US20050103102A1 - Dual-string dynamometer for measuring dental handpiece power at high speed and low torque - Google Patents
Dual-string dynamometer for measuring dental handpiece power at high speed and low torque Download PDFInfo
- Publication number
- US20050103102A1 US20050103102A1 US11/022,092 US2209204A US2005103102A1 US 20050103102 A1 US20050103102 A1 US 20050103102A1 US 2209204 A US2209204 A US 2209204A US 2005103102 A1 US2005103102 A1 US 2005103102A1
- Authority
- US
- United States
- Prior art keywords
- string
- dynamometer
- dual
- test wheel
- high speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/045—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft by measuring variations of frequency of stressed vibrating elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/24—Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
- G01L3/242—Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying torque and velocity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C1/00—Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
- A61C1/08—Machine parts specially adapted for dentistry
- A61C1/18—Flexible shafts; Clutches or the like; Bearings or lubricating arrangements; Drives or transmissions
- A61C1/185—Drives or transmissions
- A61C1/186—Drives or transmissions with torque adjusting or limiting means
Definitions
- the present invention is generally related to string tension dynamometers used to measure power in a high speed, low torque dental handpiece. More particularly, the invention relates to such a dynamometer employing dual or two strings in order to avoid a lateral force being exerted on the test wheel. The lateral forces are balanced resulting in a total lateral force net value of zero.
- the power output of high-speed, low torque dental handpieces can be measured using a string tension dynamometer.
- a string tension dynamometer which is a device that applies a load to a handpiece through a string looped around a pulley mounted in a handpiece chuck (See FIG. 1 ).
- String tension is measured by the deflection of weighted dials to which the ends of the string are attached. Under steady-state conditions, the net tension on the string multiplied by the pulley radius is equal to the handpiece torque.
- the face of the pulley is half blacked out for speed detection using an optical tachometer.
- the pulley shaft conforms to DIN 13950 and ISO 1797 (0.0628′′, 1.595 millimeters diameter).
- the pulley wheel is lightweight aluminum, unconcentricity not more the 0.0003 inches.
- Each pulley is tested for balance at speeds up to 500,000 RPM by recording the free spin RPM of a new handpiece with each pulley and discarded if they are statistical outliers.
- P is the power in Watts.
- v is the speed expressed as angular velocity, radians per second.
- RPM is the speed in revolutions per minute at which the torque was measured.
- ⁇ is the constant 3.14159.
- T is the torque expressed as Newton-meters.
- TR and TL are the right and left dial deflection readings (See FIG. 1 ).
- m is the mass of the dial weights expressed in kilograms.
- g is the gravitational acceleration, about 9.8 meters per second 2 .
- R is the pulley radius in meters (such as for example, 0.100′′ or 2.54 ⁇ 10 ⁇ 3 meters).
- the actual pulley radius is adjusted to compensate for the thickness of the string.
- the effective pulley radius including the radius of the string is 0.100′′.
- a dual-string tension dynamometer utilizes two strings.
- the lateral forces are balanced such that the total lateral force net value is zero.
- the results reflect purely torsional loading.
- FIG. 1 is a schematic representation of a Prior Art single string tension dynamometer, showing the left and right dial deflection readings as T L and T R respectively.
- the force vector representing tension at T S is equal to the sum of T L and T R .
- FIG. 2 is a schematic representation of a dual-string tension dynamometer according to the present invention.
- a single-string dynamometer works on the premise that the tension difference between two sides of a load string equals the force applied to a test wheel at that specific radius. By summing vectors a resultant vector is found. This resultant cannot be zero due to the nature of the dynamometers operation. Additionally, this vector may include an orthogonal component if the load string is not mounted tangent to the test wheel. According to the present invention, adding a second string introduces a second set of forces. By keeping appropriate tension magnitudes equal, a zero net force results. A state of purely torsional loading has been reached.
- a dual-string dynamometer 1 includes two filaments 10 and 11 , wrapped around approximately ninety degrees of a test wheel 12 .
- a conventional control device (not shown) may be introduced to maintain equal tensions and a zero lateral load.
- Power values are determined by multiplying torque values with angular speed data. Such relationships are expressed according to the following equations, where A, B, C, D, E and F are force vectors at indicated points of the filaments 10 and 11 as shown on FIG. 2 .
- E+F 0
- A is the tension on one end of string 10 ;
- B is the tension on a same side of string 11 ;
- C is the tension on the other side of string 10 from A;
- D is the tension on the other side of string 11 from B; as is shown representationally in FIG. 2 .
- a dual-string dynamometer 1 as described eliminates lateral loading, which provides loading condition certainty. High speed, low torque power data can be accurately attained in an otherwise conventional manner.
- any arrangement using two strings could be used.
- String wrap angle, wheel size, and string material can be altered in order to accommodate testing situations.
- Any means of controlling string tension could be used with varying degrees of accuracy.
- such a device is especially useful in testing dental high speed, low torque handpieces, such a device has application to any number of applications. It has been described herein with respect to the testing of dental handpieces only for exemplary purposes and should not necessarily be so limited. The invention is limited only by the scope of the attached claims.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
A dual-string tension dynamometer (1) utilizes two strings (10, 11) wrapped around approximately ninety degrees of a test wheel (12). The lateral forces (E, F) are balanced such that the total lateral force net value is zero. The results reflect purely torsional loading.
Description
- This application is a Continuation of U.S. Ser. No. 10/689,297 filed Oct. 20, 2003, which claims the benefit of U.S. Provisional Application Ser. No. 60/419,374 filed on Oct. 18, 2002.
- The present invention is generally related to string tension dynamometers used to measure power in a high speed, low torque dental handpiece. More particularly, the invention relates to such a dynamometer employing dual or two strings in order to avoid a lateral force being exerted on the test wheel. The lateral forces are balanced resulting in a total lateral force net value of zero.
- The power output of high-speed, low torque dental handpieces, such as air turbine handpieces, can be measured using a string tension dynamometer. For example, it is know to use a Kerfoot string tension dynamometer, which is a device that applies a load to a handpiece through a string looped around a pulley mounted in a handpiece chuck (See
FIG. 1 ). String tension is measured by the deflection of weighted dials to which the ends of the string are attached. Under steady-state conditions, the net tension on the string multiplied by the pulley radius is equal to the handpiece torque. - According to one test protocol, the face of the pulley is half blacked out for speed detection using an optical tachometer. The pulley shaft conforms to DIN 13950 and ISO 1797 (0.0628″, 1.595 millimeters diameter). The pulley wheel is lightweight aluminum, unconcentricity not more the 0.0003 inches. Each pulley is tested for balance at speeds up to 500,000 RPM by recording the free spin RPM of a new handpiece with each pulley and discarded if they are statistical outliers. The maximum power output of a handpiece occurs at a speed that is about half the no-load (or free-running) speed. To determine the power output, the maximum speed and the torque at half the maximum speed is measured. Torque and power can be measured as follows:
P=vT, where v=RPM (2π)/60 and T=(T R-T L)mgR - P is the power in Watts.
- v is the speed expressed as angular velocity, radians per second.
- RPM is the speed in revolutions per minute at which the torque was measured.
- π is the constant 3.14159.
- T is the torque expressed as Newton-meters.
- TR and TL are the right and left dial deflection readings (See
FIG. 1 ). - m is the mass of the dial weights expressed in kilograms.
- g is the gravitational acceleration, about 9.8 meters per second2.
- R is the pulley radius in meters (such as for example, 0.100″ or 2.54×10−3 meters). The actual pulley radius is adjusted to compensate for the thickness of the string. The effective pulley radius including the radius of the string is 0.100″.
- While such dynamometers have proven valuable in determining power, they do result in a small lateral force being exerted on the test wheel. Therefore, a purely torsional load never exists resulting in increased measurement error. A need exists therefore, for a string tension dynamometer which will avoid the torsional load-induced errors.
- A dual-string tension dynamometer according to the present invention utilizes two strings. The lateral forces are balanced such that the total lateral force net value is zero. The results reflect purely torsional loading.
-
FIG. 1 is a schematic representation of a Prior Art single string tension dynamometer, showing the left and right dial deflection readings as TL and TR respectively. The force vector representing tension at TS is equal to the sum of TL and TR. -
FIG. 2 is a schematic representation of a dual-string tension dynamometer according to the present invention. - A single-string dynamometer works on the premise that the tension difference between two sides of a load string equals the force applied to a test wheel at that specific radius. By summing vectors a resultant vector is found. This resultant cannot be zero due to the nature of the dynamometers operation. Additionally, this vector may include an orthogonal component if the load string is not mounted tangent to the test wheel. According to the present invention, adding a second string introduces a second set of forces. By keeping appropriate tension magnitudes equal, a zero net force results. A state of purely torsional loading has been reached.
- A dual-string dynamometer 1 according to the invention includes two
filaments 10 and 11, wrapped around approximately ninety degrees of a test wheel 12. A conventional control device (not shown) may be introduced to maintain equal tensions and a zero lateral load. Power values are determined by multiplying torque values with angular speed data. Such relationships are expressed according to the following equations, where A, B, C, D, E and F are force vectors at indicated points of thefilaments 10 and 11 as shown onFIG. 2 .
E=A+C
F=B+D
E+F=0 - A is the tension on one end of
string 10; B is the tension on a same side of string 11; C is the tension on the other side ofstring 10 from A; D is the tension on the other side of string 11 from B; as is shown representationally inFIG. 2 . - A dual-string dynamometer 1 as described eliminates lateral loading, which provides loading condition certainty. High speed, low torque power data can be accurately attained in an otherwise conventional manner.
- It will be appreciated that according to the present invention, any arrangement using two strings could be used. String wrap angle, wheel size, and string material can be altered in order to accommodate testing situations. Any means of controlling string tension could be used with varying degrees of accuracy. Further, while such a device is especially useful in testing dental high speed, low torque handpieces, such a device has application to any number of applications. It has been described herein with respect to the testing of dental handpieces only for exemplary purposes and should not necessarily be so limited. The invention is limited only by the scope of the attached claims.
Claims (3)
1. A string tension dynamometer comprising a test wheel, a first filament wrapped around said test wheel and a second filament wrapped around said test wheel; wherein said first and said second filaments are wrapped around said test wheel on substantially opposite sides thereof; wherein lateral forces on said first and said second filaments are substantially balanced such that the total lateral force net value is substantially zero.
2. A string dynamometer as in claim 1 , wherein said first filament is wrapped around said test wheel to form about a 90 degree angle.
3. A string dynamometer as in claim 2 , wherein said second filament is wrapped around said test wheel to form about a 90 degree angle.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/022,092 US20050103102A1 (en) | 2002-10-18 | 2004-12-22 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
US11/395,926 US20070017283A1 (en) | 2002-10-18 | 2006-03-30 | Dual-string dynamometer for measuring dental handpiece power at high and low speed |
US12/750,778 US7997131B2 (en) | 2002-10-18 | 2010-03-31 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41937402P | 2002-10-18 | 2002-10-18 | |
US10/689,297 US20040159150A1 (en) | 2002-10-18 | 2003-10-20 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
US11/022,092 US20050103102A1 (en) | 2002-10-18 | 2004-12-22 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/689,297 Continuation US20040159150A1 (en) | 2002-10-18 | 2003-10-20 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/395,926 Continuation-In-Part US20070017283A1 (en) | 2002-10-18 | 2006-03-30 | Dual-string dynamometer for measuring dental handpiece power at high and low speed |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050103102A1 true US20050103102A1 (en) | 2005-05-19 |
Family
ID=32108068
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/689,297 Abandoned US20040159150A1 (en) | 2002-10-18 | 2003-10-20 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
US11/022,092 Abandoned US20050103102A1 (en) | 2002-10-18 | 2004-12-22 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
US12/750,778 Expired - Fee Related US7997131B2 (en) | 2002-10-18 | 2010-03-31 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/689,297 Abandoned US20040159150A1 (en) | 2002-10-18 | 2003-10-20 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/750,778 Expired - Fee Related US7997131B2 (en) | 2002-10-18 | 2010-03-31 | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
Country Status (7)
Country | Link |
---|---|
US (3) | US20040159150A1 (en) |
EP (1) | EP1552261B1 (en) |
JP (1) | JP2006503298A (en) |
AT (1) | ATE338270T1 (en) |
CA (1) | CA2502472C (en) |
DE (1) | DE60308049T2 (en) |
WO (1) | WO2004036167A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070017283A1 (en) * | 2002-10-18 | 2007-01-25 | Novak Eugene J | Dual-string dynamometer for measuring dental handpiece power at high and low speed |
WO2004036167A2 (en) | 2002-10-18 | 2004-04-29 | Dentsply International Inc. | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
US9250160B2 (en) | 2013-03-15 | 2016-02-02 | American Dental Association | Method and apparatus for characterizing handpieces |
CN105675190B (en) * | 2016-02-02 | 2018-03-09 | 上海摩虹轴承有限公司 | High speed turbine dental handpiece device for testing power and method of testing |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1435082A (en) * | 1922-03-14 | 1922-11-07 | Daniel V Reedy | Freight and passenger elevator |
US1605079A (en) * | 1925-05-04 | 1926-11-02 | Wellman Seavermorgan Co | Car-dumping cradle |
US1730974A (en) * | 1928-12-11 | 1929-10-08 | Atlantic Elevator Company Inc | Elevator suspension |
US3023615A (en) * | 1960-06-10 | 1962-03-06 | Sun Oil Co | Dynamometer |
US3192768A (en) * | 1961-12-05 | 1965-07-06 | Exxon Production Research Co | Line tensiometer |
US3210992A (en) * | 1961-08-25 | 1965-10-12 | Ampex | Ultrasensitive force and speed measuring device |
US3354711A (en) * | 1967-02-09 | 1967-11-28 | Du Pont | Continuous thread tension indicating drive roller |
US3598999A (en) * | 1969-02-17 | 1971-08-10 | Bendix Corp | Proportional trim control system for aircraft |
US3717205A (en) * | 1971-01-27 | 1973-02-20 | Kenting Drilling Ltd | Draw works for drilling rig |
US3829052A (en) * | 1972-05-01 | 1974-08-13 | Kaman Aerospace Corp | Vibration isolator |
US4137974A (en) * | 1977-01-06 | 1979-02-06 | Smith International, Inc. | Hydraulically driven kelly crowd |
US4856325A (en) * | 1987-08-31 | 1989-08-15 | Kanzaki Paper Manufacturing Co., Ltd. | Apparatus for measuring adhesion |
US4939939A (en) * | 1987-03-18 | 1990-07-10 | Peter Lancier Maschinenbau-Hafenhuette Gmbh & Co.,Kg | Apparatus for measuring a traction force by means of a traction dynamometer |
US4960001A (en) * | 1987-03-18 | 1990-10-02 | Peter Lancier Maschinebau-Hafenhutte Gmbh & Co. KG | Traction dynamometer for measuring tensile forces in the laying of cables |
US5282580A (en) * | 1991-09-20 | 1994-02-01 | Bryan Kent | Method and apparatus for winding ring-shaped articles |
US5335527A (en) * | 1992-11-20 | 1994-08-09 | Hitachi Cable, Ltd. | Method and apparatus for manufacturing a composite metal wire by using a two wheel type continuous extrusion apparatus |
US5667465A (en) * | 1995-02-07 | 1997-09-16 | Trotter, Inc. | Multidirectional cam |
US5945602A (en) * | 1996-12-18 | 1999-08-31 | Ncr Corporation | Apparatus for monitoring a self-service transaction terminal |
US6311805B1 (en) * | 2000-02-16 | 2001-11-06 | Chih-Chen Juan | Balanced braking system for a bicycle |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4986068A (en) * | 1972-12-18 | 1974-08-17 | ||
GB1599521A (en) * | 1977-01-20 | 1981-10-07 | Wharton Engs Elstree Ltd | Winches |
US4135812A (en) * | 1977-06-20 | 1979-01-23 | Xerox Corporation | Magnification change mechanism |
US4148218A (en) | 1978-04-17 | 1979-04-10 | Corning Glass Works | Apparatus for applying tensile stress to fiber |
GB8311503D0 (en) | 1983-04-27 | 1983-06-02 | Triplite Ltd | Yarn feed device |
US4632388A (en) * | 1985-01-14 | 1986-12-30 | Schleffendorf John J | Exercising system with cable, pulleys and weights |
JPH043241Y2 (en) * | 1985-10-31 | 1992-02-03 | ||
IT1210793B (en) | 1987-06-12 | 1989-09-20 | Luciano Srl | ROLLING DOOR |
JP2628377B2 (en) | 1989-06-19 | 1997-07-09 | 日本トムソン株式会社 | Thin-walled finite linear motion guide unit with cage displacement prevention device |
US5063676A (en) | 1990-02-13 | 1991-11-12 | Gerber Garment Technology, Inc. | Cable drive system for carriage movement and method of use |
US5076104A (en) | 1990-11-01 | 1991-12-31 | Corning Incorporated | Method for measuring actual load at failure of optical fiber |
US5150799A (en) | 1990-11-05 | 1992-09-29 | Harnischfeger Corporation | Anti-sway reeving system |
JPH06109565A (en) * | 1992-09-29 | 1994-04-19 | Canon Inc | Apparatus and method for cogging torque of motor |
US5540041A (en) | 1994-09-13 | 1996-07-30 | Southwire Company | Method of and apparatus for stress relieving multistranded cable |
GB9507492D0 (en) * | 1995-04-11 | 1995-05-31 | Focas Ltd | An apparatus for wrapping fibre optic cable around an overhead line |
FI117066B (en) | 1995-07-06 | 2006-05-31 | Nokia Kaapeli Oy | Method and apparatus for equalizing tension in optical fibers |
EP1472661B1 (en) * | 2002-01-08 | 2008-08-27 | KEYMED (MEDICAL & INDUSTRIAL EQUIPMENT) LIMITED | A dummy medical instrument for use in a simulator |
US7172385B2 (en) * | 2002-07-09 | 2007-02-06 | Amir Khajepour | Light weight parallel manipulators using active/passive cables |
WO2004036167A2 (en) | 2002-10-18 | 2004-04-29 | Dentsply International Inc. | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque |
-
2003
- 2003-10-20 WO PCT/US2003/033253 patent/WO2004036167A2/en active IP Right Grant
- 2003-10-20 DE DE60308049T patent/DE60308049T2/en not_active Expired - Lifetime
- 2003-10-20 JP JP2004545568A patent/JP2006503298A/en active Pending
- 2003-10-20 AT AT03777723T patent/ATE338270T1/en not_active IP Right Cessation
- 2003-10-20 US US10/689,297 patent/US20040159150A1/en not_active Abandoned
- 2003-10-20 CA CA2502472A patent/CA2502472C/en not_active Expired - Fee Related
- 2003-10-20 EP EP03777723A patent/EP1552261B1/en not_active Expired - Lifetime
-
2004
- 2004-12-22 US US11/022,092 patent/US20050103102A1/en not_active Abandoned
-
2010
- 2010-03-31 US US12/750,778 patent/US7997131B2/en not_active Expired - Fee Related
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1435082A (en) * | 1922-03-14 | 1922-11-07 | Daniel V Reedy | Freight and passenger elevator |
US1605079A (en) * | 1925-05-04 | 1926-11-02 | Wellman Seavermorgan Co | Car-dumping cradle |
US1730974A (en) * | 1928-12-11 | 1929-10-08 | Atlantic Elevator Company Inc | Elevator suspension |
US3023615A (en) * | 1960-06-10 | 1962-03-06 | Sun Oil Co | Dynamometer |
US3210992A (en) * | 1961-08-25 | 1965-10-12 | Ampex | Ultrasensitive force and speed measuring device |
US3192768A (en) * | 1961-12-05 | 1965-07-06 | Exxon Production Research Co | Line tensiometer |
US3354711A (en) * | 1967-02-09 | 1967-11-28 | Du Pont | Continuous thread tension indicating drive roller |
US3598999A (en) * | 1969-02-17 | 1971-08-10 | Bendix Corp | Proportional trim control system for aircraft |
US3717205A (en) * | 1971-01-27 | 1973-02-20 | Kenting Drilling Ltd | Draw works for drilling rig |
US3829052A (en) * | 1972-05-01 | 1974-08-13 | Kaman Aerospace Corp | Vibration isolator |
US4137974A (en) * | 1977-01-06 | 1979-02-06 | Smith International, Inc. | Hydraulically driven kelly crowd |
US4939939A (en) * | 1987-03-18 | 1990-07-10 | Peter Lancier Maschinenbau-Hafenhuette Gmbh & Co.,Kg | Apparatus for measuring a traction force by means of a traction dynamometer |
US4960001A (en) * | 1987-03-18 | 1990-10-02 | Peter Lancier Maschinebau-Hafenhutte Gmbh & Co. KG | Traction dynamometer for measuring tensile forces in the laying of cables |
US4856325A (en) * | 1987-08-31 | 1989-08-15 | Kanzaki Paper Manufacturing Co., Ltd. | Apparatus for measuring adhesion |
US5282580A (en) * | 1991-09-20 | 1994-02-01 | Bryan Kent | Method and apparatus for winding ring-shaped articles |
US5335527A (en) * | 1992-11-20 | 1994-08-09 | Hitachi Cable, Ltd. | Method and apparatus for manufacturing a composite metal wire by using a two wheel type continuous extrusion apparatus |
US5667465A (en) * | 1995-02-07 | 1997-09-16 | Trotter, Inc. | Multidirectional cam |
US5945602A (en) * | 1996-12-18 | 1999-08-31 | Ncr Corporation | Apparatus for monitoring a self-service transaction terminal |
US6311805B1 (en) * | 2000-02-16 | 2001-11-06 | Chih-Chen Juan | Balanced braking system for a bicycle |
Also Published As
Publication number | Publication date |
---|---|
CA2502472C (en) | 2011-05-17 |
DE60308049T2 (en) | 2006-12-14 |
WO2004036167A3 (en) | 2004-07-08 |
EP1552261A2 (en) | 2005-07-13 |
US20100326181A1 (en) | 2010-12-30 |
US20040159150A1 (en) | 2004-08-19 |
US7997131B2 (en) | 2011-08-16 |
WO2004036167A2 (en) | 2004-04-29 |
DE60308049D1 (en) | 2006-10-12 |
ATE338270T1 (en) | 2006-09-15 |
CA2502472A1 (en) | 2004-04-29 |
JP2006503298A (en) | 2006-01-26 |
EP1552261B1 (en) | 2006-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7997131B2 (en) | Dual-string dynamometer for measuring dental handpiece power at high speed and low torque | |
US4995257A (en) | Monitor for shaft vibration in an operating turbine | |
JP2022542551A (en) | Method and drive train test bench for detecting imbalance and/or mismatch | |
JPH06281527A (en) | Method and equipment for balancing rotating body | |
CN105823613A (en) | Torsion rigidity detection system of magnetic powder loading type machine tool rotating main shaft | |
ES2162948T3 (en) | PROCEDURE AND DEVICE FOR THE DETERMINATION OF A POWER. | |
US20070017283A1 (en) | Dual-string dynamometer for measuring dental handpiece power at high and low speed | |
US4235093A (en) | Low friction bearing starting torque apparatus | |
US4235092A (en) | Low friction bearing running torque measuring apparatus | |
JPH06109565A (en) | Apparatus and method for cogging torque of motor | |
JP3395648B2 (en) | Rotary torque measuring device | |
Manshin et al. | About the dynamic error of strain gauge torque measuring devices | |
US6138493A (en) | Kinematic error test calibration | |
JPH09243482A (en) | Measuring apparatus for friction force | |
CN221840879U (en) | Shear modulus measuring device based on material mechanics and statics detection technology | |
Bhattacharya | Identification of torsional response of rotating machinery train through tests. | |
JPWO2021011982A5 (en) | ||
JPS62259039A (en) | Monitoring device for shaft torsion fatigue | |
SU1560993A1 (en) | Device for measuring torque | |
JPS60236041A (en) | Torque detecting device | |
JPH0326775B2 (en) | ||
JPH11132876A (en) | Torque-measuring apparatus | |
JPH09133576A (en) | Vibration measuring apparatus for blade of wind mill | |
RU2269753C2 (en) | Gravitational moment measuring device | |
Pillai et al. | Development of a torque meter for fishing vessels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |