acids and uses thereof
US6620427B2 (en) 2001-04-24 2003-09-16 Abbott Laboratories Method for improving bone mineralization
JP2003018980A (en) 2001-07-06 2003-01-21 Wakoudou Kk Block-shaped freeze-dry food
WO2003077664A1 (en) 2002-03-20 2003-09-25 Karen Ozalvo Baby food, preparation thereof and kit therefor
US7070825B2 (en) 2002-09-10 2006-07-04 Abbott Laboratories Infant formula
US20050175759A1 (en) 2004-02-09 2005-08-11 Atul Singhal Newborn infant formulas and feeding methods
AU2004210206B2 (en) 2003-02-10 2009-10-29 University College London Baby feeding formula and system
US8815279B2 (en) 2003-02-10 2014-08-26 University College London Baby feeding formula and system
JP4341813B2 (en) 2003-05-15 2009-10-14 日東電工株式会社 Optical member with adhesive, method for producing the same, and image display device
PT1841330E (en) 2004-12-27 2011-03-14 Nestec Sa Use of infant formula with reduced protein content
US20090203592A1 (en) 2005-07-01 2009-08-13 N.V. Nutricia Infant nutrition with hydrolised proteins
EP1932437A1 (en) 2006-12-15 2008-06-18 Nestec S.A. Infant formula

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1607844A (en) * 1922-03-24 1926-11-23 Abbott Lab Infant's food
US5093143A (en) * 1990-01-26 1992-03-03 Milchwerke Westfalen Eg Dietetic nutrient compositions for patients with kidney insufficiency
US5756680A (en) * 1994-01-05 1998-05-26 Sepragen Corporation Sequential separation of whey proteins and formulations thereof
US6096870A (en) * 1994-01-05 2000-08-01 Sepragen Corporation Sequential separation of whey
US20040214791A1 (en) * 2003-04-25 2004-10-28 Nancy Auestad High lactose infant nutrition formula

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48240E1 (en) * 2005-09-20 2020-10-06 Prolacta Bioscience, Inc. Methods for testing milk
US8628921B2 (en) * 2005-09-20 2014-01-14 Prolacta Bioscience Inc. Methods for testing milk
US20130064940A1 (en) * 2005-09-20 2013-03-14 Prolacta Bioscience, Inc. Methods for testing milk
RU2762984C2 (en) * 2005-10-21 2021-12-24 Н.В. Нютрисиа Method for stimulating intestinal flora
US20090186803A1 (en) * 2005-12-23 2009-07-23 Renate Maria Louise Zwijsen Use of nutritional compositions with phospholipid, sphingolipid and cholesterol.
US20120064220A1 (en) * 2006-07-28 2012-03-15 Mead Johnson Nutrition Company Nutritional formula containing octenyl succinate anhydride-modified tapioca starch
US20080026105A1 (en) * 2006-07-28 2008-01-31 Bristol-Myers Squibb Company Nutritional formulations containing octenyl succinate anhydride-modified tapioca starch
US20100113383A1 (en) * 2006-09-15 2010-05-06 The Regents Of The University Of California Bifidobacterial gene sequences and their use
US8361756B2 (en) 2006-09-15 2013-01-29 The Regents Of The University Of California Bifidobacterial gene sequences and their use
WO2008033520A2 (en) * 2006-09-15 2008-03-20 The Regents Of The University Of California Bifidobacterial gene sequences and their use
WO2008033520A3 (en) * 2006-09-15 2008-09-12 Univ California Bifidobacterial gene sequences and their use
US8999705B2 (en) 2006-09-15 2015-04-07 The Regents Of The University Of California Bifidobacterial gene sequences and their use
WO2008127733A1 (en) * 2007-04-13 2008-10-23 The Trustees Of The University Of Pennsylvania Method and system for evaluating feeding performance of individual neonates
US20100131454A1 (en) * 2007-04-13 2010-05-27 The Trustees Of The University Of Pennsylvania Method and system for evaluating feeding performance of individual neonates
US8473219B2 (en) 2007-04-13 2013-06-25 The Trustees Of The University Of Pennsylvania Computational method for generating a feeding score for an individual infant
US11412768B2 (en) 2007-11-07 2022-08-16 Mead Johnson Nutrition Company Method of improving tolerance to hypoallergenic infant formulas
US20090117256A1 (en) * 2007-11-07 2009-05-07 Bristol-Myers Squibb Company Method for decreasing bitterness and improving taste of protein-free and hydrolyzed infant formulas
US9089602B2 (en) 2008-07-25 2015-07-28 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9775798B2 (en) 2008-07-25 2017-10-03 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US11110053B2 (en) 2008-07-25 2021-09-07 Reven Pharmaceuticals Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
WO2010011927A1 (en) * 2008-07-25 2010-01-28 Noventis, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9089511B2 (en) 2008-07-25 2015-07-28 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9101537B2 (en) 2008-07-25 2015-08-11 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9867849B2 (en) 2010-07-22 2018-01-16 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
US9572810B2 (en) 2010-07-22 2017-02-21 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
US11202798B2 (en) 2010-07-22 2021-12-21 Reven Pharmaceuticals, Inc. Method of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
CN103209604A (en) * 2010-11-15 2013-07-17 雀巢产品技术援助有限公司 Age-tailored nutritional formula with particularly adapted caloric density for infants and children
US20140010912A1 (en) * 2010-12-30 2014-01-09 Abbott Laboratories Low calorie infant formula with improved physical attributes
CN103269607A (en) * 2010-12-30 2013-08-28 雅培制药有限公司 Improved tolerance in a low calorie infant formula
CN103402375A (en) * 2010-12-30 2013-11-20 雅培制药有限公司 Low calorie infant formula with improved physical attributes
WO2012092085A1 (en) * 2010-12-30 2012-07-05 Abbott Laboratories Low calorie infant formula with improved physical attributes
EP2661180B1 (en) 2011-01-05 2016-09-28 MJN U.S. Holdings LLC Composition comprising heat labile milk proteins and process for preparing same
EP2836084B1 (en) 2012-04-10 2016-12-21 Hero AG A nutritional composition
US11647777B2 (en) 2012-04-10 2023-05-16 Semper Ab Nutritional composition
US20190254994A1 (en) * 2015-12-14 2019-08-22 Nestec S.A. Nutritional composition and infant formula for promoting myelination of the brain
EP3645023B1 (en) * 2017-06-30 2022-09-14 N.V. Nutricia Synbiotic composition for preventing hyperinsulinemia and insulin resistance

Also Published As

Publication number Publication date
US7998501B2 (en) 2011-08-16
US20110262585A1 (en) 2011-10-27
US20070254062A1 (en) 2007-11-01
US8703173B2 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
US7998501B2 (en) Newborn infant formulas and feeding methods
Lawrence Biochemistry of human milk
Picciano Nutrient composition of human milk
US8815279B2 (en) Baby feeding formula and system
WO2010070613A9 (en) Baby feeding formula and system
AU2002357354B2 (en) Infant formula compositions comprising increased amounts of alpha-lactalbumin
TWI405539B (en) Method of tailoring infant formulas to individual nutritional needs prior to use
US20150024112A1 (en) Infant formulas containing docosahexaenoic acid and lutein
Jarvenpaa et al. Feeding the low-birth-weight infant: I. Taurine and cholesterol supplementation of formula does not affect growth and metabolism
Schulz et al. Nutrient intake and food consumption of adolescents and young adults with phenylketonuria
US7651716B2 (en) Methods for reducing adverse effects of feeding formula to infants
Combes et al. Essential fatty acids in premature infant feeding
AU2014290767A1 (en) Methods for promoting neuronal development and/or health comprising administration of a combination of docosahexaenoic acid and alpha-lipoic acid
EP1605780B1 (en) Baby feeding system
Karp et al. Vitamin E in neonatology
Volz et al. Growth and plasma amino acid concentrations in term infants fed either whey-predominant formula or human milk
Ottoboni et al. Can attention deficit-hyperactivity disorder result from nutritional deficiency
Han et al. Folate contents in human milk and casein-based and soya-based formulas, and folate status in Korean infants
US9474766B2 (en) Use of a reduced calorie infant formula containing nucleotides and/or carotenoids for reducing adverse health effects later in life
US20200281245A1 (en) Human milk fortifier
Lightdale et al. Human milk: nutritional properties
Cai et al. Infants: Transition from Breast to Bottle to Solids
Friel et al. Infants: Transition from Breast to Bottle to Solids
BERRY et al. 39 phenylketonuria and Maternal phenylketonuria
Gamble et al. Feeding the term infant

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY COLLEGE LONDON, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SINGHAL, ATUL;LUCAS, ALAN;REEL/FRAME:015649/0525

Effective date: 20040720

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION