JPWO2021011982A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021011982A5
JPWO2021011982A5 JP2022503866A JP2022503866A JPWO2021011982A5 JP WO2021011982 A5 JPWO2021011982 A5 JP WO2021011982A5 JP 2022503866 A JP2022503866 A JP 2022503866A JP 2022503866 A JP2022503866 A JP 2022503866A JP WO2021011982 A5 JPWO2021011982 A5 JP WO2021011982A5
Authority
JP
Japan
Prior art keywords
propeller shaft
force
drive train
piezoelectric
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022503866A
Other languages
Japanese (ja)
Other versions
JP2022542551A (en
JP7556936B2 (en
Publication date
Priority claimed from ATA50813/2019A external-priority patent/AT522696B1/en
Application filed filed Critical
Publication of JP2022542551A publication Critical patent/JP2022542551A/en
Publication of JPWO2021011982A5 publication Critical patent/JPWO2021011982A5/ja
Application granted granted Critical
Publication of JP7556936B2 publication Critical patent/JP7556936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (17)

試験台(1)上で動作している駆動列(3)の少なくとも1つのプロペラシャフト(5、5a、5b)の不平衡及び/又は不整合を検出するための方法(100)であって、第1の圧電力センサ(4)は、前記試験台(1)の動力計(14a、14b)と、前記駆動列(3)又は前記試験台(1)の原動機(2)との間における動力伝達によって引き起こされ(101)、前記プロペラシャフト(5;5a、5b)によって伝達される力の流れの内に配置されており、第1の力センサ(4a、4b、4c)を用いて、前記プロペラシャフト(5;5a、5b)の回転軸(D)によって交差される第1の平面(E1)において、及び/又は、前記第1の平面(E1)に対して垂直に、第1の力測定が行われ(102-1)、前記第1の力測定の少なくとも1つの測定値推移と、前記測定値推移に割り当てられた、前記プロペラシャフト(5;5a、5b)に関する回転角決定の値の推移とが、不平衡を検出するために分析され(103a)、及び/又は、前記第1の力測定の測定値推移が、前記プロペラシャフト(5;5a、5b)の不整合を検出するために分析される(103b)方法(100)。 A method (100) for detecting imbalance and/or misalignment of at least one propeller shaft (5, 5a, 5b) of a drive train (3) operating on a test bench (1), comprising: A first piezoelectric force sensor (4) measures the power between the dynamometers (14a, 14b) of the test stand (1) and the drive train (3) or the prime mover (2) of the test stand (1). caused by the transmission (101) and placed in the force flow transmitted by said propeller shaft (5; 5a, 5b), using a first force sensor (4a, 4b, 4c), said A first force in a first plane (E1) intersected by the axis of rotation (D) of the propeller shaft (5; 5a, 5b) and/or perpendicular to said first plane (E1) Measurements are taken (102-1), at least one measured value curve of said first force measurement and the value of the angle of rotation determination for said propeller shaft (5; 5a, 5b) assigned to said measured value curve. is analyzed (103a) to detect imbalance and/or the measured value course of said first force measurement detects misalignment of said propeller shaft (5; 5a, 5b) The method (100) is analyzed (103b) for 前記第1の力測定の測定値推移が、前記プロペラシャフト(5;5a、5b)の前記回転軸及び/又は重心に関する不平衡を検出するために分析される、請求項1に記載の方法(100)。 2. Method according to claim 1, wherein the measured value course of the first force measurement is analyzed to detect an imbalance with respect to the axis of rotation and/or the center of gravity of the propeller shaft (5; 5a, 5b). 100). 前記力の流れの内で、第2の圧電力センサ(11)を用いて、前記第1の平面(E1)とは異なるが、同様に前記駆動列の前記プロペラシャフト(5;5a、5b)の前記回転軸(D)によって交差される第2の平面(E2)において、第2の力測定が実施され(102-2)、前記プロペラシャフト(5;5a、5b)の重心に関する前記プロペラシャフトの不平衡が、付加的に、前記第2の力測定の測定値推移に基づいて決定される、請求項1又は2に記載の方法(100)。 Within said force flow, by means of a second piezoelectric force sensor (11), said propeller shaft (5; 5a, 5b) of said drive train as well, although different from said first plane (El) A second force measurement is performed (102-2) in a second plane (E2) intersected by said axis of rotation (D) of said propeller shaft (5; 5a, 5b) with respect to the center of gravity of said propeller shaft The method (100) according to claim 1 or 2, wherein the imbalance of is additionally determined based on the measured value course of the second force measurement. 前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、複数の圧電素子(4a、4b、4c)を備えた多成分力センサである、請求項1~3のいずれか一項に記載の方法(100)。 Claims 1-3, wherein said first piezoelectric force sensor (4) and/or second piezoelectric force sensor (11) is a multi-component force sensor comprising a plurality of piezoelectric elements (4a, 4b, 4c). A method (100) according to any one of Claims 1 to 3. 分力及びトルク成分が、前記圧電素子(4a、4b、4c)それぞれの測定信号に基づく方程式系を用いて決定される、請求項4に記載の方法(100)。 5. The method (100) according to claim 4, wherein force and torque components are determined using a system of equations based on measurement signals of each of said piezoelectric elements (4a, 4b, 4c). 前記圧電素子(4a、4b、4c)それぞれの測定信号が、それぞれ導出されるべき分力及び/又はトルク成分に寄与する成分に分解される、請求項4又は5に記載の方法(100)。 6. Method (100) according to claim 4 or 5, wherein the measurement signal of each piezoelectric element (4a, 4b, 4c) is decomposed into components contributing to the respective force and/or torque component to be derived. 前記第1の力測定及び/又は第2の力測定において、前記動力計(14a、14b)と支持装置(10)との間、及び/又は、前記原動機(2)と前記支持装置(10)との間における前記力の流れに関する反力が測定される、請求項1~6のいずれか一項に記載の方法(100)。 between the dynamometer (14a, 14b) and the support device (10) and/or the prime mover (2) and the support device (10) in the first force measurement and/or the second force measurement A method (100) according to any one of the preceding claims, wherein a reaction force is measured for said force flow between 前記プロペラシャフト(5;5a、5b)の質量が、不平衡及び/又は不整合の検出に基づいて調整される、請求項1~7のいずれか一項に記載の方法(100)。 Method (100) according to any one of the preceding claims, wherein the mass of the propeller shaft (5; 5a, 5b) is adjusted based on detection of imbalances and/or misalignments. コンピュータによって命令が実行される場合に、コンピュータに請求項1~8のいずれか一項に記載の方法のステップを実行させる命令を含んでいるコンピュータプログラム。 A computer program containing instructions which, when executed by a computer, cause a computer to perform the steps of the method according to any one of claims 1 to 8. 請求項9に記載のコンピュータプログラムが保存されているコンピュータ可読媒体。 10. A computer readable medium storing a computer program according to claim 9. 試験されるべき駆動列(3)に接続可能な動力計(14a、14b)と、
試験されるべき前記駆動列(3)に関する力の流れの内に配置されていると共に、前記駆動列(3)のプロペラシャフト(5;5a、5b)の回転軸(D)によって交差され、前記回転軸(D)に対して少なくとも略垂直である第1の平面(E1)において、及び/又は、前記第1の平面(E)に対して垂直に、試験台が動作している状態で、第1の力測定を実施するように設定されている第1の圧電力センサ(4)と、
前記プロペラシャフト(5;5a、5b)に関する回転角を決定するように設定された相対値エンコーダ(6)と、
信号処理装置(7)であって、
-前記第1の力測定の測定値推移と、前記測定値推移に割り当てられた、前記プロペラシャフト(5;5a、5b)に関する回転角決定の値の推移とに基づいて前記プロペラシャフト(5;5a、5b)の不平衡を検出するための手段(8)、及び/又は、
-前記第1の力測定の測定値推移に基づいて前記プロペラシャフト(5;5a、5b)の不整合を検出するための手段(9)、を備えている信号処理装置(7)と、
を有する駆動列試験台(1)。
a dynamometer (14a, 14b) connectable to the drive train (3) to be tested;
positioned in the force flow with respect to said drive train (3) to be tested and intersected by the axis of rotation (D) of the propeller shafts (5; 5a, 5b) of said drive train (3) ; with the test stand operating in a first plane (E1) that is at least substantially perpendicular to said axis of rotation (D) and/or perpendicular to said first plane (E) , a first piezoelectric force sensor (4) configured to perform a first force measurement;
a relative encoder (6) set to determine the angle of rotation about said propeller shaft (5; 5a, 5b);
A signal processor (7),
- said propeller shaft (5; means (8) for detecting imbalance of 5a, 5b); and/or
- a signal processor (7) comprising means (9) for detecting misalignment of the propeller shaft (5; 5a, 5b) on the basis of the measured value course of the first force measurement;
A drive train test stand (1) having a.
試験されるべき前記駆動列(3)に関する力の流れの内に同様に配置されていると共に、前記第1の平面(E1)とは異なるが、同様に前記駆動列の前記プロペラシャフト(5;5a、5b)の前記回転軸(D)によって交差される第2の平面(E2)において、第2の力測定を実施するように設定されている第2の圧電力センサ(11)を有しており、
前記手段(8)が、前記プロペラシャフト(5;5a、5b)の重心に関する前記プロペラシャフトの不平衡を、付加的に、前記第2の力測定の測定値推移に基づいて決定する、請求項11に記載の駆動列試験台(1)。
likewise located in the force flow with respect to the drive train (3) to be tested and different from said first plane (E1) but also said propeller shaft (5; 5a, 5b) with a second piezoelectric force sensor (11) configured to perform a second force measurement in a second plane (E2) intersected by said axis of rotation (D) of 5a, 5b) and
4. The means (8) determine the imbalance of the propeller shaft with respect to the center of gravity of the propeller shaft (5; 5a, 5b) additionally based on the measured value course of the second force measurement. 12. A drive train test stand (1) according to claim 11.
前記動力計(14a、14b)及び/又は原動機(2)を支持するための支持装置(10)を有しており、前記第1の圧電力センサ(4)及び/又は第2の圧電力センサは、前記動力計(14a、14b)と前記支持装置(10)との間、及び/又は、前記原動機(2)と前記支持装置(10)との間における反力を測定するように設定され、配置されている、請求項11又は12に記載の駆動列試験台(1)。 a support device (10) for supporting the dynamometer (14a, 14b) and/or prime mover (2), the first piezoelectric force sensor (4) and/or the second piezoelectric force sensor; is set up to measure reaction forces between said dynamometers (14a, 14b) and said support device (10) and/or between said prime mover (2) and said support device (10) 13. A drive train test stand (1) according to claim 11 or 12, wherein the drive train test stand (1) is arranged in a . 前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、前記プロペラシャフト(5、5a;5b)の回転質量を変化させることはない、請求項11~13のいずれか一項に記載の駆動列試験台(1)。 of claims 11 to 13, wherein the first piezoelectric force sensor (4) and/or the second piezoelectric force sensor (11) do not change the rotating mass of the propeller shaft (5, 5a; 5b). A drive train test stand (1) according to any one of the preceding claims. 前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、複数の圧電素子(4a、4b、4c)を備えた多成分力センサである、請求項11~14のいずれか一項に記載の駆動列試験台(1)。 Claims 11 to 14, wherein said first piezoelectric force sensor (4) and/or said second piezoelectric force sensor (11) is a multi-component force sensor comprising a plurality of piezoelectric elements (4a, 4b, 4c). A drive train test stand (1) according to any one of the preceding claims. 前記圧電素子(4a、4b、4c)が、前記プロペラシャフトの第1の部分(5a)と前記プロペラシャフトの第2の部分(5b)との間に、前記圧電素子(4a、4b、4c)を用いて、力が、前記第1の部分(5a)と前記第2の部分(5b)との間で測定可能であるように配置されている、請求項15に記載の駆動列試験台(1)。 Said piezoelectric elements (4a, 4b, 4c) are located between a first portion (5a) of said propeller shaft and a second portion (5b) of said propeller shaft. 16. Drive train test bench according to claim 15, arranged such that a force is measurable between said first part (5a) and said second part (5b) with (1). 検出された不平衡及び/又は不整合に基づいて、前記プロペラシャフト(5、5a、5b)の質量を調整するための手段を有している、請求項11~16のいずれか一項に記載の駆動列試験台(1)。 17. Any one of claims 11 to 16, comprising means for adjusting the mass of the propeller shaft (5, 5a, 5b) based on detected imbalances and/or misalignments. drive train test stand (1).
JP2022503866A 2019-07-25 2020-07-24 Method and drivetrain test bench for detecting imbalance and/or mismatch - Patents.com Active JP7556936B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AT506742019 2019-07-25
ATA50674/2019 2019-07-25
ATA50797/2019 2019-09-12
AT507972019 2019-09-12
ATA50813/2019A AT522696B1 (en) 2019-07-25 2019-09-20 PROCEDURE AND DRIVE TRAIN TESTBED FOR DETECTING IMBALANCE AND / OR MALALIGNMENT
ATA50813/2019 2019-09-20
PCT/AT2020/060278 WO2021011982A2 (en) 2019-07-25 2020-07-24 Method and drivetrain test bench for detecting an imbalance and/or a misalignment

Publications (3)

Publication Number Publication Date
JP2022542551A JP2022542551A (en) 2022-10-05
JPWO2021011982A5 true JPWO2021011982A5 (en) 2023-07-31
JP7556936B2 JP7556936B2 (en) 2024-09-26

Family

ID=

Similar Documents

Publication Publication Date Title
TWI378232B (en)
CN101532900B (en) Vertical type wheel hub dynamic balancing machine
JP2006322934A (en) Test method of torsional vibration attenuator
CN106610332B (en) The method for detecting the balancing machine of Electricmotor car wheel and detecting unbalance mass,
US8037773B2 (en) Method of considering the dynamic behavior of a movable member of a machine for performing a wheel fatigue test
KR20220038702A (en) Methods and drivetrain test benches for detecting imbalance and/or misalignment
US20210190609A1 (en) Measuring system and method for determining a force and/or a torque on a torque-transmitting shaft
CN108896305B (en) Thermal coupling strain measurement system and measurement method for bearing seat of aluminum shell
CN103115726A (en) Rotating parts and components dynamic balance method based on strain
JP2010017842A (en) Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamping state of workpiece
JP2010017842A5 (en)
CN104101464B (en) Multi-wheel-disc rotor dynamic balancing test method based on rotating coordinate system
US7415363B2 (en) High resolution torque measurement on a rotating shaft with movement compensation
Gama et al. Detection of shaft misalignment using piezoelectric strain sensors
JP2010223769A (en) Testing device of element under test
CN106932142B (en) The method for detecting the balancing machine of bike wheel and detecting unbalance mass,
CN110441054B (en) Method for detecting misalignment fault state of rotating mechanical shaft system in coupling connection state
JPWO2021011982A5 (en)
CN111649854A (en) Testing device for output power of electric roller
CN212133950U (en) Testing device for output power of electric roller
Egorov et al. Experimental identification of bearing mechanical losses with the use of additional inertia
CN111256971A (en) Turbine small shaft bending vibration and torsional vibration parallel measurement method based on overspeed protection signal
Macek et al. Energy-saving mechatronic system for fatigue tests of materials under variable-amplitude proportional bending and torsion
RU2337336C2 (en) Test bench for control and diagnostics
TW201805632A (en) Inertia measurement device correcting system comprises an operation module that includes a coupling unit and a rotation device, a signal transmission module that is arranged on one side of the operation module, and a processing module