US20050098640A1 - Temperature detection device and vehicle air conditioner using the same - Google Patents

Temperature detection device and vehicle air conditioner using the same Download PDF

Info

Publication number
US20050098640A1
US20050098640A1 US10/946,509 US94650904A US2005098640A1 US 20050098640 A1 US20050098640 A1 US 20050098640A1 US 94650904 A US94650904 A US 94650904A US 2005098640 A1 US2005098640 A1 US 2005098640A1
Authority
US
United States
Prior art keywords
temperature
passenger
seat
sensor
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/946,509
Inventor
Yoshinori Ichishi
Tatsumi Kumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003379551A external-priority patent/JP2005138775A/en
Priority claimed from JP2004120337A external-priority patent/JP2005297902A/en
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ICHISHI, YOSHINORI, KUMADA, TATSUMI
Publication of US20050098640A1 publication Critical patent/US20050098640A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00742Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by detection of the vehicle occupants' presence; by detection of conditions relating to the body of occupants, e.g. using radiant heat detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2201/00Application of thermometers in air-conditioning systems
    • G01K2201/02Application of thermometers in air-conditioning systems in vehicles

Definitions

  • the present invention relates to a temperature detection device and a vehicle air conditioner having a non-contact temperature sensor which detects a surface temperature of a passenger of a passenger compartment in non-contact. More particularly, the present invention relates to a vehicle air conditioner which controls an air conditioning state in the passenger compartment in accordance with the surface temperature detected by the non-contact temperature sensor.
  • a matrix IR sensor is arranged in a passenger compartment to detect a temperature distribution on the face portion of a driver or a passenger.
  • the matrix IR sensor is attached to a ceiling portion around a rearview mirror, the surface temperature of the passenger is slantingly detected from a front upper side.
  • a temperature detection range of the IR matrix sensor may be offset from a passenger's area to be detected.
  • a rear IR sensor used as a non-contact temperature sensor is disposed at a back portion of a front seat to detect a surface temperature of a passenger on a rear seat.
  • the rear IR sensor may not stably detect the surface temperature of the passenger on the rear seat in accordance with a front seat position or the passenger's seating position on the rear seat.
  • a temperature detection device and a vehicle air conditioner having a non-contact temperature sensor which can prevent a target object to be temperature-detected from being shifted from a temperature detection range of the non-contact temperature sensor.
  • a temperature detection device for a vehicle air conditioner includes a non-contact temperature sensor having a plurality of temperature detection elements for detecting surface temperatures of a plurality of temperature detection ranges in a vicinity of at least one of seats of a passenger compartment in non-contact.
  • the non-contact temperature sensor is disposed to detect a surface temperature of a passenger seated on the one seat and to send a detected temperature signal to the air conditioner.
  • the non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the one seat in a vehicle front-rear direction.
  • the arrangement area of the non-contact temperature sensor on the ceiling portion is a vertically projecting area of the one seat between the front end and the rear end in the vehicle front-rear direction. Accordingly, the temperature detection elements of the non-contact temperature sensor detect the surface temperature downwardly from a direct upper side of the passenger. Thus, a position change of the shoulder portion and the thigh port of the passenger on the temperature detection range of the non-contact temperature sensor can be made smaller. As a result, each position of the passenger can be stably detected by using the non-contact temperature sensor.
  • the arrangement area is an area of the ceiling portion between a frontmost end of a seat cushion portion of the one seat to a rearmost end of a seat back portion of the one seat, and the non-contact temperature sensor has a sight center line that is substantially perpendicular to the vehicle front-rear direction.
  • the sight center line of the non-contact temperature sensor is in a range ⁇ 2° and +2° of a vertical line perpendicular to the front-rear direction.
  • the arrangement area is an area of the ceiling portion between a frontmost end and a rearmost end of the seat cushion portion of the one seat.
  • the non-contact temperature sensor views the passenger on the seat downwardly from a direct upper side of the passenger, the temperature detection ranges of the non-contact temperature sensor readily contain the passenger on the one seat.
  • the temperature detection elements of the non-contact temperature sensor are arranged to detect surface temperatures of at least the shoulder portion and the thigh portion of the passenger on the one seat.
  • the temperature detection elements of the non-contact temperature sensor are arranged to detect a surface temperature of a passenger on the one seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window.
  • the one seat can be a front seat having right and left seat portions or a rear seat having right and left seat portions in the passenger compartment.
  • the non-contact temperature sensor includes a right matrix IR sensor having a plurality of right temperature detection elements which are arranged such that temperature detection ranges of the right temperature detection elements include at least a passenger on the right seat portion of the one seat, and a left matrix IR sensor having a plurality of left temperature detection elements which are arranged such that temperature detection ranges of the left temperature detection elements include at least a passenger on the left seat portion of the one seat.
  • the right matrix IR sensor is provided in the ceiling portion above the right seat portion
  • the left matrix IR sensor is provided in the ceiling portion above the left seat portion.
  • the right matrix IR sensor is provided in the ceiling portion at a position shifted from a center of the right seat portion to a side window adjacent to the right seat portion in a vehicle width direction.
  • the right matrix IR sensor can be provided in the ceiling portion above a seat cushion portion of the right seat portion
  • the left matrix IR sensor can be provided in the ceiling portion above a seat cushion portion of the left seat portion.
  • the right matrix IR sensor and the left matrix IR sensor can be arranged in the ceiling portion adjacent to each other in an approximate center position in the vehicle width direction.
  • the control unit calculates a target temperature of air to be blown into the passenger compartment based on the surface temperature of a passenger detected by the non-contact temperature sensor, and controls the air conditioning unit based on the target temperature. In this case, an air conditioning operation comfortable to the passenger can be performed.
  • the control unit calculates a passenger's temperature on the one seat by a weighting calculation of the surface temperature of the passenger on the seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window, which are detected by the non-contact temperature sensor. Further, the control unit calculates the target temperature based on the passenger's temperature obtained by the weighting calculation. Therefore, the target temperature, in which the solar radiation reflected to the passenger from the side window is also considered, can be calculated, and comfortable air-conditioning can be provided.
  • the weighting calculation has a first weighting coefficient relative to the surface temperature of the passenger, a second weighting coefficient relative to the surface temperature of the side window, and a third weighting coefficient relative to the surface temperature of the trim panel.
  • the first weighting coefficient is the largest value among the first, second and third weighting coefficients
  • the second coefficient is the smallest value among the first, second and third weighting coefficients.
  • the non-contact temperature sensor is provided above a passenger's seating position of the one seat at a side of a side window adjacent to the passenger's seating position from a center of the passenger's seating position, the non-contact temperature sensor has a predetermined temperature detection range which includes at least an upper portion of the shoulder of the passenger on the side of the side window, and the air conditioner has a control unit which controls an air conditioning state of the passenger compartment based on the temperature detected by the non-contact temperature sensor.
  • the shoulder portion includes the portion of the clavicle on the front of the body and the portion of the scapula on the rear of the body. Accordingly, the surface temperature of the passenger can be stably detected regardless a seat position or a passenger's seating position.
  • the non-contact temperature sensor can be provided above the passenger's seating position of the one seat at a front side in the passenger's seating position.
  • the non-contact temperature sensor can be provided above the passenger's seating position of the one seat at a rear side in the passenger's seating position.
  • the temperature detection range of the non-contact temperature sensor can include the upper portion of the shoulder adjacent to the side window and a trim panel portion around the side window.
  • the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder adjacent to the side window and the side window.
  • the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder at a side end of the face portion of the passenger. That is, the temperature detection range of the non-contact temperature sensor is set to include the upper portion of the shoulder while without including the face portion of the passenger.
  • the temperature detection ranges to be used are shifted in accordance with positions of the seats in the vehicle front-rear direction. Accordingly, even when the seat positions are shifted in the vehicle front-rear direction, the surface temperature of the passenger can be always stably detected.
  • the present invention can be suitably used for an air conditioner having an air conditioning unit for respectively independently adjusting air conditioning states of first and second air conditioning zones positioned at right and left sides of a front seat in the passenger compartment, and third and fourth air conditioning zones positioned at right and left sides of a rear seat in the passenger compartment.
  • FIG. 1 is a schematic diagram showing an air blowing-out port arrangement and a seat arrangement in a passenger compartment according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an entire structure of a vehicle air conditioner according to the first embodiment
  • FIG. 3 is a view showing a structure of a matrix IR sensor (non-contact temperature sensor) according to the first embodiment
  • FIGS. 4A and 4B are a side view and a top view showing arrangement positions of right and left matrix IR sensors, according to the first embodiment
  • FIGS. 5A and 5B are schematic diagrams showing temperature detection ranges of the right and left matrix IR sensors, according to the first embodiment
  • FIG. 6 is a view showing the temperature detection range of the right matrix IR sensor, according to the first embodiment
  • FIG. 7A is a flow diagram for performing a front air conditioning control of an air conditioning controller
  • FIG. 7B is a flow diagram for performing a rear air conditioning control of the air conditioning controller
  • FIG. 8 is a graph showing a control map for determining an inside/outside air introduction mode in the front air conditioning control in FIG. 7A ;
  • FIG. 9 is a graph showing a control map for determining an air outlet mode in the front air conditioning control in FIG. 7A and in the rear air conditioning control in FIG. 7B ;
  • FIG. 10 is a graph showing a control map for determining a blower voltage in the front air conditioning control in FIG. 7A and in the rear air conditioning control in FIG. 7B ;
  • FIG. 11 is a schematic diagram showing a non-contact temperature sensor having right and left matrix IR sensors according to a second embodiment of the present invention.
  • FIGS. 12A and 12B are a side view and a top view showing an arrangement position of the non-contact temperature sensor having the right and left matrix IR sensors, according to the second embodiment
  • FIG. 13 is a view showing the temperature detection range of the right matrix IR sensor, according to the second embodiment.
  • FIG. 14 is a schematic diagram for explaining arrangement areas of matrix IR sensors, according to a third preferred embodiment of the present invention.
  • FIGS. 15A and 15B are a side view and a top view showing arrangement positions of the matrix IR sensors, according to the third embodiment
  • FIGS. 16A and 16B are a side view and a top view showing arrangement positions of front and rear non-contact temperature sensors each having right and left matrix IR sensors, according to a fourth preferred embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing an entire structure of a vehicle air conditioner according to a fifth embodiment of the present invention.
  • FIG. 18 is a disassembled perspective view showing a structure of an IR sensor (non-contact temperature sensor) according to the fifth embodiment
  • FIG. 19 is a schematic cross-sectional view showing the non-contact temperature sensor according to the fifth embodiment.
  • FIGS. 20A and 20B are a top view and a side view showing arrangement positions of the non-contact temperature sensors according to the fifth embodiment
  • FIG. 21 is a schematic perspective view showing an example of a temperature detection range of the non-contact temperature sensor according to the fifth embodiment.
  • FIG. 22 is a graph showing a correction map of correction coefficients (CFrDr, CFrPa, CRrDr, CRrPa) in accordance with an outside air temperature (Tam), according to the fifth embodiment;
  • FIG. 23 is a view showing a shifted temperature detection range of a non-contact temperature sensor according to a modification of the present invention.
  • FIG. 24 is a flow diagram showing a control operation for selecting temperature detection areas in accordance with a seat position in a vehicle front-rear direction, according to the modification;
  • FIGS. 25A and 25B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to another modification of the fifth embodiment
  • FIGS. 26A and 26B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment
  • FIGS. 27A and 27B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment.
  • FIGS. 28A and 28B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment.
  • the present invention is typically applied to an air conditioner for a vehicle for independently controlling each of air-conditioning operations of air conditioning zones 1 a , 1 b , 1 c , 1 d located leftward and rightward on the front seat side and located leftward and rightward on the rear seat side within a vehicle compartment interior 1 (passenger compartment).
  • FIG. 1 is a schematic diagram showing the arrangement of the air conditioning zones 1 a , 1 b , 1 c , 1 d .
  • the air conditioning zone 1 a is located on the right-hand side in the front seat air conditioning zone.
  • the air conditioning zone 1 b is located on the left-hand side in the front seat air conditioning zone.
  • the air conditioning zone 1 c is located on the right-hand side in the rear seat air conditioning zone.
  • the air conditioning zone 1 d is located on the left-hand side in the rear seat air conditioning zone.
  • the arrows of FIG. 1 show front, rear, left and right directions of the vehicle.
  • FIGS. 1 and 2 show a vehicle state having a right steering wheel.
  • the air conditioning zone 1 a is a driver's seat side zone
  • the air conditioning zone 1 b is a front-passenger's seat side zone.
  • a front right seat 1 as , a front left seat 1 bs , a rear right seat 1 cs and a rear left seat 1 ds are placed in the air conditioning zones 1 a , 1 b , 1 c and 1 d , respectively.
  • Lr 0 indicates a rear seat moving range in a vehicle front-rear direction (vehicle forward-backward direction).
  • Seat position adjusting mechanisms are provided in the front right seat 1 as and the front left seat 1 bs to change seat positions in a accordance with a passenger's frame.
  • seat position detection units 1 ap , 1 bp and 1 cp are disposed to detect fixed positions of the seats 1 as , 1 bs , 1 cs and 1 ds after being moved.
  • the rear seat includes a seat cushion portion 30 for supporting the buttock portion of the passenger on the rear seat, and a seat back portion 31 for supporting the back portion of the passenger on the rear seat.
  • the seat cushion portion 30 contacting the buttock portion of the passenger includes right and left seat cushions 30 c , 30 d
  • the seat back portion 31 contacting the back portion of the passenger includes right and left seat backs 31 c , 31 d.
  • FIG. 2 is an entire constructional view showing the entire construction of the vehicle air conditioner in this embodiment.
  • This vehicle air conditioner is constructed with a front seat air conditioning unit 5 for respectively independently air-conditioning the air conditioning zones 1 a , 1 b , and a rear seat air conditioning unit 6 for respectively independently air-conditioning the air conditioning zones 1 c , 1 d.
  • the front seat air conditioning unit 5 is arranged inside an instrument panel 7 (dashboard).
  • the rear seat air conditioning unit 6 is arranged most backward in the passenger compartment 1 .
  • the front seat air conditioning unit 5 has a duct 50 for sending and blowing air to the passenger compartment 1 .
  • An inside air introducing inlet 50 a for introducing inside air (i.e., air inside the passenger compartment) from the passenger compartment 1 and an outside air introducing inlet 50 b for introducing outside air (i.e., air outside the passenger compartment) from the vehicle compartment exterior are provided in this duct 50 .
  • an inside-outside air switching door 51 for selectively opening and closing the outside air introducing inlet 50 b and the inside air introducing inlet 50 a is arranged in the duct 50 .
  • a servo motor 510 a as a driving means is connected to this inside-outside air switching door 51 .
  • a centrifugal type blower 52 for generating an air flow toward the passenger compartment 1 is arranged on an air downstream side of the outside air introducing inlet 50 b and the inside air introducing inlet 50 a within the duct 50 .
  • the centrifugal type blower 52 is constructed with a vane wheel and a blower motor 52 a for rotating this vane wheel.
  • an axial vane wheel is indicated to simplify the drawing. However, actually, a centrifugal vane wheel is used in the blower 52 .
  • an evaporator 53 as an air cooling means for cooling the air is arranged on an air downstream side of the centrifugal type blower 52 within the duct 50 .
  • a heater core 54 as an air heating means is arranged on an air downstream side of this evaporator 53 within the duct 50 .
  • a partition plate 57 is arranged on an air downstream side of the evaporator 53 within the duct 50 . This partition plate 57 partitions the interior of the duct 50 into a driver seat side passage 50 c and an assistant driver seat side passage 50 d (front-passenger's seat side passage).
  • a bypass passage 51 a is formed on a one side of the heater core 54 in the driver seat side passage 50 c .
  • cool air cooled by the evaporator 53 bypasses the heater core 54 in the driver seat side passage 50 c.
  • a bypass passage 51 b is formed on the other side of the heater core 54 in the assistant driver seat side passage 50 d .
  • cool air cooled by the evaporator 53 bypasses the heater core 54 in the assistant driver seat side passage 50 d.
  • Air mix doors 55 a , 55 b are arranged on an air upstream side of the heater core 54 .
  • the air mix door 55 a adjusts the ratio of an air amount passing through the heater core 54 and an amount passing through the bypass passage 51 a in the driver seat side passage 50 c , in accordance with an open degree of the air mix door 55 a . Therefore, conditioned air to be blown to the front right side air-conditioning zone 1 a can be adjusted.
  • the air mix door 55 b adjusts the ratio of an air amount passing the heater core 54 and an air amount passing the bypass passage 51 b in the assistant driver seat side passage 50 d , in accordance with an open degree of the air mix door 55 b . Therefore, conditioned air to be blown to the front left side air-conditioning zone 1 a can be adjusted.
  • servo motors 550 a , 550 b as driving means are respectively connected to the air mix doors 55 a , 55 b .
  • the open degrees of the air mix doors 55 a , 55 b are respectively adjusted by the servo motors 550 a , 550 b.
  • the evaporator 53 is a cooling heat exchanger constituting a well-known refrigerating cycle together with a compressor, a condenser, a liquid receiver and a pressure reducing device that are unillustrated.
  • low-pressure refrigerant is evaporated by absorbing heat from an evaporation latent heat from air flowing in the duct 50 , so that air flowing through the evaporator 53 in the duct 50 is cooled.
  • the compressor is connected to an engine of the vehicle through an unillustrated electromagnetic clutch.
  • the operation of this compressor is stopped and controlled by controlling connection and disconnection of the electromagnetic clutch.
  • the heater core 54 is a heat exchanger using engine cooling water (hot water) of the vehicle as a heat source. This heater core 54 heats the cool air after being cooled by the evaporator 53 .
  • a driver seat side face blowing-out port 2 a is opened on an air downstream side of the heater core 54 in the duct 50 .
  • the driver seat side face blowing-out port 2 a blows out the conditioned air toward the upper half of the body of a driver sitting on the driver seat from the driver seat side passage 50 c.
  • a blowing-out port switching door 56 a for opening and closing the face blowing-out port 2 a is arranged at an air upstream portion of the face blowing-out port 2 a in the duct 50 .
  • This blowing-out port switching door 56 a is opened and closed by a servo motor 560 a as a driving means.
  • a driver seat side foot blowing-out port for blowing-out the conditioned air to the lower half of the body of the driver from the driver seat side passage 50 c and a driver seat side defroster blowing-out port for blowing-out the conditioned air to a driver seat side area on the inner surface of a front windshield are arranged in the duct 50 although these blowing-out ports are omitted in the drawings.
  • Blowing-out port switching doors for opening and closing the respective blowing-out ports are arranged in air upstream portions of the driver seat side foot blowing-out port and the driver seat side defroster blowing-out port.
  • the respective blowing-out port switching doors are opened and closed by the servo motors.
  • a front-passenger's seat side face blowing-out port 2 b is opened on an air downstream side of the heater core 54 in the duct 50 .
  • the front-passenger's seat side face blowing-out port 2 b blows out the conditioned air toward the upper half of the body of a passenger sitting on the front-passenger's seat from the front-passenger's seat side passage 50 d.
  • a blowing-out port switching door 56 b for opening and closing the face blowing-out port 2 b is arranged at an air upstream portion of the face blowing-out port 2 b in the duct 50 .
  • This blowing-out port switching door 56 b is opened and closed by a servo motor 560 b as a driving means.
  • the face blowing-out ports 2 a , 2 b are arranged on a dashboard 7 to be divided into a center face air outlet at a center area in a vehicle right-left direction (vehicle width direction) and a side face air outlet at right and left sides.
  • a front-passenger's seat side foot blowing-out port for blowing-out the conditioned air to the lower half of the body of the front passenger from the front-passenger's seat side passage 50 d , and a front-passenger's seat side defroster blowing-out port for blowing-out the conditioned air to a front-passenger's seat side area on the inner surface of the front windshield are arranged in the duct 50 although these blowing-out ports are omitted in the drawings.
  • Blowing-out port switching doors for opening and closing the respective blowing-out ports are arranged in air upstream portions of the front-passenger's seat side foot blowing-out port and the front-passenger's seat side defroster blowing-out port.
  • the blowing-out port switching doors are operatively linked by a servo motor 560 b.
  • the rear seat air conditioning unit 6 has a duct 60 for sending and blowing air to the rear seat area in the passenger compartment 1 . Only the inside air is introduced from the passenger compartment 1 into an inside air introducing duct 60 b through an inside air introducing inlet 60 a.
  • a centrifugal type blower 62 for generating an air flow toward the passenger compartment 1 is arranged on an air downstream side of the inside air introducing duct 60 b .
  • the centrifugal type blower 62 is constructed with a vane wheel and a blower motor 62 a for rotating this vane wheel.
  • the vane wheel of the blower 62 is indicated in FIG. 2 as an axial vane wheel. However, actually, the vane wheel of the blower 62 is a centrifugal vane wheel.
  • an evaporator 63 as an air cooling means for cooling the introduced air is arranged on an air downstream side of the centrifugal type blower 62 within the duct 60 .
  • a heater core 64 as an air heating means for heating the air is arranged on an air downstream side of this evaporator 53 .
  • a partition plate 67 is arranged on a downstream portion of the evaporator 63 within the duct 60 .
  • This partition plate 67 partitions the interior of the duct 60 into a rear right side passage 60 a (i.e., driver's seat side passage) and a rear left side passage 60 d (i.e., front-passenger's seat side passage).
  • a bypass passage 61 a is formed on a one side of the heater core 64 in the rear right side passage 60 c .
  • cool air cooled by the evaporator 63 bypasses the heater core 64 in the rear right side passage 60 c.
  • a bypass passage 61 b is formed on the other side of the heater core 64 in the rear left seat side passage 60 d .
  • the cool air cooled by the evaporator 63 bypasses the heater core 64 in the rear left seat side passage 60 d.
  • Air mix doors 65 a , 65 b are arranged on an air upstream side of the heater core 64 .
  • the air mix door 65 a adjusts the ratio of an air amount passing through the heater core 64 and an air amount passing through the bypass passage 61 a in the cool air circulated in the rear right seat side passage 60 c , in accordance with an open degree of the air mix door 65 a.
  • the air mix door 65 b adjusts the ratio of an air amount passing through the heater core 64 and an air amount passing through the bypass passage 61 b in the cool air passing the rear left seat side passage 60 d , in accordance with an open degree of the air mix door 65 b.
  • Servo motors 650 a , 650 b as a driving means are respectively connected to the air mix doors 65 a , 65 b .
  • the open degrees of the air mix doors 65 a , 65 b are respectively adjusted by the servo motors 650 a , 650 b.
  • the evaporator 63 is piped and connected in parallel with the above evaporator 53 , and is a heat exchanger constituting one constructional element of the above well-known refrigerating cycle.
  • the heater core 64 is a heat exchanger using the engine cooling water (warm water) of the vehicle as a heat source.
  • the heater core 64 is connected to the above heater core 54 in parallel therewith, and heats the cool air after being cooled by the evaporator 63 .
  • a rear right face blowing-out port 2 c is opened on an air downstream side of the heater core 64 in the rear right air passage 60 c within the duct 60 .
  • the rear right face blowing-out port 2 c blows out the conditioned air toward the upper half of the body of a passenger sitting on the right-hand side (i.e., the rear side of the driver seat) of a rear seat from the rear right side passage 60 d.
  • a rear left face blowing-out port 2 d is opened on an air downstream side of the heater core 64 in the rear left side passage 60 d within the duct 60 .
  • This face blowing-out port 2 d blows out the conditioned air toward the upper half of the body of a passenger sitting on the left-hand side (i.e., the rear side of the assistant driver seat) of the rear seat from the rear left side passage 60 d.
  • a blowing-out port switching door 66 a for opening and closing the rear right face blowing-out port 2 c is arranged in an air upstream portion of the rear right face blowing-out port 2 c .
  • This blowing-out port switching door 66 a is opened and closed by a servo motor 660 a as a driving means.
  • a blowing-out port switching door 66 b for opening and closing the rear left face blowing-out port 2 d is arranged in an air upstream portion of the rear left face blowing-out port 2 d .
  • This blowing-out port switching door 66 b is opened and closed by a servo motor 660 b as a driving means.
  • a rear right side foot blowing-out port for blowing out the conditioned air to the lower half of the body of the rear seat right-hand side passenger from the rear right side passage 60 d is arranged in the duct 60 although this rear right side foot blowing-out port is omitted in the drawings.
  • a blowing-out port switching door for opening and closing this foot blowing-out port is arranged in an air upstream portion of the rear right side foot blowing-out port. This blowing-out port switching door is opened and closed by the servo motor.
  • a rear left side foot blowing-out port for blowing out the conditioned air to the lower half of the body of the rear seat left-hand side passenger from the rear left side passage 60 d is arranged in the duct 60 although this foot blowing-out port is omitted in the drawings.
  • a blowing-out port switching door for opening and closing this rear left side foot blowing-out port is arranged in an air upstream portion of this rear left side foot blowing-out port. This foot blowing-out port switching door is opened and closed by the servo motor.
  • an electronic controller (hereinafter called an air conditioning ECU 8 ) for controlling each of the air conditioning operations of the front seat air conditioning unit 5 and the rear seat air conditioning unit 6 is provided in the vehicle air conditioner.
  • An outside air temperature sensor 81 , a cooling water temperature sensor 82 , a solar radiation sensor 83 , inside air temperature sensors 84 , 85 , evaporator temperature sensors 86 , 87 and the seat position detection units 1 ap , 1 bp , 1 cp are connected to the air conditioning ECU 8 .
  • the outside air temperature sensor 81 detects an outside air temperature Tam outside the passenger compartment.
  • the cooling water temperature sensor 82 detects a cooling water temperature Tw of the engine.
  • the solar radiation sensor 83 is disposed an inner side of the front windshield at an approximate center in the vehicle right-left direction. Generally, the solar radiation sensor 83 is a two-dimension type. The solar radiation sensor 83 detects each of a solar radiation amount irradiated to the front right air conditioning zone 1 a and a solar radiation amount irradiated to the front left air conditioning zone 1 b , and outputs solar radiation signals TsDr and TsPa corresponding to the detected solar radiation amount to the air conditioning ECU 8 .
  • the inside air temperature sensor 84 detects an air temperature in the air conditioning zones 1 a , 1 b , and outputs an inside air temperature signal TrFr corresponding to the detected inside air temperature to the air conditioning ECU 8 .
  • the inside air temperature sensor 85 detects an air temperature in the air conditioning zones 1 c , 1 d , and outputs an inside air temperature signal TrRr corresponding to the detected inside air temperature to the air conditioning ECU 8 .
  • the evaporator temperature sensor 86 detects an air temperature blown immediately after passing through the evaporator 53 , and output an evaporator temperature signal TeFr corresponding to the detected temperature of the evaporator 86 to the air conditioning ECU 8 .
  • the evaporator temperature sensor 87 detects an air temperature blown immediately after passing through the evaporator 63 , and output an evaporator temperature signal TeRr corresponding to the detected temperature of the evaporator 87 to the air conditioning ECU 8 .
  • Temperature setting switches 9 , 10 , 11 , 12 are provided for setting desirable temperatures TsetFrDr, TsetFrPa, TsetRrDr, TsetRrPa of the air conditioning zones 1 a , 1 b , 1 c , 1 d , respectively, by a passenger.
  • the temperature setting switches 9 - 12 are connected to the air-conditioning ECU 8 .
  • Displays 9 a , 10 a , 11 a , 12 a as desirable temperature display means for displaying the setting contents of the desirable temperatures, etc. are respectively arranged in the vicinity of the temperature setting switches 9 , 10 , 11 , 12 .
  • non-contact temperature sensors 70 a , 70 b matrix IR sensors are used.
  • the matrix IR sensor 70 a is disposed to detect a surface temperature of the rear right side air-conditioning zone 1 c
  • the matrix IR sensor 70 b is disposed to detect a surface temperature of the rear left side air-conditioning zone 1 d.
  • Each of the matrix IR sensors 70 a , 70 b is constructed with a thermopile detection element which detects an electromotive force change corresponding to a change of inputted infrared rays as a temperature change.
  • a thermopile detection element which detects an electromotive force change corresponding to a change of inputted infrared rays as a temperature change.
  • the matrix IR sensor 70 a ( 70 b ) includes a detection portion 71 .
  • the detection portion 71 has a substrate 71 a , a sensor chip 72 arranged on the substrate 71 a , and an infrared ray absorbing film 73 disposed to cover the sensor chip 72 .
  • the detection portion 71 is disposed on a seat 71 c , and is covered by a cup-shaped case 71 b .
  • a square window 71 d is provided in a bottom portion of the case 71 b
  • a lens 71 e is provided in the square window 71 d .
  • the infrared-ray absorbing film 73 absorbs infrared rays radiated through the lens 71 e from a detecting object, and converts it to heat.
  • thermoelectric couple portions Dr 1 -Dr 16 are arranged in a matrix shape with vertical four rows and horizontal four lines.
  • the thermoelectric couple portions Dr 1 -Dr 16 are temperature detecting elements each of which converts heat generated from the infrared ray absorbing film 73 to electric voltage (i.e., electric energy).
  • the matrix IR sensor 70 a , 70 b is attached to the ceiling portion to be pointed downwardly such that a sight center line of the matrix IR sensor 70 a , 70 b is substantially perpendicular to the vehicle front-rear direction.
  • the slight center line of the matrix IR sensor 70 a , 70 b can be positioned in a range between a position shifted from the vertical direction to a vehicle front side by 2° to a position shifted from the vertical direction to a vehicle rear side by 2°.
  • FIGS. 4A and 4B show arrangement positions of the matrix IR sensors 70 a , 70 b and temperature detection ranges 700 a , 700 b to be temperature-detected.
  • FIG. 5A is an enlarged view of the temperature detection range 700 a
  • FIG. 5B is an enlarged view of the temperature detection range 700 b .
  • FIG. 6 shows corresponding positions of a rear right passenger, the vehicle rear right side door and window, on the thermoelectric couple portions Dr 1 -Dr 16 .
  • the right matrix IR sensor 70 a is disposed in the ceiling portion of the passenger compartment such that the infrared ray absorbing film 73 is arranged approximately horizontally. Therefore, the temperature detection range 700 a is formed on a direct vertical lower side of the right matrix IR sensor 70 a .
  • the left matrix IR sensor 70 b is disposed in the ceiling portion of the passenger compartment such that the infrared-ray absorbing film 73 is arranged approximately horizontally. Therefore, the temperature detection range 700 b is formed on a direct vertical lower side of the right matrix IR sensor 70 b.
  • the right matrix IR sensor 70 a is arranged at a position Ra in a rear right arrangement area on the vehicle ceiling portion. That is, the rear right arrangement area is a projection area of the range Lr 0 (see FIG. 1 ) from the frontmost end of the seat cushion portion 30 c to the rearmost end of the seat back portion 31 c , projected vertically on the ceiling portion.
  • the range Lr 0 corresponds to the rear seat range in the vehicle front-rear direction.
  • the arrangement position Ra in the ceiling portion is provided in the rear right arrangement area to be offset from a center of the rear right seat in the vehicle width direction (vehicle right-left direction) to a rear right window side.
  • the left matrix IR sensor 70 b is arranged at a position Rb in a rear left arrangement area on the vehicle ceiling portion. That is, the rear left arrangement range is a projection area of the range Lr 0 (see FIG. 1 ) from the frontmost end of the seat cushion portion 30 d to the rearmost end of the seat back portion 31 d , projected vertically on the ceiling portion.
  • the range Lr 0 corresponds to the rear seat range in the vehicle front-rear direction.
  • the arrangement position Rb in the ceiling portion is provided in the rear left arrangement area to be offset from a center of the rear left seat in the vehicle width direction (vehicle right-left direction) to a rear left window side. When the rear seat slides by the seat position adjustment mechanism, the range Lr 0 can be enlarged.
  • the right matrix IR sensor 70 a is arranged so that at least the shoulder portion and the thigh portion of a rear seat passenger are positioned on the temperature detection range 700 a .
  • the left matrix IR sensor 70 b is arranged so that at least the shoulder portion and the thigh portion of a rear seat passenger are positioned on the temperature detection range 700 b .
  • the right and left matrix IR sensors 70 a , 70 b are non-contact temperature sensors for detecting the surface temperatures of passengers on the right and rear left seats, respectively.
  • the air conditioning ECU 8 calculates a surface temperature of each portion of the passenger compartment based on output signals from the right and left matrix IR sensors 70 a , 70 b.
  • Each of the right and left matrix IR sensors 70 a and 70 b can be position within an upper projection area of a range Lr 1 (see FIG. 1 ) that is a range between the front end and the rear end of the seat cushion portion 30 c , vertically projected on the ceiling portion. In this case, it can more effectively restrict the positions of the shoulder portion and the thigh portion of the passenger from being offset from the temperature detection range 700 a , 700 b.
  • the right matrix IR sensor 70 a can be arranged so that the temperature detection range 700 a includes at least the right side surfaces of the right shoulder portion of the passenger on the rear right seat, and a trim panel portion and a window portion of the rear right door.
  • the right matrix IR sensor 70 a is preferably arranged at a window side on the ceiling portion Ra, with respect to the center of the rear right seat or the rear left seat.
  • the right matrix IR sensor 70 a is positioned at the right window side more than the center of the right seat position of the passenger, the right side surface of the passenger and the trim panel portion and the window portion of the rear right door can be easily contained in the temperature detection range 700 a .
  • the right side surface of the passenger and the trim panel portion and the window portion of the rear right door are easily affected by solar radiation from the right side.
  • the left matrix IR sensor 70 b can be arranged so that the temperature detection range 700 b includes at least the left side surfaces of the left shoulder portion of the passenger on the rear left seat, a trim panel portion and a window portion of the rear left door.
  • the left matrix IR sensor 70 b is preferably arranged at a window side on the ceiling portion Rb, with respect to the center of the rear right seat or the rear left seat.
  • the left matrix IR sensor 70 b is positioned at the left window side more than the center of the left seat position of the passenger, the left side surface of the passenger and the trim panel portion and the window portion of the rear left door can be easily contained in the temperature detection range 700 b .
  • the left side surface of the passenger and the trim panel portion and the window portion of the rear left door are easily affected by solar radiation from the left side.
  • the temperature detection ranges 700 a , 700 b indicated in the matrix shape correspond to radiation ranges of infrared rays collected on temperature detection elements by the lends 71 e of the matrix IR sensors 70 a , 70 b on the same sight.
  • the temperature detection areas of the temperature detection range 700 a indicated by the Dr 1 -Dr 16 correspond to the temperature detection areas of the thermoelectric couple portions Dr 1 -Dr 16 that are the temperature detection elements of the right matrix IR sensor 70 a .
  • the temperature detection areas of the temperature detection range 700 b indicated by the Pa 1 -Pa 16 correspond to the temperature detection areas of the thermoelectric couple portions Pa 1 -Pa 16 that are the temperature detection elements of the left matrix IR sensor 70 b .
  • the temperature detection ranges 700 a , 700 b indicated in FIGS. 4B, 5A and 5 B are the general flat shapes when being viewed from a vehicle top side.
  • FIG. 6 shows a detail example of the temperature detection range 700 a in the rear right air-conditioning zone 1 c , due to the right matrix IR sensor 70 a .
  • the temperature detection range 700 b in the rear left air-conditioning zone 1 d is substantially symmetrical to the temperature detection range 700 a with respect to a center line in the vehicle width direction.
  • the surface temperature of the rear right window is mainly detected by the thermoelectric couple portions Dr 2 and Dr 3 among the rightmost thermoelectric couple portions Dr 1 -Dr 4 .
  • the surface temperatures of trim panels of the rear right window and the passenger compartment on the rear right side are generally detected by the thermoelectric couple portions Dr 6 and Dr 7 . That is, the surface temperatures of the trim panel portions of the rear right doors and the rear right pillar portion are generally detected by the thermoelectric couple portions Dr 6 and Dr 7 .
  • the surface temperature of the upper portion of a rear right passenger RrDr including the head portion and the shoulder portion of a rear right passenger RrDr are generally detected by the thermoelectric couple portions Dr 9 and Dr 13 , among the inside two lines of the thermoelectric couple portions Dr 9 -Dr 12 and Dr 13 -Dr 16 .
  • the surface temperature of the stomach portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr 10 and Dr 14 , among the inside two lines of the thermoelectric couple portions Dr 9 -Dr 12 and Dr 13 -Dr 16 .
  • the surface temperature of the right thigh portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr 11 and Dr 12
  • the surface temperature of the left thigh portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr 15 and Dr 16 , among the inside two lines of the thermoelectric couple portions Dr 9 -Dr 12 and Dr 13 -Dr 16 . That is, the surface temperature of the rear right passenger RrDr including the upper portion and the thigh portion of the rear right passenger RrDr can be detected by the inside two lines of the thermoelectric couple portions Dr 9 -Dr 12 and Dr 13 -Dr 16 .
  • the right half body of the rear right passenger RrDr is readily affected by the solar radiation, as compared with the left half body of the rear right passenger RrDr.
  • the thermoelectric couple portions Dr 9 -Dr 12 can readily detect the surface temperature of the right half body of the rear right passenger RrDr.
  • the surface temperature of the rear left window is mainly detected by the thermoelectric couple portions Pa 2 and Pa 3 among the leftmost thermoelectric couple portions Pa 1 -Pa 4 .
  • the surface temperatures of trim panels of the rear right window and the passenger compartment on the rear left are generally detected by the thermoelectric couple portions Pa 6 and Pa 7 . That is, the surface temperatures of the trim panel portions of the rear left doors and the rear left pillar portion are generally detected by the thermoelectric couple portions Pa 6 and Pa 7 .
  • thermoelectric couple portions Pa 9 and Pa 13 The surface temperature of the upper portion of a rear lest passenger RrPa including the head portion and the shoulder portion of the rear left passenger RrPa are generally detected by the thermoelectric couple portions Pa 9 and Pa 13 , among the inside two lines of the thermoelectric couple portions Pa 9 -Pa 12 and Pa 13 -Pa 16 .
  • the surface temperature of the stomach portion of the rear right passenger RrPa is generally detected by the thermoelectric couple portions Pa 10 and Pa 14 , among the inside two lines of the thermoelectric couple portions Pa 9 -Pa 12 and Pa 13 -Pa 16 .
  • the surface temperature of the right thigh portion of the rear left passenger RrPa is generally detected by the thermoelectric couple portions Pa 11 and Pa 12
  • the surface temperature of the left thigh portion of the rear left passenger RrPa is generally detected by the thermoelectric couple portions Pa 15 and Pa 16 , among the inside two lines of the thermoelectric couple portions Pa 9 -Pa 12 and Pa 13 -Pa 16 . That is, the surface temperature of the rear left passenger RrPa including the upper portion and the thigh portion of the rear left passenger Rrpa can be detected by the inside two lines of the thermoelectric couple portions Pa 9 -Pa 12 and Pa 13 -Pa 16 .
  • thermoelectric couple portions Pa 9 -Pa 12 can readily detect the surface temperature of the left half body of the rear right passenger RrPa.
  • the right and left matrix IR sensors 70 a , 70 b can stably detect surface temperatures of the rear right passenger RrDr and the rear left passenger RrPa from the upper sides of the rear right passenger RrDr and the rear left passenger RrPa.
  • the position of the shoulder portion of a passenger on the rear seat in each temperature detection range of the matrix IR sensors 70 a , 70 b is not largely changed. Accordingly, even when the temperature detection range is fixed relative to the rear seat position, the surface temperature of at least the shoulder portion of the passenger can be stably detected. Further, a position of the thigh portion of the passenger on each of right and rear left seats, relative to the temperature detection range, is almost constant regardless of the frame change of the body of the passenger. Thus, the thigh portion of the passenger on the rear seat can be also stably detected. Accordingly, the surface temperature of the passenger on the rear seat can be accurately detected regardless of the front seat position and the front seat cover.
  • the right and left matrix IR sensors 70 a , 70 b are arranged in the ceiling portion at the sides of the right and rear left windows from the seat centers in the vehicle width direction. Therefore, surface temperatures of the trim panels of the rear door windows and the trim panels between the rear door windows and a passenger on the rear seat can be also detected by the matrix IR sensors 70 a , 70 b.
  • the air conditioning ECU 8 is a well-known device constructed with an analog/digital converter, a microcomputer, etc.
  • the air conditioning ECU 8 is constructed such that output signals respectively outputted from sensors 81 , 82 , 83 , 84 , 85 , 86 , 87 and switches 9 , 10 , 11 , 12 are analog/digital-converted by the analog/digital converter and are inputted to the microcomputer.
  • the microcomputer is a well-known microcomputer constructed with a memory such as a ROM, a RAM, etc., and a CPU (central processing unit), etc. When an ignition switch is turned on, electric power is supplied from an unillustrated battery to the microcomputer.
  • FIGS. 7A and 7B are flow charts showing front and rear automatic air conditioning controls of the air conditioning ECU 8 .
  • the microcomputer of the air conditioning ECU 8 executes a computer program stored to the memory in accordance with the flow charts shown in FIGS. 7A and 7B .
  • the execution of this computer program is generally started when the ignition switch is turned on.
  • step S 121 in FIG. 7A front right and left set temperature signals TsetFrDr, TsetFrPa from the temperature setting switch 8 , 10 are input.
  • step S 122 an outside air temperature signal Tam from the outside air temperature sensor 81 , solar radiation signals TsDr, TsPa from the solar radiation sensor 83 and an inside air temperature signal TrFr from the inside air temperature sensor 84 are input.
  • a target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (1) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the inside air temperature signal TrFr.
  • the target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a (driver's seat air conditioning zone) at the set temperature TsetFrDr.
  • TAOFrDr KsetFrDr ⁇ TsetFrDr ⁇ KrFr ⁇ TrFr ⁇ Kam ⁇ Tam ⁇ KsDr ⁇ TsDr+CFrDr (1) wherein, KsetFrDr is a front right temperature setting gain, KrFr is a front inside air temperature gain, Kam is an outside air temperature gain, KsDr is a right solar radiation gain, and CFrDr is a front right correction constant.
  • a target blowing-out temperature TAOFrPa of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (2) by using the set temperature signal TsetFrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the inside air temperature signal TrPa.
  • the target blowing-out temperature TAOFrPa is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b (front passenger's seat air conditioning zone) at the set temperature TsetFrPa.
  • TAOFrPa KsetFrPa ⁇ TsetFrPa ⁇ KrFr ⁇ TrFr ⁇ Kam ⁇ Tam ⁇ KsPa ⁇ TsPa+CFrPa (2) wherein, KsetFrPa is a front left temperature setting gain, KrFr is a front inside air temperature gain, Kam is an outside air temperature gain, KsPa is a left solar radiation gain, and CFrPa is a front left correction constant.
  • one of an inside air circulation mode and an outside air introduction mode is selected as an inside/outside air introducing mode based on the control map shown in FIG. 8 , in accordance with an average front target blowing-out temperature TAOFr.
  • the average front target blowing-out temperature TAOFr is an average value of the TAOFrPa and TAOFrDr.
  • the inside/outside air switching door 51 fully closes the outside air introduction port 50 b and fully opens the inside air introduction port 50 a , so that inside air of the passenger compartment is introduced only from the inside air introduction port 50 a .
  • the inside/outside air switching door 51 fully opens the outside air introduction port 50 b and fully closes the inside air introduction port 50 a , so that outside air of the passenger compartment is introduced from the outside air introduction port 50 b .
  • the inside air introduction mode is set.
  • the outside air introduction mode is set.
  • an inside/outside air mixing mode can be set. In the inside/outside air mixing mode, both the inside air and the outside air are introduced.
  • an air outlet mode for the front right air conditioning zone and an air outlet mode for the front left air conditioning zone are respectively independently determined in accordance with the graph in FIG. 9 based on the TAOFrDr (TAO) and the TAOFrPa (TAO).
  • the air outlet mode for the air conditioning zone 1 a is automatically changed in this order of a face mode (FACE), a bi-level mode (B/L) and a foot mode (FOOT) as the TAOFrDr (TAO) increases.
  • the air outlet mode for the air conditioning zone 1 b is automatically changed in this order of the face mode (FACE), the bi-level mode (B/L) and the foot mode (FOOT) as the TAOFrPa (TAO) increases.
  • FACE face mode
  • B/L bi-level mode
  • FOOT foot mode
  • conditioned air is blown only from the face air outlet 2 a ( 2 b ) toward an upper side of a passenger on the front seat in the passenger compartment.
  • the foot mode the foot air outlet is fully opened so that conditioned air is blown only from the foot air outlet.
  • conditioned air is blown from both the face air outlet 2 a ( 2 b ) and the foot air outlet.
  • the servomotors of the air outlet port switching doors are controlled so that the determined air outlet mode is set for each air conditioning zone 1 a or 1 b.
  • a blower voltage applied to the blower motor 52 a is determined in accordance with control map shown in FIG. 10 , based on the average front target blowing-out temperature TAOFr (TAO) that is the average value between the TAOFrDr and the TAOFrPa.
  • TAO average front target blowing-out temperature
  • the blower voltage is set at a constant value so that the air amount blown from the blower 52 is set at a constant amount.
  • the blower voltage is set larger as the average front target blowing-out temperature TAOFr (TAO) becomes larger.
  • the blower voltage is set larger as the average front target blowing-out temperature TAOFr (TAO) becomes smaller.
  • step S 127 target open degrees ⁇ 1, ⁇ 2 of the air mix doors 55 a , 55 b are calculated in accordance with formula (3) and formula (4).
  • ⁇ 1 [( TAOFrDr ⁇ TeFr )/( Tw ⁇ TeFr )] ⁇ 100 (%)
  • ⁇ 2 [( TAOFrPa ⁇ TeFr )/( Tw ⁇ TeFr )] ⁇ 100 (%) (4)
  • TeFr is an evaporator air temperature detected by the evaporator temperature sensor 86
  • Tw is a water temperature detected by the water temperature sensor 82 .
  • the air mix doors 55 a , 55 b are operated at the maximum heating position so that all air after passing through the front evaporator 53 in the air passages 50 c , 50 d flows through the heater core 54 .
  • step S 128 the control signals of the blower voltage, the target open degrees ⁇ 1, ⁇ 2, the inside/outside air mode and the air outlet mode determined above are output to the servomotors 510 a , 550 a , 550 b , 560 a and 560 b and the blower motor 52 a , so as to control operation of the inside/outside air switching door 51 , the air mix doors 55 a , 55 b , the air outlet mode switching doors 56 a , 56 b and the blower 52 .
  • step S 129 After a predetermined time “t” passes at step S 129 , the control program returns to step S 121 , and the automatic control of the air conditioning zones 1 a , 1 b are performed by repeating the above control operation.
  • step S 221 in FIG. 7B rear right and left set temperature signals TsetRrDr, TsetRrPa from the temperature setting switch 11 , 12 are input.
  • step S 222 the outside air temperature signal Tam from the outside air temperature sensor 81 , solar radiation signals TsDr, TsPa from the solar radiation sensor 83 and an inside air temperature signal TrRr from the inside air temperature sensor 85 are input.
  • a rear right temperature Tiric and a rear left temperature Tir 1 d are input.
  • the rear right window surface temperature TirWRrDr, the rear right trim panel temperature TirINRrDr and the rear right passenger's temperature TirRrDr in formula (5) are calculated by using average calculations shown in formulas (6), (7) and (8).
  • TirWRrDr ( TDr 2+ TDr 3)/2 (6)
  • TirINRrDr ( TDr 6 +TDr 7)/2 (7)
  • TirRrDr ( TDr 9 +TDr 10 +TDr 11 +TDr 12 +TDr 13 +TDr 14+TDr15+ TDr 16)/8 (8)
  • thermoelectric couple portions Dr 2 , Dr 3 , Dr 6 , Dr 7 , Dr 9 , Dr 10 , Dr 11 , Dr 12 , Dr 13 , Dr 14 , Dr 15 and Dr 16 are detected temperatures of the thermoelectric couple portions Dr 2 , Dr 3 , Dr 6 , Dr 7 , Dr 9 , Dr 10 , Dr 11 , Dr 12 , Dr 13 , Dr 14 , Dr 15 and Dr 16 , respectively.
  • a rear right target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 c in the passenger compartment is calculated in accordance with the formula (9) by using the set temperature signal TsetRrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the inside air temperature signal TrRr.
  • the rear right target blowing-out temperature TAORrDr is a necessary target temperature for maintaining the temperature of the rear right air conditioning zone 1 c at the set temperature TsetRrDr.
  • KsetRrDr is a rear right temperature setting gain
  • KrRr is a rear inside air temperature gain
  • Kam is the outside air temperature gain
  • KsDr is a right solar radiation gain
  • CRrDr is a rear right correction constant
  • the rear left window surface temperature TirWRrPa, the rear left trim panel temperature TirINRrPa and the rear left passenger's temperature TirRrPa in formula (10) are calculated by using average calculations shown in formulas (11), (12) and (13).
  • TirWRrPa ( TPa 2 +TPa 3)/2 (11)
  • TirINRrPa ( TPa 6 +TPa 7)/2
  • TirRrPa ( TPa 9 +TPa 10 +TPa 11 +TPa 12 +TPa 13 +TPa 14 +TPa 15 +TPa 16)/8 (13)
  • a rear left target blowing-out temperature TAORrPa of air blown out to the air conditioning zone 1 d in the passenger compartment is calculated in accordance with the formula (14) by using the set temperature signal TsetRrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the inside air temperature signal TrRr.
  • the rear left target blowing-out temperature TAORrPa is a necessary target temperature for maintaining the temperature of the rear left air conditioning zone 1 d at the set temperature TsetRrPa.
  • KsetRrPa KsetRrPa ⁇ TsetRrPa ⁇ KirRrPa ⁇ Trir 1 d ⁇ KrRr ⁇ TrRr ⁇ KsPa ⁇ TsPa ⁇ Kam ⁇ Tam+CRrPa (14)
  • KsetRrPa is a rear right temperature setting gain
  • KrRr is the rear inside air temperature gain
  • Kam is the outside air temperature gain
  • KsPa is a left solar radiation gain
  • CRrPa is a rear left correction constant.
  • an air outlet mode for the rear right air conditioning zone 1 c and an air outlet mode for the rear left air conditioning zone 1 d are respectively independently determined in accordance with the graph in FIG. 9 based on the TAORrDr (TAO) and the TAORrPa (TAO).
  • the air outlet mode for the air conditioning zone 1 c is automatically changed in this order of a face mode (FACE), a bi-level mode (B/L) and a foot mode (FOOT) as the TAORrDr (TAO) increases.
  • the air outlet mode for the air conditioning zone 1 d is automatically changed in this order of the face mode (FACE), the bi-level mode (B/L) and the foot mode (FOOT) as the TAORrPa (TAO) increases.
  • the face air outlet 2 c ( 2 d ) is opened by the switching door 66 a ( 66 b ) so that conditioned air is blown only from the face air outlet 2 c ( 2 d ) toward an upper side of a passenger on the rear seat in the passenger compartment.
  • the foot air outlet is fully opened so that conditioned air is blown only from the rear foot air outlet toward the lower side of the passenger on the rear seat in the passenger compartment.
  • both the face air outlet 2 c ( 2 d ) and the foot air outlet are opened so that conditioned air is blown from both the face air outlet 2 c ( 2 d ) and the foot air outlet toward the upper and lower sides of the passenger on the rear seat in the passenger compartment.
  • a blower voltage applied to the blower motor 62 a is determined in accordance with control map shown in FIG. 10 , based on the average rear target blowing-out temperature TAORr (TAO) that is the average value between the TAORrDr and the TAORrPa.
  • TAO average rear target blowing-out temperature
  • the blower voltage is set at a constant value so that the air amount blown from the blower 62 is set at a constant amount.
  • the blower voltage is set larger as the average front target blowing-out temperature TAORr (TAO) becomes larger.
  • the blower voltage is set larger as the average front target blowing-out temperature TAORr (TAO) becomes smaller.
  • target open degrees ⁇ 3, ⁇ 4 of the air mix doors 65 a , 65 b are calculated in accordance with formula (15) and formula (16).
  • ⁇ 3 [( TAORrDr ⁇ TeRr )/( Tw ⁇ TeRr )] ⁇ 100 (%)
  • ⁇ 4 [( TAORrPa ⁇ TeRr )/( Tw ⁇ TeRr )] ⁇ 100 (%)
  • TeRr is an evaporator air temperature detected by the evaporator temperature sensor 87
  • Tw is the water temperature detected by the water temperature sensor 82 .
  • the air mix doors 65 a , 65 b are operated at the maximum heating position so that all air after passing through the rear evaporator 63 in the air passages 60 c , 60 d flows through the heater core 64 .
  • step S 228 the control signals of the blower voltage, the target open degrees ⁇ 3, ⁇ 4, the inside/outside air mode and the air outlet mode determined above are output to the servomotors 650 a , 650 b , 660 a and 660 b and the blower motor 62 a , so as to control operation of the air mix doors 65 a , 65 b , the air outlet mode switching doors 66 a , 66 b and the blower 62 .
  • step S 229 After a predetermined time “t” passes at step S 229 , the control program returns to step S 221 , and the automatic control of the air conditioning zones 1 c , 1 d are performed by repeating the above control operation.
  • the surface temperature of the rear seat passenger on the rear seat and the surface temperatures of the rear right and left windows and trim panels of the rear right and left doors are detected by the matrix IR sensors 70 a , 70 b which are arranged in the ceiling portion above the seat cushion portion and the seat back portions of the rear seat. Therefore, the shoulder portion and the thigh portion of the passenger on the rear seat can be stably detected without depending on the frame of the passenger's body.
  • the matrix IR sensors 70 a , 70 b are disposed in the ceiling portion above the right and rear left seats at right and rear left window sides, the matrix IR sensors 70 a , 70 b can easily detect the surface temperatures of the rear windows and the trim panels around the rear doors in the same detection range as the surface temperature of the passenger on the rear seat.
  • the influence of the side solar radiation from the rear right window is corrected by weighting calculation due to the rear right window surface temperature TirWRrDr and the rear right trim panel temperature TirINDr.
  • a temperature increase of the thigh portion of the rear seat passenger relative to the side solar radiation from the rear right window is also corrected. Accordingly, the influence of the solar radiation to the rear right passenger can be accurately estimated.
  • the influence of the side solar radiation from the rear left window is corrected by weighting calculation due to the rear left window surface temperature TirWRrPa and the rear left trim panel temperature TirINPa.
  • a temperature increase of the thigh portion of the rear seat passenger relative to the side solar radiation from the rear left window is also corrected. Accordingly, the influence of the solar radiation to the rear left passenger can be accurately estimated.
  • the second embodiment of the present invention of the present invention will be now described with reference to FIGS. 11-13 .
  • the structure of matrix sensors 70 a , 70 b that are a non-contact temperature sensor 70 is different from that of the above-described first embodiment.
  • the non-contact temperature sensor 70 of the second embodiment includes the right matrix IR sensor 70 a arranged to face toward the rear right passenger RrDr, and the left matrix IR sensor 70 b arranged to face toward the rear left passenger RrPa.
  • the right matrix IR sensor 70 a and the left matrix IR sensor 70 b are arranged on the ceiling portion adjacent to each other.
  • the matrix IR sensors 70 a , 70 b are contained in a single package (casing), and the package is arranged at a suitable position in the passenger compartment. Both the matrix IR sensors 70 a , 70 b have the same structure.
  • Infrared rays radiated from a detecting subject of a temperature detection range on the same sight of the rear right air conditioning zone 1 c , enters to the right matrix IR sensor 70 a through a right lens 71 e . Further, infrared rays, radiated from a detecting subject of a temperature detection range on the same sight of the rear left air conditioning zone 1 d , enters to the left Matrix IR sensor 70 b through the left lens 71 e.
  • the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at a center position Rc in the vehicle right-left direction within an area Lr 0 (see FIG. 1 ) between the front end of the seat cushion portion 30 of the rear seat and the seat back portion 31 of the rear seat. More preferably, the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at the center position Rc in the vehicle right-left direction in an area Lr 1 (see FIG. 1 ) between the front end of the seat cushion portion 30 of the rear seat and the rear end of the seat cushion portion 30 of the rear seat. Accordingly, the non-contact temperature sensor 70 is positioned to view the passengers on the rear right and left seats from an upper side of the passengers directly above the rear seat. Therefore, it can restrict positions of the shoulder portion and the thigh portions of the rear seat passengers from being offset from the temperature detection range of the right and left matrix IR sensors 70 a , 70 b.
  • a sensor chip 72 and the right lens 71 e of the right matrix IR sensor 70 a of the non-contact temperature sensor 70 are arranged to face to the rear right passenger and to be tilted to a right outside by a predetermined angle ⁇ relative to the center line A of FIG. 11 perpendicular to the vehicle right-left direction.
  • a sensor chip 72 and the left lens 71 e of the left matrix IR sensor 70 b of the non-contact temperature sensor 70 are arranged to face to the rear left passenger and to be tilted to a left outside by a predetermined angle ⁇ relative to the center line A of FIG. 11 perpendicular to the vehicle right-left direction. That is, the center line of the non-contact temperature sensor 70 is set to be substantially perpendicular to the vehicle front-rear direction.
  • infrared rays are entered in a range of the predetermined angle ⁇ (e.g., 70°) from the vicinities of the rear right passenger and the rear left passenger, with respect to the surface of the right sensor chip 72 of the right matrix IR sensor 70 a and the surface of the left sensor chip 72 of the left matrix IR sensor 70 b .
  • the surface of the right sensor chip 72 is the detection surface of the right matrix IR sensor 70 a
  • the surface of the left sensor chip 72 is the detection surface of the left matrix IR sensor 70 b.
  • each of the right matrix IR sensor 70 a and the left right matrix IR sensor 70 b is constructed with 16 temperature detection elements.
  • the 16 temperature detection elements include the infrared ray absorbing film 73 , and the thermoelectric couple portions Dr 1 -Dr 16 , Pa 1 -Pa 16 .
  • a sensor process circuit 71 f shown in FIG. 11 Electrical signals generated from the temperature detection elements of the right matrix IR sensor 70 a and the left matrix IR sensor 70 b are input to a sensor process circuit 71 f shown in FIG. 11 . As shown in FIG. 11 , the sensor process circuit 71 f is connected to an input side of the air conditioning ECU 8 through a connector 71 g.
  • FIG. 13 shows a temperature detection range 700 a of the right matrix IR sensor 70 in the non-contact temperature sensor 70 .
  • the 16 temperature detection elements of the right matrix IR sensor 70 a facing toward the rear right passenger RrDr are arranged in four rows and four lines.
  • the thermoelectric couple portions of the right matrix IR sensor 70 a are arranged in four lines of Dr 1 -Dr 4 , Dr 5 -Dr 8 , Dr 9 -Dr 12 and Dr 13 -Dr 16 in this order from the rightmost portion of the rear right window side to a center portion (inner side) in the vehicle right-left direction.
  • each line of the thermoelectric couple portions Dr 1 , Dr 2 , Dr 3 and Dr 4 are arranged in this order from a vehicle rear side to a vehicle front side, Dr 5 , Dr 6 , Dr 7 and Dr 8 are arranged in this order from the vehicle rear side to the vehicle front side, Dr 9 , Dr 10 , Dr 11 and Dr 12 are arranged in this order from the vehicle rear side to the vehicle front side, and Dr 13 , Dr 14 , Dr 15 and Dr 16 are arranged in this order from the vehicle rear side to the vehicle front side.
  • the temperature detection range 700 b of the left matrix IR sensor 70 b arranged to face the rear left passenger RrPa is set symmetrically to the temperature detection range 700 a of FIG. 13 , with respect to the center line in the vehicle right-left direction.
  • 16 temperature detection elements of the left matrix IR sensor 70 b facing toward the rear left passenger RrPa are arranged in four rows and four lines.
  • the thermoelectric couple portions are arranged in four lines of Pa 1 -Pa 4 , Pa 5 -Pa 8 , Pa 9 -Pa 12 and Pa 13 -Pa 16 in this order from the rightmost portion of the rear left window side to the center portion (inner side) in the vehicle right-left direction.
  • thermoelectric couple portions Dr 3 , Dr 4 positioned right side among the thermoelectric couple portions Dr 1 , Dr 2 , Dr 3 , Dr 4 .
  • thermoelectric couple portions Pa 3 , Pa 4 positioned at left side among the thermoelectric couple portions Pa 1 , Pa 2 , Pa 3 , Pa 4 .
  • temperatures TPa9-TPa16 corresponding to the surface temperature of the rear left passenger RrPa are detected by the eight thermoelectric couple portions Pa 9 -Pa 16 .
  • the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at the center position Rc so that the right and left matrix IR sensors 70 a , 70 b face toward the rear right and left passengers. Accordingly, even when the frame of the passenger body on the rear seat is changed, a position change of the shoulder portion and the thigh portion of the rear passenger in the temperature detection range 700 a , 700 b can be made smaller.
  • the sensor process circuit 71 f for processing the detection signals of both the right and left matrix IR sensors 70 a , 70 b is used in common for both the right and left matrix IR sensors 70 a , 70 b . Therefore, the structure of the non-contact temperature sensor 70 can be made simple.
  • the rear right and left window surface temperatures TirWRrDr, TirWRrPa, the trim panel surface temperatures TirINRrDr, TirINRrPa of the rear doors and the passenger's surface temperatures TirRrDr, TirRrPa are calculated as described above in formulas (17)-(19) and (20)-(22).
  • the other control operations are similar to those of the above-described first embodiment.
  • the matrix IR sensor 70 a , 70 b can be attached to the ceiling portion to be pointed downwardly such that a sight center line of the non-contact temperature sensor 70 including the right and left matrix IR sensors 70 a , 70 b is substantially perpendicular to the vehicle front-rear direction. More specifically, the slight center line of the matrix IR sensor 70 can be positioned in a range between a position shifted from the vertical direction to a vehicle front side by 2° to a position shifted from the vertical direction to a vehicle rear side by 2°.
  • the air conditioning control for each front air conditioning zone 1 a , 1 b is performed without using the detected surface temperature of the non-contact temperature sensor.
  • matrix IR sensors 70 c , 70 d having the same structure as the matrix IR sensors 70 a , 70 b of the first embodiment can be used for the air conditioning zones 1 a , 1 b .
  • an air conditioning control for the air conditioning zone 1 a and an air conditioning control for the air conditioning zone 1 b can be respectively independently performed by using the surface temperatures detected by the matrix IR sensors 70 c , 70 d.
  • the matrix IR sensor 70 c is disposed in the ceiling portion at a position Rcf above the front right passenger in a range Lf 0 , on a front right window side from the center portion of the front right seat.
  • the range Lf 0 is a range between the front end of the seat cushion portion 30 a , 30 b and the rear end of the seat back portion 31 a , 31 b of the front seat.
  • the matrix IR sensor 70 c is arranged in the ceiling portion in a range Lf 1 between the front end and the rear end of the seat cushion portion 30 a , 30 b of the front seat.
  • the matrix IR sensor 70 c readily detects the surface temperature of the passenger on the front right seat, the surface temperatures of the trim panel portion and window portion of the front right door. That is, the temperature detecting range 700 c of the matrix IR sensor 70 c readily contains the surface temperature of the passenger on the front right seat, the surface temperatures of the trim panel portion and window portion of the front right door.
  • the matrix IR sensor 70 d is disposed in the ceiling portion at a position Rdf above the front left passenger in the range Lf 0 , on a front left window side from the center portion of the front left seat. More preferably, the matrix IR sensor 70 d is arranged in the ceiling portion in the range Lf 1 (see FIG. 14 ). In this case, the matrix IR sensor 70 d readily detects the surface temperature of the passenger on the front left seat, the surface temperatures of the trim panel portion and window portion of the front left door. That is, the temperature detecting range 700 d of the matrix IR sensor 70 d readily contains the surface temperature of the passenger on the front left seat, the surface temperatures of the trim panel portion and window portion of the front left door.
  • thermoelectric couple portions of the front matrix IR sensors 70 c , 70 d are indicated by the same reference numbers Dr 1 -Dr 16 , Pa 1 -Pa 16 of the rear matrix IR sensors 70 a , 70 b indicated in FIGS. 5 and 6 of the above-described first embodiment.
  • front target blowing-out temperature TAOFrDr for the front air conditioning zone 1 a and the front target blowing-out temperature TAOFrPr for the front air conditioning zone 1 b are calculated similarly to the TAORrDr and TAORrPa of the above-described first embodiment.
  • the front right target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (23) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrRr and a front right surface temperature Tir 1 a of the matrix IR sensor 70 c .
  • the target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a at the set temperature TsetFrDr.
  • TAOFrDr KsetFrDr ⁇ TsetFrDr ⁇ KirFrDr ⁇ Tir 1 a ⁇ KrFr ⁇ TrFr ⁇ KsDr ⁇ TsDr ⁇ Kam ⁇ Tam+CFrDr (23) wherein, KsetFrDr is a front right temperature setting gain, KrFr is a front inside air temperature gain, Kam is the outside air temperature gain, KsDr is a right solar radiation gain, and CFrDr is a front right correction constant.
  • the front right surface temperature Tirla is calculated in accordance with the following formula (24) by using a front right window surface temperature TirWFrDr, a front right trim panel temperature TirINFrDr and a front right passenger's temperature TirFrDr.
  • Tir 1 a 0.2 ⁇ TirWFrDr+ 0.3 ⁇ TirINFrDr+ 0.5 ⁇ TirFrDr (24)
  • the front right window surface temperature TirWFrDr, the front right trim panel temperature TirINFrDr and the front right passenger's temperature TirFrDr can be calculated by using the average calculation shown in the formulas (17), (18) and (19).
  • the front left target blowing-out temperature TAOFrPr of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (25) by using the set temperature signal TsetFrPr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrFr and a front left surface temperature Tirlb of the matrix IR sensor 70 d .
  • the target blowing-out temperature TAOFrPr is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b at the set temperature TsetFrPr.
  • TAOFrPa KsetFrPa ⁇ TsetFrPa ⁇ KirFrPa ⁇ Tir 1 b ⁇ KrFr ⁇ TrFr ⁇ KsPa ⁇ TsPa ⁇ Kam ⁇ Tam+CFrPa (25) wherein, KsetFrPa is a front left temperature setting gain, KrFr is a front inside air temperature gain, Kam is the outside air temperature gain, KsPa is a left solar radiation gain, and CFrPa is a front left correction constant.
  • the front left surface temperature Tirlb is calculated in accordance with the following formula (26) by using a front left window surface temperature TirWFrPa, a front left trim panel temperature TirINFrPa and a front left passenger's temperature TirFrPa.
  • Tir 1 d 0.2 ⁇ TirWFrPa+ 0.3 ⁇ TirINFrPa+ 0.5 ⁇ TirFrPa (26)
  • the front left window surface temperature TirWFrPa, the front left trim panel temperature TirINFrPa and the front left passenger's temperature TirFrPa can be calculated by using the average calculation shown in the formulas (20), (21) and (22).
  • the other front air conditioning controls using the front target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • the temperatures of the driver and front passenger on the front seats and the temperatures of the trim panels and windows of the front right and left doors are detected, and the target air temperatures for the air conditioning zones 1 a , 1 b are calculated to consider both the passenger's temperatures and the solar radiation. Therefore, comfortable air conditioning can be provided for each of the air conditioning zones 1 a , 1 b.
  • the rear air conditioning operation is similar to that of the above-described first embodiment.
  • FIGS. 16A and 16B The fourth embodiment of the present invention will be now described with reference to FIGS. 16A and 16B .
  • the air conditioning control for each air conditioning zone 1 a , 1 b is performed without using the detected surface temperature of the non-contact sensor.
  • a non-contact temperature sensor 70 f having the same structure as the non-contact temperature sensor 70 of the second embodiment can be used for the air conditioning zones 1 a , 1 b .
  • an air conditioning control for the air conditioning zone 1 a and an air conditioning control for the air conditioning zone 1 b can be respectively independently performed by using the surface temperature detected by the non-contact temperature sensor 70 f.
  • the non-contact temperature sensor 70 f is disposed in the ceiling portion at a center position Rcf in the vehicle right-left direction on a vehicle front seat side within the range Lf 0 . More preferably, the non-sensor 70 f is arranged in the ceiling portion in the range Lf 1 between the front end and the rear end of the seat cushion portion 30 a , 30 b . In this case, the non-contact temperature sensor 70 f readily detects the surface temperature of the passenger on each front seat, the surface temperatures of the trim panel portion and window portion of the front door, similarly to the above-described second embodiment.
  • the non-contact temperature sensor 70 f has right and left matrix IR sensors 70 a , 70 b , similarly to those of non-contact temperature sensor 70 of the above-described second embodiment. Therefore, the temperature detection range 700 a of the front right matrix IR sensor 70 a of the non-contact temperature sensor 70 f readily contains the shoulder portion and the thigh portion of the driver on the front right seat, the surface temperatures of trim panel portion and window portion of the front right door. Similarly, the temperature detection range 700 b of the front left matrix IR sensor 70 b of the non-contact temperature sensor 70 f readily contains the shoulder portion and the thigh portion of the front passenger on the front left seat, the surface temperatures of trim panel portion and window portion of the front left door.
  • thermoelectric couple portions of the front matrix IR sensors 70 a , 70 b of the non-contact temperature sensor 70 f are indicated by the same reference numbers Dr 1 -Dr 16 , Pa 1 -Pa 16 of the rear matrix IR sensors 70 a , 70 b of the non-contact temperature sensor 70 of the above-described second embodiment.
  • front target blowing-out temperature TAOFrDr for the front air conditioning zone 1 a and the front target blowing-out temperature TAOFrPr for the front air conditioning zone 1 b are calculated similarly to the TAORrDr and TAORrPa of the above-described second embodiment.
  • the target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (23) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrRr and a front right surface temperature Tir 1 a of the matrix IR sensor 70 a of the non-contact temperature sensor 70 f .
  • the target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a at the set temperature TsetFrDr.
  • the target blowing-out temperature TAOFrPr of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (25) by using the set temperature signal TsetFrPr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrFr and a front left surface temperature Tir 1 b of the matrix IR sensor 70 b of the non-contact temperature sensor 70 f .
  • the target blowing-out temperature TAOFrPr is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b at the set temperature TsetFrPr.
  • the other front air conditioning controls using the front target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • the temperatures of the driver and front passenger on the front seats and the temperatures of the trim panels and windows of the front right and left doors are detected by using the non-contact temperature sensor 70 f , and the target air temperatures for the air conditioning zones 1 a , 1 b are calculated to consider both the passenger's temperatures and the solar radiation. Therefore, comfortable air conditioning can be provided for each of the air conditioning zones 1 a , 1 b.
  • the rear air conditioning operation is same as the that of the above-described second embodiment.
  • the front air conditioning control is performed without using a surface temperature detected by the non-contact temperature sensor.
  • the front right and left air conditioning controls are performed also using surface temperature detected by a non-contact temperature sensor.
  • IR sensors 70 a , 70 b , 70 c and 70 d used as the non-contact temperature sensors are disposed to detect the surface temperatures of the air conditioning zones 1 a - 1 d .
  • the non-contact temperature sensor 70 a is disposed to detect the surface temperature of the rear right air conditioning zone 1 c
  • the non-contact temperature sensor 70 b is disposed to detect the surface temperature of the rear left air conditioning zone 1 d
  • the non-contact temperature sensor 70 c is disposed to detect the surface temperature of the front right air conditioning zone 1 a
  • the non-contact temperature sensor 70 d is disposed to detect the surface temperature of the front left air conditioning zone 1 b.
  • each of the IR sensors 70 a - 70 d has the same structure shown in FIGS. 18 and 19 .
  • each of the IR sensors 70 a - 70 b includes a square detection portion 71 a (detection element) disposed on a substrate 71 c .
  • the detection portion 71 a is disposed to detect infrared rays and is covered by a cup-shaped case 71 b .
  • a square window 71 d is provided in a bottom portion of the case 71 b
  • a cover 71 e is provided in the window 71 d .
  • the detection portion 71 a is disposed to be separated from the window 71 d by a suitable distance S so that a temperature detecting angle ⁇ (sight angle) can be adjusted. Accordingly, the temperature detection range (sight range) of each IR sensor 70 a , 70 b , 70 c , 70 d can be set to a predetermined shape by adjusting the shape of the window 71 d and the distance S.
  • L 1 indicates a length of the temperature detection portion 71 c
  • L 2 is a length of the window 71 d.
  • FIGS. 20A and 20B show the arrangement positions of the IR sensors 70 a - 70 d .
  • the IR sensors 70 a - 70 d are arranged in the ceiling portion at window sides more than position centers (body centers of passengers) of the seats in the air conditioning zones 1 a - 1 d .
  • the IR sensors 70 a , 70 b are disposed in the ceiling portion above the area Lr 0 between the front end of the seat cushion portion 30 c , 30 d and the rear end of the seat back portion 31 c , 31 d .
  • the IR sensors 70 a , 70 b are disposed in the ceiling portion above the area Lr 1 between the front end of the seat cushion portion 30 c , 30 d and the rear end of the seat cushion portion 30 c , 30 d .
  • the IR sensors 70 c , 70 d are disposed in the ceiling portion above an area Lf 0 between the front end of the seat cushion portion 30 a , 30 b and the rear end of the seat back portion 31 a , 31 b .
  • the IR sensors 70 c , 70 d are disposed in the ceiling portion above the area Lf 1 between the front end of the seat cushion portion 30 a , 30 b and the rear end of the seat cushion portion 30 a , 30 b.
  • the IR sensors 70 a - 70 d are arranged so that each of the temperature detection ranges (sight ranges) 700 a - 700 d of the IR sensors 70 a - 70 d faces toward the upper surface of the shoulder portion of a passenger on the window side.
  • FIG. 21 is an example showing the sight range (temperature detection range) of the rear right IR sensor 70 a .
  • the upper portion of the rear right shoulder portion of the rear right passenger adjacent to the rear right window is mainly contained in the temperature detection range of the rear right IR sensor 70 a.
  • each of the IR sensors 70 a - 70 d is disposed to view the shoulder portion adjacent to the side window from the vehicle ceiling portion downwardly in a vertical direction. Accordingly, even when the position of the shoulder portion of the passenger is changed in the vertical direction due to a change of the seated height or the posture of the passenger, it can restrict the shoulder portion of the passenger from being offset from the temperature detection range. Thus, the surface temperature of the shoulder portion of the passenger on each seat can be stably detected.
  • detected surface temperatures of the IR sensors 70 a - 70 d are also input to the air conditioning ECU 8 .
  • the target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (27) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the surface temperature signal TirFrDr.
  • the target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a (driver's seat air conditioning zone) at the set temperature TsetFrDr.
  • the surface temperature signal TirFrDr is sent from the IR sensor 70 c (non-contact temperature sensor).
  • the CFrDr is set to be corrected based on the graph of FIG. 22 .
  • the correction constant is set so that the target air temperature TAO becomes lower as the outside air temperature Tam increases.
  • the target blowing-out temperature TAOFrPa of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (28) by using the set temperature signal TsetFrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the surface temperature signal TirFrPa.
  • the target blowing-out temperature TAOFrPa is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b (front passenger's seat air conditioning zone) at the set temperature TsetFrPa.
  • the surface temperature signal TirFrPa is sent from the IR sensor 70 d (non-contact temperature sensor).
  • KsetFrPa KsetFrPa ⁇ TsetFrPa ⁇ KirFrPa ⁇ TirFrPa ⁇ Kam ⁇ Tam ⁇ KsPa ⁇ TsPa+CFrPa
  • CFrPa is a front left correction constant.
  • the CFrPa is also set to be corrected based on the graph of FIG. 22 .
  • the other front air-conditioning control operations using the target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • the target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 c in the passenger compartment is calculated in accordance with the formula (29) by using the set temperature signal TsetRrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the surface temperature signal TirRrDr.
  • the target blowing-out temperature TAORrDr is a necessary target temperature for maintaining the temperature of the rear right air conditioning zone 1 c at the set temperature TsetRrDr.
  • the surface temperature signal TirRrDr is sent from the IR sensor 70 a (non-contact temperature sensor).
  • CRrDr is a rear right correction constant.
  • the CRrDr is set to be corrected based on the graph of FIG. 22 .
  • the target blowing-out temperature TAORrPa of air blown out to the air conditioning zone 1 d in the passenger compartment is calculated in accordance with the formula (30) by using the set temperature signal TsetRrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the surface temperature signal TirRrPa.
  • the target blowing-out temperature TAORrPa is a necessary target temperature for maintaining the temperature of the rear left air conditioning zone 1 d at the set temperature TsetRrPa.
  • the surface temperature signal TirRrPa is sent from the IR sensor 70 b (non-contact temperature sensor).
  • CRrPa is a rear left correction constant.
  • the CRrPa is also set to be corrected based on the graph of FIG. 22 .
  • the IR sensor 70 c is arranged above the right-window side shoulder portion of the passenger on the front right seat, and the IR sensor 70 d is arranged above the left-window side shoulder portion of the passenger on the front left seat, the IR sensor 70 a is arranged above the right-window side shoulder portion of the passenger on the rear right seat, the IR sensor 70 d is arranged above the left-window side shoulder portion of the passenger on the rear left seat. Accordingly, even if the shoulder position of the passenger is changed in the vertical direction, it can restrict the upper portion of the passenger's shoulder portion of the temperature detecting object from being offset from the temperature detection range of each IR sensor 70 a - 70 d . Therefore, the temperature of the shoulder portion of the passenger can be accurately detected.
  • the target blowing-out temperature of air to be blown to the passenger compartment is calculated using the detected temperatures of the IR sensors 70 a - 70 d , and is corrected by estimating a clothing amount of each passenger in accordance with the outside air temperature Tam. Therefore, air conditioning operation comfortable for each passenger in the passenger compartment can be performed.
  • the temperature detection range 700 a to be detected is fixed and is divided by 16 ranges Dr 1 -Dr 16 .
  • the temperature detection range 700 a to be detected can be expanded and can be divided into Dr 1 -Dr 16 and DrE 1 -DrE 4 in accordance with seat positions detected by the seat position detection units 1 ap , 1 bp , 1 cp (see FIG. 2 ).
  • the air conditioning control is performed in accordance with the ranges Dr 1 -Dr 16 of the temperature detection range 700 a .
  • the temperature detection range 700 a is shifted to the vehicle rear side so that air conditioning control is performed by also using the ranges DrE 1 -DrE 4 as the temperature detection range 700 a.
  • FIG. 24 shows a control process for determining a using area of the temperature detection range 700 a when the seat (e.g., rear right seat) is shifted in a vehicle front-rear direction from the normal position.
  • the seat e.g., rear right seat
  • air conditioning control is performed using the general ranges Dr 1 -Dr 16 of the temperature detection range 700 a at step S 310 .
  • the ranges DrE 1 , DrE 2 , DrE 3 and DrE 4 are used instead of the ranges Dr 4 , Dr 8 , Dr 12 and Dr 16 in the temperature detection range 700 a . That is, the temperature detection range to be used in the air conditioning control can be selected in accordance with the seat position in the vehicle front-rear direction.
  • the temperature detection range 700 b , 700 c , 700 d can be shifted in accordance with the seat position in the vehicle front-rear direction.
  • the matrix IR sensors 70 a , 70 b , 70 c , 70 d each having plural thermoelectric couple portions arranged in the matrix shape are used as the non-contact temperature sensor.
  • a non-contact temperature sensor having a single temperature detection element can be used.
  • the passage of the infrared rays can be scanned in the second dimension along the temperature detection range.
  • the structure of the non-contact temperature sensor described in JP-9-159531 can be used.
  • a passenger's seating state such as a presence or an absence of a passenger, and a passenger's position can be determined based on a temperature distribution of the temperature detection range of the IR sensor 70 a , 70 b , 70 c , 70 d . Further, this determination can be also used in other devices except to the air conditioning device.
  • the IR sensor 70 a , 70 b , 70 c , 70 d (non-contact temperature sensors) is arranged in the ceiling portion above the shoulder portion on the side-window side of each passenger.
  • the arrangement position of each IR sensor 70 a , 70 b , 70 c , 70 d can be changed. Even when the arrangement position of each IR sensor 70 a is changed, the other parts can be made similarly to those of the above-described fifth embodiment.
  • each of the IR sensors 70 a - 70 d can be arranged in the ceiling portion on a side of the side window from a center portion of a passenger on each seat in the vehicle width direction, at a vehicle front side from the center portion of the passenger on each seat.
  • the IR sensor 70 a , 70 b , 70 c , 70 d detects the passenger slanting-downwardly from the vehicle front side. Accordingly, even when the position of the shoulder portion of the passenger in the vertical direction is changed, the temperature of the upper portion of the shoulder portion of the passenger can be accurately detected without being offset from the temperature detection range 700 a , 700 b , 700 c , 700 d.
  • each of the IR sensors 70 a - 70 d can be arranged in the ceiling portion on the side of the side window from a center portion of a passenger on each seat in the vehicle width direction, at a vehicle rear side from the center portion of the passenger on each seat.
  • the IR sensor 70 a , 70 b , 70 c , 70 d detects the passenger slanting-downwardly from the vehicle rear side. Accordingly, even when the position of the shoulder portion of the passenger in the vertical direction is changed, the temperature of the upper portion of the shoulder portion of the passenger can be accurately detected without being offset from the temperature detection range 700 a , 700 b , 700 c , 700 d .
  • the IR sensor 70 a , 70 b , 70 c , 70 d is positioned to be separated from the sight range of the passenger. Therefore, a passenger's feeling to be watched by the sensor 70 a , 70 b , 70 c , 70 d can be removed.
  • the temperature detection range 700 a , 700 b , 700 c , 700 d of the IR sensor 70 a , 70 b , 70 c , 70 d can be made to include not only the upper portion of the shoulder portion of the passenger but also the trim panel and the side window.
  • the temperature detection range 700 a , 700 b , 700 c , 700 d of the IR sensor 70 a , 70 b , 70 c , 70 d can be arranged at an end side of the face portion of the passenger to not include the face portion of the passenger. Accordingly, the temperature of the passenger can be stably detected without being affected by an individual difference of the passenger' face portion, such as the here state and here length.
  • the temperature detection range (i.e., sight range) of the IR sensor 70 a , 70 b , 70 c , 70 d becomes larger.
  • the sight direction of the IR sensors 70 a , 70 b , 70 c , 70 d can be set to be tilted toward the side window.
  • the target blowing-out temperature can be calculated in accordance with the passenger's temperature and the temperature of the trim panel.
  • the temperature detection range 700 a , 700 b , 700 c , 700 d of the IR sensor 70 a , 70 b , 70 c , 70 d can be set to include not only the shoulder portion of the passenger but also the trim portion and the window portion of the side door, as shown in FIGS. 28A and 28B .

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

In a vehicle air conditioner, a non-contact temperature sensor is used as a temperature detecting device. The non-contact temperature sensor has a plurality of temperature detection elements for detecting surface temperatures of a plurality of temperature detection ranges in a vicinity of at least one of seats of a passenger compartment in non-contact. The non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the one seat in a vehicle front-rear direction. Accordingly, even when the size and seated height of the passenger are changed, the temperature detection ranges can contain the passenger, and a passenger's temperature can be stably detected by using the non-contact temperature sensor.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is based on Japanese Patent Applications No. 2003-379551 filed on Nov. 10, 2003, and No. 2004-120337 filed on Apr. 15, 2004, the disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a temperature detection device and a vehicle air conditioner having a non-contact temperature sensor which detects a surface temperature of a passenger of a passenger compartment in non-contact. More particularly, the present invention relates to a vehicle air conditioner which controls an air conditioning state in the passenger compartment in accordance with the surface temperature detected by the non-contact temperature sensor.
  • BACKGROUND OF THE INVENTION
  • In a conventional air conditioning system described in U.S. Pat. No. 6,550,686, a matrix IR sensor is arranged in a passenger compartment to detect a temperature distribution on the face portion of a driver or a passenger. However, in this system, because the matrix IR sensor is attached to a ceiling portion around a rearview mirror, the surface temperature of the passenger is slantingly detected from a front upper side. In this case, a temperature detection range of the IR matrix sensor may be offset from a passenger's area to be detected.
  • In a system described in JP-A-2-158412, a rear IR sensor used as a non-contact temperature sensor is disposed at a back portion of a front seat to detect a surface temperature of a passenger on a rear seat. However, in this case, the rear IR sensor may not stably detect the surface temperature of the passenger on the rear seat in accordance with a front seat position or the passenger's seating position on the rear seat.
  • SUMMARY OF THE INVENTION
  • In view of the above-described problems, it is an object of the present invention to provide a temperature detection device and a vehicle air conditioner having a non-contact temperature sensor (IR sensor), which can prevent a target object to be temperature-detected from being shifted from a temperature detection range of the non-contact temperature sensor.
  • It is another object of the present invention to provide a temperature detection device and a vehicle air conditioner having a non-contact temperature sensor which can stably detect a surface temperature of a passenger regardless a seat position or a passenger's seating position.
  • According to the present invention, a temperature detection device for a vehicle air conditioner includes a non-contact temperature sensor having a plurality of temperature detection elements for detecting surface temperatures of a plurality of temperature detection ranges in a vicinity of at least one of seats of a passenger compartment in non-contact. Generally, the non-contact temperature sensor is disposed to detect a surface temperature of a passenger seated on the one seat and to send a detected temperature signal to the air conditioner. In the temperature detection device, the non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the one seat in a vehicle front-rear direction. That is, the arrangement area of the non-contact temperature sensor on the ceiling portion is a vertically projecting area of the one seat between the front end and the rear end in the vehicle front-rear direction. Accordingly, the temperature detection elements of the non-contact temperature sensor detect the surface temperature downwardly from a direct upper side of the passenger. Thus, a position change of the shoulder portion and the thigh port of the passenger on the temperature detection range of the non-contact temperature sensor can be made smaller. As a result, each position of the passenger can be stably detected by using the non-contact temperature sensor.
  • Preferably, the arrangement area is an area of the ceiling portion between a frontmost end of a seat cushion portion of the one seat to a rearmost end of a seat back portion of the one seat, and the non-contact temperature sensor has a sight center line that is substantially perpendicular to the vehicle front-rear direction. Generally, the sight center line of the non-contact temperature sensor is in a range −2° and +2° of a vertical line perpendicular to the front-rear direction.
  • More preferably, the arrangement area is an area of the ceiling portion between a frontmost end and a rearmost end of the seat cushion portion of the one seat. In this case, because the non-contact temperature sensor views the passenger on the seat downwardly from a direct upper side of the passenger, the temperature detection ranges of the non-contact temperature sensor readily contain the passenger on the one seat.
  • For example, the temperature detection elements of the non-contact temperature sensor are arranged to detect surface temperatures of at least the shoulder portion and the thigh portion of the passenger on the one seat. Alternatively, the temperature detection elements of the non-contact temperature sensor are arranged to detect a surface temperature of a passenger on the one seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window.
  • The one seat can be a front seat having right and left seat portions or a rear seat having right and left seat portions in the passenger compartment. In this case, the non-contact temperature sensor includes a right matrix IR sensor having a plurality of right temperature detection elements which are arranged such that temperature detection ranges of the right temperature detection elements include at least a passenger on the right seat portion of the one seat, and a left matrix IR sensor having a plurality of left temperature detection elements which are arranged such that temperature detection ranges of the left temperature detection elements include at least a passenger on the left seat portion of the one seat. More preferably, the right matrix IR sensor is provided in the ceiling portion above the right seat portion, and the left matrix IR sensor is provided in the ceiling portion above the left seat portion. Still more preferably, the right matrix IR sensor is provided in the ceiling portion at a position shifted from a center of the right seat portion to a side window adjacent to the right seat portion in a vehicle width direction.
  • Further, the right matrix IR sensor can be provided in the ceiling portion above a seat cushion portion of the right seat portion, and the left matrix IR sensor can be provided in the ceiling portion above a seat cushion portion of the left seat portion. Alternatively, the right matrix IR sensor and the left matrix IR sensor can be arranged in the ceiling portion adjacent to each other in an approximate center position in the vehicle width direction.
  • When the temperature detection device is used for a vehicle air conditioner including an air conditioning unit which adjusts an air conditioning state in the passenger compartment and a control unit for controlling operation of the air conditioning unit, the control unit calculates a target temperature of air to be blown into the passenger compartment based on the surface temperature of a passenger detected by the non-contact temperature sensor, and controls the air conditioning unit based on the target temperature. In this case, an air conditioning operation comfortable to the passenger can be performed.
  • More preferably, the control unit calculates a passenger's temperature on the one seat by a weighting calculation of the surface temperature of the passenger on the seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window, which are detected by the non-contact temperature sensor. Further, the control unit calculates the target temperature based on the passenger's temperature obtained by the weighting calculation. Therefore, the target temperature, in which the solar radiation reflected to the passenger from the side window is also considered, can be calculated, and comfortable air-conditioning can be provided.
  • More preferably, the weighting calculation has a first weighting coefficient relative to the surface temperature of the passenger, a second weighting coefficient relative to the surface temperature of the side window, and a third weighting coefficient relative to the surface temperature of the trim panel. In this case, the first weighting coefficient is the largest value among the first, second and third weighting coefficients, and the second coefficient is the smallest value among the first, second and third weighting coefficients.
  • According to the present invention, the non-contact temperature sensor is provided above a passenger's seating position of the one seat at a side of a side window adjacent to the passenger's seating position from a center of the passenger's seating position, the non-contact temperature sensor has a predetermined temperature detection range which includes at least an upper portion of the shoulder of the passenger on the side of the side window, and the air conditioner has a control unit which controls an air conditioning state of the passenger compartment based on the temperature detected by the non-contact temperature sensor. Here, the shoulder portion includes the portion of the clavicle on the front of the body and the portion of the scapula on the rear of the body. Accordingly, the surface temperature of the passenger can be stably detected regardless a seat position or a passenger's seating position.
  • In this case, the non-contact temperature sensor can be provided above the passenger's seating position of the one seat at a front side in the passenger's seating position. Alternatively, the non-contact temperature sensor can be provided above the passenger's seating position of the one seat at a rear side in the passenger's seating position.
  • Further, the temperature detection range of the non-contact temperature sensor can include the upper portion of the shoulder adjacent to the side window and a trim panel portion around the side window. Alternatively, the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder adjacent to the side window and the side window. Alternatively, the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder at a side end of the face portion of the passenger. That is, the temperature detection range of the non-contact temperature sensor is set to include the upper portion of the shoulder while without including the face portion of the passenger.
  • Preferably, the temperature detection ranges to be used are shifted in accordance with positions of the seats in the vehicle front-rear direction. Accordingly, even when the seat positions are shifted in the vehicle front-rear direction, the surface temperature of the passenger can be always stably detected.
  • Further, the present invention can be suitably used for an air conditioner having an air conditioning unit for respectively independently adjusting air conditioning states of first and second air conditioning zones positioned at right and left sides of a front seat in the passenger compartment, and third and fourth air conditioning zones positioned at right and left sides of a rear seat in the passenger compartment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic diagram showing an air blowing-out port arrangement and a seat arrangement in a passenger compartment according to a first embodiment of the present invention;
  • FIG. 2 is a schematic diagram showing an entire structure of a vehicle air conditioner according to the first embodiment;
  • FIG. 3 is a view showing a structure of a matrix IR sensor (non-contact temperature sensor) according to the first embodiment;
  • FIGS. 4A and 4B are a side view and a top view showing arrangement positions of right and left matrix IR sensors, according to the first embodiment;
  • FIGS. 5A and 5B are schematic diagrams showing temperature detection ranges of the right and left matrix IR sensors, according to the first embodiment;
  • FIG. 6 is a view showing the temperature detection range of the right matrix IR sensor, according to the first embodiment;
  • FIG. 7A is a flow diagram for performing a front air conditioning control of an air conditioning controller, and FIG. 7B is a flow diagram for performing a rear air conditioning control of the air conditioning controller;
  • FIG. 8 is a graph showing a control map for determining an inside/outside air introduction mode in the front air conditioning control in FIG. 7A;
  • FIG. 9 is a graph showing a control map for determining an air outlet mode in the front air conditioning control in FIG. 7A and in the rear air conditioning control in FIG. 7B;
  • FIG. 10 is a graph showing a control map for determining a blower voltage in the front air conditioning control in FIG. 7A and in the rear air conditioning control in FIG. 7B;
  • FIG. 11 is a schematic diagram showing a non-contact temperature sensor having right and left matrix IR sensors according to a second embodiment of the present invention;
  • FIGS. 12A and 12B are a side view and a top view showing an arrangement position of the non-contact temperature sensor having the right and left matrix IR sensors, according to the second embodiment;
  • FIG. 13 is a view showing the temperature detection range of the right matrix IR sensor, according to the second embodiment;
  • FIG. 14 is a schematic diagram for explaining arrangement areas of matrix IR sensors, according to a third preferred embodiment of the present invention;
  • FIGS. 15A and 15B are a side view and a top view showing arrangement positions of the matrix IR sensors, according to the third embodiment;
  • FIGS. 16A and 16B are a side view and a top view showing arrangement positions of front and rear non-contact temperature sensors each having right and left matrix IR sensors, according to a fourth preferred embodiment of the present invention;
  • FIG. 17 is a schematic diagram showing an entire structure of a vehicle air conditioner according to a fifth embodiment of the present invention;
  • FIG. 18 is a disassembled perspective view showing a structure of an IR sensor (non-contact temperature sensor) according to the fifth embodiment;
  • FIG. 19 is a schematic cross-sectional view showing the non-contact temperature sensor according to the fifth embodiment;
  • FIGS. 20A and 20B are a top view and a side view showing arrangement positions of the non-contact temperature sensors according to the fifth embodiment;
  • FIG. 21 is a schematic perspective view showing an example of a temperature detection range of the non-contact temperature sensor according to the fifth embodiment;
  • FIG. 22 is a graph showing a correction map of correction coefficients (CFrDr, CFrPa, CRrDr, CRrPa) in accordance with an outside air temperature (Tam), according to the fifth embodiment;
  • FIG. 23 is a view showing a shifted temperature detection range of a non-contact temperature sensor according to a modification of the present invention;
  • FIG. 24 is a flow diagram showing a control operation for selecting temperature detection areas in accordance with a seat position in a vehicle front-rear direction, according to the modification;
  • FIGS. 25A and 25B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to another modification of the fifth embodiment;
  • FIGS. 26A and 26B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment;
  • FIGS. 27A and 27B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment; and
  • FIGS. 28A and 28B are a top view and a side view showing arrangement positions of non-contact temperature sensors according to a further another modification of the fifth embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • (First Embodiment)
  • The first embodiment of the present invention will be now described with reference to FIGS. 1-10. In the first embodiment, the present invention is typically applied to an air conditioner for a vehicle for independently controlling each of air-conditioning operations of air conditioning zones 1 a, 1 b, 1 c, 1 d located leftward and rightward on the front seat side and located leftward and rightward on the rear seat side within a vehicle compartment interior 1 (passenger compartment).
  • FIG. 1 is a schematic diagram showing the arrangement of the air conditioning zones 1 a, 1 b, 1 c, 1 d. The air conditioning zone 1 a is located on the right-hand side in the front seat air conditioning zone. The air conditioning zone 1 b is located on the left-hand side in the front seat air conditioning zone. The air conditioning zone 1 c is located on the right-hand side in the rear seat air conditioning zone. The air conditioning zone 1 d is located on the left-hand side in the rear seat air conditioning zone. The arrows of FIG. 1 show front, rear, left and right directions of the vehicle. FIGS. 1 and 2 show a vehicle state having a right steering wheel. Therefore, the air conditioning zone 1 a is a driver's seat side zone, and the air conditioning zone 1 b is a front-passenger's seat side zone. A front right seat 1 as, a front left seat 1 bs, a rear right seat 1 cs and a rear left seat 1 ds are placed in the air conditioning zones 1 a, 1 b, 1 c and 1 d, respectively.
  • Further, in FIG. 1, Lr0 indicates a rear seat moving range in a vehicle front-rear direction (vehicle forward-backward direction). Seat position adjusting mechanisms are provided in the front right seat 1 as and the front left seat 1 bs to change seat positions in a accordance with a passenger's frame. In addition, as shown in FIG. 2, seat position detection units 1 ap, 1 bp and 1 cp are disposed to detect fixed positions of the seats 1 as, 1 bs, 1 cs and 1 ds after being moved.
  • As shown in FIG. 1, the rear seat includes a seat cushion portion 30 for supporting the buttock portion of the passenger on the rear seat, and a seat back portion 31 for supporting the back portion of the passenger on the rear seat. The seat cushion portion 30 contacting the buttock portion of the passenger includes right and left seat cushions 30 c, 30 d, and the seat back portion 31 contacting the back portion of the passenger includes right and left seat backs 31 c, 31 d.
  • FIG. 2 is an entire constructional view showing the entire construction of the vehicle air conditioner in this embodiment. This vehicle air conditioner is constructed with a front seat air conditioning unit 5 for respectively independently air-conditioning the air conditioning zones 1 a, 1 b, and a rear seat air conditioning unit 6 for respectively independently air-conditioning the air conditioning zones 1 c, 1 d.
  • The front seat air conditioning unit 5 is arranged inside an instrument panel 7 (dashboard). The rear seat air conditioning unit 6 is arranged most backward in the passenger compartment 1. The front seat air conditioning unit 5 has a duct 50 for sending and blowing air to the passenger compartment 1. An inside air introducing inlet 50 a for introducing inside air (i.e., air inside the passenger compartment) from the passenger compartment 1 and an outside air introducing inlet 50 b for introducing outside air (i.e., air outside the passenger compartment) from the vehicle compartment exterior are provided in this duct 50.
  • Further, an inside-outside air switching door 51 for selectively opening and closing the outside air introducing inlet 50 b and the inside air introducing inlet 50 a is arranged in the duct 50. A servo motor 510 a as a driving means is connected to this inside-outside air switching door 51.
  • Further, a centrifugal type blower 52 for generating an air flow toward the passenger compartment 1 is arranged on an air downstream side of the outside air introducing inlet 50 b and the inside air introducing inlet 50 a within the duct 50. The centrifugal type blower 52 is constructed with a vane wheel and a blower motor 52 a for rotating this vane wheel. In FIG. 2, an axial vane wheel is indicated to simplify the drawing. However, actually, a centrifugal vane wheel is used in the blower 52.
  • Furthermore, an evaporator 53 as an air cooling means for cooling the air is arranged on an air downstream side of the centrifugal type blower 52 within the duct 50. A heater core 54 as an air heating means is arranged on an air downstream side of this evaporator 53 within the duct 50.
  • A partition plate 57 is arranged on an air downstream side of the evaporator 53 within the duct 50. This partition plate 57 partitions the interior of the duct 50 into a driver seat side passage 50 c and an assistant driver seat side passage 50 d (front-passenger's seat side passage).
  • Here, a bypass passage 51 a is formed on a one side of the heater core 54 in the driver seat side passage 50 c. Through the bypass passage 51 a, cool air cooled by the evaporator 53 bypasses the heater core 54 in the driver seat side passage 50 c.
  • A bypass passage 51 b is formed on the other side of the heater core 54 in the assistant driver seat side passage 50 d. Through the bypass passage 51 b, cool air cooled by the evaporator 53 bypasses the heater core 54 in the assistant driver seat side passage 50 d.
  • Air mix doors 55 a, 55 b are arranged on an air upstream side of the heater core 54. The air mix door 55 a adjusts the ratio of an air amount passing through the heater core 54 and an amount passing through the bypass passage 51 a in the driver seat side passage 50 c, in accordance with an open degree of the air mix door 55 a. Therefore, conditioned air to be blown to the front right side air-conditioning zone 1 a can be adjusted.
  • Further, the air mix door 55 b adjusts the ratio of an air amount passing the heater core 54 and an air amount passing the bypass passage 51 b in the assistant driver seat side passage 50 d, in accordance with an open degree of the air mix door 55 b. Therefore, conditioned air to be blown to the front left side air-conditioning zone 1 a can be adjusted.
  • Here, servo motors 550 a, 550 b as driving means are respectively connected to the air mix doors 55 a, 55 b. The open degrees of the air mix doors 55 a, 55 b are respectively adjusted by the servo motors 550 a, 550 b.
  • Further, the evaporator 53 is a cooling heat exchanger constituting a well-known refrigerating cycle together with a compressor, a condenser, a liquid receiver and a pressure reducing device that are unillustrated. In the evaporator 53, low-pressure refrigerant is evaporated by absorbing heat from an evaporation latent heat from air flowing in the duct 50, so that air flowing through the evaporator 53 in the duct 50 is cooled.
  • The compressor is connected to an engine of the vehicle through an unillustrated electromagnetic clutch. The operation of this compressor is stopped and controlled by controlling connection and disconnection of the electromagnetic clutch.
  • The heater core 54 is a heat exchanger using engine cooling water (hot water) of the vehicle as a heat source. This heater core 54 heats the cool air after being cooled by the evaporator 53.
  • Further, a driver seat side face blowing-out port 2 a is opened on an air downstream side of the heater core 54 in the duct 50. The driver seat side face blowing-out port 2 a blows out the conditioned air toward the upper half of the body of a driver sitting on the driver seat from the driver seat side passage 50 c.
  • Here, a blowing-out port switching door 56 a for opening and closing the face blowing-out port 2 a is arranged at an air upstream portion of the face blowing-out port 2 a in the duct 50. This blowing-out port switching door 56 a is opened and closed by a servo motor 560 a as a driving means.
  • A driver seat side foot blowing-out port for blowing-out the conditioned air to the lower half of the body of the driver from the driver seat side passage 50 c and a driver seat side defroster blowing-out port for blowing-out the conditioned air to a driver seat side area on the inner surface of a front windshield are arranged in the duct 50 although these blowing-out ports are omitted in the drawings.
  • Blowing-out port switching doors for opening and closing the respective blowing-out ports are arranged in air upstream portions of the driver seat side foot blowing-out port and the driver seat side defroster blowing-out port. The respective blowing-out port switching doors are opened and closed by the servo motors.
  • Further, a front-passenger's seat side face blowing-out port 2 b is opened on an air downstream side of the heater core 54 in the duct 50. The front-passenger's seat side face blowing-out port 2 b blows out the conditioned air toward the upper half of the body of a passenger sitting on the front-passenger's seat from the front-passenger's seat side passage 50 d.
  • Here, a blowing-out port switching door 56 b for opening and closing the face blowing-out port 2 b is arranged at an air upstream portion of the face blowing-out port 2 b in the duct 50. This blowing-out port switching door 56 b is opened and closed by a servo motor 560 b as a driving means.
  • Further, the face blowing-out ports 2 a, 2 b are arranged on a dashboard 7 to be divided into a center face air outlet at a center area in a vehicle right-left direction (vehicle width direction) and a side face air outlet at right and left sides.
  • A front-passenger's seat side foot blowing-out port for blowing-out the conditioned air to the lower half of the body of the front passenger from the front-passenger's seat side passage 50 d, and a front-passenger's seat side defroster blowing-out port for blowing-out the conditioned air to a front-passenger's seat side area on the inner surface of the front windshield are arranged in the duct 50 although these blowing-out ports are omitted in the drawings.
  • Blowing-out port switching doors for opening and closing the respective blowing-out ports are arranged in air upstream portions of the front-passenger's seat side foot blowing-out port and the front-passenger's seat side defroster blowing-out port. The blowing-out port switching doors are operatively linked by a servo motor 560 b.
  • Further, the rear seat air conditioning unit 6 has a duct 60 for sending and blowing air to the rear seat area in the passenger compartment 1. Only the inside air is introduced from the passenger compartment 1 into an inside air introducing duct 60 b through an inside air introducing inlet 60 a.
  • Here, a centrifugal type blower 62 for generating an air flow toward the passenger compartment 1 is arranged on an air downstream side of the inside air introducing duct 60 b. The centrifugal type blower 62 is constructed with a vane wheel and a blower motor 62 a for rotating this vane wheel. The vane wheel of the blower 62 is indicated in FIG. 2 as an axial vane wheel. However, actually, the vane wheel of the blower 62 is a centrifugal vane wheel.
  • Further, an evaporator 63 as an air cooling means for cooling the introduced air is arranged on an air downstream side of the centrifugal type blower 62 within the duct 60. A heater core 64 as an air heating means for heating the air is arranged on an air downstream side of this evaporator 53.
  • A partition plate 67 is arranged on a downstream portion of the evaporator 63 within the duct 60. This partition plate 67 partitions the interior of the duct 60 into a rear right side passage 60 a (i.e., driver's seat side passage) and a rear left side passage 60 d (i.e., front-passenger's seat side passage).
  • Here, a bypass passage 61 a is formed on a one side of the heater core 64 in the rear right side passage 60 c. Through the bypass passage 61 a, cool air cooled by the evaporator 63 bypasses the heater core 64 in the rear right side passage 60 c.
  • A bypass passage 61 b is formed on the other side of the heater core 64 in the rear left seat side passage 60 d. Through the bypass passage 61 b, the cool air cooled by the evaporator 63 bypasses the heater core 64 in the rear left seat side passage 60 d.
  • Air mix doors 65 a, 65 b are arranged on an air upstream side of the heater core 64. The air mix door 65 a adjusts the ratio of an air amount passing through the heater core 64 and an air amount passing through the bypass passage 61 a in the cool air circulated in the rear right seat side passage 60 c, in accordance with an open degree of the air mix door 65 a.
  • The air mix door 65 b adjusts the ratio of an air amount passing through the heater core 64 and an air amount passing through the bypass passage 61 b in the cool air passing the rear left seat side passage 60 d, in accordance with an open degree of the air mix door 65 b.
  • Servo motors 650 a, 650 b as a driving means are respectively connected to the air mix doors 65 a, 65 b. The open degrees of the air mix doors 65 a, 65 b are respectively adjusted by the servo motors 650 a, 650 b.
  • Here, the evaporator 63 is piped and connected in parallel with the above evaporator 53, and is a heat exchanger constituting one constructional element of the above well-known refrigerating cycle.
  • The heater core 64 is a heat exchanger using the engine cooling water (warm water) of the vehicle as a heat source. The heater core 64 is connected to the above heater core 54 in parallel therewith, and heats the cool air after being cooled by the evaporator 63.
  • Further, a rear right face blowing-out port 2 c is opened on an air downstream side of the heater core 64 in the rear right air passage 60 c within the duct 60. The rear right face blowing-out port 2 c blows out the conditioned air toward the upper half of the body of a passenger sitting on the right-hand side (i.e., the rear side of the driver seat) of a rear seat from the rear right side passage 60 d.
  • A rear left face blowing-out port 2 d is opened on an air downstream side of the heater core 64 in the rear left side passage 60 d within the duct 60. This face blowing-out port 2 d blows out the conditioned air toward the upper half of the body of a passenger sitting on the left-hand side (i.e., the rear side of the assistant driver seat) of the rear seat from the rear left side passage 60 d.
  • Here, a blowing-out port switching door 66 a for opening and closing the rear right face blowing-out port 2 c is arranged in an air upstream portion of the rear right face blowing-out port 2 c. This blowing-out port switching door 66 a is opened and closed by a servo motor 660 a as a driving means.
  • Similarly, a blowing-out port switching door 66 b for opening and closing the rear left face blowing-out port 2 d is arranged in an air upstream portion of the rear left face blowing-out port 2 d. This blowing-out port switching door 66 b is opened and closed by a servo motor 660 b as a driving means.
  • A rear right side foot blowing-out port for blowing out the conditioned air to the lower half of the body of the rear seat right-hand side passenger from the rear right side passage 60 d is arranged in the duct 60 although this rear right side foot blowing-out port is omitted in the drawings.
  • Further, a blowing-out port switching door for opening and closing this foot blowing-out port is arranged in an air upstream portion of the rear right side foot blowing-out port. This blowing-out port switching door is opened and closed by the servo motor.
  • Similarly, a rear left side foot blowing-out port for blowing out the conditioned air to the lower half of the body of the rear seat left-hand side passenger from the rear left side passage 60 d is arranged in the duct 60 although this foot blowing-out port is omitted in the drawings. A blowing-out port switching door for opening and closing this rear left side foot blowing-out port is arranged in an air upstream portion of this rear left side foot blowing-out port. This foot blowing-out port switching door is opened and closed by the servo motor.
  • Further, an electronic controller (hereinafter called an air conditioning ECU 8) for controlling each of the air conditioning operations of the front seat air conditioning unit 5 and the rear seat air conditioning unit 6 is provided in the vehicle air conditioner.
  • An outside air temperature sensor 81, a cooling water temperature sensor 82, a solar radiation sensor 83, inside air temperature sensors 84, 85, evaporator temperature sensors 86, 87 and the seat position detection units 1 ap, 1 bp, 1 cp are connected to the air conditioning ECU 8.
  • The outside air temperature sensor 81 detects an outside air temperature Tam outside the passenger compartment. The cooling water temperature sensor 82 detects a cooling water temperature Tw of the engine. The solar radiation sensor 83 is disposed an inner side of the front windshield at an approximate center in the vehicle right-left direction. Generally, the solar radiation sensor 83 is a two-dimension type. The solar radiation sensor 83 detects each of a solar radiation amount irradiated to the front right air conditioning zone 1 a and a solar radiation amount irradiated to the front left air conditioning zone 1 b, and outputs solar radiation signals TsDr and TsPa corresponding to the detected solar radiation amount to the air conditioning ECU 8.
  • The inside air temperature sensor 84 detects an air temperature in the air conditioning zones 1 a, 1 b, and outputs an inside air temperature signal TrFr corresponding to the detected inside air temperature to the air conditioning ECU 8. Similarly, the inside air temperature sensor 85 detects an air temperature in the air conditioning zones 1 c, 1 d, and outputs an inside air temperature signal TrRr corresponding to the detected inside air temperature to the air conditioning ECU 8.
  • The evaporator temperature sensor 86 detects an air temperature blown immediately after passing through the evaporator 53, and output an evaporator temperature signal TeFr corresponding to the detected temperature of the evaporator 86 to the air conditioning ECU 8. The evaporator temperature sensor 87 detects an air temperature blown immediately after passing through the evaporator 63, and output an evaporator temperature signal TeRr corresponding to the detected temperature of the evaporator 87 to the air conditioning ECU 8.
  • Temperature setting switches 9, 10, 11, 12 are provided for setting desirable temperatures TsetFrDr, TsetFrPa, TsetRrDr, TsetRrPa of the air conditioning zones 1 a, 1 b, 1 c, 1 d, respectively, by a passenger. The temperature setting switches 9-12 are connected to the air-conditioning ECU 8. Displays 9 a, 10 a, 11 a, 12 a as desirable temperature display means for displaying the setting contents of the desirable temperatures, etc. are respectively arranged in the vicinity of the temperature setting switches 9, 10, 11, 12.
  • As the non-contact temperature sensors 70 a, 70 b, matrix IR sensors are used. The matrix IR sensor 70 a is disposed to detect a surface temperature of the rear right side air-conditioning zone 1 c, and the matrix IR sensor 70 b is disposed to detect a surface temperature of the rear left side air-conditioning zone 1 d.
  • Each of the matrix IR sensors 70 a, 70 b is constructed with a thermopile detection element which detects an electromotive force change corresponding to a change of inputted infrared rays as a temperature change. Next, structure of the right and left matrix IR sensor 70 a, 70 b will be now described with reference to FIGS. 3-5B. Both the right and left matrix IR sensors 70 a and 70 b have the same structure.
  • Hear, the structure of the right matrix IR sensor 70 a will be now described with reference to FIG. 3 as an example. The matrix IR sensor 70 a (70 b) includes a detection portion 71. The detection portion 71 has a substrate 71 a, a sensor chip 72 arranged on the substrate 71 a, and an infrared ray absorbing film 73 disposed to cover the sensor chip 72. The detection portion 71 is disposed on a seat 71 c, and is covered by a cup-shaped case 71 b. A square window 71 d is provided in a bottom portion of the case 71 b, and a lens 71 e is provided in the square window 71 d. The infrared-ray absorbing film 73 absorbs infrared rays radiated through the lens 71 e from a detecting object, and converts it to heat.
  • On the sensor chip 72, sixteen thermoelectric couple portions Dr1-Dr16 are arranged in a matrix shape with vertical four rows and horizontal four lines. The thermoelectric couple portions Dr1-Dr16 are temperature detecting elements each of which converts heat generated from the infrared ray absorbing film 73 to electric voltage (i.e., electric energy). In this embodiment, the matrix IR sensor 70 a, 70 b is attached to the ceiling portion to be pointed downwardly such that a sight center line of the matrix IR sensor 70 a, 70 b is substantially perpendicular to the vehicle front-rear direction. More specifically, the slight center line of the matrix IR sensor 70 a, 70 b can be positioned in a range between a position shifted from the vertical direction to a vehicle front side by 2° to a position shifted from the vertical direction to a vehicle rear side by 2°.
  • FIGS. 4A and 4B show arrangement positions of the matrix IR sensors 70 a, 70 b and temperature detection ranges 700 a, 700 b to be temperature-detected. FIG. 5A is an enlarged view of the temperature detection range 700 a, and FIG. 5B is an enlarged view of the temperature detection range 700 b. FIG. 6 shows corresponding positions of a rear right passenger, the vehicle rear right side door and window, on the thermoelectric couple portions Dr1-Dr16.
  • The right matrix IR sensor 70 a is disposed in the ceiling portion of the passenger compartment such that the infrared ray absorbing film 73 is arranged approximately horizontally. Therefore, the temperature detection range 700 a is formed on a direct vertical lower side of the right matrix IR sensor 70 a. Similarly, the left matrix IR sensor 70 b is disposed in the ceiling portion of the passenger compartment such that the infrared-ray absorbing film 73 is arranged approximately horizontally. Therefore, the temperature detection range 700 b is formed on a direct vertical lower side of the right matrix IR sensor 70 b.
  • As shown in FIGS. 4A and 4B, the right matrix IR sensor 70 a is arranged at a position Ra in a rear right arrangement area on the vehicle ceiling portion. That is, the rear right arrangement area is a projection area of the range Lr0 (see FIG. 1) from the frontmost end of the seat cushion portion 30 c to the rearmost end of the seat back portion 31 c, projected vertically on the ceiling portion. The range Lr0 corresponds to the rear seat range in the vehicle front-rear direction. Further, the arrangement position Ra in the ceiling portion is provided in the rear right arrangement area to be offset from a center of the rear right seat in the vehicle width direction (vehicle right-left direction) to a rear right window side. Similarly, the left matrix IR sensor 70 b is arranged at a position Rb in a rear left arrangement area on the vehicle ceiling portion. That is, the rear left arrangement range is a projection area of the range Lr0 (see FIG. 1) from the frontmost end of the seat cushion portion 30 d to the rearmost end of the seat back portion 31 d, projected vertically on the ceiling portion. The range Lr0 corresponds to the rear seat range in the vehicle front-rear direction. Further, the arrangement position Rb in the ceiling portion is provided in the rear left arrangement area to be offset from a center of the rear left seat in the vehicle width direction (vehicle right-left direction) to a rear left window side. When the rear seat slides by the seat position adjustment mechanism, the range Lr0 can be enlarged.
  • Specifically, the right matrix IR sensor 70 a is arranged so that at least the shoulder portion and the thigh portion of a rear seat passenger are positioned on the temperature detection range 700 a. Similarly, the left matrix IR sensor 70 b is arranged so that at least the shoulder portion and the thigh portion of a rear seat passenger are positioned on the temperature detection range 700 b. That is, the right and left matrix IR sensors 70 a, 70 b are non-contact temperature sensors for detecting the surface temperatures of passengers on the right and rear left seats, respectively. The air conditioning ECU 8 calculates a surface temperature of each portion of the passenger compartment based on output signals from the right and left matrix IR sensors 70 a, 70 b.
  • Each of the right and left matrix IR sensors 70 a and 70 b can be position within an upper projection area of a range Lr1 (see FIG. 1) that is a range between the front end and the rear end of the seat cushion portion 30 c, vertically projected on the ceiling portion. In this case, it can more effectively restrict the positions of the shoulder portion and the thigh portion of the passenger from being offset from the temperature detection range 700 a, 700 b.
  • In the first embodiment, the right matrix IR sensor 70 a can be arranged so that the temperature detection range 700 a includes at least the right side surfaces of the right shoulder portion of the passenger on the rear right seat, and a trim panel portion and a window portion of the rear right door. To obtain the temperature detection range 700 a, the right matrix IR sensor 70 a is preferably arranged at a window side on the ceiling portion Ra, with respect to the center of the rear right seat or the rear left seat. When the right matrix IR sensor 70 a is positioned at the right window side more than the center of the right seat position of the passenger, the right side surface of the passenger and the trim panel portion and the window portion of the rear right door can be easily contained in the temperature detection range 700 a. Generally, the right side surface of the passenger and the trim panel portion and the window portion of the rear right door are easily affected by solar radiation from the right side.
  • Similarly, the left matrix IR sensor 70 b can be arranged so that the temperature detection range 700 b includes at least the left side surfaces of the left shoulder portion of the passenger on the rear left seat, a trim panel portion and a window portion of the rear left door. To obtain the temperature detection range 700 b, the left matrix IR sensor 70 b is preferably arranged at a window side on the ceiling portion Rb, with respect to the center of the rear right seat or the rear left seat. When the left matrix IR sensor 70 b is positioned at the left window side more than the center of the left seat position of the passenger, the left side surface of the passenger and the trim panel portion and the window portion of the rear left door can be easily contained in the temperature detection range 700 b. Generally, the left side surface of the passenger and the trim panel portion and the window portion of the rear left door are easily affected by solar radiation from the left side.
  • As shown in FIGS. 4A, 4B, 5A and 5B, the temperature detection ranges 700 a, 700 b indicated in the matrix shape correspond to radiation ranges of infrared rays collected on temperature detection elements by the lends 71 e of the matrix IR sensors 70 a, 70 b on the same sight. In FIG. 5A, the temperature detection areas of the temperature detection range 700 a indicated by the Dr1-Dr16 correspond to the temperature detection areas of the thermoelectric couple portions Dr1-Dr16 that are the temperature detection elements of the right matrix IR sensor 70 a. In FIG. 5B, the temperature detection areas of the temperature detection range 700 b indicated by the Pa1-Pa16 correspond to the temperature detection areas of the thermoelectric couple portions Pa1-Pa16 that are the temperature detection elements of the left matrix IR sensor 70 b. The temperature detection ranges 700 a, 700 b indicated in FIGS. 4B, 5A and 5B are the general flat shapes when being viewed from a vehicle top side.
  • FIG. 6 shows a detail example of the temperature detection range 700 a in the rear right air-conditioning zone 1 c, due to the right matrix IR sensor 70 a. The temperature detection range 700 b in the rear left air-conditioning zone 1 d is substantially symmetrical to the temperature detection range 700 a with respect to a center line in the vehicle width direction.
  • As shown in FIG. 6, the surface temperature of the rear right window is mainly detected by the thermoelectric couple portions Dr2 and Dr3 among the rightmost thermoelectric couple portions Dr1-Dr4. The surface temperatures of trim panels of the rear right window and the passenger compartment on the rear right side are generally detected by the thermoelectric couple portions Dr6 and Dr7. That is, the surface temperatures of the trim panel portions of the rear right doors and the rear right pillar portion are generally detected by the thermoelectric couple portions Dr6 and Dr7. The surface temperature of the upper portion of a rear right passenger RrDr including the head portion and the shoulder portion of a rear right passenger RrDr are generally detected by the thermoelectric couple portions Dr9 and Dr13, among the inside two lines of the thermoelectric couple portions Dr9-Dr12 and Dr13-Dr16. The surface temperature of the stomach portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr10 and Dr14, among the inside two lines of the thermoelectric couple portions Dr9-Dr12 and Dr13-Dr16. Further, the surface temperature of the right thigh portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr11 and Dr12, and the surface temperature of the left thigh portion of the rear right passenger RrDr is generally detected by the thermoelectric couple portions Dr15 and Dr16, among the inside two lines of the thermoelectric couple portions Dr9-Dr12 and Dr13-Dr16. That is, the surface temperature of the rear right passenger RrDr including the upper portion and the thigh portion of the rear right passenger RrDr can be detected by the inside two lines of the thermoelectric couple portions Dr9-Dr12 and Dr13-Dr16.
  • The right half body of the rear right passenger RrDr is readily affected by the solar radiation, as compared with the left half body of the rear right passenger RrDr. In this embodiment, because the right matrix IR sensor 70 a is disposed in the ceiling portion at the arrangement position Ra on the side of the window above the rear right seat cushion 30 c, the thermoelectric couple portions Dr9-Dr12 can readily detect the surface temperature of the right half body of the rear right passenger RrDr.
  • Similarly, the surface temperature of the rear left window is mainly detected by the thermoelectric couple portions Pa2 and Pa3 among the leftmost thermoelectric couple portions Pa1-Pa4. The surface temperatures of trim panels of the rear right window and the passenger compartment on the rear left are generally detected by the thermoelectric couple portions Pa6 and Pa7. That is, the surface temperatures of the trim panel portions of the rear left doors and the rear left pillar portion are generally detected by the thermoelectric couple portions Pa6 and Pa7. The surface temperature of the upper portion of a rear lest passenger RrPa including the head portion and the shoulder portion of the rear left passenger RrPa are generally detected by the thermoelectric couple portions Pa9 and Pa13, among the inside two lines of the thermoelectric couple portions Pa9-Pa12 and Pa13-Pa16. The surface temperature of the stomach portion of the rear right passenger RrPa is generally detected by the thermoelectric couple portions Pa10 and Pa14, among the inside two lines of the thermoelectric couple portions Pa9-Pa12 and Pa13-Pa16. Further, the surface temperature of the right thigh portion of the rear left passenger RrPa is generally detected by the thermoelectric couple portions Pa11 and Pa12, and the surface temperature of the left thigh portion of the rear left passenger RrPa is generally detected by the thermoelectric couple portions Pa15 and Pa16, among the inside two lines of the thermoelectric couple portions Pa9-Pa12 and Pa13-Pa16. That is, the surface temperature of the rear left passenger RrPa including the upper portion and the thigh portion of the rear left passenger Rrpa can be detected by the inside two lines of the thermoelectric couple portions Pa9-Pa12 and Pa13-Pa16.
  • In this embodiment, because the left matrix IR sensor 70 b is disposed in the ceiling portion at the arrangement position Rb on the side of the window above the rear left seat cushion 30 d, the thermoelectric couple portions Pa9-Pa12 can readily detect the surface temperature of the left half body of the rear right passenger RrPa.
  • Thus, the right and left matrix IR sensors 70 a, 70 b can stably detect surface temperatures of the rear right passenger RrDr and the rear left passenger RrPa from the upper sides of the rear right passenger RrDr and the rear left passenger RrPa.
  • Accordingly, even when the frame and the seated height of the passenger on the rear seat are changed, the position of the shoulder portion of a passenger on the rear seat in each temperature detection range of the matrix IR sensors 70 a, 70 b is not largely changed. Accordingly, even when the temperature detection range is fixed relative to the rear seat position, the surface temperature of at least the shoulder portion of the passenger can be stably detected. Further, a position of the thigh portion of the passenger on each of right and rear left seats, relative to the temperature detection range, is almost constant regardless of the frame change of the body of the passenger. Thus, the thigh portion of the passenger on the rear seat can be also stably detected. Accordingly, the surface temperature of the passenger on the rear seat can be accurately detected regardless of the front seat position and the front seat cover.
  • Further, the right and left matrix IR sensors 70 a, 70 b are arranged in the ceiling portion at the sides of the right and rear left windows from the seat centers in the vehicle width direction. Therefore, surface temperatures of the trim panels of the rear door windows and the trim panels between the rear door windows and a passenger on the rear seat can be also detected by the matrix IR sensors 70 a, 70 b.
  • The air conditioning ECU 8 is a well-known device constructed with an analog/digital converter, a microcomputer, etc. The air conditioning ECU 8 is constructed such that output signals respectively outputted from sensors 81, 82, 83, 84, 85, 86, 87 and switches 9, 10, 11, 12 are analog/digital-converted by the analog/digital converter and are inputted to the microcomputer.
  • The microcomputer is a well-known microcomputer constructed with a memory such as a ROM, a RAM, etc., and a CPU (central processing unit), etc. When an ignition switch is turned on, electric power is supplied from an unillustrated battery to the microcomputer.
  • The operation of this embodiment will next be described with reference to FIGS. 7A to 10. FIGS. 7A and 7B are flow charts showing front and rear automatic air conditioning controls of the air conditioning ECU 8. When electrical power is supplied to the air conditioning ECU 8, the microcomputer of the air conditioning ECU 8 executes a computer program stored to the memory in accordance with the flow charts shown in FIGS. 7A and 7B. The execution of this computer program is generally started when the ignition switch is turned on.
  • First, a front air conditioning control will be now described.
  • At step S121 in FIG. 7A, front right and left set temperature signals TsetFrDr, TsetFrPa from the temperature setting switch 8, 10 are input. Then, at step S122, an outside air temperature signal Tam from the outside air temperature sensor 81, solar radiation signals TsDr, TsPa from the solar radiation sensor 83 and an inside air temperature signal TrFr from the inside air temperature sensor 84 are input.
  • Next, at step S123, a target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (1) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the inside air temperature signal TrFr. The target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a (driver's seat air conditioning zone) at the set temperature TsetFrDr.
    TAOFrDr=KsetFrDr×TsetFrDr−KrFr×TrFr−Kam×Tam−KsDr×TsDr+CFrDr  (1)
    wherein, KsetFrDr is a front right temperature setting gain, KrFr is a front inside air temperature gain, Kam is an outside air temperature gain, KsDr is a right solar radiation gain, and CFrDr is a front right correction constant.
  • Further, a target blowing-out temperature TAOFrPa of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (2) by using the set temperature signal TsetFrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the inside air temperature signal TrPa. The target blowing-out temperature TAOFrPa is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b (front passenger's seat air conditioning zone) at the set temperature TsetFrPa.
    TAOFrPa=KsetFrPa×TsetFrPa−KrFr×TrFr−Kam×Tam−KsPa×TsPa+CFrPa  (2)
    wherein, KsetFrPa is a front left temperature setting gain, KrFr is a front inside air temperature gain, Kam is an outside air temperature gain, KsPa is a left solar radiation gain, and CFrPa is a front left correction constant.
  • Next, at step S124, one of an inside air circulation mode and an outside air introduction mode is selected as an inside/outside air introducing mode based on the control map shown in FIG. 8, in accordance with an average front target blowing-out temperature TAOFr. The average front target blowing-out temperature TAOFr is an average value of the TAOFrPa and TAOFrDr. In the inside air circulation mode, the inside/outside air switching door 51 fully closes the outside air introduction port 50 b and fully opens the inside air introduction port 50 a, so that inside air of the passenger compartment is introduced only from the inside air introduction port 50 a. In the outside air introduction mode, the inside/outside air switching door 51 fully opens the outside air introduction port 50 b and fully closes the inside air introduction port 50 a, so that outside air of the passenger compartment is introduced from the outside air introduction port 50 b. Specifically, as shown in FIG. 8, when the average front target blowing-out temperature TAOFr is lower than a first predetermined temperature, the inside air introduction mode is set. When the average front target blowing-out temperature TAOFr is higher than a second predetermined temperature that is higher than the first predetermined temperature, the outside air introduction mode is set. When the average front target blowing-out temperature TAOFr is between the first predetermined temperature and the second predetermined temperature, an inside/outside air mixing mode can be set. In the inside/outside air mixing mode, both the inside air and the outside air are introduced.
  • Next, at step S125, an air outlet mode for the front right air conditioning zone and an air outlet mode for the front left air conditioning zone are respectively independently determined in accordance with the graph in FIG. 9 based on the TAOFrDr (TAO) and the TAOFrPa (TAO). As shown in FIG. 9, the air outlet mode for the air conditioning zone 1 a is automatically changed in this order of a face mode (FACE), a bi-level mode (B/L) and a foot mode (FOOT) as the TAOFrDr (TAO) increases. Similarly, the air outlet mode for the air conditioning zone 1 b is automatically changed in this order of the face mode (FACE), the bi-level mode (B/L) and the foot mode (FOOT) as the TAOFrPa (TAO) increases. In the face mode, conditioned air is blown only from the face air outlet 2 a (2 b) toward an upper side of a passenger on the front seat in the passenger compartment. In the foot mode, the foot air outlet is fully opened so that conditioned air is blown only from the foot air outlet. Further, in the bi-level mode, conditioned air is blown from both the face air outlet 2 a (2 b) and the foot air outlet.
  • When the air outlet is determined for each air conditioning zone 1 a or 1 b, the servomotors of the air outlet port switching doors are controlled so that the determined air outlet mode is set for each air conditioning zone 1 a or 1 b.
  • Next, at step S126, a blower voltage applied to the blower motor 52 a is determined in accordance with control map shown in FIG. 10, based on the average front target blowing-out temperature TAOFr (TAO) that is the average value between the TAOFrDr and the TAOFrPa.
  • As shown in FIG. 10, when the average front target blowing-out temperature TAOFr (TAO) is in a middle temperature area, the blower voltage is set at a constant value so that the air amount blown from the blower 52 is set at a constant amount. When the average front target blowing-out temperature TAOFr (TAO) is larger than the middle temperature area, the blower voltage is set larger as the average front target blowing-out temperature TAOFr (TAO) becomes larger. In contrast, when the average front target blowing-out temperature TAOFr (TAO) is smaller than the middle temperature area, the blower voltage is set larger as the average front target blowing-out temperature TAOFr (TAO) becomes smaller.
  • Next, at step S127, target open degrees θ1, θ2 of the air mix doors 55 a, 55 b are calculated in accordance with formula (3) and formula (4).
    θ1=[(TAOFrDr−TeFr)/(Tw−TeFr)]×100 (%)  (3)
    θ2=[(TAOFrPa−TeFr)/(Tw−TeFr)]×100 (%)  (4)
  • In the formulas (3) and (4), TeFr is an evaporator air temperature detected by the evaporator temperature sensor 86, and Tw is a water temperature detected by the water temperature sensor 82. When θ1=0% and θ2=0%, the air mix doors 55 a, 55 b are operated at the maximum cooling position so that all air after passing through the front evaporator 53 in the air passages 50 c, 50 d flows through the bypass passages 51 a, 51 b. In contrast, when θ1=100% and θ2=100%, the air mix doors 55 a, 55 b are operated at the maximum heating position so that all air after passing through the front evaporator 53 in the air passages 50 c, 50 d flows through the heater core 54.
  • Then, at step S128, the control signals of the blower voltage, the target open degrees θ1, θ2, the inside/outside air mode and the air outlet mode determined above are output to the servomotors 510 a, 550 a, 550 b, 560 a and 560 b and the blower motor 52 a, so as to control operation of the inside/outside air switching door 51, the air mix doors 55 a, 55 b, the air outlet mode switching doors 56 a, 56 b and the blower 52.
  • After a predetermined time “t” passes at step S129, the control program returns to step S121, and the automatic control of the air conditioning zones 1 a, 1 b are performed by repeating the above control operation.
  • Next, a rear air conditioning control will be now described.
  • At step S221 in FIG. 7B, rear right and left set temperature signals TsetRrDr, TsetRrPa from the temperature setting switch 11, 12 are input. Then, at step S222, the outside air temperature signal Tam from the outside air temperature sensor 81, solar radiation signals TsDr, TsPa from the solar radiation sensor 83 and an inside air temperature signal TrRr from the inside air temperature sensor 85 are input. In addition, at step S222, a rear right temperature Tiric and a rear left temperature Tir1d are input.
  • The rear right temperature Tir1c is calculated in accordance with the following formula (5) by using a rear right window surface temperature TirWRrDr, a rear right trim panel temperature TirINRrDr and a rear right passenger's temperature TirRrDr. As shown in the formula (5), relative to the parameters TirWRrDr, TirINRrDr and TirRrDr, weightings 0.2, 0.3 and 0.5 are added, respectively, and the rear right Tir1c is calculated.
    Tir 1c=0.2×TirWRrDr+0.3×TirINRrDr+0.5×TirRrDr  (5)
  • Further, the rear right window surface temperature TirWRrDr, the rear right trim panel temperature TirINRrDr and the rear right passenger's temperature TirRrDr in formula (5) are calculated by using average calculations shown in formulas (6), (7) and (8).
    TirWRrDr=(TDr2+TDr3)/2  (6)
    TirINRrDr=(TDr6+TDr7)/2  (7)
    TirRrDr=(TDr9+TDr10+TDr11+TDr12+TDr13+TDr14+TDr15+TDr16)/8  (8)
  • In formulas (6), (7) and (8), TDr2, TDr3, TDr6, TDr7, TDr9, TDr10, TDr11, TDr12, TDr13, TDr14, TDr15 and TDr16 are detected temperatures of the thermoelectric couple portions Dr2, Dr3, Dr6, Dr7, Dr9, Dr10, Dr11, Dr12, Dr13, Dr14, Dr15 and Dr16, respectively.
  • Next, at step S223, a rear right target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 c in the passenger compartment is calculated in accordance with the formula (9) by using the set temperature signal TsetRrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the inside air temperature signal TrRr. The rear right target blowing-out temperature TAORrDr is a necessary target temperature for maintaining the temperature of the rear right air conditioning zone 1 c at the set temperature TsetRrDr.
    TAORrDr=KsetRrDr×TsetRrDr−KirRrDr×Trir1c−KrRr×TrRr−KsDr×TsDr−Kam×Tam+CRrDr  (9)
    wherein, KsetRrDr is a rear right temperature setting gain, KrRr is a rear inside air temperature gain, Kam is the outside air temperature gain, KsDr is a right solar radiation gain, and CRrDr is a rear right correction constant.
  • Similarly, the rear left temperature Tir1d is calculated in accordance with the following formula (10) by using a rear left window surface temperature TirWRrPa, a rear left trim panel temperature TirINRrPa and a rear left passenger's temperature TirRrPa. As shown in formula (10), relative to the parameters TirWRrPa, TirINRrPa and TirRrPa, weightings 0.2, 0.3 and 0.5 are added, respectively, and the rear left Tirld is calculated.
    Tir 1d=0.2×TirWRrPa+0.3×TirINRrPa+0.5×TirRrPa  (10)
  • Further, the rear left window surface temperature TirWRrPa, the rear left trim panel temperature TirINRrPa and the rear left passenger's temperature TirRrPa in formula (10) are calculated by using average calculations shown in formulas (11), (12) and (13).
    TirWRrPa=(TPa2+TPa3)/2  (11)
    TirINRrPa=(TPa6+TPa7)/2  (12)
    TirRrPa=(TPa9+TPa10+TPa11+TPa12+TPa13+TPa14+TPa15+TPa16)/8  (13)
  • In formulas (11), (12) and (13), TPa2, TPa3, TPa6, TPa7, TPa9, TPa10, TPa11, TPa12, TPa13, TPa14, TPa15 and TPa16 are detected temperatures of the thermoelectric couple portions Pa2, Pa3, Pa6, Pa7, Pa9, Pa10, Pa11, Pa12, Pa13, Pa14, Pa15 and Pa16, respectively.
  • Next, at step S223, a rear left target blowing-out temperature TAORrPa of air blown out to the air conditioning zone 1 d in the passenger compartment is calculated in accordance with the formula (14) by using the set temperature signal TsetRrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the inside air temperature signal TrRr. The rear left target blowing-out temperature TAORrPa is a necessary target temperature for maintaining the temperature of the rear left air conditioning zone 1 d at the set temperature TsetRrPa.
    TAORrPa=KsetRrPa×TsetRrPa−KirRrPa×Trir1d−KrRr×TrRr−KsPa×TsPa−Kam×Tam+CRrPa  (14)
    wherein, KsetRrPa is a rear right temperature setting gain, KrRr is the rear inside air temperature gain, Kam is the outside air temperature gain, KsPa is a left solar radiation gain, and CRrPa is a rear left correction constant.
  • Next, at step S225, an air outlet mode for the rear right air conditioning zone 1 c and an air outlet mode for the rear left air conditioning zone 1 d are respectively independently determined in accordance with the graph in FIG. 9 based on the TAORrDr (TAO) and the TAORrPa (TAO). As shown in FIG. 9, the air outlet mode for the air conditioning zone 1 c is automatically changed in this order of a face mode (FACE), a bi-level mode (B/L) and a foot mode (FOOT) as the TAORrDr (TAO) increases. Similarly, the air outlet mode for the air conditioning zone 1 d is automatically changed in this order of the face mode (FACE), the bi-level mode (B/L) and the foot mode (FOOT) as the TAORrPa (TAO) increases.
  • In the rear face mode, the face air outlet 2 c (2 d) is opened by the switching door 66 a (66 b) so that conditioned air is blown only from the face air outlet 2 c (2 d) toward an upper side of a passenger on the rear seat in the passenger compartment. In the foot mode, the foot air outlet is fully opened so that conditioned air is blown only from the rear foot air outlet toward the lower side of the passenger on the rear seat in the passenger compartment. Further, in the bi-level mode, both the face air outlet 2 c (2 d) and the foot air outlet are opened so that conditioned air is blown from both the face air outlet 2 c (2 d) and the foot air outlet toward the upper and lower sides of the passenger on the rear seat in the passenger compartment.
  • Next, at step S226, a blower voltage applied to the blower motor 62 a is determined in accordance with control map shown in FIG. 10, based on the average rear target blowing-out temperature TAORr (TAO) that is the average value between the TAORrDr and the TAORrPa.
  • As shown in FIG. 10, when the average rear target blowing-out temperature TAORr (TAO) is in a middle temperature area, the blower voltage is set at a constant value so that the air amount blown from the blower 62 is set at a constant amount. When the average rear target blowing-out temperature TAORr (TAO) is larger than the middle temperature area, the blower voltage is set larger as the average front target blowing-out temperature TAORr (TAO) becomes larger. In contrast, when the average front target blowing-out temperature TAORr (TAO) is smaller than the middle temperature area, the blower voltage is set larger as the average front target blowing-out temperature TAORr (TAO) becomes smaller.
  • Next, at step S227, target open degrees θ3, θ4 of the air mix doors 65 a, 65 b are calculated in accordance with formula (15) and formula (16).
    θ3=[(TAORrDr−TeRr)/(Tw−TeRr)]×100 (%)  (15)
    θ4=[(TAORrPa−TeRr)/(Tw−TeRr)]×100 (%)  (16)
  • In the formulas (15) and (16), TeRr is an evaporator air temperature detected by the evaporator temperature sensor 87, and Tw is the water temperature detected by the water temperature sensor 82. When θ3=0% and θ4=0%, the air mix doors 65 a, 65 b are operated at the maximum cooling position so that all air after passing through the rear evaporator 63 in the air passages 60 c, 60 d flows through the bypass passages 61 a, 61 b. In contrast, when θ3=100% and θ4=100%, the air mix doors 65 a, 65 b are operated at the maximum heating position so that all air after passing through the rear evaporator 63 in the air passages 60 c, 60 d flows through the heater core 64.
  • Then, at step S228, the control signals of the blower voltage, the target open degrees θ3, θ4, the inside/outside air mode and the air outlet mode determined above are output to the servomotors 650 a, 650 b, 660 a and 660 b and the blower motor 62 a, so as to control operation of the air mix doors 65 a, 65 b, the air outlet mode switching doors 66 a, 66 b and the blower 62.
  • After a predetermined time “t” passes at step S229, the control program returns to step S221, and the automatic control of the air conditioning zones 1 c, 1 d are performed by repeating the above control operation.
  • As described above, in the first embodiment, the surface temperature of the rear seat passenger on the rear seat and the surface temperatures of the rear right and left windows and trim panels of the rear right and left doors are detected by the matrix IR sensors 70 a, 70 b which are arranged in the ceiling portion above the seat cushion portion and the seat back portions of the rear seat. Therefore, the shoulder portion and the thigh portion of the passenger on the rear seat can be stably detected without depending on the frame of the passenger's body.
  • Furthermore, because the matrix IR sensors 70 a, 70 b are disposed in the ceiling portion above the right and rear left seats at right and rear left window sides, the matrix IR sensors 70 a, 70 b can easily detect the surface temperatures of the rear windows and the trim panels around the rear doors in the same detection range as the surface temperature of the passenger on the rear seat.
  • In the calculation of the rear right target blowing-out temperature TAORrDr of air blown to the rear right air conditioning zone 1 c, the influence of the side solar radiation from the rear right window is corrected by weighting calculation due to the rear right window surface temperature TirWRrDr and the rear right trim panel temperature TirINDr. In addition, a temperature increase of the thigh portion of the rear seat passenger relative to the side solar radiation from the rear right window is also corrected. Accordingly, the influence of the solar radiation to the rear right passenger can be accurately estimated.
  • Similarly, in the calculation of the rear left target blowing-out temperature TAORrPa of air blown to the rear left air conditioning zone 1 d, the influence of the side solar radiation from the rear left window is corrected by weighting calculation due to the rear left window surface temperature TirWRrPa and the rear left trim panel temperature TirINPa. In addition, a temperature increase of the thigh portion of the rear seat passenger relative to the side solar radiation from the rear left window is also corrected. Accordingly, the influence of the solar radiation to the rear left passenger can be accurately estimated.
  • Because the rear right and left target blowing-out temperatures TAORrDr and TAORrPa are detected respectively independently. Therefore, comfortable air conditioning performance for the passengers on the rear right seat and the rear left seat of the passenger compartment can be improved.
  • (Second Embodiment)
  • The second embodiment of the present invention of the present invention will be now described with reference to FIGS. 11-13. In the second embodiment, the structure of matrix sensors 70 a, 70 b that are a non-contact temperature sensor 70 is different from that of the above-described first embodiment.
  • As shown in FIG. 11, the non-contact temperature sensor 70 of the second embodiment includes the right matrix IR sensor 70 a arranged to face toward the rear right passenger RrDr, and the left matrix IR sensor 70 b arranged to face toward the rear left passenger RrPa. The right matrix IR sensor 70 a and the left matrix IR sensor 70 b are arranged on the ceiling portion adjacent to each other. The matrix IR sensors 70 a, 70 b are contained in a single package (casing), and the package is arranged at a suitable position in the passenger compartment. Both the matrix IR sensors 70 a, 70 b have the same structure.
  • Infrared rays, radiated from a detecting subject of a temperature detection range on the same sight of the rear right air conditioning zone 1 c, enters to the right matrix IR sensor 70 a through a right lens 71 e. Further, infrared rays, radiated from a detecting subject of a temperature detection range on the same sight of the rear left air conditioning zone 1 d, enters to the left Matrix IR sensor 70 b through the left lens 71 e.
  • As shown in FIGS. 12A and 12B, the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at a center position Rc in the vehicle right-left direction within an area Lr0 (see FIG. 1) between the front end of the seat cushion portion 30 of the rear seat and the seat back portion 31 of the rear seat. More preferably, the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at the center position Rc in the vehicle right-left direction in an area Lr1 (see FIG. 1) between the front end of the seat cushion portion 30 of the rear seat and the rear end of the seat cushion portion 30 of the rear seat. Accordingly, the non-contact temperature sensor 70 is positioned to view the passengers on the rear right and left seats from an upper side of the passengers directly above the rear seat. Therefore, it can restrict positions of the shoulder portion and the thigh portions of the rear seat passengers from being offset from the temperature detection range of the right and left matrix IR sensors 70 a, 70 b.
  • Further, a sensor chip 72 and the right lens 71 e of the right matrix IR sensor 70 a of the non-contact temperature sensor 70 are arranged to face to the rear right passenger and to be tilted to a right outside by a predetermined angle φ relative to the center line A of FIG. 11 perpendicular to the vehicle right-left direction. Similarly, a sensor chip 72 and the left lens 71 e of the left matrix IR sensor 70 b of the non-contact temperature sensor 70 are arranged to face to the rear left passenger and to be tilted to a left outside by a predetermined angle φ relative to the center line A of FIG. 11 perpendicular to the vehicle right-left direction. That is, the center line of the non-contact temperature sensor 70 is set to be substantially perpendicular to the vehicle front-rear direction.
  • As shown in FIGS. 11, 12A and 12B, infrared rays are entered in a range of the predetermined angle φ (e.g., 70°) from the vicinities of the rear right passenger and the rear left passenger, with respect to the surface of the right sensor chip 72 of the right matrix IR sensor 70 a and the surface of the left sensor chip 72 of the left matrix IR sensor 70 b. The surface of the right sensor chip 72 is the detection surface of the right matrix IR sensor 70 a, and the surface of the left sensor chip 72 is the detection surface of the left matrix IR sensor 70 b.
  • Similarly to the temperature detection portion 71 of the matrix IR sensor of the above-described first embodiment, each of the right matrix IR sensor 70 a and the left right matrix IR sensor 70 b is constructed with 16 temperature detection elements. The 16 temperature detection elements include the infrared ray absorbing film 73, and the thermoelectric couple portions Dr1-Dr16, Pa1-Pa16.
  • Electrical signals generated from the temperature detection elements of the right matrix IR sensor 70 a and the left matrix IR sensor 70 b are input to a sensor process circuit 71 f shown in FIG. 11. As shown in FIG. 11, the sensor process circuit 71 f is connected to an input side of the air conditioning ECU 8 through a connector 71 g.
  • Next, the temperature detection range of the non-contact temperature sensor 70 according to the second embodiment of the present invention will be now described. FIG. 13 shows a temperature detection range 700 a of the right matrix IR sensor 70 in the non-contact temperature sensor 70. As shown in FIG. 13, the 16 temperature detection elements of the right matrix IR sensor 70 a facing toward the rear right passenger RrDr are arranged in four rows and four lines. Specifically, the thermoelectric couple portions of the right matrix IR sensor 70 a are arranged in four lines of Dr1-Dr4, Dr5-Dr8, Dr9-Dr12 and Dr13-Dr16 in this order from the rightmost portion of the rear right window side to a center portion (inner side) in the vehicle right-left direction. Further, in each line of the thermoelectric couple portions, Dr1, Dr2, Dr3 and Dr4 are arranged in this order from a vehicle rear side to a vehicle front side, Dr5, Dr6, Dr7 and Dr8 are arranged in this order from the vehicle rear side to the vehicle front side, Dr9, Dr10, Dr11 and Dr12 are arranged in this order from the vehicle rear side to the vehicle front side, and Dr13, Dr14, Dr15 and Dr16 are arranged in this order from the vehicle rear side to the vehicle front side.
  • The temperature detection range 700 b of the left matrix IR sensor 70 b arranged to face the rear left passenger RrPa is set symmetrically to the temperature detection range 700 a of FIG. 13, with respect to the center line in the vehicle right-left direction. Similarly to the right matrix IR sensor 70 a, 16 temperature detection elements of the left matrix IR sensor 70 b facing toward the rear left passenger RrPa are arranged in four rows and four lines. Specifically, the thermoelectric couple portions are arranged in four lines of Pa1-Pa4, Pa5-Pa8, Pa9-Pa12 and Pa13-Pa16 in this order from the rightmost portion of the rear left window side to the center portion (inner side) in the vehicle right-left direction.
  • Temperatures TDr3, TDr4 corresponding to the surface temperature of the rear right window are detected by the thermoelectric couple portions Dr3, Dr4 positioned right side among the thermoelectric couple portions Dr1, Dr2, Dr3, Dr4. Then, a rear right window surface temperature TirWRrDr is calculated in accordance with the formula (17).
    TirWRrDr=(TDr3+TDr4)/2  (17)
  • Further, temperatures TDr7, TDr8 corresponding to the surface temperature of the trim panel of the rear right door are detected by the thermoelectric couple portions Dr7, Dr8. Then, a surface temperature TirINRrDr of the rear right trim panel is calculated in accordance with the formula (18).
    TirINRrDr=(TDr7+TDr8)/2  (18)
  • In addition, temperatures TDr9-TDr16 corresponding to the surface temperature of the rear right passenger RrDr are detected by the thermoelectric couple portions Dr9-Dr16. Then, a surface temperature TirRrDr of the rear right side passenger is calculated in accordance with the formula (19).
    TirRrDr=(TDr9+TDr10+TDr11+TDr12+TDr13+TDr14TDr15+TDr16)/8  (19)
  • Similarly, temperatures TPa3, TPa4 corresponding to the surface temperature of the rear right window are detected by the thermoelectric couple portions Pa3, Pa4 positioned at left side among the thermoelectric couple portions Pa1, Pa2, Pa3, Pa4. Then, a rear left window surface temperature TirWRrPa is calculated in accordance with the formula (20).
    TirWRrPa=(TPa3+TPa4)/2  (20)
  • Further, temperatures TPa7, TPa8 corresponding to the surface temperature of the trim panel of the rear left door are detected by the thermoelectric couple portions Pa7, Pa8. Then, a surface temperature TirINRrPa of the rear left trim panel is calculated in accordance with the formula (21).
    TirINRrPa=(TPa7+TPa8)/2  (21)
  • In addition, temperatures TPa9-TPa16 corresponding to the surface temperature of the rear left passenger RrPa are detected by the eight thermoelectric couple portions Pa9-Pa16. Then, a surface temperature TirRrPa of the rear left side passenger is calculated in accordance with the formula (22).
    TirRrPa=(TPa9+TPa10+TPa11+TPa12+TPa13+TPa14 TPa15+TPa16)/8  (22)
  • In the second embodiment, because the non-contact temperature sensor 70 is arranged in the ceiling portion approximately at the center position Rc so that the right and left matrix IR sensors 70 a, 70 b face toward the rear right and left passengers. Accordingly, even when the frame of the passenger body on the rear seat is changed, a position change of the shoulder portion and the thigh portion of the rear passenger in the temperature detection range 700 a, 700 b can be made smaller.
  • Furthermore, the sensor process circuit 71 f for processing the detection signals of both the right and left matrix IR sensors 70 a, 70 b is used in common for both the right and left matrix IR sensors 70 a, 70 b. Therefore, the structure of the non-contact temperature sensor 70 can be made simple.
  • The control operation of the second embodiment will be now described. Similarly to the above-described first embodiment, air conditioning control is performed in accordance with the flow charts shown in FIGS. 7A and 7B and control maps shown in FIGS. 8-10. Specifically, at steps S123 in FIG. 7A and step S223 in FIG. 7B, a rear right target blowing-out temperature TAORrDr and a rear left target blowing-out temperature TAORrPa are calculated in accordance with the above formulas (5) and (10). In formulas (5) and (10), the calculations of the rear right temperature Tir1c and the rear left temperature Tir1d are similar to that of the above-described first embodiment. However, in the second embodiment, the rear right and left window surface temperatures TirWRrDr, TirWRrPa, the trim panel surface temperatures TirINRrDr, TirINRrPa of the rear doors and the passenger's surface temperatures TirRrDr, TirRrPa are calculated as described above in formulas (17)-(19) and (20)-(22). The other control operations are similar to those of the above-described first embodiment.
  • In the second embodiment, similarly to the matrix IR sensor 70 a, 70 b of the first embodiment, the matrix IR sensor 70 a, 70 b can be attached to the ceiling portion to be pointed downwardly such that a sight center line of the non-contact temperature sensor 70 including the right and left matrix IR sensors 70 a, 70 b is substantially perpendicular to the vehicle front-rear direction. More specifically, the slight center line of the matrix IR sensor 70 can be positioned in a range between a position shifted from the vertical direction to a vehicle front side by 2° to a position shifted from the vertical direction to a vehicle rear side by 2°.
  • (Third Embodiment)
  • The third embodiment of the present invention will be now described with reference to FIGS. 14, 15A and 15B.
  • In the above-described first embodiment, the air conditioning control for each front air conditioning zone 1 a, 1 b is performed without using the detected surface temperature of the non-contact temperature sensor. However, matrix IR sensors 70 c, 70 d having the same structure as the matrix IR sensors 70 a, 70 b of the first embodiment can be used for the air conditioning zones 1 a, 1 b. In this case, an air conditioning control for the air conditioning zone 1 a and an air conditioning control for the air conditioning zone 1 b can be respectively independently performed by using the surface temperatures detected by the matrix IR sensors 70 c, 70 d.
  • As shown in FIGS. 14, 15A and 15B, the matrix IR sensor 70 c is disposed in the ceiling portion at a position Rcf above the front right passenger in a range Lf0, on a front right window side from the center portion of the front right seat. Here, the range Lf0 is a range between the front end of the seat cushion portion 30 a, 30 b and the rear end of the seat back portion 31 a, 31 b of the front seat. More preferably, the matrix IR sensor 70 c is arranged in the ceiling portion in a range Lf1 between the front end and the rear end of the seat cushion portion 30 a, 30 b of the front seat. In this case, the matrix IR sensor 70 c readily detects the surface temperature of the passenger on the front right seat, the surface temperatures of the trim panel portion and window portion of the front right door. That is, the temperature detecting range 700 c of the matrix IR sensor 70 c readily contains the surface temperature of the passenger on the front right seat, the surface temperatures of the trim panel portion and window portion of the front right door.
  • Similarly, the matrix IR sensor 70 d is disposed in the ceiling portion at a position Rdf above the front left passenger in the range Lf0, on a front left window side from the center portion of the front left seat. More preferably, the matrix IR sensor 70 d is arranged in the ceiling portion in the range Lf1 (see FIG. 14). In this case, the matrix IR sensor 70 d readily detects the surface temperature of the passenger on the front left seat, the surface temperatures of the trim panel portion and window portion of the front left door. That is, the temperature detecting range 700 d of the matrix IR sensor 70 d readily contains the surface temperature of the passenger on the front left seat, the surface temperatures of the trim panel portion and window portion of the front left door.
  • The thermoelectric couple portions of the front matrix IR sensors 70 c, 70 d are indicated by the same reference numbers Dr1-Dr16, Pa1-Pa16 of the rear matrix IR sensors 70 a, 70 b indicated in FIGS. 5 and 6 of the above-described first embodiment.
  • Further, the front target blowing-out temperature TAOFrDr for the front air conditioning zone 1 a and the front target blowing-out temperature TAOFrPr for the front air conditioning zone 1 b are calculated similarly to the TAORrDr and TAORrPa of the above-described first embodiment.
  • The front right target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (23) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrRr and a front right surface temperature Tir1a of the matrix IR sensor 70 c. The target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a at the set temperature TsetFrDr.
    TAOFrDr=KsetFrDr×TsetFrDr−KirFrDr×Tir 1a−KrFr×TrFr−KsDr×TsDr−Kam×Tam+CFrDr  (23)
    wherein, KsetFrDr is a front right temperature setting gain, KrFr is a front inside air temperature gain, Kam is the outside air temperature gain, KsDr is a right solar radiation gain, and CFrDr is a front right correction constant.
  • Here, the front right surface temperature Tirla is calculated in accordance with the following formula (24) by using a front right window surface temperature TirWFrDr, a front right trim panel temperature TirINFrDr and a front right passenger's temperature TirFrDr.
    Tir 1a=0.2×TirWFrDr+0.3×TirINFrDr+0.5×TirFrDr  (24)
  • The front right window surface temperature TirWFrDr, the front right trim panel temperature TirINFrDr and the front right passenger's temperature TirFrDr can be calculated by using the average calculation shown in the formulas (17), (18) and (19).
  • The front left target blowing-out temperature TAOFrPr of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (25) by using the set temperature signal TsetFrPr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrFr and a front left surface temperature Tirlb of the matrix IR sensor 70 d. The target blowing-out temperature TAOFrPr is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b at the set temperature TsetFrPr.
    TAOFrPa=KsetFrPa×TsetFrPa−KirFrPa×Tir 1b−KrFr×TrFr−KsPa×TsPa−Kam×Tam+CFrPa  (25)
    wherein, KsetFrPa is a front left temperature setting gain, KrFr is a front inside air temperature gain, Kam is the outside air temperature gain, KsPa is a left solar radiation gain, and CFrPa is a front left correction constant.
  • Here, the front left surface temperature Tirlb is calculated in accordance with the following formula (26) by using a front left window surface temperature TirWFrPa, a front left trim panel temperature TirINFrPa and a front left passenger's temperature TirFrPa.
    Tir 1d=0.2×TirWFrPa+0.3×TirINFrPa+0.5×TirFrPa  (26)
  • The front left window surface temperature TirWFrPa, the front left trim panel temperature TirINFrPa and the front left passenger's temperature TirFrPa can be calculated by using the average calculation shown in the formulas (20), (21) and (22).
  • The other front air conditioning controls using the front target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • In the third embodiment, the temperatures of the driver and front passenger on the front seats and the temperatures of the trim panels and windows of the front right and left doors are detected, and the target air temperatures for the air conditioning zones 1 a, 1 b are calculated to consider both the passenger's temperatures and the solar radiation. Therefore, comfortable air conditioning can be provided for each of the air conditioning zones 1 a, 1 b.
  • In the third embodiment, the rear air conditioning operation is similar to that of the above-described first embodiment.
  • (Fourth Embodiment)
  • The fourth embodiment of the present invention will be now described with reference to FIGS. 16A and 16B.
  • In the above-described second embodiment, the air conditioning control for each air conditioning zone 1 a, 1 b is performed without using the detected surface temperature of the non-contact sensor. However, a non-contact temperature sensor 70 f having the same structure as the non-contact temperature sensor 70 of the second embodiment can be used for the air conditioning zones 1 a, 1 b. In this case, an air conditioning control for the air conditioning zone 1 a and an air conditioning control for the air conditioning zone 1 b can be respectively independently performed by using the surface temperature detected by the non-contact temperature sensor 70 f.
  • As shown in FIGS. 16A and 16B, the non-contact temperature sensor 70 f is disposed in the ceiling portion at a center position Rcf in the vehicle right-left direction on a vehicle front seat side within the range Lf0. More preferably, the non-sensor 70 f is arranged in the ceiling portion in the range Lf1 between the front end and the rear end of the seat cushion portion 30 a, 30 b. In this case, the non-contact temperature sensor 70 f readily detects the surface temperature of the passenger on each front seat, the surface temperatures of the trim panel portion and window portion of the front door, similarly to the above-described second embodiment. That is, the non-contact temperature sensor 70 f has right and left matrix IR sensors 70 a, 70 b, similarly to those of non-contact temperature sensor 70 of the above-described second embodiment. Therefore, the temperature detection range 700 a of the front right matrix IR sensor 70 a of the non-contact temperature sensor 70 f readily contains the shoulder portion and the thigh portion of the driver on the front right seat, the surface temperatures of trim panel portion and window portion of the front right door. Similarly, the temperature detection range 700 b of the front left matrix IR sensor 70 b of the non-contact temperature sensor 70 f readily contains the shoulder portion and the thigh portion of the front passenger on the front left seat, the surface temperatures of trim panel portion and window portion of the front left door.
  • The thermoelectric couple portions of the front matrix IR sensors 70 a, 70 b of the non-contact temperature sensor 70 f are indicated by the same reference numbers Dr1-Dr16, Pa1-Pa16 of the rear matrix IR sensors 70 a, 70 b of the non-contact temperature sensor 70 of the above-described second embodiment.
  • Further, the front target blowing-out temperature TAOFrDr for the front air conditioning zone 1 a and the front target blowing-out temperature TAOFrPr for the front air conditioning zone 1 b are calculated similarly to the TAORrDr and TAORrPa of the above-described second embodiment.
  • The target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (23) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrRr and a front right surface temperature Tir1a of the matrix IR sensor 70 a of the non-contact temperature sensor 70 f. The target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a at the set temperature TsetFrDr.
  • The target blowing-out temperature TAOFrPr of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (25) by using the set temperature signal TsetFrPr, the outside air temperature signal Tam, the solar radiation signal TsDr, the inside air temperature signal TrFr and a front left surface temperature Tir1b of the matrix IR sensor 70 b of the non-contact temperature sensor 70 f. The target blowing-out temperature TAOFrPr is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b at the set temperature TsetFrPr.
  • The other front air conditioning controls using the front target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • In the fourth embodiment, the temperatures of the driver and front passenger on the front seats and the temperatures of the trim panels and windows of the front right and left doors are detected by using the non-contact temperature sensor 70 f, and the target air temperatures for the air conditioning zones 1 a, 1 b are calculated to consider both the passenger's temperatures and the solar radiation. Therefore, comfortable air conditioning can be provided for each of the air conditioning zones 1 a, 1 b.
  • In the fourth embodiment, the rear air conditioning operation is same as the that of the above-described second embodiment.
  • (Fifth Embodiment)
  • The fifth embodiment of the present invention will be now described with reference to FIGS. 17-22. In the above-described first and second embodiments, the front air conditioning control is performed without using a surface temperature detected by the non-contact temperature sensor. However, in the third embodiment, the front right and left air conditioning controls are performed also using surface temperature detected by a non-contact temperature sensor.
  • In the fifth embodiment, IR sensors 70 a, 70 b, 70 c and 70 d used as the non-contact temperature sensors are disposed to detect the surface temperatures of the air conditioning zones 1 a-1 d. Specifically, as shown in FIGS. 20A, 20B, the non-contact temperature sensor 70 a is disposed to detect the surface temperature of the rear right air conditioning zone 1 c, the non-contact temperature sensor 70 b is disposed to detect the surface temperature of the rear left air conditioning zone 1 d, the non-contact temperature sensor 70 c is disposed to detect the surface temperature of the front right air conditioning zone 1 a, and the non-contact temperature sensor 70 d is disposed to detect the surface temperature of the front left air conditioning zone 1 b.
  • The IR sensors 70 a-70 d have the same structure shown in FIGS. 18 and 19. As shown in FIGS. 18 and 19, each of the IR sensors 70 a-70 b includes a square detection portion 71 a (detection element) disposed on a substrate 71 c. The detection portion 71 a is disposed to detect infrared rays and is covered by a cup-shaped case 71 b. A square window 71 d is provided in a bottom portion of the case 71 b, and a cover 71 e is provided in the window 71 d. Further, the detection portion 71 a is disposed to be separated from the window 71 d by a suitable distance S so that a temperature detecting angle α (sight angle) can be adjusted. Accordingly, the temperature detection range (sight range) of each IR sensor 70 a, 70 b, 70 c, 70 d can be set to a predetermined shape by adjusting the shape of the window 71 d and the distance S. In FIG. 19. L1 indicates a length of the temperature detection portion 71 c, L2 is a length of the window 71 d.
  • FIGS. 20A and 20B show the arrangement positions of the IR sensors 70 a-70 d. As shown in FIGS. 20A and 20B, the IR sensors 70 a-70 d are arranged in the ceiling portion at window sides more than position centers (body centers of passengers) of the seats in the air conditioning zones 1 a-1 d. Furthermore, the IR sensors 70 a, 70 b are disposed in the ceiling portion above the area Lr0 between the front end of the seat cushion portion 30 c, 30 d and the rear end of the seat back portion 31 c, 31 d. More preferably, the IR sensors 70 a, 70 b are disposed in the ceiling portion above the area Lr1 between the front end of the seat cushion portion 30 c, 30 d and the rear end of the seat cushion portion 30 c, 30 d. Similarly, the IR sensors 70 c, 70 d are disposed in the ceiling portion above an area Lf0 between the front end of the seat cushion portion 30 a, 30 b and the rear end of the seat back portion 31 a, 31 b. More preferably, the IR sensors 70 c, 70 d are disposed in the ceiling portion above the area Lf1 between the front end of the seat cushion portion 30 a, 30 b and the rear end of the seat cushion portion 30 a, 30 b.
  • Further, in the fifth embodiment, the IR sensors 70 a-70 d are arranged so that each of the temperature detection ranges (sight ranges) 700 a-700 d of the IR sensors 70 a-70 d faces toward the upper surface of the shoulder portion of a passenger on the window side.
  • FIG. 21 is an example showing the sight range (temperature detection range) of the rear right IR sensor 70 a. As shown in FIG. 21, the upper portion of the rear right shoulder portion of the rear right passenger adjacent to the rear right window is mainly contained in the temperature detection range of the rear right IR sensor 70 a.
  • In the fifth embodiment, each of the IR sensors 70 a-70 d is disposed to view the shoulder portion adjacent to the side window from the vehicle ceiling portion downwardly in a vertical direction. Accordingly, even when the position of the shoulder portion of the passenger is changed in the vertical direction due to a change of the seated height or the posture of the passenger, it can restrict the shoulder portion of the passenger from being offset from the temperature detection range. Thus, the surface temperature of the shoulder portion of the passenger on each seat can be stably detected.
  • In the fifth embodiment, as shown in FIG. 17, detected surface temperatures of the IR sensors 70 a-70 d are also input to the air conditioning ECU 8.
  • Next, calculations of right and left target blowing-out temperatures TAOFrDr, TAOFrPa for performing front air conditioning control will be now described. In the fifth embodiment, the surface temperatures detected by the IR sensors 70 c, 70 d are used instead of the inside air temperature TrFr, as compared with the above-described first embodiment.
  • The target blowing-out temperature TAOFrDr of air blown out to the air conditioning zone 1 a in the passenger compartment is calculated in accordance with the formula (27) by using the set temperature signal TsetFrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the surface temperature signal TirFrDr. The target blowing-out temperature TAOFrDr is a necessary target temperature for maintaining the temperature of the front right air conditioning zone 1 a (driver's seat air conditioning zone) at the set temperature TsetFrDr. Here, the surface temperature signal TirFrDr is sent from the IR sensor 70 c (non-contact temperature sensor).
    TAOFrDr=KsetFrDr×TsetFrDr−KirFrDr×TirFrDr−Kam×Tam−KsDr×TsDr+CFrDr  (27)
    wherein, KsetFrDr is a front right temperature setting gain (e.g., KsetFrDr=7.0), KirFrDr is a front right surface temperature gain (e.g., KirFrDr=3.0), Kam is an outside air temperature gain (e.g., Kam=1.1), KsDr is right solar radiation gain (e.g., KsDr=0.42), and CFrDr is a front right correction constant. In this embodiment, the CFrDr is set to be corrected based on the graph of FIG. 22. Generally, the correction constant is set so that the target air temperature TAO becomes lower as the outside air temperature Tam increases.
  • The target blowing-out temperature TAOFrPa of air blown out to the air conditioning zone 1 b in the passenger compartment is calculated in accordance with the formula (28) by using the set temperature signal TsetFrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the surface temperature signal TirFrPa. The target blowing-out temperature TAOFrPa is a necessary target temperature for maintaining the temperature of the front left air conditioning zone 1 b (front passenger's seat air conditioning zone) at the set temperature TsetFrPa. Here, the surface temperature signal TirFrPa is sent from the IR sensor 70 d (non-contact temperature sensor).
    TAOFrPa=KsetFrPa×TsetFrPa−KirFrPa×TirFrPa−Kam×Tam−KsPa×TsPa+CFrPa  (28)
    wherein, KsetFrPa is a front left temperature setting gain (e.g., KsetFrPa=7.0), KirFrPa is a front left surface temperature gain (e.g., KirFrDr=3.0), Kam is an outside air temperature gain (e.g., Kam=1.1), KsPa is left solar radiation gain (e.g., KsDr=0.42), and CFrPa is a front left correction constant. In this embodiment, the CFrPa is also set to be corrected based on the graph of FIG. 22.
  • The other front air-conditioning control operations using the target blowing-out temperatures TAOFrDr, TAOFrPa are similar to those of the above-described first embodiment.
  • Next, calculations of right and left target blowing-out temperatures TAORrDr, TAORrPa for performing rear air conditioning control will be now described. In this embodiment, the surface temperatures detected by the IR sensors 70 a, 70 b are also used.
  • The target blowing-out temperature TAORrDr of air blown out to the air conditioning zone 1 c in the passenger compartment is calculated in accordance with the formula (29) by using the set temperature signal TsetRrDr, the outside air temperature signal Tam, the solar radiation signal TsDr and the surface temperature signal TirRrDr. The target blowing-out temperature TAORrDr is a necessary target temperature for maintaining the temperature of the rear right air conditioning zone 1 c at the set temperature TsetRrDr. Here, the surface temperature signal TirRrDr is sent from the IR sensor 70 a (non-contact temperature sensor).
    TAORrDr=KsetRrDr×TsetRrDr−KirRrDr×TirRrDr−Kam×Tam−KsDr×TsDr+CRrDr  (29)
    wherein, KsetRrDr is a rear right temperature setting gain (e.g., KsetRrDr=7.0), KirRrDr is a rear right surface temperature gain (e.g., KirRrDr=3.0), Kam is an outside air temperature gain (e.g., Kam=1.1), KsDr is right solar radiation gain (e.g., KsDr=0.42), and CRrDr is a rear right correction constant. In this embodiment, the CRrDr is set to be corrected based on the graph of FIG. 22.
  • Further, the target blowing-out temperature TAORrPa of air blown out to the air conditioning zone 1 d in the passenger compartment is calculated in accordance with the formula (30) by using the set temperature signal TsetRrPa, the outside air temperature signal Tam, the solar radiation signal TsPa and the surface temperature signal TirRrPa. The target blowing-out temperature TAORrPa is a necessary target temperature for maintaining the temperature of the rear left air conditioning zone 1 d at the set temperature TsetRrPa. Here, the surface temperature signal TirRrPa is sent from the IR sensor 70 b (non-contact temperature sensor).
    TAORrPa=KsetRrPa×TsetRrPa−KirRrPa×TirRrPa−Kam×Tam−KsPa×TsPa+CFrPa  (30)
    wherein, KsetRrPa is a rear left temperature setting gain (e.g., KsetRrPa=7.0), KirRrPa is a rear left surface temperature gain (e.g., KirRrPa=3.0), Kam is an outside air temperature gain (e.g., Kam=1.1), KsPa is left solar radiation gain (e.g., KsPa=0.42), and CRrPa is a rear left correction constant. In this embodiment, the CRrPa is also set to be corrected based on the graph of FIG. 22.
  • The other rear air-conditioning control operations using the target blowing-out temperatures TAORrDr, TAORrPa are similar to those of the above-described first embodiment.
  • According to the fifth embodiment, the IR sensor 70 c is arranged above the right-window side shoulder portion of the passenger on the front right seat, and the IR sensor 70 d is arranged above the left-window side shoulder portion of the passenger on the front left seat, the IR sensor 70 a is arranged above the right-window side shoulder portion of the passenger on the rear right seat, the IR sensor 70 d is arranged above the left-window side shoulder portion of the passenger on the rear left seat. Accordingly, even if the shoulder position of the passenger is changed in the vertical direction, it can restrict the upper portion of the passenger's shoulder portion of the temperature detecting object from being offset from the temperature detection range of each IR sensor 70 a-70 d. Therefore, the temperature of the shoulder portion of the passenger can be accurately detected.
  • Because the target blowing-out temperature of air to be blown to the passenger compartment is calculated using the detected temperatures of the IR sensors 70 a-70 d, and is corrected by estimating a clothing amount of each passenger in accordance with the outside air temperature Tam. Therefore, air conditioning operation comfortable for each passenger in the passenger compartment can be performed.
  • (Other Embodiments)
  • Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art.
  • In the above-described first embodiment, as shown in FIG. 5A, the temperature detection range 700 a to be detected is fixed and is divided by 16 ranges Dr1-Dr16. However, the temperature detection range 700 a to be detected can be expanded and can be divided into Dr1-Dr16 and DrE1-DrE4 in accordance with seat positions detected by the seat position detection units 1 ap, 1 bp, 1 cp (see FIG. 2). For example, when the seat position of the rear right seat of the passenger compartment is normal, the air conditioning control is performed in accordance with the ranges Dr1-Dr16 of the temperature detection range 700 a. In contrast, for example, when the seat position of the rear right seat is detected to be shifted to a vehicle rear side from the normal position, the temperature detection range 700 a is shifted to the vehicle rear side so that air conditioning control is performed by also using the ranges DrE1-DrE4 as the temperature detection range 700 a.
  • FIG. 24 shows a control process for determining a using area of the temperature detection range 700 a when the seat (e.g., rear right seat) is shifted in a vehicle front-rear direction from the normal position. At step S300, it is determined whether or not the position of the seat (e.g., rear right seat) detected by the seat position detection unit 1 ap, 1 bp and 1 cp is in the normal position. When the detected seat position is in the normal position, air conditioning control is performed using the general ranges Dr1-Dr16 of the temperature detection range 700 a at step S310. In contrast, when the seat position is determined to be shifted to the vehicle rear side, the ranges DrE1, DrE2, DrE3 and DrE4 are used instead of the ranges Dr4, Dr8, Dr12 and Dr16 in the temperature detection range 700 a. That is, the temperature detection range to be used in the air conditioning control can be selected in accordance with the seat position in the vehicle front-rear direction.
  • Similarly to the temperature detection range 700 a, the temperature detection range 700 b, 700 c, 700 d can be shifted in accordance with the seat position in the vehicle front-rear direction.
  • In the above-described first to fourth embodiments, the matrix IR sensors 70 a, 70 b, 70 c, 70 d each having plural thermoelectric couple portions arranged in the matrix shape are used as the non-contact temperature sensor. However, a non-contact temperature sensor having a single temperature detection element can be used. In this case, the passage of the infrared rays can be scanned in the second dimension along the temperature detection range. For example, the structure of the non-contact temperature sensor described in JP-9-159531 can be used.
  • In the above-described embodiments, a passenger's seating state such as a presence or an absence of a passenger, and a passenger's position can be determined based on a temperature distribution of the temperature detection range of the IR sensor 70 a, 70 b, 70 c, 70 d. Further, this determination can be also used in other devices except to the air conditioning device.
  • In the above-described fifth embodiment, the IR sensor 70 a, 70 b, 70 c, 70 d (non-contact temperature sensors) is arranged in the ceiling portion above the shoulder portion on the side-window side of each passenger. However, in the fifth embodiment, the arrangement position of each IR sensor 70 a, 70 b, 70 c, 70 d can be changed. Even when the arrangement position of each IR sensor 70 a is changed, the other parts can be made similarly to those of the above-described fifth embodiment.
  • For example, as shown in FIGS. 25A, 25B, each of the IR sensors 70 a-70 d can be arranged in the ceiling portion on a side of the side window from a center portion of a passenger on each seat in the vehicle width direction, at a vehicle front side from the center portion of the passenger on each seat. In this case, the IR sensor 70 a, 70 b, 70 c, 70 d detects the passenger slanting-downwardly from the vehicle front side. Accordingly, even when the position of the shoulder portion of the passenger in the vertical direction is changed, the temperature of the upper portion of the shoulder portion of the passenger can be accurately detected without being offset from the temperature detection range 700 a, 700 b, 700 c, 700 d.
  • Alternatively, as shown in FIGS. 26A, 26B, each of the IR sensors 70 a-70 d can be arranged in the ceiling portion on the side of the side window from a center portion of a passenger on each seat in the vehicle width direction, at a vehicle rear side from the center portion of the passenger on each seat. In this case, the IR sensor 70 a, 70 b, 70 c, 70 d detects the passenger slanting-downwardly from the vehicle rear side. Accordingly, even when the position of the shoulder portion of the passenger in the vertical direction is changed, the temperature of the upper portion of the shoulder portion of the passenger can be accurately detected without being offset from the temperature detection range 700 a, 700 b, 700 c, 700 d. Further, in this case, the IR sensor 70 a, 70 b, 70 c, 70 d is positioned to be separated from the sight range of the passenger. Therefore, a passenger's feeling to be watched by the sensor 70 a, 70 b, 70 c, 70 d can be removed.
  • Further, in the fifth embodiment, as shown in FIGS. 27A, 27B, the temperature detection range 700 a, 700 b, 700 c, 700 d of the IR sensor 70 a, 70 b, 70 c, 70 d can be made to include not only the upper portion of the shoulder portion of the passenger but also the trim panel and the side window. In this case, the temperature detection range 700 a, 700 b, 700 c, 700 d of the IR sensor 70 a, 70 b, 70 c, 70 d can be arranged at an end side of the face portion of the passenger to not include the face portion of the passenger. Accordingly, the temperature of the passenger can be stably detected without being affected by an individual difference of the passenger' face portion, such as the here state and here length.
  • When the distance S between the detection portion 71 a and the window portion 71 d of the IR sensor 70 a, 70 b, 70 c, 70 d shown in FIG. 19 is set shorter, the temperature detection range (i.e., sight range) of the IR sensor 70 a, 70 b, 70 c, 70 d becomes larger. Alternatively, in FIG. 19, the sight direction of the IR sensors 70 a, 70 b, 70 c, 70 d can be set to be tilted toward the side window. In this case, the target blowing-out temperature can be calculated in accordance with the passenger's temperature and the temperature of the trim panel. Further, by setting the distance between the detection portion 71 a and the window portion 71 d of the IR sensor 70 a, 70 b, 70 c, 70 d shown in FIG. 19 to be shorter, or by setting the sight direction of the IR sensors 70 a, 70 b, 70 c, 70 d to be tilted toward the side window, the temperature detection range 700 a, 700 b, 700 c, 700 d of the IR sensor 70 a, 70 b, 70 c, 70 d can be set to include not only the shoulder portion of the passenger but also the trim portion and the window portion of the side door, as shown in FIGS. 28A and 28B.
  • Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.

Claims (32)

1. A temperature detection device for a vehicle having a plurality of seats in a passenger compartment, the temperature detection device comprising:
a non-contact temperature sensor having a plurality of temperature detection elements for detecting surface temperatures of a plurality of temperature detection ranges in a vicinity of at least one of the seats in non-contact, wherein:
the non-contact temperature sensor is disposed to detect a surface temperature of a passenger seated on the one seat and to send a detected temperature signal to an air conditioner; and
the non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the one seat in a vehicle front-rear direction.
2. The temperature detection device according to claim 1, wherein:
the arrangement area is an area of the ceiling portion between a frontmost end of a seat cushion portion of the one seat to a rearmost end of a seat back portion of the one seat; and
the non-contact temperature sensor has a sight center line that is substantially perpendicular to the front-rear direction.
3. The temperature detection device according to claim 1, wherein the arrangement area is an area of the ceiling portion between a frontmost end and a rearmost end of a seat cushion portion of the one seat.
4. The temperature detection device according to claim 1, wherein the temperature detection elements of the non-contact temperature sensor are arranged to detect surface temperatures of at least the shoulder portion and the thigh portion of a passenger on the one seat.
5. The temperature detection device according to claim 1, wherein the temperature detection elements of the non-contact temperature sensor are arranged to detect a surface temperature of a passenger on the one seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window.
6. The temperature detection device according to claim 1, wherein:
the one seat is a front seat having right and left seat portions or a rear seat having right and left seat portions in the passenger compartment; and
the non-contact temperature sensor includes
a right matrix IR sensor having a plurality of right temperature detection elements which are arranged such that temperature detection ranges of the right temperature detection elements include at least a passenger on the right seat portion of the one seat, and
a left matrix IR sensor having a plurality of left temperature detection elements which are arranged such that temperature detection ranges of the left temperature detection elements include at least a passenger on the left seat portion of the one seat.
7. The temperature detection device according to claim 6, wherein:
the right matrix IR sensor is provided in the ceiling portion above the right seat portion; and
the left matrix IR sensor is provided in the ceiling portion above the left seat portion.
8. The temperature detection device according to claim 7, wherein:
the right matrix IR sensor is provided in the ceiling portion at a position shifted from a center of the right seat portion to a side window adjacent to the right seat portion.
9. The temperature detection device according to claim 6, wherein:
the right matrix IR sensor is provided in the ceiling portion above a cushion portion of the right seat portion; and
the left matrix IR sensor is provided in the ceiling portion above a cushion portion of the left seat portion.
10. The temperature detection device according to claim 6, wherein the right matrix IR sensor and the left matrix IR sensor are arranged in the ceiling portion adjacent to each other in an approximate center position in a vehicle right-left direction.
11. The temperature detection device according to claim 1, wherein the air conditioner including
an air conditioning unit which adjusts an air conditioning state in the passenger compartment, and
a control unit for controlling operation of the air conditioning unit; and
wherein the control unit calculates a target temperature of air to be blown into the passenger compartment based on a surface temperature of a passenger detected by the non-contact temperature sensor, and controls the air conditioning unit based on the target temperature.
12. The temperature detection device according to claim 11, wherein:
the control unit calculates a passenger's temperature on the one seat by a weighting calculation of the surface temperature of the passenger on the seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window, which are detected by the non-contact temperature sensor; and
the control unit calculates the target temperature based on the passenger's temperature.
13. The temperature detection device according to claim 12, wherein:
the weighting calculation has a first weighting coefficient relative to the surface temperature of the passenger, a second weighting coefficient relative to the surface temperature of the side window, and a third weighting coefficient relative to the surface temperature of the trim panel; and
the first weighting coefficient is the largest value among the first, second and third weighting coefficients, and the second coefficient is the smallest value among the first, second and third weighting coefficients.
14. The temperature detection device according to claim 1, wherein:
the non-contact temperature sensor is provided above a passenger's seating position of the one seat at a side of a side window adjacent to the passenger's seating position from a center of the passenger's seating position;
the non-contact temperature sensor has a predetermined temperature detection range which includes at least an upper portion of the shoulder of the passenger on the side of the side window; and
the air conditioner has a control unit which controls an air conditioning state of the passenger compartment based on the temperature detected by the non-contact temperature sensor.
15. The temperature detection device according to claim 14, wherein the non-contact temperature sensor is provided above the passenger's seating position of the one seat at a front side in the passenger's seating position.
16. The temperature detection device according to claim 14, wherein the non-contact temperature sensor is provided above the passenger's seating position of the one seat at a rear side in the passenger's seating position.
17. The temperature detection device according to claim 14, wherein the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder adjacent to the side window and a trim panel portion around the side window.
18. The temperature detection device according to claim 14, wherein the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder adjacent to the side window and the side window.
19. The temperature detection device according to claim 14, wherein the temperature detection range of the non-contact temperature sensor includes the upper portion of the shoulder at a side end of the face portion of the passenger in the temperature detection range.
20. The temperature detection device according to claim 1, wherein:
the non-contact temperature sensor includes a right sensor portion that is provided above a right passenger's seating portion of the one seat at a side of a right side window from a center of the right passenger's seating portion, a left sensor portion that is provided above a left passenger's seating portion of the one seat at a side of a left side window from a center of the left passenger's seating portion;
the right sensor portion has a predetermined temperature detection range which includes at least an upper portion of the shoulder of a passenger on the right passenger's seating portion; and
the left sensor portion has a predetermined temperature detection range which includes at least an upper portion of the shoulder of a passenger on the left passenger's seating portion.
21. The temperature detection device according to claim 14, wherein the air conditioning control unit calculates a target temperature of air to be blown to the passenger compartment based on the temperature detected by the non-contact temperature sensor, and controls the air conditioning state in the temperature detection range based on the target temperature.
22. The temperature detection device according to claim 1, wherein the temperature detection ranges to be used are changed in accordance with positions of the seats in the vehicle front-rear direction.
23. An air conditioner for a vehicle having a front right seat, a front left seat, a rear right seat and a rear left seat in a passenger compartment, the air conditioner comprising:
an air conditioning unit for respectively independently adjusting air conditioning states of first and second air conditioning zones positioned at right and left sides of a front seat in the passenger compartment, and third and fourth air conditioning zones positioned at right and left sides of a rear seat in the passenger compartment;
a front non-contact temperature sensor having a front right matrix IR sensor for detecting a temperature of a passenger on the front right seat, and a front left matrix IR sensor for detecting a temperature of a passenger on the front left seat;
a rear non-contact temperature sensor having a rear right matrix IR sensor for detecting a temperature of a passenger on the rear right seat, and a rear left matrix IR sensor for detecting a temperature of a passenger on the rear left seat; and
a control unit for controlling the air conditioning unit by using the temperatures detected by the front right matrix IR sensor, the front left matrix IR sensor, the rear right matrix IR sensor and the rear left matrix IR sensor, wherein:
the front non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the front right and left seats in a vehicle front-rear direction; and
the rear non-contact temperature sensor is provided in the ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the rear right and left seats in the vehicle front-rear direction.
24. The air conditioner according to claim 23, wherein:
the front right matrix IR sensor is disposed in the ceiling portion above the front right seat;
the front left matrix IR sensor is disposed in the ceiling portion above the front left seat;
the rear right matrix IR sensor is disposed in the ceiling portion above the rear right seat;
the rear left matrix IR sensor is disposed in the ceiling portion above the rear left seat;
the control unit calculates a first target temperature of air to be blown to the first air conditioning zone based on a temperature of a passenger detected by the front right matrix IR sensor, and controls the air conditioning state in the first air conditioning zone based on the first target temperature;
the control unit calculates a second target temperature of air to be blown to the second air conditioning zone based on a temperature of a passenger detected by the front left matrix IR sensor, and controls the air conditioning state in the second air conditioning zone based on the second target temperature;
the control unit calculates a third target temperature of air to be blown to the third air conditioning zone based on a temperature of a passenger detected by the rear right matrix IR sensor, and controls the air conditioning state in the third air conditioning zone based on the third target temperature; and
the control unit calculates a fourth target temperature of air to be blown to the fourth air conditioning zone based on a temperature of a passenger detected by the rear left matrix IR sensor, and controls the air conditioning state in the fourth air conditioning zone based on the fourth target temperature.
25. An air conditioner for a vehicle having a plurality of seats, the air conditioner comprising:
a non-contact temperature sensor having a plurality of temperature detection elements for detecting surface temperatures of a plurality of temperature detection ranges in a vicinity of at least one of the seats in non-contact;
an air conditioning unit for adjusting an air conditioning state of a passenger compartment; and
a control unit for controlling the air conditioning unit based on a temperature detected by the non-contact temperature sensor,
wherein the non-contact temperature sensor is provided in a ceiling portion of the passenger compartment in an arrangement area of the ceiling portion between a front end and a rear end of the one seat in a vehicle front-rear direction.
26. The air conditioner according to claim 25, wherein:
the arrangement area is an area of the ceiling portion between a frontmost end of a seat cushion portion of the one seat to a rearmost end of a seat back portion of the one seat; and
the non-contact temperature sensor has a sight center line that is substantially perpendicular to the front-rear direction.
27. The air conditioner according to claim 25, wherein the arrangement area is an area of the ceiling portion between a frontmost end and a rearmost end of a seat cushion portion of the one seat.
28. The air conditioner according to claim 25, wherein the temperature detection elements of the non-contact temperature sensor are arranged to detect a surface temperature of at least the shoulder portion of a passenger on the one seat.
29. The air conditioner according to claim 25, wherein the control unit calculates a target temperature of air to be blown into the passenger compartment based on a surface temperature of a passenger detected by the non-contact temperature sensor, and controls the air conditioning unit based on the target temperature.
30. The air conditioner according to claim 29, wherein:
the control unit calculates a passenger's temperature on the one seat by a weighting calculation of the surface temperature of the passenger on the seat, a surface temperature of a side window adjacent to the passenger, and a surface temperature of a trim panel between the passenger and the side window, which are detected by the non-contact temperature sensor; and
the control unit calculates the target temperature based on the passenger's temperature.
31. The air conditioner according to claim 30, wherein:
the weighting calculation has a first weighting coefficient relative to the surface temperature of the passenger, a second weighting coefficient relative to the surface temperature of the side window, and a third weighting coefficient relative to the surface temperature of the trim panel; and
the first weighting coefficient is the largest value among the first, second and third weighting coefficients, and the second coefficient is the smallest value among the first, second and third weighting coefficients.
32. The air conditioner according to claim 25, wherein the control unit selects the temperature detection ranges to be used in accordance with positions of the seats in the vehicle front-rear direction.
US10/946,509 2003-11-10 2004-09-21 Temperature detection device and vehicle air conditioner using the same Abandoned US20050098640A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-379551 2003-11-10
JP2003379551A JP2005138775A (en) 2003-11-10 2003-11-10 Temperature sensor for vehicle and air-conditioner for vehicle
JP2004-120337 2004-04-15
JP2004120337A JP2005297902A (en) 2004-04-15 2004-04-15 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
US20050098640A1 true US20050098640A1 (en) 2005-05-12

Family

ID=34554826

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/946,509 Abandoned US20050098640A1 (en) 2003-11-10 2004-09-21 Temperature detection device and vehicle air conditioner using the same

Country Status (1)

Country Link
US (1) US20050098640A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255731A1 (en) * 2007-04-12 2008-10-16 Takata Corporation Occupant detection apparatus
US20080256967A1 (en) * 2007-04-20 2008-10-23 Honda Motor Co., Ltd. Fitness factor for automatically adjusting a vehicle hvac system
US20110275301A1 (en) * 2007-08-28 2011-11-10 Oy Halton Group Ltd. Autonomous Ventilation System
US20120276831A1 (en) * 2011-04-27 2012-11-01 Delphi Technologies, Inc. System and Method of Providing Quick Thermal Comfort with Reduced Energy by Using Directed Spot Conditioning
US20140169404A1 (en) * 2012-12-17 2014-06-19 City University Of Hong Kong System and method for detecting heat emitting objects
US20140338882A1 (en) * 2013-05-15 2014-11-20 Ford Global Technologies, Llc HVAC Control for Vehicles with Start/Stop Engines
DE102014210962A1 (en) 2013-07-11 2015-01-15 Audi Ag Air conditioning device for a motor vehicle and control method therefor
US20150182844A1 (en) * 2014-01-02 2015-07-02 Electronics And Telecommunications Research Institute Smart shoes, method of providing sensor information to smart shoes, smart device and method of providing guidance program via smart device
US20160257272A1 (en) * 2015-03-06 2016-09-08 Ford Global Technologies, Llc Vehicle seat thermistor for classifying seat occupant type
US9494324B2 (en) 2008-12-03 2016-11-15 Oy Halton Group Ltd. Exhaust flow control system and method
DE102015111442A1 (en) 2015-07-15 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for air conditioning the interior of a vehicle occupied by occupants
EP3232236A4 (en) * 2014-12-08 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Detection device and vehicle control device using same
US20190072473A1 (en) * 2017-09-04 2019-03-07 Mahle International Gmbh Air-conditioning system for a vehicle
CN112026472A (en) * 2019-06-04 2020-12-04 上海博泰悦臻网络技术服务有限公司 Electronic equipment, intelligent cabin, environment adjusting method and device, and environment detecting method and device
US11718145B2 (en) * 2019-09-09 2023-08-08 Hyundai Motor Company HVAC system having air-conditioning channels for target seats

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202934B1 (en) * 1999-09-03 2001-03-20 Denso Corporation Air conditioner for a vehicle having infrared ray sensor
US6550686B2 (en) * 2000-05-09 2003-04-22 Denso Corporation Vehicle air conditioning system with non-contact temperature sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202934B1 (en) * 1999-09-03 2001-03-20 Denso Corporation Air conditioner for a vehicle having infrared ray sensor
US6550686B2 (en) * 2000-05-09 2003-04-22 Denso Corporation Vehicle air conditioning system with non-contact temperature sensor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255731A1 (en) * 2007-04-12 2008-10-16 Takata Corporation Occupant detection apparatus
US20080256967A1 (en) * 2007-04-20 2008-10-23 Honda Motor Co., Ltd. Fitness factor for automatically adjusting a vehicle hvac system
US20110275301A1 (en) * 2007-08-28 2011-11-10 Oy Halton Group Ltd. Autonomous Ventilation System
US10302307B2 (en) 2007-08-28 2019-05-28 Oy Halton Group Ltd. Autonomous ventilation system
US8795040B2 (en) * 2007-08-28 2014-08-05 Oy Halton Group Ltd. Autonomous ventilation system
US9587839B2 (en) 2007-08-28 2017-03-07 Oy Halton Group Ltd. Autonomous ventilation system
US10082299B2 (en) 2008-12-03 2018-09-25 Oy Halton Group Ltd. Exhaust flow control system and method
US9494324B2 (en) 2008-12-03 2016-11-15 Oy Halton Group Ltd. Exhaust flow control system and method
US9457639B2 (en) * 2011-04-27 2016-10-04 Mahle International Gmbh System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning
US20120276831A1 (en) * 2011-04-27 2012-11-01 Delphi Technologies, Inc. System and Method of Providing Quick Thermal Comfort with Reduced Energy by Using Directed Spot Conditioning
US20140169404A1 (en) * 2012-12-17 2014-06-19 City University Of Hong Kong System and method for detecting heat emitting objects
US9566927B2 (en) * 2012-12-17 2017-02-14 City University Of Hong Kong System and method for detecting heat emitting objects
US20140338882A1 (en) * 2013-05-15 2014-11-20 Ford Global Technologies, Llc HVAC Control for Vehicles with Start/Stop Engines
DE102014210962A1 (en) 2013-07-11 2015-01-15 Audi Ag Air conditioning device for a motor vehicle and control method therefor
US20150182844A1 (en) * 2014-01-02 2015-07-02 Electronics And Telecommunications Research Institute Smart shoes, method of providing sensor information to smart shoes, smart device and method of providing guidance program via smart device
US10473483B2 (en) * 2014-01-02 2019-11-12 Electronics And Telecommunications Research Institute Smart shoes, method of providing sensor information to smart shoes, smart device and method of providing guidance program via smart device
EP3232236A4 (en) * 2014-12-08 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Detection device and vehicle control device using same
US20160257272A1 (en) * 2015-03-06 2016-09-08 Ford Global Technologies, Llc Vehicle seat thermistor for classifying seat occupant type
US9889809B2 (en) * 2015-03-06 2018-02-13 Ford Global Technologies, Llc Vehicle seat thermistor for classifying seat occupant type
DE102015111442A1 (en) 2015-07-15 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for air conditioning the interior of a vehicle occupied by occupants
US20190072473A1 (en) * 2017-09-04 2019-03-07 Mahle International Gmbh Air-conditioning system for a vehicle
US10761006B2 (en) * 2017-09-04 2020-09-01 Mahle International Gmbh Air-conditioning system for a vehicle
CN112026472A (en) * 2019-06-04 2020-12-04 上海博泰悦臻网络技术服务有限公司 Electronic equipment, intelligent cabin, environment adjusting method and device, and environment detecting method and device
US11718145B2 (en) * 2019-09-09 2023-08-08 Hyundai Motor Company HVAC system having air-conditioning channels for target seats

Similar Documents

Publication Publication Date Title
US7578341B2 (en) Air conditioning system for motor vehicle
US7380587B2 (en) Vehicle air conditioner
US7497251B2 (en) Vehicle air conditioner
US20050098640A1 (en) Temperature detection device and vehicle air conditioner using the same
JP2004196111A (en) Air conditioner for vehicle
US7246657B2 (en) Air conditioner for vehicle
JP2006240578A (en) Seating determination device for vehicle and air conditioner for vehicle
JP2006240609A (en) Air conditioner for vehicle
JP2006248352A (en) Temperature detecting device for vehicle and air conditioner for vehicle
JP4269905B2 (en) Air conditioner for vehicles
JP4311125B2 (en) Air conditioner for vehicles
JP2005145133A (en) Air conditioner for vehicle
JP4259258B2 (en) Air conditioner for vehicles
JPH10217743A (en) Vehicle air conditioner
JP2005140571A (en) Noncontact temperature sensor for vehicle, and air conditioner for vehicle
JP4196800B2 (en) Air conditioner for vehicles
JP4207708B2 (en) Air conditioner for vehicles
JP2005297902A (en) Air conditioner for vehicle
JP4120613B2 (en) VEHICLE TEMPERATURE DETECTING DEVICE AND VEHICLE AIR CONDITIONER
JP4196783B2 (en) Air conditioner for vehicles
JP2002234328A (en) Vehicular air conditioner
JP2005059679A (en) Vehicular air-conditioner
JP4207709B2 (en) Air conditioner for vehicles
JP2001322416A (en) Air conditioner for vehicle
JP2005067460A (en) Air-conditioner for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ICHISHI, YOSHINORI;KUMADA, TATSUMI;REEL/FRAME:015821/0052

Effective date: 20040818

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION