US20050129593A1 - Reaction appparatus with a heat-exchanger - Google Patents
Reaction appparatus with a heat-exchanger Download PDFInfo
- Publication number
- US20050129593A1 US20050129593A1 US10/508,858 US50885804A US2005129593A1 US 20050129593 A1 US20050129593 A1 US 20050129593A1 US 50885804 A US50885804 A US 50885804A US 2005129593 A1 US2005129593 A1 US 2005129593A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- gas
- heat exchanger
- tube
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
- B01J8/0085—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
- F28D7/1669—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00044—Temperature measurement
- B01J2208/00061—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00176—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00185—Fingers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00194—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00212—Plates; Jackets; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00212—Plates; Jackets; Cylinders
- B01J2208/00221—Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00389—Controlling the temperature using electric heating or cooling elements
- B01J2208/00398—Controlling the temperature using electric heating or cooling elements inside the reactor bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00389—Controlling the temperature using electric heating or cooling elements
- B01J2208/00407—Controlling the temperature using electric heating or cooling elements outside the reactor bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/0053—Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00805—Details of the particulate material
- B01J2208/00814—Details of the particulate material the particulate material being provides in prefilled containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
- F28F2009/226—Transversal partitions
Definitions
- the present invention relates to a reaction apparatus and a reaction method using the apparatus. More specifically, the present invention relates to a heat exchanger-integrated reaction apparatus and a reaction method using the apparatus where the reaction is performed with solid catalyst or solid reactive agent at high temperature.
- the apparatus itself may be made relatively compact but since the gases before and after treatment use separate flow-paths, a plurality of pipes are necessary for gas and the apparatus requires a space in the periphery. Furthermore, the treated gas after passing through the catalyst layer filled in the reactor comes into contact with the connection part of the reactor and the heat exchanger before it passes through the heat exchanger and the connection part may be heated to a high temperature, therefore, a material having high resistance against heat must be selected for the construction material of a packing or the like for sealing the connection part and the heat exchanger. In addition, the high-temperature catalytic apparatus of (1) has a problem that the flange part is baked.
- the layer filled with catalyst or reactive agent undergoes a phenomenon that a temperature distribution arises in the treated gas flow direction. Even if a preheater is provided, it is difficult to improve this phenomenon and efficiently eliminate the temperature distribution, and in many cases, the catalyst or reactive agent filled in the reactor cannot be effectively used.
- an object of the present invention is to provide a compact heat exchanger-integrated reaction apparatus where the temperature distribution of the reactor can be kept uniform in the gas flow direction, the heat energy recovery efficiency can be improved, the flange part in the apparatus can be prevented from overheating and a sealing material composed of a normal low-temperature construction material can be used for the flange, and also provide a reaction method using the apparatus.
- the present inventors have found that the object can be attained by using a reaction apparatus comprising a heat exchanger and a reactor with a heater, which are enclosed in an outer casing, the top of the heat exchanger being connected to the reactor, the other end part (the lower end) of the heat exchanger and the bottom of the outer casing being fixed by a flange, and a double piping for introducing a gas to be treated and discharging the treated gas being connected to the lower end part of the heat exchanger.
- the present invention has been accomplished based on this finding.
- the present invention relates to the following reaction apparatus and reaction method.
- a reaction apparatus comprising a heat exchanger and a reactor with a heater, which are enclosed in an outer casing, the top of the heat exchanger being connected to the reactor, the other end part of the heat exchanger and the bottom of the outer casing being fixed to each other by a flange, and a double piping for introducing a gas to be treated and discharging the treated gas being connected to the other end part of the heat exchanger, such that the gas passes through the heat exchanger, the reactor and the heat exchanger in this order during the process from introducing gas through one of the inner tube and the outer tube in the double piping to discharging the gas through the other tube.
- reaction apparatus as described in 1 above, comprising a mechanism where the gas to be treated is introduced through the inner tube and discharged through the outer tube.
- reaction apparatus as described in 1 above, wherein the reaction apparatus is adapted to be installed horizontally and the reactor with a heater and the heat exchanger are placed horizontally with respect to each other.
- a reaction method comprising passing a gas to be treated sequentially into one tube of the inner tube and the outer tube in a double piping, a heat exchanger, a reactor with a heater, the heat exchanger and the other tube in the double piping in this order, and heating the gas to be treated by the heater before the gas to be treated is introduced into the reactor, thereby adjusting the temperature difference in the gas flow direction inside the reactor.
- FIG. 1 (A) is a schematic longitudinal sectional view showing one example of the heat exchanger-integrated reaction apparatus of the present invention
- FIG. 1 (B) is a schematic cross-sectional view showing one example of the apparatus of the present invention.
- FIG. 2 is a schematic view showing one example of the conventional reaction apparatus using an externally heating system.
- FIG. 3 is a graph showing one example of the temperature distribution of the heat exchanger-integrated reaction apparatus of the present invention when the flow rate of gas is changed.
- FIG. 4 is a graph showing one example of the temperature distribution of the heat exchanger-integrated reaction apparatus of the present invention when the set temperature is changed.
- FIG. 5 is a graph showing one example of the temperature distribution of the reactive agent or catalyst in the conventional reaction apparatus using an externally heating system.
- the reaction apparatus of the present invention comprises a heat exchanger 5 and a reactor 1 with a heater 2 , which are enclosed in an outer casing 6 , and in this reaction apparatus, one end part (typically, the top end part) of the heat exchanger 5 is connected to the reactor 1 , the other end part (typically, the lower end part) of the heat exchanger 5 and one end part (typically, the lower end part) of the outer casing 6 are fixed by a flange 4 , and a double piping 7 for introducing a gas to be treated and discharging the treated gas is connected to the end part (typically, the lower end part) of the heat exchanger 5 .
- the reaction apparatus of the present invention can be used, for example, in a reaction using solid reactive agent or solid catalyst for decomposition-treating a dry etching or cleaning gas discharged in the process of producing a semiconductor device, a liquid crystal display device or the like. Also, the reaction apparatus of the present invention can be used in a reaction using solid catalyst for decomposing and thereby removing nitrous oxide contained in a purge gas line for cabinet or in a waste anesthetic gas discharged from an operating room.
- FIG. 1 (A) is a schematic longitudinal sectional view showing one example of the heat exchanger-integrated reaction apparatus of the present invention
- FIG. 1 (B) is a schematic cross-sectional view thereof.
- FIG. 1 shows one example of the heat exchanger-integrated reaction apparatus of the present invention in vertical orientation, where the top of the heat exchanger 5 is connected to the reactor 1 , the lower end part of the heat exchanger 5 and the bottom of the outer casing 6 being fixed by a flange 4 , the apparatus can be used in horizontal orientation and the present invention includes the embodiment.
- the reaction apparatus shown in FIG. 1 comprises a reactor 1 consisting of side walls which a heater 2 contacts and a punching metal plate 3 on which catalyst is placed, and shell and tube-type heat exchanger 5 which is connected to the lower end of the reactor.
- the bottom part of an outer casing 6 and the lower end part of the heat-exchanger are fixed to each other by a flange 4 .
- the shell and tube-type heat exchanger 5 means a heat exchanger where a large number of small caliber straight pipes (tube 12 ) are fixed by inserting their both ends into two disks and housed in one shell, and this heat exchanger is characterized in that a wide heat transfer surface can be housed in a small volume.
- a double piping 7 which consists of an inner tube 7 a for the gas before treatment to be introduced through into the heat-exchanger and an outer tube 7 b for the gas after treatment to be discharged through out of the system.
- the ceiling and side wall parts of the outer casing 6 are integrally formed, or the outer casing has a integrated structure where the ceiling and side wall parts are integrally joined.
- the outer casing has an eyebolt fixing part 9 on the ceiling part, thereby the outer casing 6 can be detached from the heat-exchanger 5 and the reactor 1 which the outer casing 6 covers, and solid reactive agents or catalysts can be easily exchanged smoothly.
- a shell-and-tube heat exchanger is more preferably used.
- a gas to be treated is introduced through one of the inner tube or outer tube into a cylindrical shell tube-type heat exchanger 5 and then into the reactor. After reaction, the reacted gas, again passing through the cylindrical shell tube-type heat exchanger 5 , is discharged through the other tube in the double piping 7 .
- the gas to be treated is introduced through the inner tube 7 a , and the gas after reaction is discharged through the outer tube 7 b.
- the gas to be treated which enters from the center part of the cylindrical heat exchanger 5 , flows toward the outside of the cylinder through the flow path partitioned by baffles 10 in the shell, and again flows to the center part.
- the arrow shows the flow of gas.
- the gas before treatment (gas to be treated), which flows zigzag from side to center through a flow-path partitioned by baffles 10 in the shell and undergoes heat-exchange, then moves toward the reactor 1 through a flow port 8 present between the heat exchanger 5 and the reactor 1 .
- the gas which is further heated while flowing through the space between the heater 2 present on the reactor 1 and the outer casing 6 (the space in the outer side of the reactor 1 ), enters into the reactor 1 from the punching metal plate 3 present on the ceiling part of the reactor 1 , to be reaction-treated by solid catalyst or reactive agent 11 previously filled in the reactor 1 .
- the gas after treated outgoing from the reactor 1 flows down toward the vertical bottom through the tube 12 in the heat exchanger 5 and during this flow, is heat-exchanged with the gas before treatment as described above. After the temperature is lowered, the gas enters into the outer tube 7 b of the double piping 7 , heat-exchanged with the gas before treatment (gas to be treated) flowing in the inner tube 7 a , and then discharged out of the system.
- heat exchange can be efficiently performed between gases before and after treatment due to the above-described flow of treated gas, so that, for example, the catalyst layer filled in the reactor 1 can be greatly improved in the temperature distribution in the treated gas flow direction as compared with conventional reactors, and the temperature difference in the catalyst layer can be kept to be 50° C. or less.
- Highly efficient heat exchange is essential so that the agent (catalyst) filled in the reactor 1 can keep a temperature difference of 50° C. or less uniformly in the temperature distribution in the flow direction, but more efficient heat exchange can be realized by using the reaction apparatus of the present invention, and the reasons for this include, for example:
- the reactor 1 preferably has fins 13 in the inside thereof in order to increase the heat conducting region, and fins 13 placed toward the center part in the reactor contribute to making more uniform the temperature of the reactive agent or catalyst filling the reactor 1 .
- the effect is larger when the diameter of the reactor is larger than 10 cm, though this varies depending on the conditions used.
- the double piping 7 consists of an inner tube 7 a and an outer tube 7 b .
- the double piping structure is a very important factor not only for merely elevating the heat efficiency but also for saving space in the periphery of the reactor, for example, a preheater or the like for performing the preheating can be dispensed with.
- Fins are preferably provided between the inner tube 7 a and the outer tube 7 b so that the heat exchange efficiency can be more elevated.
- a heat radiating plate is preferably placed in the outer tube 7 b of the double pining 7 , where the gas after treatment flows so that the heat release efficiency can be elevated and the temperature of the gas discharged out of the system can be more lowered.
- the temperature distribution in the reactor can be made uniform, so that the objective temperature of the catalyst or reactive agent filling the reactor can be selected over a wide range and this can lead to improvement in efficient use of catalyst or reactive agent, elevation of the reaction ratio and reduction of costs.
- an outer casing 6 having a flange 4 is provided, so that the reactor 1 is laid apart from the flange 4 and heating at the flange 4 can be suppressed. For instance, even when the reaction temperature is as high as 450° C., the flange 4 can be kept at a temperature of 100° C. or less.
- the flange near the reaction part is baked problematically, however, such a problem can be prevented by using the heat exchanger-integrated reaction apparatus of the present invention. Accordingly, a special sealing material (packing) such as carbon and metal packing is not necessary and a low-temperature sealing material (packing) usually usable at a temperature of around 100° C., such as O-ring of Viton (product name, manufactured by DuPont Dow Elastomers L.L.C.), can be used.
- the reaction apparatus of the present invention wherein the outer casing 6 has the flange 4 at the bottom, is advantageous not only in that a low-temperature sealing material can be selected but also in that the heat insulating material for fixing to the outer casing can be smoothly attached or removed and therefore, resulting in easy maintenance. Furthermore, the outer casing 6 can be disengaged from the reactor 1 integrated with the heat exchanger 5 by screwing an eyebolt into an eyebolt fixing part 9 which is provided in the ceiling part of the outer casing 6 integrated with the ceiling part, whereby the reactive agent or the catalyst can be smoothly exchanged.
- the temperature on use of the reactor 1 having a heater can be set to a range from 50 to 700° C. and is preferably from 100 to 500° C., more preferably from 250 to 450° C., however, this temperature can be appropriately selected according to the kind of reaction.
- the catalyst or reactive agent (filler) to fill the reactor 1 can be freely selected according to the kind of reaction and is not particularly limited.
- the amount of the filler, and the length or diameter of the reactor and heat exchanger are not particularly limited and can be freely selected according to the reaction conditions.
- fins provided for transferring heat from the portion having a heater toward the center of the reactor 1 contribute to making the temperature distribution uniform.
- the number of fins and the length thereof are not particularly limited and these can be freely selected according to the reaction conditions.
- the reaction method of the present invention is characterized by passing a gas to be treated sequentially into one of an inner tube 7 a and an outer tube 7 b in a double piping 7 , a heat exchanger 5 , a reactor 1 with a heater 2 , the heat exchanger 5 and the other tube of the inner tube 7 a and the outer tube 7 b in the double piping 7 , and heating the gas to be treated by the heater 2 before the gas to be treated is introduced into the reactor 1 , thereby adjusting the temperature difference in the gas flow direction inside the reactor.
- the temperature difference in the temperature distribution with respect to the gas flow direction in the layer filled with catalyst/reactive agent in the reactor can be uniformly kept to be 50° C. or less. Therefore, the reaction method of the present invention can be used for various decomposition reactions and synthesis reactions where the reaction temperature needs to be controlled to be uniform.
- FIG. 3 shows the results in the measurement of the temperature distribution inside the reactor by changing the amount of gas while setting the heater at a constant temperature, when the reaction apparatus of the present invention shown in FIG. 1 was used.
- the distance from the flange 4 to the punching metal plate 3 a at the lower part of the reactor 1 was approximately 190 mm, the portion above the punching metal plate 3 a was filled with alumina carrier.
- the heater was set at a constant temperature of 600° C.
- the flow rate of N 2 gas was changed to 40, 80 and 100 L/min
- the temperature distribution in the vertical direction inside the reactor was measured assuming that the flange part at the bottom of the outer casing was the 0 mm point.
- the temperature (inside temperature) was measured at the horizontal center part of the reactor. As seen in FIG. 3 , the temperature distribution in the vertical direction inside the reactor was uniform at each flow rate.
- FIG. 4 shows the results in the measurement of the temperature distribution inside the reactor by changing the heater temperature while keeping constant the amount of gas using.
- the reaction apparatus of the present invention shown in FIG. 1 was used, where the distance from the flange to the reactor is about 190 mm and the agent is filled in the portion above.
- the temperature (inside temperature) was measured at the horizontal center part of the reactor.
- a reactive agent was filled, the flow rate of N 2 gas was constantly 80 L/min, the temperature of the heater was changed to 450° C. and 600° C., and the temperature distribution in the vertical direction inside the reactor was measured assuming that the flange part at the bottom of the outer casing was the 0 mm point.
- the temperature distribution in the vertical direction inside the reactor was uniform.
- the reaction apparatus of FIG. 2 is roughly constructed with a reactor 1 , a heater 2 , a punching metal plate 3 and a flange 4 .
- FIG. 5 shows the results in the measurement of temperature distribution inside the reactor when a reactive agent was filled, the heater temperature was set to 600° C., a flowing gas heated to 500° C. in a preheater was passed at an N 2 gas flow rate of 80 L/min, assuming that the punching metal plate 3 at the bottom part of the reactor was the 0 mm point.
- the temperature distribution was determined by measuring the temperature at the horizontal center part of the reactor.
- the obtained temperature distribution in the reactor turned out to be a general temperature distribution where a maximum value appeared in the vicinity of about 200 mm from the punching metal plate 3 a and the inlet and outlet temperatures were low.
- the present invention provides an apparatus comprising a structure where a shell and tube-type heat exchanger and a reactor with a heater are integrated and the piping for flowing a gas through in the reaction apparatus has a double piping structure consisting of an inner tube and an outer tube for passing the gases before treatment and after treatment in the countercurrent flow.
- the heat exchange efficiency is elevated.
- the reactor having a heater is useful for the temperature distribution in the gas flow direction inside the reactor to be made uniform.
- the catalyst or reactive agent filling the reactor can be kept at the objective temperature over a wide area and the catalyst or the like can be effectively used in catalytic reactions and the like where temperature control is desirable.
- a heat exchanger and a reactor with a heater are integrated and the piping for flowing a gas through in the reaction apparatus has a double piping structure consisting of an inner tube and an outer tube for passing the gases before treatment and after treatment in the countercurrent flow, the reaction apparatus can be downsized and the space in the periphery of the reaction apparatus can be saved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Fluid Mechanics (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A reaction apparatus comprising a heat exchanger 5 and a reactor 1 with a heater 2, which are enclosed in an outer casing 6, the top of the heat exchanger 5 being connected to the reactor 1, the other end part of the heat exchanger 5 and the bottom of the outer casing 6 being fixed to each other by a flange 4, and a double piping 7 for introducing a gas to be treated and discharging the treated gas being connected to the other end part of the heat exchanger 5, such that the gas passes through the heat exchanger 5, the reactor 1 and the heat exchanger 5 during the process from introducing gas through one of the inner tube and the outer tube in the double piping to discharging the gas through the other tube, and reaction method using the apparatus. Using the apparatus of the present invention, the temperature distribution inside the reactor can be kept uniform and efficiency in energy recovery is enhanced.
Description
- This application is based on the provisions of 35 U.S.C. Article 111(a) with claiming the benefit of filing dates of U.S. provisional application Ser. No. 60/368,965 filed on Apr. 2, 2002 under the provisions of 35 U.S.C. 111(b), pursuant to 35 U.S.C. Article 119(e)(1).
- The present invention relates to a reaction apparatus and a reaction method using the apparatus. More specifically, the present invention relates to a heat exchanger-integrated reaction apparatus and a reaction method using the apparatus where the reaction is performed with solid catalyst or solid reactive agent at high temperature.
- Known examples of the conventional apparatus where a heat exchanger and a catalytic reactor are integrated include:
-
- (1) a high-temperature catalytic apparatus described in JP-A-64-51126 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”), and
- (2) a catalytic oxidation apparatus described in JP-A-54-126671, where a catalyst is coated on a honeycomb structure.
- In the case of the high-temperature catalytic apparatus of (1), the apparatus itself may be made relatively compact but since the gases before and after treatment use separate flow-paths, a plurality of pipes are necessary for gas and the apparatus requires a space in the periphery. Furthermore, the treated gas after passing through the catalyst layer filled in the reactor comes into contact with the connection part of the reactor and the heat exchanger before it passes through the heat exchanger and the connection part may be heated to a high temperature, therefore, a material having high resistance against heat must be selected for the construction material of a packing or the like for sealing the connection part and the heat exchanger. In addition, the high-temperature catalytic apparatus of (1) has a problem that the flange part is baked.
- In the case of the catalytic oxidation apparatus of (2) where a catalyst is coated on a honeycomb structure, the heat efficiency is improved because the heat-exchanging portion is covered with a catalyst, but the apparatus as a whole must be disassembled at the time of exchanging the catalyst and this raises a problem in view of cost and maintenance.
- Furthermore, when a heater such as electric furnace is used for the heat source, the layer filled with catalyst or reactive agent undergoes a phenomenon that a temperature distribution arises in the treated gas flow direction. Even if a preheater is provided, it is difficult to improve this phenomenon and efficiently eliminate the temperature distribution, and in many cases, the catalyst or reactive agent filled in the reactor cannot be effectively used.
- Under these circumstances, an object of the present invention is to provide a compact heat exchanger-integrated reaction apparatus where the temperature distribution of the reactor can be kept uniform in the gas flow direction, the heat energy recovery efficiency can be improved, the flange part in the apparatus can be prevented from overheating and a sealing material composed of a normal low-temperature construction material can be used for the flange, and also provide a reaction method using the apparatus.
- As a result of extensive investigations to attain the above-described object, the present inventors have found that the object can be attained by using a reaction apparatus comprising a heat exchanger and a reactor with a heater, which are enclosed in an outer casing, the top of the heat exchanger being connected to the reactor, the other end part (the lower end) of the heat exchanger and the bottom of the outer casing being fixed by a flange, and a double piping for introducing a gas to be treated and discharging the treated gas being connected to the lower end part of the heat exchanger. The present invention has been accomplished based on this finding.
- Specifically, the present invention relates to the following reaction apparatus and reaction method.
- 1. A reaction apparatus comprising a heat exchanger and a reactor with a heater, which are enclosed in an outer casing, the top of the heat exchanger being connected to the reactor, the other end part of the heat exchanger and the bottom of the outer casing being fixed to each other by a flange, and a double piping for introducing a gas to be treated and discharging the treated gas being connected to the other end part of the heat exchanger, such that the gas passes through the heat exchanger, the reactor and the heat exchanger in this order during the process from introducing gas through one of the inner tube and the outer tube in the double piping to discharging the gas through the other tube.
- 2. The reaction apparatus as described in 1 above, wherein the heat exchanger is a shell and tube-type heat exchanger.
- 3. The reaction apparatus as described in 1 above, wherein the outer casing has an eyebolt fixing part on the ceiling part, thereby the outer casing is detachable.
- 4. The reaction apparatus as described in 1 above, wherein the reactor has fins in the inside thereof.
- 5. The reaction apparatus as described in 1 above, wherein the fins are provided inside the inner tube in the double piping and/or between the inner tube and the outer tube in the double piping.
- 6. The reaction apparatus as described in 1 above, comprising a mechanism where the gas to be treated is introduced through the inner tube and discharged through the outer tube.
- 7. The reaction apparatus as described in 6 above, wherein the outer tube of the double piping has a heat radiating plate.
- 8. The reaction apparatus as described in 1 above, wherein the reaction apparatus is adapted to be installed horizontally and the reactor with a heater and the heat exchanger are placed horizontally with respect to each other.
- 9. A reaction method comprising passing a gas to be treated sequentially into one tube of the inner tube and the outer tube in a double piping, a heat exchanger, a reactor with a heater, the heat exchanger and the other tube in the double piping in this order, and heating the gas to be treated by the heater before the gas to be treated is introduced into the reactor, thereby adjusting the temperature difference in the gas flow direction inside the reactor.
- 10. The reaction method as described in 9 above, wherein the gas to be treated is introduced through the inner tube of the double piping and discharged through the outer tube.
- 11. The reaction method as described in 9 or 10 above, wherein the temperature difference is adjusted to 50° C. or less.
-
FIG. 1 (A) is a schematic longitudinal sectional view showing one example of the heat exchanger-integrated reaction apparatus of the present invention, andFIG. 1 (B) is a schematic cross-sectional view showing one example of the apparatus of the present invention. -
FIG. 2 is a schematic view showing one example of the conventional reaction apparatus using an externally heating system. -
FIG. 3 is a graph showing one example of the temperature distribution of the heat exchanger-integrated reaction apparatus of the present invention when the flow rate of gas is changed. -
FIG. 4 is a graph showing one example of the temperature distribution of the heat exchanger-integrated reaction apparatus of the present invention when the set temperature is changed. -
FIG. 5 is a graph showing one example of the temperature distribution of the reactive agent or catalyst in the conventional reaction apparatus using an externally heating system. - The reaction apparatus and reaction method of the present invention are described in detail below.
- The reaction apparatus of the present invention comprises a
heat exchanger 5 and areactor 1 with aheater 2, which are enclosed in an outer casing 6, and in this reaction apparatus, one end part (typically, the top end part) of theheat exchanger 5 is connected to thereactor 1, the other end part (typically, the lower end part) of theheat exchanger 5 and one end part (typically, the lower end part) of the outer casing 6 are fixed by a flange 4, and adouble piping 7 for introducing a gas to be treated and discharging the treated gas is connected to the end part (typically, the lower end part) of theheat exchanger 5. - The reaction apparatus of the present invention can be used, for example, in a reaction using solid reactive agent or solid catalyst for decomposition-treating a dry etching or cleaning gas discharged in the process of producing a semiconductor device, a liquid crystal display device or the like. Also, the reaction apparatus of the present invention can be used in a reaction using solid catalyst for decomposing and thereby removing nitrous oxide contained in a purge gas line for cabinet or in a waste anesthetic gas discharged from an operating room.
-
FIG. 1 (A) is a schematic longitudinal sectional view showing one example of the heat exchanger-integrated reaction apparatus of the present invention, andFIG. 1 (B) is a schematic cross-sectional view thereof. AlthoughFIG. 1 shows one example of the heat exchanger-integrated reaction apparatus of the present invention in vertical orientation, where the top of theheat exchanger 5 is connected to thereactor 1, the lower end part of theheat exchanger 5 and the bottom of the outer casing 6 being fixed by a flange 4, the apparatus can be used in horizontal orientation and the present invention includes the embodiment. - The reaction apparatus shown in
FIG. 1 comprises areactor 1 consisting of side walls which aheater 2 contacts and apunching metal plate 3 on which catalyst is placed, and shell and tube-type heat exchanger 5 which is connected to the lower end of the reactor. - The bottom part of an outer casing 6 and the lower end part of the heat-exchanger are fixed to each other by a flange 4.
- The shell and tube-
type heat exchanger 5 means a heat exchanger where a large number of small caliber straight pipes (tube 12) are fixed by inserting their both ends into two disks and housed in one shell, and this heat exchanger is characterized in that a wide heat transfer surface can be housed in a small volume. To the disk surface at the bottom part of the heat exchanger is connected adouble piping 7 which consists of aninner tube 7 a for the gas before treatment to be introduced through into the heat-exchanger and anouter tube 7 b for the gas after treatment to be discharged through out of the system. - The ceiling and side wall parts of the outer casing 6 are integrally formed, or the outer casing has a integrated structure where the ceiling and side wall parts are integrally joined. The outer casing has an
eyebolt fixing part 9 on the ceiling part, thereby the outer casing 6 can be detached from the heat-exchanger 5 and thereactor 1 which the outer casing 6 covers, and solid reactive agents or catalysts can be easily exchanged smoothly. - In the reaction apparatus of the present invention, as a heat exchanger, although a normal type where gases flowing in countercurrent exchange heat may be used, a shell-and-tube heat exchanger is more preferably used.
- In the reaction apparatus shown in
FIG. 1 , in adouble piping 7 consisting of aninner tube 7 a and anouter tube 7 b, a gas to be treated is introduced through one of the inner tube or outer tube into a cylindrical shell tube-type heat exchanger 5 and then into the reactor. After reaction, the reacted gas, again passing through the cylindrical shell tube-type heat exchanger 5, is discharged through the other tube in thedouble piping 7. Preferably, the gas to be treated is introduced through theinner tube 7 a, and the gas after reaction is discharged through theouter tube 7 b. - The gas to be treated, which enters from the center part of the
cylindrical heat exchanger 5, flows toward the outside of the cylinder through the flow path partitioned bybaffles 10 in the shell, and again flows to the center part. InFIG. 1 , the arrow shows the flow of gas. By repeating this gas flow within theheat exchanger 5, inFIG. 1 , the gas to be treated gradually goes up in a zigzag flow within theheat exchanger 5 toward thereactor 1. At this time, since the gas before treatment (gas to be treated) comes into contact with a wall surface of a small caliberstraight tube 12 in which the high-temperatured gas after heat-treated by aheater 2 in thereactor 1 flows, heat is gradually exchanged between the gases before and after the treatment until the gas before treatment (gas to be treated) flowing zigzag reaches thereactor 1. - The gas before treatment (gas to be treated), which flows zigzag from side to center through a flow-path partitioned by
baffles 10 in the shell and undergoes heat-exchange, then moves toward thereactor 1 through aflow port 8 present between theheat exchanger 5 and thereactor 1. The gas, which is further heated while flowing through the space between theheater 2 present on thereactor 1 and the outer casing 6 (the space in the outer side of the reactor 1), enters into thereactor 1 from the punchingmetal plate 3 present on the ceiling part of thereactor 1, to be reaction-treated by solid catalyst orreactive agent 11 previously filled in thereactor 1. The gas after treated outgoing from thereactor 1 flows down toward the vertical bottom through thetube 12 in theheat exchanger 5 and during this flow, is heat-exchanged with the gas before treatment as described above. After the temperature is lowered, the gas enters into theouter tube 7 b of thedouble piping 7, heat-exchanged with the gas before treatment (gas to be treated) flowing in theinner tube 7 a, and then discharged out of the system. - By using the reaction apparatus of the present invention, heat exchange can be efficiently performed between gases before and after treatment due to the above-described flow of treated gas, so that, for example, the catalyst layer filled in the
reactor 1 can be greatly improved in the temperature distribution in the treated gas flow direction as compared with conventional reactors, and the temperature difference in the catalyst layer can be kept to be 50° C. or less. - Highly efficient heat exchange is essential so that the agent (catalyst) filled in the
reactor 1 can keep a temperature difference of 50° C. or less uniformly in the temperature distribution in the flow direction, but more efficient heat exchange can be realized by using the reaction apparatus of the present invention, and the reasons for this include, for example: - (i) the gas to be treated can be previously heat-exchanged in the
double piping 7 before the gas is introduced into theheat exchanger 5 and thereactor 1, - (ii) the
heat exchanger 5 and thereactor 1 are integrated and therefore, heat exchange between gases before and after the reaction (treatment) in thereactor 1 proceeds smoothly and efficiently, and - (iii) the
reactor 1 has aheater 2 and the gas to be treated can be contacted directly with theheater 2 before the gas is introduced into thereactor 1, so that the gas to be treated, with the temperature of the gas being close to the temperature set in thereactor 1, can be introduced into thereactor 1. - The
reactor 1 preferably hasfins 13 in the inside thereof in order to increase the heat conducting region, andfins 13 placed toward the center part in the reactor contribute to making more uniform the temperature of the reactive agent or catalyst filling thereactor 1. In particular, the effect is larger when the diameter of the reactor is larger than 10 cm, though this varies depending on the conditions used. - The
double piping 7 consists of aninner tube 7 a and anouter tube 7 b. The double piping structure is a very important factor not only for merely elevating the heat efficiency but also for saving space in the periphery of the reactor, for example, a preheater or the like for performing the preheating can be dispensed with. - Fins are preferably provided between the
inner tube 7 a and theouter tube 7 b so that the heat exchange efficiency can be more elevated. - In the
outer tube 7 b of thedouble pining 7, where the gas after treatment flows, a heat radiating plate is preferably placed so that the heat release efficiency can be elevated and the temperature of the gas discharged out of the system can be more lowered. - According to the reaction apparatus of the present invention, the temperature distribution in the reactor can be made uniform, so that the objective temperature of the catalyst or reactive agent filling the reactor can be selected over a wide range and this can lead to improvement in efficient use of catalyst or reactive agent, elevation of the reaction ratio and reduction of costs.
- At the vertical bottom of the integrated structure of which a
heat exchanger 5 is connected to the lower part of thereactor 1 which has aheater 2, an outer casing 6 having a flange 4 is provided, so that thereactor 1 is laid apart from the flange 4 and heating at the flange 4 can be suppressed. For instance, even when the reaction temperature is as high as 450° C., the flange 4 can be kept at a temperature of 100° C. or less. - In conventional apparatuses, the flange near the reaction part is baked problematically, however, such a problem can be prevented by using the heat exchanger-integrated reaction apparatus of the present invention. Accordingly, a special sealing material (packing) such as carbon and metal packing is not necessary and a low-temperature sealing material (packing) usually usable at a temperature of around 100° C., such as O-ring of Viton (product name, manufactured by DuPont Dow Elastomers L.L.C.), can be used.
- The reaction apparatus of the present invention, wherein the outer casing 6 has the flange 4 at the bottom, is advantageous not only in that a low-temperature sealing material can be selected but also in that the heat insulating material for fixing to the outer casing can be smoothly attached or removed and therefore, resulting in easy maintenance. Furthermore, the outer casing 6 can be disengaged from the
reactor 1 integrated with theheat exchanger 5 by screwing an eyebolt into aneyebolt fixing part 9 which is provided in the ceiling part of the outer casing 6 integrated with the ceiling part, whereby the reactive agent or the catalyst can be smoothly exchanged. - The temperature on use of the
reactor 1 having a heater can be set to a range from 50 to 700° C. and is preferably from 100 to 500° C., more preferably from 250 to 450° C., however, this temperature can be appropriately selected according to the kind of reaction. - The catalyst or reactive agent (filler) to fill the
reactor 1 can be freely selected according to the kind of reaction and is not particularly limited. The amount of the filler, and the length or diameter of the reactor and heat exchanger are not particularly limited and can be freely selected according to the reaction conditions. In order to make uniform the temperature in the center part of the agent filling thereactor 1, fins provided for transferring heat from the portion having a heater toward the center of thereactor 1 contribute to making the temperature distribution uniform. The number of fins and the length thereof are not particularly limited and these can be freely selected according to the reaction conditions. - The reaction method of the present invention is characterized by passing a gas to be treated sequentially into one of an
inner tube 7 a and anouter tube 7 b in adouble piping 7, aheat exchanger 5, areactor 1 with aheater 2, theheat exchanger 5 and the other tube of theinner tube 7 a and theouter tube 7 b in thedouble piping 7, and heating the gas to be treated by theheater 2 before the gas to be treated is introduced into thereactor 1, thereby adjusting the temperature difference in the gas flow direction inside the reactor. - According to the reaction method of the present invention, the temperature difference in the temperature distribution with respect to the gas flow direction in the layer filled with catalyst/reactive agent in the reactor can be uniformly kept to be 50° C. or less. Therefore, the reaction method of the present invention can be used for various decomposition reactions and synthesis reactions where the reaction temperature needs to be controlled to be uniform.
-
FIG. 3 shows the results in the measurement of the temperature distribution inside the reactor by changing the amount of gas while setting the heater at a constant temperature, when the reaction apparatus of the present invention shown inFIG. 1 was used. In the apparatus, the distance from the flange 4 to the punchingmetal plate 3 a at the lower part of thereactor 1 was approximately 190 mm, the portion above the punchingmetal plate 3 a was filled with alumina carrier. In the 40 L heat exchanger-integrated reaction apparatus (outer diameter: 300 mmΦ), havingplural fins 13 in the reactor, a mixture of alumina and calcium carbonate as a solidreactive agent 11 was filled, the heater was set at a constant temperature of 600° C., the flow rate of N2 gas was changed to 40, 80 and 100 L/min, and the temperature distribution in the vertical direction inside the reactor was measured assuming that the flange part at the bottom of the outer casing was the 0 mm point. The temperature (inside temperature) was measured at the horizontal center part of the reactor. As seen inFIG. 3 , the temperature distribution in the vertical direction inside the reactor was uniform at each flow rate. -
FIG. 4 shows the results in the measurement of the temperature distribution inside the reactor by changing the heater temperature while keeping constant the amount of gas using. As in the case ofFIG. 3 , the reaction apparatus of the present invention shown inFIG. 1 was used, where the distance from the flange to the reactor is about 190 mm and the agent is filled in the portion above. The temperature (inside temperature) was measured at the horizontal center part of the reactor. In the reaction apparatus, a reactive agent, was filled, the flow rate of N2 gas was constantly 80 L/min, the temperature of the heater was changed to 450° C. and 600° C., and the temperature distribution in the vertical direction inside the reactor was measured assuming that the flange part at the bottom of the outer casing was the 0 mm point. As seen inFIG. 4 , the temperature distribution in the vertical direction inside the reactor was uniform. - For comparison, with respect to a conventional reaction apparatus for 40 L having an externally heating system as shown by
FIG. 2 , measurement on temperature distribution was conducted. The reaction apparatus ofFIG. 2 is roughly constructed with areactor 1, aheater 2, a punchingmetal plate 3 and a flange 4. -
FIG. 5 shows the results in the measurement of temperature distribution inside the reactor when a reactive agent was filled, the heater temperature was set to 600° C., a flowing gas heated to 500° C. in a preheater was passed at an N2 gas flow rate of 80 L/min, assuming that the punchingmetal plate 3 at the bottom part of the reactor was the 0 mm point. The temperature distribution was determined by measuring the temperature at the horizontal center part of the reactor. The obtained temperature distribution in the reactor turned out to be a general temperature distribution where a maximum value appeared in the vicinity of about 200 mm from the punchingmetal plate 3 a and the inlet and outlet temperatures were low. - The present invention provides an apparatus comprising a structure where a shell and tube-type heat exchanger and a reactor with a heater are integrated and the piping for flowing a gas through in the reaction apparatus has a double piping structure consisting of an inner tube and an outer tube for passing the gases before treatment and after treatment in the countercurrent flow.
- By using the apparatus of the present invention, the heat exchange efficiency is elevated. In addition, the reactor having a heater is useful for the temperature distribution in the gas flow direction inside the reactor to be made uniform. The catalyst or reactive agent filling the reactor can be kept at the objective temperature over a wide area and the catalyst or the like can be effectively used in catalytic reactions and the like where temperature control is desirable. Furthermore, since a heat exchanger and a reactor with a heater are integrated and the piping for flowing a gas through in the reaction apparatus has a double piping structure consisting of an inner tube and an outer tube for passing the gases before treatment and after treatment in the countercurrent flow, the reaction apparatus can be downsized and the space in the periphery of the reaction apparatus can be saved.
Claims (11)
1. A reaction apparatus comprising a heat exchanger 5 and a reactor 1 with a heater 2, which are enclosed in an outer casing 6, the top of the heat exchanger 5 being connected to the reactor 1, the other end part of the heat exchanger 5 and the bottom of the outer casing 6 being fixed to each other by a flange 4, and a double piping 7 for introducing a gas to be treated and discharging the treated gas being connected to the other end part of the heat exchanger 5, such that the gas passes through the heat exchanger 5, the reactor 1 and the heat exchanger 5 in this order during the process from introducing gas through one of the inner tube and the outer tube in the double piping to discharging the gas through the other tube.
2. The reaction apparatus as claimed in claim 1 , wherein the heat exchanger 5 is a shell and tube-type heat exchanger.
3. The reaction apparatus as claimed in claim 1 , wherein the outer casing 6 has an eyebolt fixing part 9 on the ceiling part, thereby the outer casing 6 is detachable.
4. The reaction apparatus as claimed in claim 1 , wherein the reactor 1 has fins 13 in the inside thereof.
5. The reaction apparatus as claimed in claim 1 , wherein the fins 13 are provided inside the inner tube 7 a in the double piping 7 and/or between the inner tube 7 a and the outer tube 7 b in the double piping 7.
6. The reaction apparatus as claimed in claim 1 , comprising a mechanism where the gas to be treated is introduced through the inner tube 7 a and discharged through the outer tube 7 b.
7. The reaction apparatus as claimed in claim 6 , wherein the outer tube 7 b of the double piping 7 has a heat radiating plate.
8. The reaction apparatus as claimed in claim 1 , wherein the reaction apparatus is adapted to be installed horizontally and the reactor 1 with a heater 2 and the heat exchanger 5 are placed horizontally with respect to each other.
9. A reaction method comprising passing a gas to be treated sequentially into one tube of the inner tube 7 a and the outer tube 7 b in a double piping 7, a heat exchanger 5, a reactor 1 with a heater 2, the heat exchanger 5 and the other tube in the double piping 7 in this order and heating the gas to be treated by the heater 2 before the gas to be treated is introduced into the reactor 1, thereby adjusting the temperature difference in the gas flow direction inside the reactor 1.
10. The reaction method as claimed in claim 9 , wherein the gas to be treated is introduced through the inner tube 7 a of the double piping 7 and discharged through the outer tube 7 b.
11. The reaction method as claimed in claim 9 or 10, wherein the temperature difference is adjusted to 50° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/508,858 US20050129593A1 (en) | 2002-03-26 | 2003-03-25 | Reaction appparatus with a heat-exchanger |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-085149 | 2002-03-26 | ||
JP2002085149 | 2002-03-26 | ||
US36896502P | 2002-04-02 | 2002-04-02 | |
US10/508,858 US20050129593A1 (en) | 2002-03-26 | 2003-03-25 | Reaction appparatus with a heat-exchanger |
PCT/JP2003/003591 WO2003080230A1 (en) | 2002-03-26 | 2003-03-25 | Reaction apparatus with a heat-exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050129593A1 true US20050129593A1 (en) | 2005-06-16 |
Family
ID=33432009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/508,858 Abandoned US20050129593A1 (en) | 2002-03-26 | 2003-03-25 | Reaction appparatus with a heat-exchanger |
Country Status (12)
Country | Link |
---|---|
US (1) | US20050129593A1 (en) |
EP (1) | EP1492617B1 (en) |
KR (1) | KR100934716B1 (en) |
CN (1) | CN1642630B (en) |
AT (1) | ATE467454T1 (en) |
AU (1) | AU2003230236B2 (en) |
CA (1) | CA2480346C (en) |
DE (1) | DE60332529D1 (en) |
DK (1) | DK1492617T3 (en) |
HK (1) | HK1072571A1 (en) |
TW (1) | TW590792B (en) |
WO (1) | WO2003080230A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040123523A1 (en) * | 2002-12-31 | 2004-07-01 | Xiaoyang Rong | Fuel conversion reactor |
US20040253498A1 (en) * | 2003-04-15 | 2004-12-16 | Nuvera Fuel Cells, Inc. | Modular fuel reformer with removable carrier |
US20120199324A1 (en) * | 2011-02-03 | 2012-08-09 | Memc Electronic Materials Spa | Reactor apparatus and methods for reacting compounds |
JP2013211202A (en) * | 2012-03-30 | 2013-10-10 | Toto Ltd | Fuel cell unit |
US20170002466A1 (en) * | 2014-03-14 | 2017-01-05 | Herakles | A cvi densification installation including a high capacity preheating zone |
US9835381B2 (en) * | 2014-07-14 | 2017-12-05 | Hani Toma | Double walled evaporator with heat exchange |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1819422B1 (en) * | 2004-11-30 | 2014-07-30 | Showa Denko K.K. | Treatment method and treatment apparatus for gas containing nitrous oxide |
JPWO2010101073A1 (en) * | 2009-03-04 | 2012-09-10 | 昭和電工株式会社 | Reaction apparatus and reaction method |
KR102096435B1 (en) | 2015-07-08 | 2020-06-03 | 한화에어로스페이스 주식회사 | Impinging type temperature uniformity device |
CN108771962A (en) * | 2017-10-30 | 2018-11-09 | 中国航天员科研训练中心 | Manned spacecraft uses CH4Catalytic oxidizing equipment |
KR20190093477A (en) * | 2018-02-01 | 2019-08-09 | 주식회사 하이낸드 | Heat exchanger |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3041151A (en) * | 1959-03-09 | 1962-06-26 | Chemical Construction Corp | Apparatus for exothermic catalytic reactions |
US3212862A (en) * | 1963-02-19 | 1965-10-19 | Chemical Construction Corp | Apparatus for exothermic catalytic reactions |
US3278633A (en) * | 1963-05-15 | 1966-10-11 | Exxon Research Engineering Co | Process for the production of n-alpha-olefins by the am (alkyl metal) technique |
US3424553A (en) * | 1964-10-21 | 1969-01-28 | Ver Kunstmeslfabrieken Mekog A | Method and apparatus for carrying out exothermic gas reactions |
US3732517A (en) * | 1971-11-15 | 1973-05-08 | Westinghouse Electric Corp | Protective fuse |
US3814171A (en) * | 1970-12-26 | 1974-06-04 | Toyoda Chuo Kenkyusho Kk | Stationary heat exchanger |
US4420462A (en) * | 1982-03-22 | 1983-12-13 | Clyde Robert A | Catalytic heat exchanger |
US4692306A (en) * | 1986-03-24 | 1987-09-08 | Kinetics Technology International Corporation | Catalytic reaction apparatus |
US5242563A (en) * | 1992-03-12 | 1993-09-07 | The United States Of America As Represented By The Secretary Of The Navy | Molten salt reactor for potentiostatic electroplating |
US5658538A (en) * | 1994-11-08 | 1997-08-19 | Basf Aktiengesellschaft | Reactor for carrying out gas-phase reactions using heterogeneous catalysts |
US6146606A (en) * | 1999-02-09 | 2000-11-14 | Showa Denko Kabushiki Kaisha | Reactive agent and process for decomposing nitrogen fluoride |
US6221117B1 (en) * | 1996-10-30 | 2001-04-24 | Idatech, Llc | Hydrogen producing fuel processing system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE499694A (en) * | ||||
DE820894C (en) * | 1947-08-02 | 1951-11-15 | Manufactures De Prod Chim Du N | Device for carrying out catalytic gas or steam reactions |
GB797574A (en) * | 1955-07-25 | 1958-07-02 | Oxy Catalyst Inc | Improvements in or relating to method and apparatus for heating fluids |
US3366461A (en) * | 1964-05-11 | 1968-01-30 | Chemical Construction Corp | Apparatus for exothermic catalytic reactions |
GB1574723A (en) * | 1976-03-10 | 1980-09-10 | Haldor Topsoe As | Apparatus for the synthesis of ammonia |
DE2630901A1 (en) * | 1976-07-09 | 1978-01-12 | Hoechst Ag | DEVICE FOR REMOVING OZONE FROM GAS MIXTURES |
US5685538A (en) * | 1996-05-23 | 1997-11-11 | Xerox Corporation | Sheet registration around turn |
CN1320478A (en) * | 2000-04-24 | 2001-11-07 | 杭州林达化工技术工程有限公司 | Low-temp difference exothermic catalytic gas-solid phase reactor |
-
2003
- 2003-03-24 TW TW092106520A patent/TW590792B/en not_active IP Right Cessation
- 2003-03-25 CN CN038070987A patent/CN1642630B/en not_active Expired - Fee Related
- 2003-03-25 EP EP03723095A patent/EP1492617B1/en not_active Expired - Lifetime
- 2003-03-25 CA CA2480346A patent/CA2480346C/en not_active Expired - Fee Related
- 2003-03-25 WO PCT/JP2003/003591 patent/WO2003080230A1/en active Application Filing
- 2003-03-25 US US10/508,858 patent/US20050129593A1/en not_active Abandoned
- 2003-03-25 DK DK03723095.0T patent/DK1492617T3/en active
- 2003-03-25 KR KR1020047015198A patent/KR100934716B1/en not_active IP Right Cessation
- 2003-03-25 DE DE60332529T patent/DE60332529D1/en not_active Expired - Lifetime
- 2003-03-25 AT AT03723095T patent/ATE467454T1/en not_active IP Right Cessation
- 2003-03-25 AU AU2003230236A patent/AU2003230236B2/en not_active Ceased
-
2005
- 2005-06-27 HK HK05105314.3A patent/HK1072571A1/en not_active IP Right Cessation
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3041151A (en) * | 1959-03-09 | 1962-06-26 | Chemical Construction Corp | Apparatus for exothermic catalytic reactions |
US3212862A (en) * | 1963-02-19 | 1965-10-19 | Chemical Construction Corp | Apparatus for exothermic catalytic reactions |
US3278633A (en) * | 1963-05-15 | 1966-10-11 | Exxon Research Engineering Co | Process for the production of n-alpha-olefins by the am (alkyl metal) technique |
US3424553A (en) * | 1964-10-21 | 1969-01-28 | Ver Kunstmeslfabrieken Mekog A | Method and apparatus for carrying out exothermic gas reactions |
US3814171A (en) * | 1970-12-26 | 1974-06-04 | Toyoda Chuo Kenkyusho Kk | Stationary heat exchanger |
US3732517A (en) * | 1971-11-15 | 1973-05-08 | Westinghouse Electric Corp | Protective fuse |
US4420462A (en) * | 1982-03-22 | 1983-12-13 | Clyde Robert A | Catalytic heat exchanger |
US4692306A (en) * | 1986-03-24 | 1987-09-08 | Kinetics Technology International Corporation | Catalytic reaction apparatus |
US5242563A (en) * | 1992-03-12 | 1993-09-07 | The United States Of America As Represented By The Secretary Of The Navy | Molten salt reactor for potentiostatic electroplating |
US5658538A (en) * | 1994-11-08 | 1997-08-19 | Basf Aktiengesellschaft | Reactor for carrying out gas-phase reactions using heterogeneous catalysts |
US6221117B1 (en) * | 1996-10-30 | 2001-04-24 | Idatech, Llc | Hydrogen producing fuel processing system |
US6146606A (en) * | 1999-02-09 | 2000-11-14 | Showa Denko Kabushiki Kaisha | Reactive agent and process for decomposing nitrogen fluoride |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040123523A1 (en) * | 2002-12-31 | 2004-07-01 | Xiaoyang Rong | Fuel conversion reactor |
US20060051261A1 (en) * | 2002-12-31 | 2006-03-09 | Xiaoyang Rong | Fuel conversion reactor |
US7172737B2 (en) * | 2002-12-31 | 2007-02-06 | Dana Canada Corporation | Fuel conversion reactor |
US7220392B2 (en) * | 2002-12-31 | 2007-05-22 | Dana Canada Corporation | Fuel conversion reactor |
US20040253498A1 (en) * | 2003-04-15 | 2004-12-16 | Nuvera Fuel Cells, Inc. | Modular fuel reformer with removable carrier |
US20120199324A1 (en) * | 2011-02-03 | 2012-08-09 | Memc Electronic Materials Spa | Reactor apparatus and methods for reacting compounds |
US9222733B2 (en) * | 2011-02-03 | 2015-12-29 | Memc Electronic Materials S.P.A. | Reactor apparatus and methods for reacting compounds |
US9644902B2 (en) | 2011-02-03 | 2017-05-09 | Memc Electronic Materials, S.P.A. | Methods for reacting compounds |
JP2013211202A (en) * | 2012-03-30 | 2013-10-10 | Toto Ltd | Fuel cell unit |
US20170002466A1 (en) * | 2014-03-14 | 2017-01-05 | Herakles | A cvi densification installation including a high capacity preheating zone |
US9845534B2 (en) * | 2014-03-14 | 2017-12-19 | Herakles | CVI densification installation including a high capacity preheating zone |
US9835381B2 (en) * | 2014-07-14 | 2017-12-05 | Hani Toma | Double walled evaporator with heat exchange |
Also Published As
Publication number | Publication date |
---|---|
CA2480346C (en) | 2010-08-24 |
DE60332529D1 (en) | 2010-06-24 |
KR100934716B1 (en) | 2009-12-30 |
HK1072571A1 (en) | 2005-09-02 |
EP1492617A1 (en) | 2005-01-05 |
CN1642630B (en) | 2010-06-02 |
TW200306882A (en) | 2003-12-01 |
CN1642630A (en) | 2005-07-20 |
AU2003230236B2 (en) | 2008-09-04 |
TW590792B (en) | 2004-06-11 |
DK1492617T3 (en) | 2010-08-30 |
AU2003230236A1 (en) | 2003-10-08 |
CA2480346A1 (en) | 2003-10-02 |
WO2003080230A1 (en) | 2003-10-02 |
ATE467454T1 (en) | 2010-05-15 |
KR20040104553A (en) | 2004-12-10 |
EP1492617B1 (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10775107B2 (en) | Nested-flow heat exchangers and chemical reactors | |
RU2373471C2 (en) | Process and reactor for performing heat exchange reactions | |
CA2480346C (en) | Reaction apparatus and reaction method | |
EP1767266A1 (en) | Heat exchange reactor | |
RU2031702C1 (en) | Reactor for exothermic gaseous-phase reaction and a method to perform the exothermic gaseous-phase reaction | |
JPH01139137A (en) | Method for execution of non-uniform catalytic chemical process | |
US5676911A (en) | Radial flow fuel processor | |
EP2231324A2 (en) | Tube reactor | |
EP1547994A4 (en) | Method of vapor phase catalytic oxidation using multitubular reactor | |
US20240335809A1 (en) | Methanation reactor and method | |
JP2008514536A (en) | Apparatus and method for selective oxidation of carbon monoxide | |
JP4480949B2 (en) | Reaction apparatus and reaction method | |
JP2005288441A (en) | Heat exchange type reactor | |
RU2001128725A (en) | Device and method for heat exchange with fluidized beds | |
JP2817236B2 (en) | Methanol reforming reactor | |
KR101765434B1 (en) | Reactor having increased heat exchanger tube | |
US6962678B2 (en) | Reactor for carrying out non-adiabatic reactions | |
RU2283173C2 (en) | Reactor for performing non-adiabatic process | |
US20020141924A1 (en) | Co-shift device | |
JP2004028556A (en) | Catalytic combustion reactor including tube bundle for heat exchanger, catalytic structure and catalytic combustion reaction method using them | |
EA046865B1 (en) | REFORMER FURNACE WITH REACTION PIPES ON SUPPORTS | |
KR20240014072A (en) | How to make phosgene | |
JPS59130532A (en) | Contact reactor | |
JPS61225580A (en) | Heater | |
JPH0329723B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHOWA DENKO K.K., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MASATOSHI, HOTTA;HITOSHI, ATOBE;REEL/FRAME:016382/0272 Effective date: 20040914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |