US20050107001A1 - Grinding apparatus for blending defects on turbine blades and associated method of use - Google Patents

Grinding apparatus for blending defects on turbine blades and associated method of use Download PDF

Info

Publication number
US20050107001A1
US20050107001A1 US10/715,946 US71594603A US2005107001A1 US 20050107001 A1 US20050107001 A1 US 20050107001A1 US 71594603 A US71594603 A US 71594603A US 2005107001 A1 US2005107001 A1 US 2005107001A1
Authority
US
United States
Prior art keywords
support tube
grinding tool
grinding
trigger
extension member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/715,946
Other versions
US6899593B1 (en
Inventor
Dieter Moeller
Heinz Moeller
David Moeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/715,946 priority Critical patent/US6899593B1/en
Priority to US11/059,249 priority patent/US7112118B1/en
Priority to US11/069,625 priority patent/US7097539B2/en
Publication of US20050107001A1 publication Critical patent/US20050107001A1/en
Application granted granted Critical
Publication of US6899593B1 publication Critical patent/US6899593B1/en
Priority to US11/460,369 priority patent/US20060258265A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/027Other grinding machines or devices having a flexible shaft

Definitions

  • the present invention relates to apparatus for blending defects on turbine blades such as, for example, nicks and notches. More particularly, this invention relates to a grinding apparatus for blending defects on turbine blades using an endoscope to view the defects through observation ports in an engine casing.
  • gas turbine engines such as those used in aircraft, are enclosed in an engine casing and include a plurality of turbine blades secured to a drum.
  • Such gas turbine engines typically mounted on the wing of an aircraft, are frequently damaged by foreign objects, such as sand particles, stones, or other objects ingested by the engine during takeoff. These foreign objects ingested by the air turbine engine often cause generally V-shaped nicks or chips on impact along the leading edge of the affected turbine blades. The process of replacing a turbine blade is very expensive, so repair in place is desirable when compared to replacement.
  • blending is used in the art for the process of smoothing a V-shaped notch or nick into a more U-shaped configuration.
  • the detection process involves a visual inspection of each turbine blade through a borescope or endoscope passed through observation ports or holes in the engine casing.
  • the borescope a fiber optic cable connected to a light source, is inserted through borescope openings within the engine case and into the engine.
  • the small borescope openings are disposed throughout the engine case. If a turbine blade having excessive damage is observed, the engine must be removed from the wing of the aircraft, and then disassembled to expose the damaged blade. Only then can the blade be accessed and repaired or replaced. This procedure is time-consuming and extremely expensive. Consequently, more practical techniques for repairing or blending notches or defects on an aircraft turbine blade have been developed.
  • One type of apparatus used to blend defects on turbine blades in the manner described above uses a rotary grinding head or tool located at the end of a blending tool.
  • the tool may be passed through the observation ports in the engine casing.
  • U.S. Pat. Nos. 5,644,394; 5,803,680 and 5,475,485 disclose such apparatus.
  • One difficulty with tools using rotary heads is that the rotational speed required to blend the defect is so high that the surface of the turbine blade becomes very hot due to friction. Because most turbine blades are made of titanium, the integrity of the titanium may be compromised at high temperatures. The titanium metal may actually melt or deform at high enough temperatures.
  • One preferred embodiment of the present invention comprises a grinding apparatus including two principal components: an endoscope and a grinding tool operatively coupled to the endoscope.
  • Any commercially available endoscope may be use with the present invention.
  • One type of commercially available endoscope which has proven to work satisfactorily with the present invention is manufactured by Machidascope under model FBA-2.4-100 and may be ordered at wwwv.machidascope.com.
  • the grinding tool is coupled to a compressed air supply via an air supply line. Air pulses provided by the air supply reciprocate a grinding head operatively coupled to the grinding tool.
  • fluid is transported to the grinding tool via a supply line and functions to reciprocate the grinding head.
  • a motorized driver is coupled to the grinding head and upon being activated mechanically reciprocates the grinding head.
  • the grinding tool is adapted to be used with an endoscope for blending a defect on a turbine blade inside a casing.
  • the grinding tool comprises a base unit having a base, a handle extending downwardly from the base proximate the rear of the base, and a trigger located in front of the handle and extending downwardly from the base also.
  • base unit may assume numerous other configurations without departing from the spirit of this invention.
  • the grinding tool further comprises a support tube extending forwardly from the base unit and being sized to fit through an observation port in the casing.
  • the support tube in one preferred embodiment has an opening at the forward end of the support tube, so that an articulated end of the endoscope may pass through the support tube and out the opening in the support tube.
  • an extension member is hingedly connected to the forward end of the support tube and operatively coupled to the trigger. Because the extension member is mechanically connected to the trigger, an operator may change the position of the extension member by moving the trigger, thereby flexing the hinge.
  • the extension member has a hollow interior in which is located a piston and a spring surrounding a portion of the piston. No matter what the position of the extension member, air passes through the support tube and hinge to reciprocate the piston in the extension member.
  • a cylindrical grinding head is coupled to a forward end of the piston and upon activation reciprocates at a predetermined speed. Pulses of air supplied by the source of compressed air and pushed through an air supply line to the grinding tool push the piston against the bias of the spring in the extension member, causing the spring to compress. When the burst or pulse of air is exhausted, the spring forces the piston back to its original position. In this manner, the spring goes through a cycle of compression and noncompression as the piston reciprocates in response to the air pulses. Other means of reciprocating the grinding head may be used if desired.
  • the support tube comprises a first linear portion having an opening therein so that the forward end of the endoscope can pass through the opening in the support tube and enable the operator to view the turbine blade.
  • the support tube further comprises a second linear portion hingedly connected to the first portion and operatively coupled to the trigger so that movement of the trigger causes movement of the second portion of the support tube.
  • a piston and spring arrangement like the one described above are located in the second movable portion of the support tube.
  • a reciprocating grinding head is coupled to the piston.
  • the present invention preferably has a hinge incorporated into the support tube, it is within the contemplation of the present invention that the support tube lack a hinge.
  • the support tube is preferably bent but may assume any desired configuration.
  • a second portion of the support tube is fixed at an angle, preferably an acute angle, relative to the first linear portion of the support tube.
  • a defect on a turbine blade may be blended or smoothed using the grinding apparatus of the present invention.
  • the first step in utilizing the grinding apparatus of the present invention is to couple a commercially available endoscope to the grinding tool. This is accomplished by passing a portion of the endoscope, including the lens end, through the base of the grinding tool, through the support tube of the grinding tool and out an opening in the support tube.
  • the endoscope When coupled to a light source, the endoscope enables the operator to view inside the engine casing.
  • the support tube of the grinding tool with the endoscope passing therethrough, is passed through an observation port or hole in the engine casing.
  • the operator locates a defect on the turbine blade by visual scanning.
  • the operator uses the trigger on the grinding tool to position the grinding head proximate to the defect on the turbine blade.
  • a driver is activated to supply air pulses to the grinding tool via the air supply line.
  • the air pulses pass through the support tube of the grinding tool and contact the piston, causing the piston and grinding head of the grinding tool to reciprocate at a desired speed.
  • the frequency of the air pulses may be varied as desired by any known means to change the speed of reciprocation of the grinding head. If desired, the air pulses may be used to rotate rather than reciprocate the grinding head.
  • fluid is used to reciprocate the grinding head.
  • the fluid is provided via a fluid supply and passed through a supply tube to the grinding tool to reciprocate the grinding head. Any means such as a motorized pump may be used to supply fluid to the grinding tool.
  • a wire is used to reciprocate the grinding head.
  • the wire is operatively coupled at one end to a motorized driver such as a variable speed motor, passed through the grinding tool and coupled to a piston which is secured to the grinding head.
  • Activation of the motorized driver reciprocates the grinding head.
  • Any means such as a cam driven by a motor may be used to reciprocate the wire operatively coupled to the grinding tool.
  • FIG. 1 is a perspective view of the grinding apparatus of the present invention used in conjunction with an endoscope
  • FIG. 1A is a cross-sectional view taken along the line 1 A- 1 A of FIG. 1 ;
  • FIG. 2 is a side elevational view of one preferred embodiment of the grinding tool of the present invention.
  • FIG. 3 is a side elevational view partially in cross section of a portion of the grinding tool of FIG. 2 ;
  • FIG. 3A is a cross-sectional view taken along the line 3 A- 3 A of FIG. 3 ;
  • FIG. 4 is a perspective view of an alternative embodiment of grinding apparatus of the present invention used in conjunction with an endoscope.
  • FIG. 5 is a perspective view of another alternative embodiment of grinding apparatus of the present invention for use with an endoscope.
  • a grinding apparatus 10 including an air supply 12 , an air supply line 13 and a grinding tool 14 for use with an endoscope 16 .
  • the endoscope 16 has an eyepiece 17 at the end of a tube 19 and an articulated lens end 20 moveable via movement of a lever 18 on the eyepiece 17 , as is known in the art. Any other sort of viewer such as a video viewer may be used in place of the eyepiece 17 to view or display data.
  • the endoscope 16 is used with a light source 22 .
  • the grinding apparatus 10 may be used with many different types of endoscopes.
  • the grinding apparatus 10 of the present invention is used for blending or retouching a defect, notch or nick 24 along the leading edge 26 of a turbine blade 28 secured to a drum 30 (only partially shown) in a manner known in the art.
  • the drum 30 and turbine blades 28 attached thereto are mounting in an engine casing 32 having a plurality of observation ports 34 , as is known in the art.
  • the air supply 12 may include any known means to provide air pulses and push them through the air supply line 13 to the grinding tool 14 .
  • the grinding tool 14 comprises a base unit 36 including a base 38 , a handle 40 and a trigger 42 .
  • the base 38 is preferably made of metal but may be made of any material.
  • the base 38 has a top wall 44 , a bottom wall 46 , a front wall 48 , a rear wall 50 and a pair of opposed side walls 52 .
  • the handle 40 extends downwardly from the bottom wall 46 of the base 38 proximate the rear wall 50 of the base 38 .
  • the trigger 42 extends downwardly from the bottom wall 46 of the base 38 in front of the handle 40 .
  • the handle and/or trigger may be located at a different location.
  • the handle may be omitted and/or the trigger replaced with other apparatus.
  • the grinding tool 14 further comprises a support tube 54 extending forwardly from the base 38 .
  • the support tube 54 has a circular wall 56 having an outer surface 58 and an inner surface 60 .
  • the interior 62 of the support tube 54 is hollow and divided into an upper portion 5 and a lower portion 6 by a divider or guide 7 .
  • the endoscope tube 19 passes through the lower portion 6 as shown in FIG. 1A .
  • the support tube wall 56 has an opening 64 at a forward end 66 of the support tube 54 .
  • the articulating end 20 of the endoscope 16 protrudes through this opening 64 in a manner shown in FIG. 1 to enable the operator to view inside the engine casing wall 32 .
  • the articulating lens end 20 of the endoscope 16 is passed through a hole 68 in the rear wall 50 of the base 38 , through the base 38 and then through the lower portion 6 of the support tube 54 before exiting the opening 64 in the support tube wall 56 .
  • an extension member 70 is coupled or joined to the support tube 54 via hinge 72 .
  • the hinge 72 pivots about an axis 73 and is coupled or joined to the support tube 54 and the extension member 70 . See FIG. 1 .
  • FIG. 3 illustrates in detail one form of hinge 72 ; however, any other type of suitable hinge may be used in accordance with the present invention.
  • the extension member 70 is preferably a linear piece of tubing, made of metal, plastic or any other suitable material. As seen in FIG. 3 , the extension member 70 has a circular wall 74 having an outer surface 76 and an inner surface 78 . However, the extension member 70 may assume other configurations without departing from the spirit of the present invention. If desired, the extension member 70 may be considered a second portion of the support tube hingedly connected to a first linear portion of the support tube. If desired, the hinge may be omitted and the second portion of the support tube fixed in position relative to the first portion of the support tube.
  • the extension member 70 is operatively coupled to the trigger 42 so that the operator may move the extension member 70 by moving the trigger 42 .
  • at least one wire 80 (shown in cross section in FIG. 1A ) is secured at one end 82 to the extension member 70 via welding or any other suitable method and secured at the other end (not shown) to the trigger 42 . See FIG. 3 .
  • the wire 80 extends the length of the support tube 54 on the inside thereof.
  • the trigger 42 may be moved from a first position shown in dashed lines to a second position shown in solid lines which causes the extension member 70 to move from an extended or first position shown in dashed lines in FIG. 2 to a bent or second position shown in solid lines in FIG. 2 .
  • the hinge 72 has an outer wall 71 inside which wire 80 passes.
  • an air tube 92 passes through the hinge 72 inside the hinge outer wall 71 .
  • the air tube 92 is a flexible piece of tubing having an outer tube wall 93 , preferably made of plastic, which extends from an air stop 55 in the support tube 54 to a piston 86 in the extension member 70 . See FIGS. 3 and 3 A.
  • the support tube 54 has an air stop 55 at the forward end 66 of the support tube 54 which reduces the diameter through which the air flows as air passes through the hinge 72 .
  • the air stop 55 has an opening 94 through which the air tube 92 passes and another opening 96 through which the wire 80 passes. See FIG. 1A . If desired, two or more wires or other structures may be used in accordance with the present invention.
  • a piston 86 is located at least partially inside the extension member 70 and moveable therein in reaction to the pulses of air from the air supply 12 .
  • the piston 86 has a base portion 100 and an finger portion 102 extending forwardly from the base portion 100 .
  • the base portion 100 of the piston 86 has a diameter approximately equal to the inner diameter of the extension member 70 so that air may not get through the extension member 70 without moving the piston 86 .
  • a spring 104 surrounds the finger portion 102 of the piston 86 inside the extension member 70 as shown in FIG. 3 .
  • the spring 104 extends between a stop 106 at the forward end 108 of the extension member 70 and the base portion 100 of the piston 86 .
  • the air exerts force or pressure on the base portion 100 of the piston 86 , moving the base portion 100 of the piston 86 forwardly against the bias or force of the spring 104 , thereby compressing the spring 104 against the stop 106 in the extension member 70 .
  • the spring 104 pushes the piston 86 back to its original position in which the base portion 100 of the piston 86 abuts a stop 110 in the extension member 70 . In this manner the spring 104 cycles between a compressed position and a relaxed position in response to the air pulses generated in the air supply 12 and passed through the air supply line 13 to the grinding tool 14 .
  • a grinding head 112 is coupled to the finger portion 102 of the piston 86 outside of the extension member 70 in a manner shown in detail in FIG. 3 .
  • the grinding head 112 is preferably cylindrical but may be other shapes or configurations. Any suitable means of securing the grinding head 112 to the finger portion 102 of the piston 86 may be used.
  • the endoscope 16 is coupled or joined to the grinding tool 14 by passing the lens end 20 of the endoscope 16 through the opening 68 in the base 38 of the endoscope, through the base 38 of the grinding tool 14 , through the support tube 54 of the grinding tool 14 and out the opening 64 in the support tube wall 56 .
  • a light source 22 is coupled to the endoscope 16 in a manner known in the art either before or after the endoscope 16 is coupled to the grinding tool 14 .
  • the operator then passes the support tube 54 of the grinding tool 14 with a portion of the endoscope 16 therethrough through one of the observation ports 34 in the engine casing 32 .
  • the operator then uses the endoscope 16 to locate a defect 24 along the leading edge 26 of a turbine blade 28 .
  • the operator then positions the grinding head 112 proximate the defect 24 and activates the air supply to provide air pulses to the grinding tool 14 .
  • the operator uses the trigger 42 to move the extension member 70 and grinding head 112 via the hinge 72 in the manner described above.
  • the air pulses reciprocate the piston 86 in the extension member 70 of the grinding tool 14 .
  • the reciprocation of the piston 86 causes the grinding head 112 to reciprocate because the piston 86 and grinding head 112 are joined together.
  • FIG. 4 An alternative preferred embodiment of the present invention is illustrated in FIG. 4 .
  • fluid is used rather than air to reciprocate a grinding head 112 a secured to the end of an extension member or portion of a support tube 70 a .
  • Any method of securing the grinding head 112 a to the end of the extension member 70 a may be used.
  • a piston 114 pushes and pulls fluid from a fluid supply 116 through tube 118 to the grinding tool 14 a .
  • the fluid passes through the support tube 54 a including hinge 72 a to a piston (not shown).
  • the back and forth movement of the fluid in the grinding tool 14 a reciprocates the piston (not shown) to which is connected grinding head 112 a .
  • the grinding tool 14 a is similar to the grinding tool 14 described above, except fluid rather than air is used to reciprocate the grinding head.
  • FIG. 5 An alternative preferred embodiment of the present invention is illustrated in FIG. 5 .
  • a mechanical driver is used rather than air or fluid to reciprocate a grinding head 112 b hingedly secured to the end of an extension member 70 b or portion of a support tube 54 b with hinge 72 b . Any method of securing the grinding head 112 b to the end of the extension member 70 b may be used.
  • a motorized driver 118 pulls a wire 120 extending through the support tube 54 b of the grinding tool 14 a around a pulley 124 and secured to a piston 86 b located in extension member 70 b .
  • Extension member 70 b is hingedly connected to the support tube 54 b in any operable manner.
  • a grinding head 112 b is secured to the piston 86 b in any suitable manner or fashion.
  • a spring 122 located inside the extension member 70 b pushes the piston 86 b back outwardly after the tension on the wire 120 is partially relaxed. The back and forth movement of the piston 86 b due to the motorized driver 118 , wire 120 and spring 122 causes the grinding head 112 b to reciprocate.
  • the grinding tool 14 b is similar to the grinding tool 14 described above, except a motorized driver in concert with a spring causes the grinding head to reciprocate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

A grinding apparatus for use with an endoscope for viewing and blending defects on a turbine engine blade is provided. In one preferred embodiment air pulses from an air supply cause a grinding head on the end of a grinding tool to reciprocate at a predetermined speed. The position of the grinding head is fixed via the operator via a trigger on the grinding tool which articulates an outer portion of a support tube of the grinding tool. In another preferred embodiment, fluid is used to reciprocate the grinding head.

Description

    FIELD OF THE INVENTION
  • The present invention relates to apparatus for blending defects on turbine blades such as, for example, nicks and notches. More particularly, this invention relates to a grinding apparatus for blending defects on turbine blades using an endoscope to view the defects through observation ports in an engine casing.
  • BACKGROUND OF THE INVENTION
  • Conventional gas turbine engines, such as those used in aircraft, are enclosed in an engine casing and include a plurality of turbine blades secured to a drum. Such gas turbine engines, typically mounted on the wing of an aircraft, are frequently damaged by foreign objects, such as sand particles, stones, or other objects ingested by the engine during takeoff. These foreign objects ingested by the air turbine engine often cause generally V-shaped nicks or chips on impact along the leading edge of the affected turbine blades. The process of replacing a turbine blade is very expensive, so repair in place is desirable when compared to replacement.
  • In order to prevent such notches or nicks from becoming more pronounced and potentially cracking the turbine blade, it is desirable to detect the nicks or notches early and, if possible, repair or blend the defects in the turbine blades. In general the term blending is used in the art for the process of smoothing a V-shaped notch or nick into a more U-shaped configuration.
  • The detection process involves a visual inspection of each turbine blade through a borescope or endoscope passed through observation ports or holes in the engine casing. The borescope, a fiber optic cable connected to a light source, is inserted through borescope openings within the engine case and into the engine. The small borescope openings are disposed throughout the engine case. If a turbine blade having excessive damage is observed, the engine must be removed from the wing of the aircraft, and then disassembled to expose the damaged blade. Only then can the blade be accessed and repaired or replaced. This procedure is time-consuming and extremely expensive. Consequently, more practical techniques for repairing or blending notches or defects on an aircraft turbine blade have been developed.
  • One type of apparatus used to blend defects on turbine blades in the manner described above uses a rotary grinding head or tool located at the end of a blending tool. The tool may be passed through the observation ports in the engine casing. U.S. Pat. Nos. 5,644,394; 5,803,680 and 5,475,485 disclose such apparatus. One difficulty with tools using rotary heads is that the rotational speed required to blend the defect is so high that the surface of the turbine blade becomes very hot due to friction. Because most turbine blades are made of titanium, the integrity of the titanium may be compromised at high temperatures. The titanium metal may actually melt or deform at high enough temperatures.
  • An alternative to a tool which rotates a grinding head is disclosed in U.S. Pat. No. 5,102,221. This patent discloses an apparatus for repairing or blending defects on a turbine blade using a reciprocating motion, as opposed to a rotary motion. Again, this apparatus is used with an endoscope. The apparatus disclosed in this patent is difficult to use and subject to failure due to the configuration and operation of the apparatus. Therefore, there is a need for a grinding apparatus to blend defects on turbine blades which is user-friendly and utilizes a reciprocating motion, as opposed to a rotary motion.
  • SUMMARY OF THE INVENTION
  • One preferred embodiment of the present invention comprises a grinding apparatus including two principal components: an endoscope and a grinding tool operatively coupled to the endoscope. Any commercially available endoscope may be use with the present invention. One type of commercially available endoscope which has proven to work satisfactorily with the present invention is manufactured by Machidascope under model FBA-2.4-100 and may be ordered at wwwv.machidascope.com.
  • In one preferred embodiment, the grinding tool is coupled to a compressed air supply via an air supply line. Air pulses provided by the air supply reciprocate a grinding head operatively coupled to the grinding tool. In another preferred embodiment, fluid is transported to the grinding tool via a supply line and functions to reciprocate the grinding head. In yet another preferred embodiment, a motorized driver is coupled to the grinding head and upon being activated mechanically reciprocates the grinding head.
  • The grinding tool is adapted to be used with an endoscope for blending a defect on a turbine blade inside a casing. The grinding tool comprises a base unit having a base, a handle extending downwardly from the base proximate the rear of the base, and a trigger located in front of the handle and extending downwardly from the base also. Although one configuration of base unit is illustrated, the base unit may assume numerous other configurations without departing from the spirit of this invention.
  • The grinding tool further comprises a support tube extending forwardly from the base unit and being sized to fit through an observation port in the casing. The support tube in one preferred embodiment has an opening at the forward end of the support tube, so that an articulated end of the endoscope may pass through the support tube and out the opening in the support tube.
  • In one preferred embodiment, an extension member is hingedly connected to the forward end of the support tube and operatively coupled to the trigger. Because the extension member is mechanically connected to the trigger, an operator may change the position of the extension member by moving the trigger, thereby flexing the hinge. The extension member has a hollow interior in which is located a piston and a spring surrounding a portion of the piston. No matter what the position of the extension member, air passes through the support tube and hinge to reciprocate the piston in the extension member.
  • A cylindrical grinding head is coupled to a forward end of the piston and upon activation reciprocates at a predetermined speed. Pulses of air supplied by the source of compressed air and pushed through an air supply line to the grinding tool push the piston against the bias of the spring in the extension member, causing the spring to compress. When the burst or pulse of air is exhausted, the spring forces the piston back to its original position. In this manner, the spring goes through a cycle of compression and noncompression as the piston reciprocates in response to the air pulses. Other means of reciprocating the grinding head may be used if desired.
  • In another preferred embodiment of the present invention, the support tube comprises a first linear portion having an opening therein so that the forward end of the endoscope can pass through the opening in the support tube and enable the operator to view the turbine blade. The support tube further comprises a second linear portion hingedly connected to the first portion and operatively coupled to the trigger so that movement of the trigger causes movement of the second portion of the support tube. A piston and spring arrangement like the one described above are located in the second movable portion of the support tube. A reciprocating grinding head is coupled to the piston.
  • Although the present invention preferably has a hinge incorporated into the support tube, it is within the contemplation of the present invention that the support tube lack a hinge. In such an embodiment, the support tube is preferably bent but may assume any desired configuration. In this situation, a second portion of the support tube is fixed at an angle, preferably an acute angle, relative to the first linear portion of the support tube.
  • In use, a defect on a turbine blade may be blended or smoothed using the grinding apparatus of the present invention. The first step in utilizing the grinding apparatus of the present invention is to couple a commercially available endoscope to the grinding tool. This is accomplished by passing a portion of the endoscope, including the lens end, through the base of the grinding tool, through the support tube of the grinding tool and out an opening in the support tube. When coupled to a light source, the endoscope enables the operator to view inside the engine casing.
  • Then the support tube of the grinding tool, with the endoscope passing therethrough, is passed through an observation port or hole in the engine casing. Using the endoscope, the operator locates a defect on the turbine blade by visual scanning. The operator then uses the trigger on the grinding tool to position the grinding head proximate to the defect on the turbine blade. Then a driver is activated to supply air pulses to the grinding tool via the air supply line. The air pulses pass through the support tube of the grinding tool and contact the piston, causing the piston and grinding head of the grinding tool to reciprocate at a desired speed. The frequency of the air pulses may be varied as desired by any known means to change the speed of reciprocation of the grinding head. If desired, the air pulses may be used to rotate rather than reciprocate the grinding head.
  • In another preferred embodiment of the present invention, fluid is used to reciprocate the grinding head. The fluid is provided via a fluid supply and passed through a supply tube to the grinding tool to reciprocate the grinding head. Any means such as a motorized pump may be used to supply fluid to the grinding tool.
  • In another preferred embodiment of the present invention, a wire is used to reciprocate the grinding head. The wire is operatively coupled at one end to a motorized driver such as a variable speed motor, passed through the grinding tool and coupled to a piston which is secured to the grinding head. Activation of the motorized driver reciprocates the grinding head. Any means such as a cam driven by a motor may be used to reciprocate the wire operatively coupled to the grinding tool.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the grinding apparatus of the present invention used in conjunction with an endoscope;
  • FIG. 1A is a cross-sectional view taken along the line 1A-1A of FIG. 1;
  • FIG. 2 is a side elevational view of one preferred embodiment of the grinding tool of the present invention; and
  • FIG. 3 is a side elevational view partially in cross section of a portion of the grinding tool of FIG. 2;
  • FIG. 3A is a cross-sectional view taken along the line 3A-3A of FIG. 3;
  • FIG. 4 is a perspective view of an alternative embodiment of grinding apparatus of the present invention used in conjunction with an endoscope; and
  • FIG. 5 is a perspective view of another alternative embodiment of grinding apparatus of the present invention for use with an endoscope.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to the drawings and particularly to FIG. 1, there is illustrated a grinding apparatus 10 including an air supply 12, an air supply line 13 and a grinding tool 14 for use with an endoscope 16. The endoscope 16 has an eyepiece 17 at the end of a tube 19 and an articulated lens end 20 moveable via movement of a lever 18 on the eyepiece 17, as is known in the art. Any other sort of viewer such as a video viewer may be used in place of the eyepiece 17 to view or display data. Preferably, the endoscope 16 is used with a light source 22. Although one type of endoscope is illustrated and described, the grinding apparatus 10 may be used with many different types of endoscopes.
  • The grinding apparatus 10 of the present invention is used for blending or retouching a defect, notch or nick 24 along the leading edge 26 of a turbine blade 28 secured to a drum 30 (only partially shown) in a manner known in the art. The drum 30 and turbine blades 28 attached thereto are mounting in an engine casing 32 having a plurality of observation ports 34, as is known in the art.
  • As best illustrated in FIG. 1, the air supply 12 may include any known means to provide air pulses and push them through the air supply line 13 to the grinding tool 14.
  • As best illustrated in FIG. 1, the grinding tool 14 comprises a base unit 36 including a base 38, a handle 40 and a trigger 42. The base 38 is preferably made of metal but may be made of any material. The base 38 has a top wall 44, a bottom wall 46, a front wall 48, a rear wall 50 and a pair of opposed side walls 52. The handle 40 extends downwardly from the bottom wall 46 of the base 38 proximate the rear wall 50 of the base 38. Similarly, the trigger 42 extends downwardly from the bottom wall 46 of the base 38 in front of the handle 40. Although one configuration of base and base unit are illustrated and described, other configurations of bases and base units may be utilized without departing from the present invention. For example, the handle and/or trigger may be located at a different location. Alternatively, the handle may be omitted and/or the trigger replaced with other apparatus.
  • The grinding tool 14 further comprises a support tube 54 extending forwardly from the base 38. As shown in FIG. 1A, the support tube 54 has a circular wall 56 having an outer surface 58 and an inner surface 60. The interior 62 of the support tube 54 is hollow and divided into an upper portion 5 and a lower portion 6 by a divider or guide 7. As shown in FIG. 1A, the endoscope tube 19 passes through the lower portion 6 as shown in FIG. 1A. As illustrated in FIG. 2, the support tube wall 56 has an opening 64 at a forward end 66 of the support tube 54. The articulating end 20 of the endoscope 16 protrudes through this opening 64 in a manner shown in FIG. 1 to enable the operator to view inside the engine casing wall 32. To couple or join the endoscope 16 with the grinding tool 14 of the present invention, the articulating lens end 20 of the endoscope 16 is passed through a hole 68 in the rear wall 50 of the base 38, through the base 38 and then through the lower portion 6 of the support tube 54 before exiting the opening 64 in the support tube wall 56.
  • In a first preferred embodiment, an extension member 70 is coupled or joined to the support tube 54 via hinge 72. The hinge 72 pivots about an axis 73 and is coupled or joined to the support tube 54 and the extension member 70. See FIG. 1. FIG. 3 illustrates in detail one form of hinge 72; however, any other type of suitable hinge may be used in accordance with the present invention.
  • In one preferred embodiment of the present invention, the extension member 70 is preferably a linear piece of tubing, made of metal, plastic or any other suitable material. As seen in FIG. 3, the extension member 70 has a circular wall 74 having an outer surface 76 and an inner surface 78. However, the extension member 70 may assume other configurations without departing from the spirit of the present invention. If desired, the extension member 70 may be considered a second portion of the support tube hingedly connected to a first linear portion of the support tube. If desired, the hinge may be omitted and the second portion of the support tube fixed in position relative to the first portion of the support tube.
  • The extension member 70 is operatively coupled to the trigger 42 so that the operator may move the extension member 70 by moving the trigger 42. In one preferred embodiment, at least one wire 80 (shown in cross section in FIG. 1A) is secured at one end 82 to the extension member 70 via welding or any other suitable method and secured at the other end (not shown) to the trigger 42. See FIG. 3. The wire 80 extends the length of the support tube 54 on the inside thereof. Although this is one mechanical way of coupling the trigger 42 and extension member 70 so that the extension member 70 may be mechanically moved to its desired position, other methods of coupling the trigger and extension member may be utilized. As shown in FIG. 2, the trigger 42 may be moved from a first position shown in dashed lines to a second position shown in solid lines which causes the extension member 70 to move from an extended or first position shown in dashed lines in FIG. 2 to a bent or second position shown in solid lines in FIG. 2.
  • As shown in FIG. 3A, the hinge 72 has an outer wall 71 inside which wire 80 passes. In addition, an air tube 92 passes through the hinge 72 inside the hinge outer wall 71. The air tube 92 is a flexible piece of tubing having an outer tube wall 93, preferably made of plastic, which extends from an air stop 55 in the support tube 54 to a piston 86 in the extension member 70. See FIGS. 3 and 3A.
  • As shown in FIG. 1A, the support tube 54 has an air stop 55 at the forward end 66 of the support tube 54 which reduces the diameter through which the air flows as air passes through the hinge 72. The air stop 55 has an opening 94 through which the air tube 92 passes and another opening 96 through which the wire 80 passes. See FIG. 1A. If desired, two or more wires or other structures may be used in accordance with the present invention.
  • As shown in FIG. 3, a piston 86 is located at least partially inside the extension member 70 and moveable therein in reaction to the pulses of air from the air supply 12. The piston 86 has a base portion 100 and an finger portion 102 extending forwardly from the base portion 100. The base portion 100 of the piston 86 has a diameter approximately equal to the inner diameter of the extension member 70 so that air may not get through the extension member 70 without moving the piston 86. A spring 104 surrounds the finger portion 102 of the piston 86 inside the extension member 70 as shown in FIG. 3. The spring 104 extends between a stop 106 at the forward end 108 of the extension member 70 and the base portion 100 of the piston 86. When a pulse of air passes through the tube 92, the air exerts force or pressure on the base portion 100 of the piston 86, moving the base portion 100 of the piston 86 forwardly against the bias or force of the spring 104, thereby compressing the spring 104 against the stop 106 in the extension member 70. Once the pressure from the air pulse is relaxed or extinguished, the spring 104 pushes the piston 86 back to its original position in which the base portion 100 of the piston 86 abuts a stop 110 in the extension member 70. In this manner the spring 104 cycles between a compressed position and a relaxed position in response to the air pulses generated in the air supply 12 and passed through the air supply line 13 to the grinding tool 14.
  • A grinding head 112 is coupled to the finger portion 102 of the piston 86 outside of the extension member 70 in a manner shown in detail in FIG. 3. The grinding head 112 is preferably cylindrical but may be other shapes or configurations. Any suitable means of securing the grinding head 112 to the finger portion 102 of the piston 86 may be used.
  • In use, the endoscope 16 is coupled or joined to the grinding tool 14 by passing the lens end 20 of the endoscope 16 through the opening 68 in the base 38 of the endoscope, through the base 38 of the grinding tool 14, through the support tube 54 of the grinding tool 14 and out the opening 64 in the support tube wall 56. A light source 22 is coupled to the endoscope 16 in a manner known in the art either before or after the endoscope 16 is coupled to the grinding tool 14. The operator then passes the support tube 54 of the grinding tool 14 with a portion of the endoscope 16 therethrough through one of the observation ports 34 in the engine casing 32. The operator then uses the endoscope 16 to locate a defect 24 along the leading edge 26 of a turbine blade 28. The operator then positions the grinding head 112 proximate the defect 24 and activates the air supply to provide air pulses to the grinding tool 14. The operator uses the trigger 42 to move the extension member 70 and grinding head 112 via the hinge 72 in the manner described above. The air pulses reciprocate the piston 86 in the extension member 70 of the grinding tool 14. The reciprocation of the piston 86 causes the grinding head 112 to reciprocate because the piston 86 and grinding head 112 are joined together.
  • An alternative preferred embodiment of the present invention is illustrated in FIG. 4. For the sake of simplicity, like numerals will be used to describe like parts but with a letter “a” designation. In this preferred embodiment, fluid is used rather than air to reciprocate a grinding head 112 a secured to the end of an extension member or portion of a support tube 70 a. Any method of securing the grinding head 112 a to the end of the extension member 70 a may be used. A piston 114 pushes and pulls fluid from a fluid supply 116 through tube 118 to the grinding tool 14 a. The fluid passes through the support tube 54 a including hinge 72 a to a piston (not shown). The back and forth movement of the fluid in the grinding tool 14 a reciprocates the piston (not shown) to which is connected grinding head 112 a. In many respects, the grinding tool 14 a is similar to the grinding tool 14 described above, except fluid rather than air is used to reciprocate the grinding head.
  • An alternative preferred embodiment of the present invention is illustrated in FIG. 5. For the sake of simplicity, like numerals will be used to describe like parts but with a letter “b” designation. In this preferred embodiment, a mechanical driver is used rather than air or fluid to reciprocate a grinding head 112 b hingedly secured to the end of an extension member 70 b or portion of a support tube 54 b with hinge 72 b. Any method of securing the grinding head 112 b to the end of the extension member 70 b may be used. A motorized driver 118 pulls a wire 120 extending through the support tube 54 b of the grinding tool 14 a around a pulley 124 and secured to a piston 86 b located in extension member 70 b. Extension member 70 b is hingedly connected to the support tube 54 b in any operable manner. A grinding head 112 b is secured to the piston 86 b in any suitable manner or fashion. A spring 122 located inside the extension member 70 b pushes the piston 86 b back outwardly after the tension on the wire 120 is partially relaxed. The back and forth movement of the piston 86 b due to the motorized driver 118, wire 120 and spring 122 causes the grinding head 112 b to reciprocate. In many respects, the grinding tool 14 b is similar to the grinding tool 14 described above, except a motorized driver in concert with a spring causes the grinding head to reciprocate.
  • It is to be understood that various changes and modifications may be made to the preferred embodiments discussed above without departing from the scope of the present invention, which is defined by the following claims and equivalents thereof. For example, with any of the embodiments described herein, the grinding head may be rotated rather than reciprocated.

Claims (26)

1. A grinding tool for use with an endoscope for blending a defect on a turbine blade inside a casing having an observation port, said grinding tool comprising:
a base unit having a trigger;
a support tube extending forwardly from said base unit and being sized to fit through said observation port in said casing;
an extension member hingedly connected to said support tube and operatively coupled to said trigger, wherein said trigger is used to change the position of said extension member;
a reciprocating piston located at least partially in said extension member; and
a grinding head coupled to said reciprocating piston.
2. The grinding tool of claim 1 wherein said grinding head reciprocates upon activation.
3. The grinding tool of claim 2 further comprising a motorized driver for reciprocating said piston.
4. The grinding tool of claim 1 wherein said wherein said support tube has an opening therethrough.
5. The grinding tool of claim 1 further comprising a spring surrounding a portion of the piston.
6. A grinding tool for blending a defect on a turbine blade, said grinding tool comprising:
a base;
a support tube extending forwardly from said base, said support tube having a first portion and a second portion fixed at an angle relative to said first portion; and
a reciprocating grinding head coupled to a piston at least partially located in said second portion of said support tube which is activated by an air source.
7. The grinding tool of claim 6 further comprising a trigger connected to said base, said trigger being operatively coupled to said second portion of said support tube so that movement of said trigger causes movement of said second portion of said support tube.
8. The grinding tool of claim 6 wherein said second portion of said support tube is hingedly connected to said first portion of said support tube.
9. A grinding tool for use with an endoscope for blending a defect on a turbine blade inside a casing having an observation port, said grinding tool comprising:
a base unit;
a support tube extending forwardly from said base unit and being sized to fit through said observation port in said casing, said support tube having an opening therethrough at a forward end of said support tube through which a portion of said endoscope may pass;
an extension member hingedly connected to said support tube and operatively coupled to said base unit;
means to change the position of said extension member;
a reciprocating piston located at least partially in said extension member; and
a grinding head coupled to said reciprocating piston.
10. The grinding tool of claim 9 wherein said grinding head reciprocates upon activation.
11. The grinding tool of claim 9 wherein said grinding head reciprocates via a mechanical driver.
12. An apparatus for use with an endoscope for blending a defect on a turbine blade located in a casing having an observation port, said apparatus comprising:
an air supply;
a grinding tool operatively coupled to said air supply, said grinding tool comprising a base unit having a trigger;
a support tube extending forwardly from said base unit, said support tube having an opening therethrough at a forward end of said support tube, said endoscope being able to pass through said support tube and out said opening in said support tube;
an extension member hingedly connected to said support tube and operatively coupled to said trigger, wherein said trigger is used to change the position of said extension member; and
a grinding head coupled to a reciprocating piston at least partially in said extension member, wherein said grinding head is reciprocated via air pulses from said air supply.
13. The apparatus of claim 12 wherein the frequency of said air pulses may be varied to change the speed of the reciprocation of the grinding head.
14. The apparatus of claim 12 wherein said air supply is coupled to said base unit of said grinding tool via an air supply line.
15. In combination, a grinding tool and an endoscope for blending a defect on a turbine blade inside a casing having an observation port, said combination comprising:
a grinding tool having a base unit including a trigger;
a support tube extending forwardly from said base unit, said support tube having an opening therethrough;
an extension member hingedly connected to said support tube and operatively coupled to said trigger, wherein said trigger is used to change the position of said extension member;
a reciprocating piston located in said extension member;
a grinding head coupled to said piston; and
an endoscope having a portion extending through said support tube of said grinding tool and out said opening in said support tube.
16. The combination of claim 15 wherein said piston reciprocates in response to air pulses from an air supply.
17. The combination of claim 15 further comprising a spring surrounding a portion of said piston.
18. A method of blending a defect on a turbine blade inside a casing having an observation port with a grinding apparatus including a grinding tool, an endoscope and an air supply, said method comprising:
providing a grinding tool comprising a base and trigger connected to said base, a support tube extending forwardly from said base, said support tube having an opening therethrough at a forward end of said support tube, an extension member hingedly connected to said support tube and operatively coupled to said trigger, wherein said trigger is used to change the position of said extension member, a piston at least partially in said extension member and a grinding head coupled to said piston;
passing a portion of said endoscope through said support tube of said grinding tool and out said opening in said support tube;
passing said support tube through said observation port in said casing;
locating said defect on said turbine blade with said endoscope;
positioning said grinding head proximate said defect on said turbine blade; and
activating said air supply to supply air pulses to reciprocate said piston and said grinding head.
19. The method of claim 18 wherein positioning said grinding head proximate said defect on said turbine blade comprises moving said extension member of said grinding tool via said trigger.
20. A method of blending a defect on a turbine blade inside a casing having an observation port with a grinding apparatus including a grinding tool, an endoscope and a air supply, said method comprising:
providing a grinding tool comprising a support tube extending forwardly from a base, a piston adapted to move in said support tube and a grinding head secured to said piston;
passing a portion of said endoscope through said support tube of said grinding tool and out an opening in said support tube;
passing said support tube and portion of said endoscope through said observation port in said casing;
locating said defect on said turbine blade using said endoscope;
positioning said grinding head proximate said defect on said turbine blade; and
supplying air pulses from said air supply to reciprocate said grinding head.
21. The method of claim 20 wherein said air pulses pass through an air supply tube operatively coupled to said grinding tool.
22. The method of claim 20 wherein positioning said grinding head proximate said defect on said turbine blade comprises moving a portion of said support tube of said grinding tool via a trigger on said grinding tool.
23. A method of blending a defect on a turbine blade inside a casing having an observation port with a grinding apparatus including a grinding tool and an endoscope, said method comprising:
providing a grinding tool comprising a base, and a trigger connected to said base, a support tube extending forwardly from said base, said support tube having an opening therethrough at a forward end of said support tube, an extension member hingedly connected to said support tube and operatively coupled to said trigger, wherein said trigger is used to change the position of said extension member and a grinding head coupled to said extension member;
passing said support tube and a portion of said endoscope through said observation port in said casing;
locating said defect on said turbine blade using said endoscope;
positioning said grinding head proximate said defect on said turbine blade; and
supplying fluid to reciprocate said grinding head.
24. The method of claim 23 wherein positioning said grinding head proximate said defect on said turbine blade comprises moving said extension member of said grinding tool via said trigger.
25. A method of blending a defect on a turbine blade inside a casing having an observation port with a grinding apparatus including a grinding tool and an endoscope, said method comprising:
providing a grinding tool comprising a base unit having a trigger, a support tube extending forwardly from said base unit, said support tube having a first portion and a second portion operatively coupled to said trigger;
adjusting the position of said second portion of said support tube relative to said first portion of said support tube;
passing said second portion of said support tube through said observation port in said casing;
locating said defect on said turbine blade;
positioning said grinding head proximate said defect on said turbine blade; and
reciprocating said grinding head.
26. The method of claim 25 wherein positioning said grinding head proximate said defect on said turbine blade comprises moving said second portion of said support tube with said trigger.
US10/715,946 2003-11-18 2003-11-18 Grinding apparatus for blending defects on turbine blades and associated method of use Expired - Fee Related US6899593B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/715,946 US6899593B1 (en) 2003-11-18 2003-11-18 Grinding apparatus for blending defects on turbine blades and associated method of use
US11/059,249 US7112118B1 (en) 2003-11-18 2005-02-16 Mechanical grinding apparatus for blending defects on turbine blades and associated method of use
US11/069,625 US7097539B2 (en) 2003-11-18 2005-03-01 Rotary grinding apparatus for blending defects on turbine blades and associated method of use
US11/460,369 US20060258265A1 (en) 2003-11-18 2006-07-27 Rotary Grinding Apparatus For Blending Defects on Turbine Blades and Associated Method of Use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/715,946 US6899593B1 (en) 2003-11-18 2003-11-18 Grinding apparatus for blending defects on turbine blades and associated method of use

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/059,249 Continuation-In-Part US7112118B1 (en) 2003-11-18 2005-02-16 Mechanical grinding apparatus for blending defects on turbine blades and associated method of use
US11/069,625 Continuation-In-Part US7097539B2 (en) 2003-11-18 2005-03-01 Rotary grinding apparatus for blending defects on turbine blades and associated method of use
US11/460,369 Continuation-In-Part US20060258265A1 (en) 2003-11-18 2006-07-27 Rotary Grinding Apparatus For Blending Defects on Turbine Blades and Associated Method of Use

Publications (2)

Publication Number Publication Date
US20050107001A1 true US20050107001A1 (en) 2005-05-19
US6899593B1 US6899593B1 (en) 2005-05-31

Family

ID=34574314

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/715,946 Expired - Fee Related US6899593B1 (en) 2003-11-18 2003-11-18 Grinding apparatus for blending defects on turbine blades and associated method of use
US11/059,249 Expired - Fee Related US7112118B1 (en) 2003-11-18 2005-02-16 Mechanical grinding apparatus for blending defects on turbine blades and associated method of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/059,249 Expired - Fee Related US7112118B1 (en) 2003-11-18 2005-02-16 Mechanical grinding apparatus for blending defects on turbine blades and associated method of use

Country Status (1)

Country Link
US (2) US6899593B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089545A1 (en) * 2005-10-21 2007-04-26 General Electric Company Methods and apparatus for rotary machinery inspection
US8726502B2 (en) 2012-02-08 2014-05-20 General Electric Company Turbine servicing apparatus and methods
US20150040394A1 (en) * 2013-08-07 2015-02-12 General Electric Company Remote turbine component replacement apparatus and method of remotely replacing a turbine component
GB2536358A (en) * 2015-03-05 2016-09-14 Rolls Royce Plc A tool for machining an object
EP2535511A3 (en) * 2011-06-16 2017-05-31 General Electric Company Apparatus and method for servicing dynamolectric machine components in-situ
EP3231990A1 (en) * 2016-04-13 2017-10-18 Rolls-Royce plc Apparatus for machining components of gas turbine engines
WO2019158144A1 (en) * 2018-02-13 2019-08-22 MTU Aero Engines AG Tool and method for maintaining engines
CN112846952A (en) * 2021-01-25 2021-05-28 潘长挺 Step-removing synchronous grinding method for inner holes with straight sections and arc sections
CN112997059A (en) * 2018-10-18 2021-06-18 赛峰飞机发动机公司 Tool and method for endoscopic inspection of manifold housing of aircraft turbine engine
EP4353947A1 (en) * 2022-10-13 2024-04-17 Richard Wolf GmbH System for in-situ surface machining of an engine blade

Families Citing this family (421)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US6899593B1 (en) * 2003-11-18 2005-05-31 Dieter Moeller Grinding apparatus for blending defects on turbine blades and associated method of use
US7285038B1 (en) * 2004-02-04 2007-10-23 Les Jioia Sanding attachment for a reciprocating power tool
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
JP4869699B2 (en) * 2005-12-13 2012-02-08 オリンパス株式会社 Endoscope device
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7588175B2 (en) 2007-06-18 2009-09-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved firing system
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100121141A1 (en) * 2008-11-12 2010-05-13 Michael Rontal Endoscopic cutting and debriding device mounted on a flexible and maneuverable tube employing a fluid-driven turbine
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
FR2975771B1 (en) * 2011-05-27 2014-03-14 Snecma DEVICE FOR MEASURING A PIECE IN A TURBOMACHINE
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
GB2491397B (en) * 2011-06-03 2013-11-27 Rolls Royce Plc An apparatus and a method of shaping an edge of an aerofoil
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US9776298B2 (en) 2014-01-28 2017-10-03 General Electric Company Apparatus and method for treating rotatable component
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
CN106456159B (en) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 Fastener cartridge assembly and nail retainer lid arragement construction
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
EP3178769B1 (en) * 2015-12-07 2020-01-15 Alimak Group Management AB Inspection of cable mounted elevator devices
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10316666B2 (en) 2016-04-12 2019-06-11 General Electric Company System and method for in situ balancing of a rotating component of a gas turbine engine
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10920590B2 (en) * 2016-06-30 2021-02-16 General Electric Company Turbine assembly maintenance methods
US20180117731A1 (en) * 2016-09-09 2018-05-03 Advanced Turbine Support, LLC Industrial High Speed Micro Drill
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
MX2019007295A (en) 2016-12-21 2019-10-15 Ethicon Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout.
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078864A (en) * 1976-07-08 1978-03-14 United Technologies Corporation Method and apparatus for viewing and measuring damage in an inaccessible area
US4577388A (en) * 1981-02-06 1986-03-25 Insituform Intl Inc Method of cutting apertures in lining in underground pipes
US4659195A (en) * 1986-01-31 1987-04-21 American Hospital Supply Corporation Engine inspection system
US4701988A (en) * 1984-03-24 1987-10-27 Insituform International N.V. Relating to cutters
US4784463A (en) * 1986-03-07 1988-11-15 Olympus Optical Co., Ltd. Endoscope apparatus holding apparatus
US5102221A (en) * 1989-10-25 1992-04-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Apparatus for retouching, in situ, components such as the rotor blades of a turbomachine, and a retouching method using the apparatus
US5155941A (en) * 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US5349940A (en) * 1991-01-10 1994-09-27 Olympus Optical Co., Ltd. Endoscope system with a rotating treatment adapter at the end
US5349941A (en) * 1993-03-26 1994-09-27 Oktas Cleanable endoscope
US5475485A (en) * 1992-12-11 1995-12-12 Richard Wolf Gmbh Instrument for working the surfaces of parts inside engineered cavities
US5644394A (en) * 1994-10-19 1997-07-01 United Technologies Corporation System for repairing damaged gas turbine engine airfoils
US5655955A (en) * 1993-07-30 1997-08-12 Nagel Maschinen Und Werekzeugfabrik Gmbh Method and tool for improving the structure of the inner faces of working chambers of machines and motors
US5803680A (en) * 1995-10-11 1998-09-08 Richard Wolf Gmbh Instrument for machining the surface of parts in technical cavities
US6012973A (en) * 1997-12-30 2000-01-11 Nagel-Maschinen-Und Werkzeugfabrik Gmbh Cylinder and method for honing its internal surfaces
US6302625B1 (en) * 1999-10-15 2001-10-16 United Technologies Corporation Method and apparatus for refurbishing a gas turbine airfoil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899593B1 (en) * 2003-11-18 2005-05-31 Dieter Moeller Grinding apparatus for blending defects on turbine blades and associated method of use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078864A (en) * 1976-07-08 1978-03-14 United Technologies Corporation Method and apparatus for viewing and measuring damage in an inaccessible area
US4577388A (en) * 1981-02-06 1986-03-25 Insituform Intl Inc Method of cutting apertures in lining in underground pipes
US4701988A (en) * 1984-03-24 1987-10-27 Insituform International N.V. Relating to cutters
US4659195A (en) * 1986-01-31 1987-04-21 American Hospital Supply Corporation Engine inspection system
US4784463A (en) * 1986-03-07 1988-11-15 Olympus Optical Co., Ltd. Endoscope apparatus holding apparatus
US5155941A (en) * 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US5102221A (en) * 1989-10-25 1992-04-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Apparatus for retouching, in situ, components such as the rotor blades of a turbomachine, and a retouching method using the apparatus
US5349940A (en) * 1991-01-10 1994-09-27 Olympus Optical Co., Ltd. Endoscope system with a rotating treatment adapter at the end
US5475485A (en) * 1992-12-11 1995-12-12 Richard Wolf Gmbh Instrument for working the surfaces of parts inside engineered cavities
US5349941A (en) * 1993-03-26 1994-09-27 Oktas Cleanable endoscope
US5655955A (en) * 1993-07-30 1997-08-12 Nagel Maschinen Und Werekzeugfabrik Gmbh Method and tool for improving the structure of the inner faces of working chambers of machines and motors
US5644394A (en) * 1994-10-19 1997-07-01 United Technologies Corporation System for repairing damaged gas turbine engine airfoils
US5803680A (en) * 1995-10-11 1998-09-08 Richard Wolf Gmbh Instrument for machining the surface of parts in technical cavities
US6012973A (en) * 1997-12-30 2000-01-11 Nagel-Maschinen-Und Werkzeugfabrik Gmbh Cylinder and method for honing its internal surfaces
US6302625B1 (en) * 1999-10-15 2001-10-16 United Technologies Corporation Method and apparatus for refurbishing a gas turbine airfoil

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7717666B2 (en) * 2005-10-21 2010-05-18 General Electric Company Methods and apparatus for rotary machinery inspection
US20070089545A1 (en) * 2005-10-21 2007-04-26 General Electric Company Methods and apparatus for rotary machinery inspection
EP2535511A3 (en) * 2011-06-16 2017-05-31 General Electric Company Apparatus and method for servicing dynamolectric machine components in-situ
US8726502B2 (en) 2012-02-08 2014-05-20 General Electric Company Turbine servicing apparatus and methods
US20150040394A1 (en) * 2013-08-07 2015-02-12 General Electric Company Remote turbine component replacement apparatus and method of remotely replacing a turbine component
GB2536358B (en) * 2015-03-05 2017-09-13 Rolls Royce Plc A jointed tool for machining an object
GB2536358A (en) * 2015-03-05 2016-09-14 Rolls Royce Plc A tool for machining an object
US10345785B2 (en) 2015-03-05 2019-07-09 Rolls-Royce Plc Tool having rotatable member for machining an object and sensor to sense object
US11209791B2 (en) 2015-03-05 2021-12-28 Rolls-Royce Plc Tool having rotatable member for machining an object and sensor to sense object
EP3231990A1 (en) * 2016-04-13 2017-10-18 Rolls-Royce plc Apparatus for machining components of gas turbine engines
WO2019158144A1 (en) * 2018-02-13 2019-08-22 MTU Aero Engines AG Tool and method for maintaining engines
CN112997059A (en) * 2018-10-18 2021-06-18 赛峰飞机发动机公司 Tool and method for endoscopic inspection of manifold housing of aircraft turbine engine
CN112846952A (en) * 2021-01-25 2021-05-28 潘长挺 Step-removing synchronous grinding method for inner holes with straight sections and arc sections
EP4353947A1 (en) * 2022-10-13 2024-04-17 Richard Wolf GmbH System for in-situ surface machining of an engine blade

Also Published As

Publication number Publication date
US6899593B1 (en) 2005-05-31
US7112118B1 (en) 2006-09-26
US20060228993A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US6899593B1 (en) Grinding apparatus for blending defects on turbine blades and associated method of use
US7097539B2 (en) Rotary grinding apparatus for blending defects on turbine blades and associated method of use
JP3703840B2 (en) Damaged gas turbine engine blade repair system
CA2028351C (en) Touch up tooling for turbine engine rotor blades and process using same
CN111496372B (en) System and method for automated laser ablation
KR100847165B1 (en) Apparatus and methods for repairing compressor airfoils in situ
CA2956905C (en) In situ gas turbine prevention of crack growth progression
WO2015048700A2 (en) Motor-driven tool-ended instruments
US20040204732A1 (en) Tubular microsurgery cutting apparatus and method
WO1993000193A1 (en) Improvements in and relating to nut splitters
JP6842277B2 (en) In-tube surface treatment device
EP3203018A2 (en) Method of remotely stopping a crack in a component of a gas turbine engine
FR3001401A1 (en) Device for cleaning indirectly accessible mechanical part under endoscopic control to control aeronautical engine, has guiding device comprising control handle with control unit to control orientation of guide tube around articulation
WO1991014517A1 (en) A portable high-pressure cleaner
CN110359192B (en) Thread cutting device of sewing machine
CN211840138U (en) Universal rotation laser 3D beats printer head
US20240125236A1 (en) System for in-situ surface processing of an engine blade
CN115138645A (en) Laser cleaning device
CA2957264A1 (en) In situ gas turbine prevention of crack growth progression
CN116372378A (en) Laser rust removing tool bit and laser rust removing device
CN118169135A (en) Aeroengine blade micro-crack on-wing detection device and repair method
JPH0639694A (en) Polishing device for welding bead in tank
SE500531C2 (en) Appts for removing bones or quills from meat - has driven rotor forming nip with tongue or lip
JPH0529016U (en) Industrial endoscopy equipment
JPH09295471A (en) Polishing device for end face of book

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20170531