US20050034826A1 - Tissue products and methods for manufacturing tissue products - Google Patents

Tissue products and methods for manufacturing tissue products Download PDF

Info

Publication number
US20050034826A1
US20050034826A1 US10/952,021 US95202104A US2005034826A1 US 20050034826 A1 US20050034826 A1 US 20050034826A1 US 95202104 A US95202104 A US 95202104A US 2005034826 A1 US2005034826 A1 US 2005034826A1
Authority
US
United States
Prior art keywords
ply
layer
tissue
hardwood
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/952,021
Inventor
Sheng-Hsin Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/025,192 external-priority patent/US20030111196A1/en
Application filed by Individual filed Critical Individual
Priority to US10/952,021 priority Critical patent/US20050034826A1/en
Publication of US20050034826A1 publication Critical patent/US20050034826A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H1/00Paper; Cardboard
    • D21H1/02Multi-ply material finished plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/38Multi-ply at least one of the sheets having a fibrous composition differing from that of other sheets

Definitions

  • Strength and softness are important attributes in consumer tissue products such as facial tissue, bathroom tissue, towels, and napkins. Strength and softness are strongly influenced by the sheet structure of a tissue product. Mechanical treatment of fibers and fiber slurries in the manufacture of tissue products is an important factor in determining the strength and softness of products that are produced thereby.
  • Strength and softness usually are inversely related. That is, the stronger a given sheet, the less softness that sheet is likely to provide. Likewise, a softer sheet is usually not as strong. Thus, an inverse relationship that exists between the properties of strength and softness results in consistent efforts in the industry to produce sheets or webs having strength levels which are at least as great as conventional sheets, but with improved softness. Also, a sheet or web that is at least as soft as previously known sheets, but with improved strength, also is desirable.
  • tissue products i.e., those layers that routinely contact the skin of consumers. This is true for bath tissue, for example.
  • the inner layers of such products often comprise softwood fibers that provide strength.
  • debonding agents have also traditionally be utilized to further soften the tissue product.
  • sloughing sometimes is increased by the use of debonding agents. Sloughing may be described generally as the loss of paper particles from the surface of the paper due to surface abrasion. Many consumers react negatively to paper that exhibits a high degree of sloughing. Therefore, efforts are commonly made to provide a tissue product that exhibits a minimal amount of sloughing. Many changes that are made to paper manufacture to decrease sloughing have the undesirable side effect of stiffening the tissue (i.e., reducing softness). Thus, in the manufacture of tissue products it is a constant struggle to reduce sloughing of such products without adverse effects upon softness levels.
  • each ply has two layers.
  • each ply usually contains a hardwood layer that faces the consumer and a softwood layer that faces the softwood layer of the other ply.
  • the inner softwood layers of each ply are in contact with each other.
  • Another conventional tissue product is a single ply product having three layers.
  • the outer layers usually contain hardwood fibers, while the inner layer contains softwood fibers.
  • a multi-ply tissue product comprising a first ply and a second ply.
  • the first ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the first ply.
  • the second ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layer of the second ply, wherein the second hardwood layer of the first ply is positioned adjacent to the first hardwood layer of the second ply.
  • a two-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the second ply define an outer surface of the product.
  • the resulting tissue product may exhibit reduced sloughing, with little or no sacrifice in softness.
  • the tissue product further comprises a third ply.
  • the third ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the third ply, wherein the first hardwood layer of the third ply is positioned adjacent to the second hardwood layer of the second ply.
  • a three-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the third ply define outer surfaces of the product.
  • the tissue product can further comprise a fourth ply.
  • the fourth ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the fourth ply, wherein the first hardwood layer of the fourth ply is positioned adjacent to the second hardwood layer of the third ply.
  • a four-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the fourth ply define outer surfaces of the product.
  • FIG. 1 is a schematic flow diagram of one embodiment of a papermaking process that can be used in the present invention
  • FIG. 2 is a schematic flow diagram of another embodiment of a papermaking process that can be used in the present invention.
  • FIG. 3 is a schematic flow diagram of still another embodiment of a papermaking process that can be used in the present invention.
  • FIG. 4A is a representation of a two-ply tissue assembled according to one embodiment of the invention.
  • FIG. 4B is a representation of a three-ply tissue assembled according to one embodiment of the invention.
  • FIG. 4C is a representation of a four-ply tissue assembled according to one embodiment of the invention.
  • FIG. 5 is a perspective view of a machine used to measure slough of a paper sample.
  • a multi-ply tissue product in which the interface of two or more of the plies constitute hardwood layers can provide superior sloughing and softness characteristics.
  • a multi-ply product that contains at least two plies, with three layers in each ply, and having hardwood layers on both the outside surfaces and at the interfaces (i.e., in the middle) may exhibit reduced sloughing, with little or no sacrifice in softness.
  • the term “layer” generally refers to a single thickness, course, stratum, or fold that may lay on its own, or that may lay over or under another. Further, the term “ply” can refer to a material produced from a headbox having one or more layers and a material produced by pressing together two or more wet webs that are each formed from a headbox having a single layer.
  • tissue product generally refers to various tissue products, such as facial tissue, bath tissue, paper towels, napkins, and the like.
  • the basis weight of a tissue product of the present invention is less than about 80 grams per square meter (gsm), and in some embodiments less than about 60 gsm, and in other embodiments between about 10 to about 60 gsm.
  • the basis weight for all examples provided below is 30 gsm.
  • cellulosic fibers may generally be employed in the process of the present invention.
  • Illustrative cellulosic fibers that may be employed in the practice of the invention include, but are not limited to, wood and wood products, such as wood pulp fibers (e.g., softwood or hardwood pulp fibers); non-woody paper-making fibers from cotton, from straws and grasses, such as rice and esparto, from canes and reeds, such as bagasse, from bamboos, form stalks with bast fibers, such as jute, flax, kenaf, cannabis, linen and ramie, and from leaf fibers, such as abaca and sisal.
  • wood pulp fibers e.g., softwood or hardwood pulp fibers
  • non-woody paper-making fibers from cotton, from straws and grasses, such as rice and esparto, from canes and reeds such as bagasse, from bamboos, form stalks with bast fibers, such
  • cellulosic fibers it is also possible to use mixtures of one or more cellulosic fibers. It is generally desired that the cellulosic fibers used herein be wettable. Suitable cellulosic fibers include those that are naturally wettable. However, naturally non-wettable fibers can also be used.
  • Softwood sources include trees sources, such as pines, spruces, and firs and the like.
  • Hardwood sources such as oaks, eucalyptuses, poplars, beeches, and aspens, may be used, but this list is by no means exhaustive of all the hardwood sources that may be employed in the practice of the invention.
  • Hardwood fiber sources generally contain fibers of a shorter length than softwood sources. Many times, sloughing occurs when shorter fibers flake or fall from the outer hardwood layers of multi-layered tissues.
  • Hardwood fibers tend to show high degrees of “fuzziness” or softness when placed on the exterior surface of a tissue product, such as a bathroom tissue.
  • a first furnish comprising a strength layer is employed.
  • This first furnish may be a softwood, for example.
  • the average fiber length of a softwood fiber typically is about two to four times longer than a hardwood fiber.
  • the cellulosic fibers be used in a form wherein the cellulosic fibers have already been prepared into a pulp.
  • the cellulosic fibers will be presented substantially in the form of individual cellulosic fibers, although such individual cellulosic fibers may be in an aggregate form such as a pulp sheet. This is in contrast with untreated cellulosic forms such as wood chips or the like.
  • the current process is generally a post-pulping, cellulosic fiber separation process as compared to other processes that may be used for high-yield pulp manufacturing processes.
  • cellulosic fibers from most cellulosic sources results in a heterogeneous mixture of cellulosic fibers.
  • the individual cellulosic fibers in the mixture exhibit a broad spectrum of values for a variety of properties such as length, coarseness, diameter, curl, color, chemical modification, cell wall thickness, fiber flexibility, and hemicellulose and/or lignin content.
  • seemingly similar mixtures of cellulosic fibers prepared from the same cellulosic source may exhibit different mixture properties, such as freeness, water retention, and fines content because of the difference in actual cellulosic fiber make-up of each mixture or slurry.
  • the cellulosic fibers may be used in the process of the present invention in either a dry or a wet state. However, it may be desirable to prepare an aqueous mixture comprising the cellulosic fibers wherein the aqueous mixture is agitated, stirred, or blended to effectively disperse the cellulosic fibers throughout the water.
  • the cellulosic fibers are typically mixed with an aqueous solution wherein the aqueous solution beneficially comprises at least about 30 weight percent water, suitably about 50 weight percent water, more suitably about 75 weight percent water, and most suitably about 100 weight percent water.
  • aqueous solution beneficially comprises at least about 30 weight percent water, suitably about 50 weight percent water, more suitably about 75 weight percent water, and most suitably about 100 weight percent water.
  • suitable liquids include methanol, ethanol, isopropanol, and acetone.
  • the use or presence of such other non-aqueous liquids may impede the formation of an essentially homogeneous mixture such that the cellulosic fibers do not effectively disperse into the aqueous solution and effectively or uniformly mix with the water.
  • Such a mixture should generally be prepared under conditions that are sufficient for the cellulosic fibers and water to be effectively mixed together.
  • cellulosic fibers are prepared by pulping or other preparation processes in which the cellulosic fibers are present in an aqueous solution.
  • a “softener” or “debonder” may be added to one or more layers of a ply used in the tissue of the present invention.
  • “softener” or “debonder” is a chemical compound that serves to soften the final tissue product. These compounds may be selected from the group of compounds consisting of: quaternary ammonium compounds, quaternary protein compounds, phospholipids, silicone quaternaries, quaternized, hydrolyzed wheat protein/dimethicone phosphocopolyol copolymer, organoreactive polysiloxanes, and silicone glycols. Other debonding agents also could be used.
  • a quaternary ammonium compound softener/debonder methyl-1-oleyl amidoethyl-2-oleyl imidazolinium methyl sulfate identified as Varisoft 3690 available from Witco Corporation could be employed, for example.
  • an imidazoline-based debonding agent such as DC-83 manufactured by McIntyre Corporation of University Park, Ill. can be employed. In some applications, this debonding agent is added to the hardwood layers in an amount equivalent to about 6 lbs/Ton (i.e., to the two eucalyptus stock chests).
  • Refining or beating of chemical pulps is the mechanical treatment and modification of fibers so that they can be formed into paper or board having desirable properties. It is used when preparing papermaking fibers for high-quality papers or paperboards, and in the past has not been widely employed for bathroom tissue or similar soft tissue products.
  • Refining improves the bonding ability of fibers so that they form a strong and smooth paper sheet with good printing properties. Sometimes refining shortens fibers that are too long for a good sheet formation, or to develop other pulp properties such as absorbency, porosity, or optical properties specifically for a given paper grade.
  • a common refining or beating method is to treat fibers in the presence of water with metallic bars.
  • the plates or fillings are grooved so that the bars that treat fibers and the grooves between bars allow fiber transportation through the refining machine.
  • Such machines are known in the papermaking art.
  • a tissue product made in accordance with the present invention can generally be formed according to a variety of papermaking processes known in the art.
  • any process capable of making a tissue web can be utilized in the present invention.
  • a papermaking process of the present invention can utilize wet-pressing, creping, through-air-drying, creped through-air-drying, uncreped through-air-drying, single recreping, double recreping, calendering, embossing, air laying, as well as other steps in processing the tissue web.
  • some suitable papermaking processes are described in U.S. Pat. No. 5,129,988 to Farrinqton, Jr.; U.S. Pat. No. 5,494,554 to Edwards, et al.; and U.S. Pat. No. 5,529,665 to Kaun, which are incorporated herein in their entirety by reference thereto for all purposes.
  • FIG. 1 a method of making a wet-pressed tissue in accordance with one embodiment of the present invention is shown, commonly referred to as couch forming, wherein two wet web layers are independently formed and thereafter combined into a unitary web.
  • a specified fiber either hardwood or softwood
  • a stock pump 2 supplies the required amount of suspension to the suction side of the fan pump 4 .
  • a metering pump 5 can supply an additive (e.g., latex, reactive composition, etc.) into the fiber suspension. Additional dilution water also is mixed with the fiber suspension.
  • the entire mixture of fibers is then pressurized and delivered to the headbox 6 .
  • the aqueous suspension leaves the headbox 6 and is deposited on an endless papermaking fabric 7 over the suction box 8 .
  • the suction box is under vacuum that draws water out of the suspension, thus forming the first layer.
  • the stock issuing from the headbox 6 would be referred to as the “air side” layer, that layer eventually being positioned away from the dryer surface during drying.
  • the forming fabric can be any forming fabric, such as fabrics having a fiber support index of about 150 or greater.
  • suitable forming fabrics include, but are not limited to, single layer fabrics, such as the Appleton Wire 94M available from Albany International Corporation, Appleton Wire Division, Menasha, Wis.; double layer fabrics, such as the Asten 866 available from Asten Group, Appleton, Wis.; and triple layer fabrics, such as the Lindsay 3080, available from Lindsay Wire, Florence, Miss.
  • the consistency of the aqueous suspension of papermaking fibers leaving the headbox can be from about 0.05 to about 2%, and in one embodiment, about 0.2%.
  • the first headbox 6 can be a layered headbox with two or more layering chambers which delivers a stratified first wet web layer, or it can be a monolayered headbox which delivers a blended or homogeneous first wet web layer.
  • a specified fiber (either hardwood or softwood) is prepared in a manner well known in the papermaking arts and delivered to the second stock chest 11 , in which the fiber is kept in an aqueous suspension.
  • a stock pump 12 supplies the required amount of suspension to the suction side of the fan pump 14 .
  • a metering pump 5 can supply additives (e.g., latex, reactive composition, etc.) into the fiber suspension as described above. Additional dilution water 13 is also mixed with the fiber suspension. The entire mixture is then pressurized and delivered to the headbox 16 .
  • the aqueous suspension leaves the headbox 16 and is deposited onto an endless papermaking fabric 17 over the suction box 18 .
  • the suction box is under vacuum that draws water out of the suspension, thus forming the second wet web.
  • the stock issuing from the headbox 16 is referred to as the “dryer side” layer as that layer will be in eventual contact with the dryer surface.
  • Suitable forming fabrics for the forming fabric 17 of the second headbox include those forming fabrics previously mentioned with respect to the first headbox forming fabric.
  • the two web layers are brought together in contacting relationship (couched) while at a consistency of from about 10 to about 30%. Whatever consistency is selected, it is typically desired that the consistencies of the two wet webs be substantially the same.
  • Couching is achieved by bringing the first wet web layer into contact with the second wet web layer at roll 19 .
  • the couched web is further dewatered and transferred to a dryer 30 (e.g., Yankee dryer) using a pressure roll 31 , which serves to express water from the web, which is absorbed by the felt, and causes the web to adhere to the surface of the dryer.
  • the web is then dried, optionally creped and wound into a roll 32 for subsequent converting into the final creped product.
  • FIG. 2 is a schematic flow diagram of another embodiment of a papermaking process that can be used in the present invention.
  • a layered headbox 41 a forming fabric 42 , a forming roll 43 , a papermaking felt 44 , a press roll 45 , a Yankee dryer 46 , and a creping blade 47 are shown.
  • various idler or tension rolls used for defining the fabric runs in the schematic diagram, which may differ in practice.
  • a layered headbox 41 continuously deposits a layered stock jet between the forming fabric 42 and the felt 44 , which is partially wrapped around the forming roll 43 .
  • Water is removed from the aqueous stock suspension through the forming fabric 42 by centrifugal force as the newly-formed web traverses the arc of the forming roll. As the forming fabric 42 and felt 44 separate, the wet web stays with the felt 44 and is transported to the Yankee dryer 46 .
  • the creping chemicals are continuously applied on top of the existing adhesive in the form of an aqueous solution.
  • the solution is applied by any convenient means, such as using a spray boom that evenly sprays the surface of the dryer with the creping adhesive solution.
  • the point of application on the surface of the dryer 46 is immediately following the creping doctor blade 47 , permitting sufficient time for the spreading and drying of the film of fresh adhesive.
  • reactive compositions may be applied to the web as it is being dried, such as through the use of the spray boom.
  • the spray boom can apply the additives to the surface of the drum 46 separately and/or in combination with the creping adhesives such that such additives are applied to an outer layer of the web as it passes over the drum 46 .
  • the point of application on the surface of the dryer 46 is the point immediately following the creping blade 47 , thereby permitting sufficient time for the spreading and drying of the film of fresh adhesive before contacting the web in the press roll nip.
  • the wet web is applied to the surface of the dryer 46 by a press roll 45 with an application force of, in one embodiment, about 200 pounds per square inch (psi).
  • the consistency of the web is typically at or above about 30%.
  • Sufficient Yankee dryer steam power and hood drying capability are applied to this web to reach a final consistency of about 95% or greater, and particularly 97% or greater.
  • the sheet or web temperature immediately preceding the creping blade 47 is typically about 235° F.
  • the web can also be dried using non-compressive drying techniques, such as through-air drying.
  • a through-air dryer accomplishes the removal of moisture from the web by passing air through the web without applying any mechanical pressure. Through-air drying can increase the bulk and softness of the web. Examples of such a technique are disclosed in U.S. Pat. No. 5,048,589 to Cook. et al.; U.S. Pat. No. 5,399,412 to Sudall, et al.; U.S. Pat. No. 5,510,001 to Hermans. et al.; U.S. Pat. No. 5,591,309 to Rugowski, et al.; and U.S. Pat. No. 6,017,417 to Wendt, et al., which are incorporated herein in their entirety by reference thereto for all purposes.
  • a papermaking headbox 110 can be used to inject or deposit a stream of an aqueous suspension of papermaking fibers onto an upper forming fabric 112 .
  • the aqueous suspension of fibers is then transferred to a lower forming fabric 113 , which serves to support and carry the newly-formed wet web 111 downstream in the process.
  • dewatering of the wet web 111 can be carried out, such as by vacuum suction, while the wet web 111 is supported by the forming fabric 113 .
  • the wet web 111 is then transferred from the forming fabric 113 to a transfer fabric 117 while at a solids consistency of between about 10% to about 35%, and particularly, between about 20% to about 30%.
  • a “transfer fabric” is a fabric that is positioned between the forming section and the drying section of the web manufacturing process.
  • the transfer fabric 117 is a patterned fabric having protrusions or impression knuckles, such as described in U.S. Pat. No. 6,017,417 to Wendt et al.
  • the transfer fabric 117 travels at a slower speed than the forming fabric 113 to enhance the “MD stretch” of the web, which generally refers to the stretch of a web in its machine or length direction (expressed as percent elongation at sample failure).
  • the relative speed difference between the two fabrics can be from 0% to about 80%, in some embodiments greater than about 10%, in some embodiments from about 10% to about 60%, and in some embodiments, from about 15% to about 30%. This is commonly referred to as “rush” transfer.
  • rush transfer One useful method of performing rush transfer is taught in U.S. Pat. No. 5,667,636 to Engel et al., which is incorporated herein in its entirety by reference thereto for all purposes.
  • Transfer to the fabric 117 may be carried out with the assistance of positive and/or negative pressure.
  • a vacuum shoe 118 can apply negative pressure such that the forming fabric 113 and the transfer fabric 117 simultaneously converge and diverge at the leading edge of the vacuum slot.
  • the vacuum shoe 118 supplies pressure at levels between about 10 to about 25 inches of mercury.
  • the vacuum transfer shoe 118 (negative pressure) can be supplemented or replaced by the use of positive pressure from the opposite side of the web to blow the web onto the next fabric.
  • other vacuum shoes can also be used to assist in drawing the fibrous web 111 onto the surface of the transfer fabric 117 .
  • the fibrous web 111 is then transferred to the through-drying fabric 119 .
  • the wet web 111 is transferred to the fabric 119 .
  • the web 111 is then dried by a through-dryer 121 to a solids consistency of about 95% or greater.
  • the through-dryer 121 accomplishes the removal of moisture from the web 111 by passing air therethrough without applying any mechanical pressure. Through-drying can also increase the bulk and softness of the web 111 .
  • the through-dryer 121 can contain a rotatable, perforated cylinder and a hood for receiving hot air blown through perforations of the cylinder as the through-drying fabric 119 carries the web 111 over the upper portion of the cylinder.
  • the heated air is forced through the perforations in the cylinder of the through-dryer 121 and removes the remaining water from the web 111 .
  • the temperature of the air forced through the web 111 by the through-dryer 121 can vary, but is typically from about 250° F. to about 500° F. It should also be understood that other non-compressive drying methods, such as microwave or infrared heating, can be used.
  • three-layer webs may be plied to form a two-ply tissue in which each ply contains three-layers.
  • the outer layers of each ply contain hardwood fibers and the inner layer contains softwood fibers.
  • each three-layered ply may contain from about 50% to about 80% hardwood fibers, and from about 20% to about 50% softwood fibers. More preferably, the total amount of hardwood fibers may be from about 60% to about 70% (i.e., from about 30% to about 35% in each outer layer), and a total softwood fiber amount of from about 30% to about 40%.
  • a three-layer structure having from about 22% about 32% fiber in the outer hardwood layer, about 35% softwood fiber in the interface (i.e., middle layer), and about 32% to about 33% hardwood fiber in the second outer hardwood layer may be employed.
  • this describes one-ply, and it is understood that the layered structure would be mated with at least one other layer structure to form a multi-ply structure.
  • a three-ply, four-ply, or more ply product can be manufactured and employed.
  • FIG. 4A a two-ply tissue product 210 is shown.
  • a first hardwood layer 212 , a second hardwood layer 216 , and a softwood layer 214 are shown in the first ply.
  • the softwood layer 214 is positioned between the first hardwood layer 212 and the second hardwood layer 216 .
  • the second ply comprises a first hardwood layer 218 , a second hardwood layer 222 , and a softwood layer 220 in between.
  • the first ply and second ply are crimped or pressed together in the final two-ply tissue product 210 .
  • a three-ply tissue product 340 is shown.
  • the first ply comprises a first hardwood layer 342 , a second hardwood layer 346 , and a softwood layer 344 therebetween.
  • a second ply likewise includes a first hardwood layer 348 , a second hardwood layer 352 , and a softwood layer 350 .
  • a third ply includes a first hardwood layer 354 , a second hardwood layer 358 , and a softwood layer 356 .
  • FIG. 4C reveals a four-ply tissue product 400 .
  • This embodiment of the invention includes four plies, with hardwood layers 470 , 474 , 476 , 480 , 482 , 486 , 488 and 492 .
  • Softwood layers 472 , 478 , 484 , and 490 also are shown. Each ply provides a respective softwood layer between two other hardwood layers, as shown in the FIG. 4C .
  • GMT Geometric mean tensile
  • Stiffness (or softness) was ranked on a scale from 0 (described as pliable/flexible) to 16 (described as stiff/rigid). Twelve (12) panelists were asked to consider the amount of pointed, rippled or cracked edges or peaks felt from the sample while turning in your hand. The panelists were instructed to place two tissue samples flat on a smooth tabletop. The tissue samples overlapped one another by 0.5 inches (1.27 centimeters) and were flipped so that opposite sides of the tissue samples were represented during testing. With forearms/elbows of each panelist resting on the table, they placed their open hand, palm down, on the samples.
  • Each panelist was instructed to position their hand so their fingers were pointing toward the top of the samples, approximately 1.5 inches (approximately 3.81 centimeters) from the edge.
  • Each panelist moved their fingers toward their palm with little or no downward pressure to gather the tissue samples. They gently moved the gathered samples around in the palm of their hand approximately 2 to 3 turns. The rank assigned by each panelist for a given tissue sample was then averaged and recorded.
  • samples were measured by abrading the tissue specimens by way of the following method. This test measures the resistance of tissue material to abrasive action when the material is subjected to a horizontally reciprocating surface abrader. All samples were conditioned at about 23° C. and about 50% relative humidity for a minimum of 4 hours.
  • FIG. 5 shows a diagram of the test equipment that may be employed to abrade a sheet.
  • a machine 541 having a mandrel 543 receives a tissue sample 542 .
  • a sliding magnetic clamp 548 with guide pins (not shown) is positioned opposite a stationary magnetic clamp 549 , also having guide pins ( 550 - 551 ).
  • a cycle speed control 547 is provided, with start/stop controls 545 located on the upper panel, near the upper left portion of FIG. 5 .
  • a counter 546 is shown on the left side of machine 541 , which displays counts or cycles.
  • the mandrel 543 used for abrasion may consist of a stainless steel rod, about 0.5′′ in diameter with the abrasive portion consisting of a 0.005′′ deep diamond pattern extending 4.25′′ in length around the entire circumference of the rod.
  • the mandrel 543 is mounted perpendicular to the face of the machine 541 such that the abrasive portion of the mandrel 543 extends out from the front face of the machine 541 .
  • On each side of the mandrel 543 are located guide pins 550 - 551 for interaction with sliding magnetic clamp 548 and stationary magnetic clamp 549 , respectively.
  • These sliding magnetic clamp 548 and stationary magnetic clamp 549 are spaced about 4′′ apart and centered about the mandrel 543 .
  • the sliding magnetic clamp 548 and stationary magnetic clamp 549 are configured to slide freely in the vertical direction.
  • specimens are cut into 3′′ wide ⁇ 8′′ long strips with two holes at each end of the sample.
  • MD Machine Direction
  • Each test strip is weighed to the nearest 0.1 mg.
  • Each end of the sample 542 is applied upon the guide pins 550 - 551 and sliding magnetic clamp 548 and stationary magnetic clamp 549 to hold the sample 542 in place.
  • the mandrel 543 is then moved back and forth at an approximate 15 degree angle from the centered vertical centerline in a reciprocal horizontal motion against the test strip for 20 cycles (each cycle is a back and forth stroke), at a speed of about 80 cycles per minute, removing loose fibers from the web surface. Additionally the spindle 543 rotates counter clockwise (when looking at the front of the instrument) at an approximate speed of 5 revolutions per minute (rpm).
  • the sliding magnetic clamp 548 and stationary magnetic clamp 549 then are removed from the sample 542 . Sample 542 is removed by blowing compressed air (approximately 5-10 psi) upon the sample 542 .
  • the sample 542 is weighed to the nearest 0.1 mg and the weight loss calculated. Ten test samples per tissue sample may be tested and the average weight loss value in milligrams is recorded. The result for each example was compared with a control sample containing no hairspray.
  • tissue prototypes were produced (Examples 1-3) on a small-scale continuous pilot machine. This machine formed two separate tissue sheets and mated them together into a single sheet that was then pressed, dried and creped. The bottom sheets were formed by way of a headbox having two layers. This configuration allowed simulation of a three-layered tissue sheet. Each layer had its own stock system including stock chest, metering pump, fan pump and white water handling. This allowed each layer to have its own fiber blend and independent chemical treatment. The chemicals could be added to the chest to create a single batch at one concentration or metered into the stock line to allow periodic adjustment.
  • the dryer side stock chest contained eucalyptus fibers obtained from Bahil Su, Inc. Permanent wet strength agent (Kymene from Hercules, Inc.) was added in an amount equivalent to about 4 lbs/ton ( i.e., about 0.2%) to the dryer side stock chest.
  • the air side stock chest contained a northern softwood Kraft fiber (LL-19, from Kimberly-Clark Corporation). Permanent wet strength agent (Kymene from Hercules, Inc.) was also added in an amount equivalent to about 4 lbs/ton (i.e., about 0.2%) to the LL-19 fiber.
  • the LL-19 fiber was subjected to about 4 minutes refining with a refiner located below the stock chest.
  • a dry strength agent (Parez from Cytec) was added to the softwood side stock pump to adjust tensile strength.
  • the tissue sheet was plied with the hardwood layer on the outside.
  • the tissue sheets contained about 35% LL-19 softwood fibers and about 65% eucalyptus fibers, in total.
  • the tensile strength, slough of the tissue sheets was tested.
  • the softness properties of the tissue sheets were evaluated with panel tester as shown in Table 1 below.
  • a two-ply tissue was manufactured in which each ply was a three-layered web with hardwood eucalyptus fibers as the outer layers and LL-19 fibers as the inner layer.
  • the two plies were crimped together into a two-ply tissue.
  • eucalyptus fibers were applied in the top former (headbox). Also, eucalyptus fibers were employed in the lower layer of the bottom former (headbox), while the LL-19 fibers were employed in the top layer of the bottom former (headbox).
  • Permanent wet strength (Kymene, available from Hercules, Inc) was added in an amount equivalent to about 4 lbs/ton (about 0.2%) to a three layer stock chest.
  • the LL-19 fiber was subjected to about 4 minutes refining with a refiner located below the stock chest.
  • a dry strength agent (Parez from Cytec) was added to the softwood side stock pump to adjust tensile strength.
  • each three-layer tissue sheet was plied to form a two-ply tissue.
  • the percentage of total fiber in each ply was 32.5% by weight of eucalyptus fiber in one outer layer, 35% by weight of LL-19 fibers in the middle layer, and 32.5% by weight of eucalyptus fiber in the other outer layer.
  • the tissue still contained 35% LL-19 softwood fibers and 65% eucalyptus fibers as in the control example 1 above.
  • the tensile strength and slough of the tissue sheets were tested, and reported below in Table 1.
  • the softness properties of the tissue sheets were evaluated with panel tester as shown in Table 1.
  • the tissue was prepared according to Example 2, except that an imidazoline-based debonder (DC-83) was added to the two eucalyptus stock chests in an amount equivalent to about 6 lbs/ton per layer. Furthermore, the LL-19 fiber was subjected to about 10 minutes refining with a refiner located beneath the stock chest.
  • DC-83 imidazoline-based debonder
  • the three-layered, two-ply tissue (Example 2) provided above has a significantly lower slough than the two-layered, two ply tissue (Example 1, control).
  • the three-layer, two-ply tissue with debonder in the hardwood layers has a significantly lower slough than the two-layered, two-ply tissue (Example 1, control).
  • the three-layered, two-ply with debonder in the hardwood layers has a significantly lower panel stiffness rating than the two-layered, two-ply tissue (Example 1, control), comparing at a similar or comparable strength.
  • a product was manufactured as in Example 2, except that a three-ply product was produced.
  • a product was manufactured as in Example 3, except that a three-ply product was produced.
  • a product was manufactured as in Example 2, except that a four-ply product was produced.
  • a product was manufactured as in Example 3, except that a four-ply product was produced.

Landscapes

  • Paper (AREA)
  • Sanitary Thin Papers (AREA)

Abstract

In the practice of the invention, a multi-ply paper product or tissue having hardwood layers on the outside and on the inside provides reduced amounts of undesirable sloughing. The multi-ply product includes at least two plies, with three layers in each ply. Hardwood layers, such as for example eucalyptus-containing fiber layers, are provided on the outside surfaces of each ply and also on the interface of one or more plies. The resulting paper product may exhibit reduced sloughing, with little or no sacrifice in softness. A product having two, three, four, or more plies is shown.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. application Ser. No. 10/025,192, which was filed on Dec. 19, 2001.
  • BACKGROUND OF THE INVENTION
  • Strength and softness are important attributes in consumer tissue products such as facial tissue, bathroom tissue, towels, and napkins. Strength and softness are strongly influenced by the sheet structure of a tissue product. Mechanical treatment of fibers and fiber slurries in the manufacture of tissue products is an important factor in determining the strength and softness of products that are produced thereby.
  • Strength and softness usually are inversely related. That is, the stronger a given sheet, the less softness that sheet is likely to provide. Likewise, a softer sheet is usually not as strong. Thus, an inverse relationship that exists between the properties of strength and softness results in consistent efforts in the industry to produce sheets or webs having strength levels which are at least as great as conventional sheets, but with improved softness. Also, a sheet or web that is at least as soft as previously known sheets, but with improved strength, also is desirable.
  • As a general rule, fibers having superior softness are provided in outer layers of tissue products—i.e., those layers that routinely contact the skin of consumers. This is true for bath tissue, for example. The inner layers of such products often comprise softwood fibers that provide strength. Further, debonding agents have also traditionally be utilized to further soften the tissue product.
  • Unfortunately, however, sloughing sometimes is increased by the use of debonding agents. Sloughing may be described generally as the loss of paper particles from the surface of the paper due to surface abrasion. Many consumers react negatively to paper that exhibits a high degree of sloughing. Therefore, efforts are commonly made to provide a tissue product that exhibits a minimal amount of sloughing. Many changes that are made to paper manufacture to decrease sloughing have the undesirable side effect of stiffening the tissue (i.e., reducing softness). Thus, in the manufacture of tissue products it is a constant struggle to reduce sloughing of such products without adverse effects upon softness levels.
  • One conventional tissue product is a two-ply product in which each ply has two layers. In particular, each ply usually contains a hardwood layer that faces the consumer and a softwood layer that faces the softwood layer of the other ply. Thus, the inner softwood layers of each ply are in contact with each other. Another conventional tissue product is a single ply product having three layers. The outer layers usually contain hardwood fibers, while the inner layer contains softwood fibers. Although these products may be soft due to the presence of hardwood fibers, they also tend to generate a significant level of slough.
  • Thus, it would be desirable to provide a process, system and product that is capable of providing a high degree of softness and strength, with reduced amounts of sloughing. Furthermore, a layered tissue product that reveals reduced sloughing with a minimal or negligible effect upon softness levels would be desirable.
  • SUMMARY OF THE INVENTION
  • In accordance with one embodiment of the present invention, a multi-ply tissue product is disclosed that comprises a first ply and a second ply. The first ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the first ply. The second ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layer of the second ply, wherein the second hardwood layer of the first ply is positioned adjacent to the first hardwood layer of the second ply. In one embodiment, for example, a two-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the second ply define an outer surface of the product. The resulting tissue product may exhibit reduced sloughing, with little or no sacrifice in softness.
  • In some embodiments, the tissue product further comprises a third ply. The third ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the third ply, wherein the first hardwood layer of the third ply is positioned adjacent to the second hardwood layer of the second ply. In one embodiment, a three-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the third ply define outer surfaces of the product.
  • Further, in some embodiments, the tissue product can further comprise a fourth ply. The fourth ply comprises a first hardwood layer, a second hardwood layer, and a softwood layer positioned between the first and second hardwood layers of the fourth ply, wherein the first hardwood layer of the fourth ply is positioned adjacent to the second hardwood layer of the third ply. In one embodiment, a four-ply tissue product can be formed in which the first hardwood layer of the first ply and the second hardwood layer of the fourth ply define outer surfaces of the product.
  • Other features and aspects of the present invention are discussed in greater detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A full and enabling disclosure of this invention, including the best mode shown to one of ordinary skill in the art, is set forth in this specification.
  • FIG. 1 is a schematic flow diagram of one embodiment of a papermaking process that can be used in the present invention;
  • FIG. 2 is a schematic flow diagram of another embodiment of a papermaking process that can be used in the present invention;
  • FIG. 3 is a schematic flow diagram of still another embodiment of a papermaking process that can be used in the present invention;
  • FIG. 4A is a representation of a two-ply tissue assembled according to one embodiment of the invention;
  • FIG. 4B is a representation of a three-ply tissue assembled according to one embodiment of the invention;
  • FIG. 4C is a representation of a four-ply tissue assembled according to one embodiment of the invention; and
  • FIG. 5 is a perspective view of a machine used to measure slough of a paper sample.
  • DETAILED DESCRIPTION OF REPRESENTATIVE EMBODIMENTS
  • Reference now will be made to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not as a limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in this invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features and aspects of the present invention are disclosed in or are obvious from the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
  • Surprisingly, in the practice of this invention, it has been discovered that a multi-ply tissue product in which the interface of two or more of the plies constitute hardwood layers can provide superior sloughing and softness characteristics. For example, a multi-ply product that contains at least two plies, with three layers in each ply, and having hardwood layers on both the outside surfaces and at the interfaces (i.e., in the middle) may exhibit reduced sloughing, with little or no sacrifice in softness.
  • As used herein, the term “layer” generally refers to a single thickness, course, stratum, or fold that may lay on its own, or that may lay over or under another. Further, the term “ply” can refer to a material produced from a headbox having one or more layers and a material produced by pressing together two or more wet webs that are each formed from a headbox having a single layer.
  • As used herein, a “tissue product” generally refers to various tissue products, such as facial tissue, bath tissue, paper towels, napkins, and the like. Normally, the basis weight of a tissue product of the present invention is less than about 80 grams per square meter (gsm), and in some embodiments less than about 60 gsm, and in other embodiments between about 10 to about 60 gsm. The basis weight for all examples provided below is 30 gsm.
  • A wide variety of cellulosic fibers may generally be employed in the process of the present invention. Illustrative cellulosic fibers that may be employed in the practice of the invention include, but are not limited to, wood and wood products, such as wood pulp fibers (e.g., softwood or hardwood pulp fibers); non-woody paper-making fibers from cotton, from straws and grasses, such as rice and esparto, from canes and reeds, such as bagasse, from bamboos, form stalks with bast fibers, such as jute, flax, kenaf, cannabis, linen and ramie, and from leaf fibers, such as abaca and sisal. It is also possible to use mixtures of one or more cellulosic fibers. It is generally desired that the cellulosic fibers used herein be wettable. Suitable cellulosic fibers include those that are naturally wettable. However, naturally non-wettable fibers can also be used.
  • Softwood sources include trees sources, such as pines, spruces, and firs and the like. Hardwood sources, such as oaks, eucalyptuses, poplars, beeches, and aspens, may be used, but this list is by no means exhaustive of all the hardwood sources that may be employed in the practice of the invention. Hardwood fiber sources generally contain fibers of a shorter length than softwood sources. Many times, sloughing occurs when shorter fibers flake or fall from the outer hardwood layers of multi-layered tissues.
  • Fibers from different sources of wood exhibit different properties. Hardwood fibers, for example, tend to show high degrees of “fuzziness” or softness when placed on the exterior surface of a tissue product, such as a bathroom tissue. In many embodiments of the invention, a first furnish comprising a strength layer is employed. This first furnish may be a softwood, for example. The average fiber length of a softwood fiber typically is about two to four times longer than a hardwood fiber.
  • In the practice of the present invention, it is desired that the cellulosic fibers be used in a form wherein the cellulosic fibers have already been prepared into a pulp. As such, the cellulosic fibers will be presented substantially in the form of individual cellulosic fibers, although such individual cellulosic fibers may be in an aggregate form such as a pulp sheet. This is in contrast with untreated cellulosic forms such as wood chips or the like. Thus, the current process is generally a post-pulping, cellulosic fiber separation process as compared to other processes that may be used for high-yield pulp manufacturing processes.
  • The preparation of cellulosic fibers from most cellulosic sources results in a heterogeneous mixture of cellulosic fibers. The individual cellulosic fibers in the mixture exhibit a broad spectrum of values for a variety of properties such as length, coarseness, diameter, curl, color, chemical modification, cell wall thickness, fiber flexibility, and hemicellulose and/or lignin content. As such, seemingly similar mixtures of cellulosic fibers prepared from the same cellulosic source may exhibit different mixture properties, such as freeness, water retention, and fines content because of the difference in actual cellulosic fiber make-up of each mixture or slurry.
  • In general, the cellulosic fibers may be used in the process of the present invention in either a dry or a wet state. However, it may be desirable to prepare an aqueous mixture comprising the cellulosic fibers wherein the aqueous mixture is agitated, stirred, or blended to effectively disperse the cellulosic fibers throughout the water.
  • The cellulosic fibers are typically mixed with an aqueous solution wherein the aqueous solution beneficially comprises at least about 30 weight percent water, suitably about 50 weight percent water, more suitably about 75 weight percent water, and most suitably about 100 weight percent water. When another liquid is employed with the water, such other suitable liquids include methanol, ethanol, isopropanol, and acetone. However, the use or presence of such other non-aqueous liquids may impede the formation of an essentially homogeneous mixture such that the cellulosic fibers do not effectively disperse into the aqueous solution and effectively or uniformly mix with the water. Such a mixture should generally be prepared under conditions that are sufficient for the cellulosic fibers and water to be effectively mixed together. Generally, such conditions will include using a temperature that is between about 10° C. and about 100° C. In general, cellulosic fibers are prepared by pulping or other preparation processes in which the cellulosic fibers are present in an aqueous solution.
  • In some embodiments, a “softener” or “debonder” may be added to one or more layers of a ply used in the tissue of the present invention. As used herein, “softener” or “debonder” is a chemical compound that serves to soften the final tissue product. These compounds may be selected from the group of compounds consisting of: quaternary ammonium compounds, quaternary protein compounds, phospholipids, silicone quaternaries, quaternized, hydrolyzed wheat protein/dimethicone phosphocopolyol copolymer, organoreactive polysiloxanes, and silicone glycols. Other debonding agents also could be used.
  • For example, compounds and procedures similar to that disclosed in U.S. Pat. No. 6,156,157 could be employed. A quaternary ammonium compound softener/debonder (methyl-1-oleyl amidoethyl-2-oleyl imidazolinium methyl sulfate identified as Varisoft 3690 available from Witco Corporation could be employed, for example. Furthermore, as set forth in one or more examples below, an imidazoline-based debonding agent such as DC-83 manufactured by McIntyre Corporation of University Park, Ill. can be employed. In some applications, this debonding agent is added to the hardwood layers in an amount equivalent to about 6 lbs/Ton (i.e., to the two eucalyptus stock chests).
  • Refining of Fiber
  • Refining or beating of chemical pulps is the mechanical treatment and modification of fibers so that they can be formed into paper or board having desirable properties. It is used when preparing papermaking fibers for high-quality papers or paperboards, and in the past has not been widely employed for bathroom tissue or similar soft tissue products.
  • Refining improves the bonding ability of fibers so that they form a strong and smooth paper sheet with good printing properties. Sometimes refining shortens fibers that are too long for a good sheet formation, or to develop other pulp properties such as absorbency, porosity, or optical properties specifically for a given paper grade.
  • A common refining or beating method is to treat fibers in the presence of water with metallic bars. The plates or fillings are grooved so that the bars that treat fibers and the grooves between bars allow fiber transportation through the refining machine. Such machines are known in the papermaking art.
  • Papermaking Processes
  • A tissue product made in accordance with the present invention can generally be formed according to a variety of papermaking processes known in the art. In fact, any process capable of making a tissue web can be utilized in the present invention. For example, a papermaking process of the present invention can utilize wet-pressing, creping, through-air-drying, creped through-air-drying, uncreped through-air-drying, single recreping, double recreping, calendering, embossing, air laying, as well as other steps in processing the tissue web. For instance, some suitable papermaking processes are described in U.S. Pat. No. 5,129,988 to Farrinqton, Jr.; U.S. Pat. No. 5,494,554 to Edwards, et al.; and U.S. Pat. No. 5,529,665 to Kaun, which are incorporated herein in their entirety by reference thereto for all purposes.
  • In this regard, various embodiments of a method for forming a multi-layered tissue web will now be described in more detail. Referring to FIG. 1, a method of making a wet-pressed tissue in accordance with one embodiment of the present invention is shown, commonly referred to as couch forming, wherein two wet web layers are independently formed and thereafter combined into a unitary web. To form the first web layer, a specified fiber (either hardwood or softwood) is prepared in a manner well known in the papermaking arts and delivered to the first stock chest 1, in which the fiber is kept in an aqueous suspension. A stock pump 2 supplies the required amount of suspension to the suction side of the fan pump 4. If desired, a metering pump 5 can supply an additive (e.g., latex, reactive composition, etc.) into the fiber suspension. Additional dilution water also is mixed with the fiber suspension.
  • The entire mixture of fibers is then pressurized and delivered to the headbox 6. The aqueous suspension leaves the headbox 6 and is deposited on an endless papermaking fabric 7 over the suction box 8. The suction box is under vacuum that draws water out of the suspension, thus forming the first layer. In this example, the stock issuing from the headbox 6 would be referred to as the “air side” layer, that layer eventually being positioned away from the dryer surface during drying.
  • The forming fabric can be any forming fabric, such as fabrics having a fiber support index of about 150 or greater. Some suitable forming fabrics include, but are not limited to, single layer fabrics, such as the Appleton Wire 94M available from Albany International Corporation, Appleton Wire Division, Menasha, Wis.; double layer fabrics, such as the Asten 866 available from Asten Group, Appleton, Wis.; and triple layer fabrics, such as the Lindsay 3080, available from Lindsay Wire, Florence, Miss.
  • The consistency of the aqueous suspension of papermaking fibers leaving the headbox can be from about 0.05 to about 2%, and in one embodiment, about 0.2%. The first headbox 6 can be a layered headbox with two or more layering chambers which delivers a stratified first wet web layer, or it can be a monolayered headbox which delivers a blended or homogeneous first wet web layer.
  • To form the second web layer, a specified fiber (either hardwood or softwood) is prepared in a manner well known in the papermaking arts and delivered to the second stock chest 11, in which the fiber is kept in an aqueous suspension. A stock pump 12 supplies the required amount of suspension to the suction side of the fan pump 14. A metering pump 5 can supply additives (e.g., latex, reactive composition, etc.) into the fiber suspension as described above. Additional dilution water 13 is also mixed with the fiber suspension. The entire mixture is then pressurized and delivered to the headbox 16. The aqueous suspension leaves the headbox 16 and is deposited onto an endless papermaking fabric 17 over the suction box 18. The suction box is under vacuum that draws water out of the suspension, thus forming the second wet web. In this example, the stock issuing from the headbox 16 is referred to as the “dryer side” layer as that layer will be in eventual contact with the dryer surface. Suitable forming fabrics for the forming fabric 17 of the second headbox include those forming fabrics previously mentioned with respect to the first headbox forming fabric.
  • After initial formation of the first and second wet web layers, the two web layers are brought together in contacting relationship (couched) while at a consistency of from about 10 to about 30%. Whatever consistency is selected, it is typically desired that the consistencies of the two wet webs be substantially the same. Couching is achieved by bringing the first wet web layer into contact with the second wet web layer at roll 19.
  • After the consolidated web has been transferred to the felt 22 at vacuum box 20, dewatering, drying and creping of the consolidated web is achieved in the conventional manner. More specifically, the couched web is further dewatered and transferred to a dryer 30 (e.g., Yankee dryer) using a pressure roll 31, which serves to express water from the web, which is absorbed by the felt, and causes the web to adhere to the surface of the dryer. The web is then dried, optionally creped and wound into a roll 32 for subsequent converting into the final creped product.
  • FIG. 2 is a schematic flow diagram of another embodiment of a papermaking process that can be used in the present invention. For instance, a layered headbox 41, a forming fabric 42, a forming roll 43, a papermaking felt 44, a press roll 45, a Yankee dryer 46, and a creping blade 47 are shown. Also shown, but not numbered, are various idler or tension rolls used for defining the fabric runs in the schematic diagram, which may differ in practice. In operation, a layered headbox 41 continuously deposits a layered stock jet between the forming fabric 42 and the felt 44, which is partially wrapped around the forming roll 43. Water is removed from the aqueous stock suspension through the forming fabric 42 by centrifugal force as the newly-formed web traverses the arc of the forming roll. As the forming fabric 42 and felt 44 separate, the wet web stays with the felt 44 and is transported to the Yankee dryer 46.
  • At the Yankee dryer 46, the creping chemicals are continuously applied on top of the existing adhesive in the form of an aqueous solution. The solution is applied by any convenient means, such as using a spray boom that evenly sprays the surface of the dryer with the creping adhesive solution. The point of application on the surface of the dryer 46 is immediately following the creping doctor blade 47, permitting sufficient time for the spreading and drying of the film of fresh adhesive.
  • In some instances reactive compositions may be applied to the web as it is being dried, such as through the use of the spray boom. For example, the spray boom can apply the additives to the surface of the drum 46 separately and/or in combination with the creping adhesives such that such additives are applied to an outer layer of the web as it passes over the drum 46. In some embodiments, the point of application on the surface of the dryer 46 is the point immediately following the creping blade 47, thereby permitting sufficient time for the spreading and drying of the film of fresh adhesive before contacting the web in the press roll nip. Methods and techniques for applying an additive to a dryer drum are described in more detail in U.S. Pat. No. 5,853,539 to Smith, et al. and U.S. Pat. No. 5,993,602 to Smith, et al., which are incorporated herein in their entirety by reference thereto for all purposes.
  • The wet web is applied to the surface of the dryer 46 by a press roll 45 with an application force of, in one embodiment, about 200 pounds per square inch (psi). Following the pressing or dewatering step, the consistency of the web is typically at or above about 30%. Sufficient Yankee dryer steam power and hood drying capability are applied to this web to reach a final consistency of about 95% or greater, and particularly 97% or greater. The sheet or web temperature immediately preceding the creping blade 47, as measured, for example, by an infrared temperature sensor, is typically about 235° F.
  • The web can also be dried using non-compressive drying techniques, such as through-air drying. A through-air dryer accomplishes the removal of moisture from the web by passing air through the web without applying any mechanical pressure. Through-air drying can increase the bulk and softness of the web. Examples of such a technique are disclosed in U.S. Pat. No. 5,048,589 to Cook. et al.; U.S. Pat. No. 5,399,412 to Sudall, et al.; U.S. Pat. No. 5,510,001 to Hermans. et al.; U.S. Pat. No. 5,591,309 to Rugowski, et al.; and U.S. Pat. No. 6,017,417 to Wendt, et al., which are incorporated herein in their entirety by reference thereto for all purposes.
  • For example, referring to FIG. 3, one embodiment of a papermaking machine that can be used in forming an uncreped through-dried tissue product is illustrated. For simplicity, the various tensioning rolls schematically used to define the several fabric runs are shown but not numbered. As shown, a papermaking headbox 110 can be used to inject or deposit a stream of an aqueous suspension of papermaking fibers onto an upper forming fabric 112. The aqueous suspension of fibers is then transferred to a lower forming fabric 113, which serves to support and carry the newly-formed wet web 111 downstream in the process. If desired, dewatering of the wet web 111 can be carried out, such as by vacuum suction, while the wet web 111 is supported by the forming fabric 113.
  • The wet web 111 is then transferred from the forming fabric 113 to a transfer fabric 117 while at a solids consistency of between about 10% to about 35%, and particularly, between about 20% to about 30%. As used herein, a “transfer fabric” is a fabric that is positioned between the forming section and the drying section of the web manufacturing process. In this embodiment, the transfer fabric 117 is a patterned fabric having protrusions or impression knuckles, such as described in U.S. Pat. No. 6,017,417 to Wendt et al. Typically, the transfer fabric 117 travels at a slower speed than the forming fabric 113 to enhance the “MD stretch” of the web, which generally refers to the stretch of a web in its machine or length direction (expressed as percent elongation at sample failure). For example, the relative speed difference between the two fabrics can be from 0% to about 80%, in some embodiments greater than about 10%, in some embodiments from about 10% to about 60%, and in some embodiments, from about 15% to about 30%. This is commonly referred to as “rush” transfer. One useful method of performing rush transfer is taught in U.S. Pat. No. 5,667,636 to Engel et al., which is incorporated herein in its entirety by reference thereto for all purposes.
  • Transfer to the fabric 117 may be carried out with the assistance of positive and/or negative pressure. For example, in one embodiment, a vacuum shoe 118 can apply negative pressure such that the forming fabric 113 and the transfer fabric 117 simultaneously converge and diverge at the leading edge of the vacuum slot. Typically, the vacuum shoe 118 supplies pressure at levels between about 10 to about 25 inches of mercury. As stated above, the vacuum transfer shoe 118 (negative pressure) can be supplemented or replaced by the use of positive pressure from the opposite side of the web to blow the web onto the next fabric. In some embodiments, other vacuum shoes can also be used to assist in drawing the fibrous web 111 onto the surface of the transfer fabric 117.
  • From the transfer fabric 117, the fibrous web 111 is then transferred to the through-drying fabric 119. When the wet web 111 is transferred to the fabric 119. While supported by the through-drying fabric 119, the web 111 is then dried by a through-dryer 121 to a solids consistency of about 95% or greater. The through-dryer 121 accomplishes the removal of moisture from the web 111 by passing air therethrough without applying any mechanical pressure. Through-drying can also increase the bulk and softness of the web 111. In one embodiment, for example, the through-dryer 121 can contain a rotatable, perforated cylinder and a hood for receiving hot air blown through perforations of the cylinder as the through-drying fabric 119 carries the web 111 over the upper portion of the cylinder. The heated air is forced through the perforations in the cylinder of the through-dryer 121 and removes the remaining water from the web 111. The temperature of the air forced through the web 111 by the through-dryer 121 can vary, but is typically from about 250° F. to about 500° F. It should also be understood that other non-compressive drying methods, such as microwave or infrared heating, can be used.
  • In one embodiment, three-layer webs may be plied to form a two-ply tissue in which each ply contains three-layers. For example, in one embodiment, the outer layers of each ply contain hardwood fibers and the inner layer contains softwood fibers. In such instances, each three-layered ply may contain from about 50% to about 80% hardwood fibers, and from about 20% to about 50% softwood fibers. More preferably, the total amount of hardwood fibers may be from about 60% to about 70% (i.e., from about 30% to about 35% in each outer layer), and a total softwood fiber amount of from about 30% to about 40%.
  • In some embodiments of the invention, a three-layer structure having from about 22% about 32% fiber in the outer hardwood layer, about 35% softwood fiber in the interface (i.e., middle layer), and about 32% to about 33% hardwood fiber in the second outer hardwood layer may be employed. Of course, this describes one-ply, and it is understood that the layered structure would be mated with at least one other layer structure to form a multi-ply structure. In some embodiments of the invention, for example, a three-ply, four-ply, or more ply product can be manufactured and employed.
  • Turning to FIG. 4A, a two-ply tissue product 210 is shown. A first hardwood layer 212, a second hardwood layer 216, and a softwood layer 214 are shown in the first ply. The softwood layer 214 is positioned between the first hardwood layer 212 and the second hardwood layer 216. Likewise, the second ply comprises a first hardwood layer 218, a second hardwood layer 222, and a softwood layer 220 in between. The first ply and second ply are crimped or pressed together in the final two-ply tissue product 210.
  • In FIG. 4B, a three-ply tissue product 340 is shown. The first ply comprises a first hardwood layer 342, a second hardwood layer 346, and a softwood layer 344 therebetween. A second ply likewise includes a first hardwood layer 348, a second hardwood layer 352, and a softwood layer 350. A third ply includes a first hardwood layer 354, a second hardwood layer 358, and a softwood layer 356.
  • FIG. 4C reveals a four-ply tissue product 400. This embodiment of the invention includes four plies, with hardwood layers 470, 474, 476, 480, 482, 486, 488 and 492. Softwood layers 472, 478, 484, and 490 also are shown. Each ply provides a respective softwood layer between two other hardwood layers, as shown in the FIG. 4C.
  • Tensile (GMT) Strength Test Method
  • Geometric mean tensile (GMT) strength values shown in the examples below were obtained on a MTS/Sintech tensile tester, available from the MTS Systems Corp. Eden Prairie, Minn. Tissue samples measuring 3 inches wide were cut in both the machine and cross-machine directions. For each test, a sample strip was placed in the jaws of the tester, set at a 4-inch gauge length (for facial tissue) and 2-inch gauge length (for bath tissue). The crosshead speed during the test was 10 inches/minute. The tester was connected with a computer loaded with data acquisition system; e.g., MTS TestWork for windows software. Readings were taken directly from a computer screen readout at the point of rupture to obtain the tensile strength of an individual sample. GMT (grams per 3 inch of sample)=(square root of product of MD tensile strength)×(CD tensile strength).
  • Handfeel (Softness) Testing and Stiffness
  • Stiffness (or softness) was ranked on a scale from 0 (described as pliable/flexible) to 16 (described as stiff/rigid). Twelve (12) panelists were asked to consider the amount of pointed, rippled or cracked edges or peaks felt from the sample while turning in your hand. The panelists were instructed to place two tissue samples flat on a smooth tabletop. The tissue samples overlapped one another by 0.5 inches (1.27 centimeters) and were flipped so that opposite sides of the tissue samples were represented during testing. With forearms/elbows of each panelist resting on the table, they placed their open hand, palm down, on the samples. Each was instructed to position their hand so their fingers were pointing toward the top of the samples, approximately 1.5 inches (approximately 3.81 centimeters) from the edge. Each panelist moved their fingers toward their palm with little or no downward pressure to gather the tissue samples. They gently moved the gathered samples around in the palm of their hand approximately 2 to 3 turns. The rank assigned by each panelist for a given tissue sample was then averaged and recorded.
  • Slough Measurement Methods and Apparatus
  • To determine the abrasion resistance or tendency of fibers to be rubbed from the web, samples were measured by abrading the tissue specimens by way of the following method. This test measures the resistance of tissue material to abrasive action when the material is subjected to a horizontally reciprocating surface abrader. All samples were conditioned at about 23° C. and about 50% relative humidity for a minimum of 4 hours.
  • FIG. 5 shows a diagram of the test equipment that may be employed to abrade a sheet. In FIG. 5, a machine 541 having a mandrel 543 receives a tissue sample 542. A sliding magnetic clamp 548 with guide pins (not shown) is positioned opposite a stationary magnetic clamp 549, also having guide pins (550-551). A cycle speed control 547 is provided, with start/stop controls 545 located on the upper panel, near the upper left portion of FIG. 5. A counter 546 is shown on the left side of machine 541, which displays counts or cycles.
  • In FIG. 5, the mandrel 543 used for abrasion may consist of a stainless steel rod, about 0.5″ in diameter with the abrasive portion consisting of a 0.005″ deep diamond pattern extending 4.25″ in length around the entire circumference of the rod. The mandrel 543 is mounted perpendicular to the face of the machine 541 such that the abrasive portion of the mandrel 543 extends out from the front face of the machine 541. On each side of the mandrel 543 are located guide pins 550-551 for interaction with sliding magnetic clamp 548 and stationary magnetic clamp 549, respectively. These sliding magnetic clamp 548 and stationary magnetic clamp 549 are spaced about 4″ apart and centered about the mandrel 543. The sliding magnetic clamp 548 and stationary magnetic clamp 549 are configured to slide freely in the vertical direction.
  • Using a die press with a die cutter, specimens are cut into 3″ wide×8″ long strips with two holes at each end of the sample. For tissue samples, the Machine Direction (MD) corresponds to the longer dimension. Each test strip is weighed to the nearest 0.1 mg. Each end of the sample 542 is applied upon the guide pins 550-551 and sliding magnetic clamp 548 and stationary magnetic clamp 549 to hold the sample 542 in place.
  • The mandrel 543 is then moved back and forth at an approximate 15 degree angle from the centered vertical centerline in a reciprocal horizontal motion against the test strip for 20 cycles (each cycle is a back and forth stroke), at a speed of about 80 cycles per minute, removing loose fibers from the web surface. Additionally the spindle 543 rotates counter clockwise (when looking at the front of the instrument) at an approximate speed of 5 revolutions per minute (rpm). The sliding magnetic clamp 548 and stationary magnetic clamp 549 then are removed from the sample 542. Sample 542 is removed by blowing compressed air (approximately 5-10 psi) upon the sample 542.
  • The sample 542 is weighed to the nearest 0.1 mg and the weight loss calculated. Ten test samples per tissue sample may be tested and the average weight loss value in milligrams is recorded. The result for each example was compared with a control sample containing no hairspray.
  • Procedures Employed in the Examples
  • To demonstrate the ability to form a multi-ply tissue that is slough and has low amounts of slough, several tissue prototypes were produced (Examples 1-3) on a small-scale continuous pilot machine. This machine formed two separate tissue sheets and mated them together into a single sheet that was then pressed, dried and creped. The bottom sheets were formed by way of a headbox having two layers. This configuration allowed simulation of a three-layered tissue sheet. Each layer had its own stock system including stock chest, metering pump, fan pump and white water handling. This allowed each layer to have its own fiber blend and independent chemical treatment. The chemicals could be added to the chest to create a single batch at one concentration or metered into the stock line to allow periodic adjustment.
  • EXAMPLE 1 Two-Layer, Two-Ply Tissue as Control
  • In this example, a two-ply tissue in which each ply contains two-layers was made using the same fiber furnishes for forming each ply.
  • The dryer side stock chest contained eucalyptus fibers obtained from Bahil Su, Inc. Permanent wet strength agent (Kymene from Hercules, Inc.) was added in an amount equivalent to about 4 lbs/ton ( i.e., about 0.2%) to the dryer side stock chest. The air side stock chest contained a northern softwood Kraft fiber (LL-19, from Kimberly-Clark Corporation). Permanent wet strength agent (Kymene from Hercules, Inc.) was also added in an amount equivalent to about 4 lbs/ton (i.e., about 0.2%) to the LL-19 fiber.
  • The LL-19 fiber was subjected to about 4 minutes refining with a refiner located below the stock chest. A dry strength agent (Parez from Cytec) was added to the softwood side stock pump to adjust tensile strength. During the converting stage, the tissue sheet was plied with the hardwood layer on the outside. The tissue sheets contained about 35% LL-19 softwood fibers and about 65% eucalyptus fibers, in total. The tensile strength, slough of the tissue sheets was tested. The softness properties of the tissue sheets were evaluated with panel tester as shown in Table 1 below.
  • EXAMPLE 2 Three-Layer, Two-Ply Tissue
  • In this example of one embodiment of the invention, a two-ply tissue was manufactured in which each ply was a three-layered web with hardwood eucalyptus fibers as the outer layers and LL-19 fibers as the inner layer. The two plies were crimped together into a two-ply tissue.
  • Specifically, eucalyptus fibers were applied in the top former (headbox). Also, eucalyptus fibers were employed in the lower layer of the bottom former (headbox), while the LL-19 fibers were employed in the top layer of the bottom former (headbox).
  • Permanent wet strength (Kymene, available from Hercules, Inc) was added in an amount equivalent to about 4 lbs/ton (about 0.2%) to a three layer stock chest. The LL-19 fiber was subjected to about 4 minutes refining with a refiner located below the stock chest. A dry strength agent (Parez from Cytec) was added to the softwood side stock pump to adjust tensile strength.
  • During the converting stage, each three-layer tissue sheet was plied to form a two-ply tissue. The percentage of total fiber in each ply was 32.5% by weight of eucalyptus fiber in one outer layer, 35% by weight of LL-19 fibers in the middle layer, and 32.5% by weight of eucalyptus fiber in the other outer layer. Overall, the tissue still contained 35% LL-19 softwood fibers and 65% eucalyptus fibers as in the control example 1 above. The tensile strength and slough of the tissue sheets were tested, and reported below in Table 1. The softness properties of the tissue sheets were evaluated with panel tester as shown in Table 1.
  • EXAMPLE 3 Three-Layer, Two-Ply Tissue With Debonding Agent in the Hardwood Layer
  • The tissue was prepared according to Example 2, except that an imidazoline-based debonder (DC-83) was added to the two eucalyptus stock chests in an amount equivalent to about 6 lbs/ton per layer. Furthermore, the LL-19 fiber was subjected to about 10 minutes refining with a refiner located beneath the stock chest.
  • The tensile strength and slough of the tissue sheets were tested. The softness properties of the tissue sheets also were evaluated with panel tester as shown in the Table 1 below.
    TABLE 1
    GMT Slough,
    g/3 in. mg Panel Stiffness
    Example 1 Two-Layered, 777 7.38 3.6
    Two-Ply
    (Control)
    Example 2 Three- 559 5.26 3.3
    Layered,
    Two-Ply
    Example 3 Three-Layered 726 4.97 2.9
    With
    Debonder in
    the Hardwood
    Layer
  • The three-layered, two-ply tissue (Example 2) provided above has a significantly lower slough than the two-layered, two ply tissue (Example 1, control). The three-layer, two-ply tissue with debonder in the hardwood layers has a significantly lower slough than the two-layered, two-ply tissue (Example 1, control). In addition, the three-layered, two-ply with debonder in the hardwood layers has a significantly lower panel stiffness rating than the two-layered, two-ply tissue (Example 1, control), comparing at a similar or comparable strength.
  • EXAMPLE 4 Three-Layer, Three-Ply Product
  • A product was manufactured as in Example 2, except that a three-ply product was produced.
  • EXAMPLE 5 Three-Layer, Three-Ply Product With Debonding Agent in Hardwood Layer
  • A product was manufactured as in Example 3, except that a three-ply product was produced.
  • EXAMPLE 6 Three-Layer, Four-Ply Product
  • A product was manufactured as in Example 2, except that a four-ply product was produced.
  • EXAMPLE 7 Three-Layer, Four-Ply Product With Debonding Agent in Hardwood Layer
  • A product was manufactured as in Example 3, except that a four-ply product was produced.
  • It is understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions. The invention is shown by example in the appended claims.

Claims (3)

1-23. (Cancelled)
24. A multi-ply facial tissue comprising:
a first ply, said first ply comprising a first layer comprising hardwood fibers, a second layer comprising hardwood fibers, and a third layer comprising softwood fibers, wherein said third layer of said first ply is positioned between said first and second layers of said first ply; and
a second ply, said second ply comprising a first layer comprising hardwood fibers, a second layer comprising hardwood fibers, and a third layer comprising softwood fibers, wherein said third layer of said second ply is positioned between said first and second layers of said second ply;
wherein said multi-ply facial tissue has a basis weight from about 10 to about 80 grams per square meter, wherein said second layer of said first ply is positioned adjacent to said first layer of said second ply such that said first layer of said first ply defines an outer surface of the tissue, and wherein said outer surface is creped.
25. A method of forming a multi-ply tissue product comprising:
forming a first ply that contains a first layer comprising hardwood fibers, a second layer comprising hardwood fibers, and a third layer comprising softwood fibers, wherein said third layer of said first ply is positioned between said first and second layers of said first ply;
adhering said first layer of said first ply to a creping surface;
creping said first layer of said first ply from said creping surface;
forming a second ply that contains a first layer comprising hardwood fibers, a second layer comprising hardwood fibers, and a third layer comprising softwood fibers, wherein said third layer of said second ply is positioned between said first and second layers of said second ply; and
positioning said second layer of said first ply adjacent to said first layer of said second ply such that said first layer of said first ply defines an outer surface of the multi-ply tissue product.
US10/952,021 2001-12-19 2004-09-28 Tissue products and methods for manufacturing tissue products Abandoned US20050034826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/952,021 US20050034826A1 (en) 2001-12-19 2004-09-28 Tissue products and methods for manufacturing tissue products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/025,192 US20030111196A1 (en) 2001-12-19 2001-12-19 Tissue products and methods for manufacturing tissue products
US10/154,490 US6797114B2 (en) 2001-12-19 2002-05-23 Tissue products
US10/952,021 US20050034826A1 (en) 2001-12-19 2004-09-28 Tissue products and methods for manufacturing tissue products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/154,490 Continuation US6797114B2 (en) 2001-12-19 2002-05-23 Tissue products

Publications (1)

Publication Number Publication Date
US20050034826A1 true US20050034826A1 (en) 2005-02-17

Family

ID=26699412

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/154,490 Expired - Lifetime US6797114B2 (en) 2001-12-19 2002-05-23 Tissue products
US10/952,021 Abandoned US20050034826A1 (en) 2001-12-19 2004-09-28 Tissue products and methods for manufacturing tissue products

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/154,490 Expired - Lifetime US6797114B2 (en) 2001-12-19 2002-05-23 Tissue products

Country Status (7)

Country Link
US (2) US6797114B2 (en)
EP (1) EP1456474A1 (en)
KR (1) KR100917520B1 (en)
AU (1) AU2002330258B2 (en)
CA (1) CA2469040C (en)
MX (1) MXPA04005248A (en)
WO (1) WO2003054302A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252626A1 (en) * 2004-05-12 2005-11-17 Kimberly-Clark Worldwide, Inc. Soft durable tissue
US20060042767A1 (en) * 2004-09-01 2006-03-02 Fort James Corporation Multi-ply paper product with moisture strike through resistance and method of making the same
US20100326613A1 (en) * 2008-03-06 2010-12-30 Yoann Denis Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
US8287986B2 (en) 2008-05-27 2012-10-16 Georgia-Pacific Consumer Products Lp Ultra premium bath tissue
US10760220B2 (en) 2014-04-23 2020-09-01 Hewlett-Packard Development Company, L.P. Packaging material and method for making the same
US11255051B2 (en) 2017-11-29 2022-02-22 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
US11313061B2 (en) 2018-07-25 2022-04-26 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122047A1 (en) * 2001-05-07 2002-11-14 Voith Paper Patent Gmbh Sheet forming device and method
US20060144541A1 (en) * 2004-12-30 2006-07-06 Deborah Joy Nickel Softening agent pre-treated fibers
US20060144536A1 (en) * 2004-12-30 2006-07-06 Nickel Deborah J Soft and durable tissues made with thermoplastic polymer complexes
US8414738B2 (en) 2007-08-30 2013-04-09 Kimberly-Clark Worldwide, Inc. Multiple ply paper product with improved ply attachment and environmental sustainability
US7704601B2 (en) 2008-02-29 2010-04-27 The Procter & Gamble Company Fibrous structures
US8025966B2 (en) 2008-02-29 2011-09-27 The Procter & Gamble Company Fibrous structures
US7960020B2 (en) * 2008-02-29 2011-06-14 The Procter & Gamble Company Embossed fibrous structures
US20090220769A1 (en) * 2008-02-29 2009-09-03 John Allen Manifold Fibrous structures
US7687140B2 (en) 2008-02-29 2010-03-30 The Procter & Gamble Company Fibrous structures
US20090220741A1 (en) * 2008-02-29 2009-09-03 John Allen Manifold Embossed fibrous structures
US7811665B2 (en) 2008-02-29 2010-10-12 The Procter & Gamble Compmany Embossed fibrous structures
US20090289078A1 (en) * 2008-05-22 2009-11-26 Scott Melin Wipes Dispenser With Improved Dispenser Opening
US8383235B2 (en) * 2010-02-04 2013-02-26 The Procter & Gamble Company Fibrous structures
US8449976B2 (en) * 2010-02-04 2013-05-28 The Procter & Gamble Company Fibrous structures
US20110189451A1 (en) * 2010-02-04 2011-08-04 John Allen Manifold Fibrous structures
US8334050B2 (en) 2010-02-04 2012-12-18 The Procter & Gamble Company Fibrous structures
US8334049B2 (en) 2010-02-04 2012-12-18 The Procter & Gamble Company Fibrous structures
US9752281B2 (en) 2010-10-27 2017-09-05 The Procter & Gamble Company Fibrous structures and methods for making same
US8524374B2 (en) * 2011-09-21 2013-09-03 Kimberly-Clark Worldwide, Inc. Tissue Product comprising bamboo
US8426031B2 (en) * 2011-09-21 2013-04-23 Kimberly-Clark Worldwide, Inc. Soft tissue product comprising cotton
US9458574B2 (en) 2012-02-10 2016-10-04 The Procter & Gamble Company Fibrous structures
US9283730B2 (en) 2012-08-17 2016-03-15 Kimberly-Clark Worldwide, Inc. High basis weight creped tissue
US20140050890A1 (en) 2012-08-17 2014-02-20 Kenneth John Zwick High Basis Weight Tissue with Low Slough
US8894813B2 (en) 2012-08-17 2014-11-25 Kimberly-Clark Worldwide, Inc. Absorbent barrier tissue
BR112016007763B1 (en) * 2013-09-13 2021-12-07 Stora Enso Oyj MULTILAYER CARDBOARD
EP3142625A4 (en) * 2014-05-16 2017-12-20 First Quality Tissue, LLC Flushable wipe and method of forming the same
US10132042B2 (en) 2015-03-10 2018-11-20 The Procter & Gamble Company Fibrous structures
US10765570B2 (en) 2014-11-18 2020-09-08 The Procter & Gamble Company Absorbent articles having distribution materials
US10517775B2 (en) 2014-11-18 2019-12-31 The Procter & Gamble Company Absorbent articles having distribution materials
EP3023084B1 (en) 2014-11-18 2020-06-17 The Procter and Gamble Company Absorbent article and distribution material
WO2016153462A1 (en) 2015-03-20 2016-09-29 Kimberly-Clark Worldwide, Inc. A soft high basis weight tissue
US11000428B2 (en) 2016-03-11 2021-05-11 The Procter & Gamble Company Three-dimensional substrate comprising a tissue layer
BR112019014276B1 (en) 2017-02-22 2022-09-06 Kimberly-Clark Worldwide, Inc TISSUE PAPER PRODUCT, AND METHOD FOR FORMING A TISSUE PAPER PRODUCT
US11035078B2 (en) 2018-03-07 2021-06-15 Gpcp Ip Holdings Llc Low lint multi-ply paper products having a first stratified base sheet and a second stratified base sheet
US11408129B2 (en) 2018-12-10 2022-08-09 The Procter & Gamble Company Fibrous structures

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085927A (en) * 1960-11-16 1963-04-16 Int Paper Co Process for preparation of fibers having differing characteristics
US3598696A (en) * 1968-02-14 1971-08-10 Beloit Corp Multiple stage hydraulic headbox
US3695985A (en) * 1970-07-29 1972-10-03 Kimberly Clark Co High bulk laminates
US3791917A (en) * 1973-03-07 1974-02-12 Bird Machine Co Process for producing kraft paper laminate of top stock and base stock layers
US3903342A (en) * 1973-04-30 1975-09-02 Scott Paper Co Soft, absorbent, unitary, laminate-like fibrous web with delaminating strength and method for producing it
US3953638A (en) * 1973-11-26 1976-04-27 The Procter & Gamble Company Multi-ply absorbent wiping product having relatively inextensible center ply bonded to highly extensible outer plies
US3997647A (en) * 1973-10-01 1976-12-14 Kimberly-Clark Corporation Method of making filaments and webs of chemically modified cellulose fibers
US4075382A (en) * 1976-05-27 1978-02-21 The Procter & Gamble Company Disposable nonwoven surgical towel and method of making it
US4100017A (en) * 1975-05-05 1978-07-11 The Procter & Gamble Company Multi-ply tissue product
US4113911A (en) * 1974-12-02 1978-09-12 The Buckeye Cellulose Corporation Quiet, strong cloth-like tissue laminate
US4145464A (en) * 1976-10-15 1979-03-20 Scott Paper Company Absorbent articles
US4166001A (en) * 1974-06-21 1979-08-28 Kimberly-Clark Corporation Multiple layer formation process for creped tissue
US4196245A (en) * 1978-06-16 1980-04-01 Buckeye Cellulos Corporation Composite nonwoven fabric comprising adjacent microfine fibers in layers
US4207367A (en) * 1970-03-30 1980-06-10 Scott Paper Company Nonwoven fabric
US4225382A (en) * 1979-05-24 1980-09-30 The Procter & Gamble Company Method of making ply-separable paper
US4239792A (en) * 1979-02-05 1980-12-16 The Procter & Gamble Company Surface wiping device
US4256111A (en) * 1973-10-01 1981-03-17 Kimberly-Clark Corporation Filaments of chemically modified cellulose fibers and webs and products formed therefrom
US4287251A (en) * 1978-06-16 1981-09-01 King Mary K Disposable absorbent nonwoven structure
US4298649A (en) * 1980-01-07 1981-11-03 Kimberly-Clark Corporation Nonwoven disposable wiper
US4300981A (en) * 1979-11-13 1981-11-17 The Procter & Gamble Company Layered paper having a soft and smooth velutinous surface, and method of making such paper
US4326000A (en) * 1973-04-30 1982-04-20 Scott Paper Company Soft, absorbent, unitary, laminate-like fibrous web
US4377615A (en) * 1980-09-20 1983-03-22 Uni-Charm Corporation Nonwoven fabrics and method of producing the same
US4436780A (en) * 1982-09-02 1984-03-13 Kimberly-Clark Corporation Nonwoven wiper laminate
US4445974A (en) * 1978-04-25 1984-05-01 Aktiebolaget Karlstads Mekaniska Werkstad Apparatus for forming a multilayer jet of paper making stock
US4469735A (en) * 1982-03-15 1984-09-04 The Procter & Gamble Company Extensible multi-ply tissue paper product
US4482429A (en) * 1980-08-29 1984-11-13 James River-Norwalk, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4517054A (en) * 1982-03-02 1985-05-14 Valmet Oy Web-forming section of a paper machine intended for modernization of a fourdrinier wire
US4537822A (en) * 1983-02-08 1985-08-27 Toyo Boseki Kabushiki Kaisha Three-layered fabric material
US4548856A (en) * 1983-05-16 1985-10-22 Kimberly-Clark Corporation Method for forming soft, bulky absorbent webs and resulting product
US4610915A (en) * 1983-03-11 1986-09-09 The Procter & Gamble Company Two-ply nonwoven fabric laminate
US4614566A (en) * 1982-03-02 1986-09-30 Valmet Oy Web-forming section in a paper machine
US4618524A (en) * 1984-10-10 1986-10-21 Firma Carl Freudenberg Microporous multilayer nonwoven material for medical applications
US4781793A (en) * 1986-07-04 1988-11-01 Valmet Oy Method for improving paper properties in multiply paper using long and short fiber layers
US4816320A (en) * 1986-06-16 1989-03-28 St Cyr Napoleon Toilet tissue and facial tissue
US4853086A (en) * 1986-12-15 1989-08-01 Weyerhaeuser Company Hydrophilic cellulose product and method of its manufacture
US4885202A (en) * 1987-11-24 1989-12-05 Kimberly-Clark Corporation Tissue laminate
US4888092A (en) * 1987-09-22 1989-12-19 The Mead Corporation Primary paper sheet having a surface layer of pulp fines
US4897155A (en) * 1987-05-27 1990-01-30 Kamyr, Inc. Method for producing low fines content pulp by subjecting cellulosic chips to low frequency compression-relaxation cycles
US4946557A (en) * 1988-03-08 1990-08-07 Eka Nobel Ab Process for the production of paper
US4964954A (en) * 1987-03-03 1990-10-23 Eka Nobel Ab Process for the production of paper
US4964955A (en) * 1988-12-21 1990-10-23 Cyprus Mines Corporation Method of reducing pitch in pulping and papermaking operations
US4983258A (en) * 1988-10-03 1991-01-08 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
US5002633A (en) * 1988-10-03 1991-03-26 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
US5011741A (en) * 1990-03-20 1991-04-30 Green Bay Packaging, Inc. Linerboard containing recycled newsprint
US5048589A (en) * 1988-05-18 1991-09-17 Kimberly-Clark Corporation Non-creped hand or wiper towel
US5087324A (en) * 1990-10-31 1992-02-11 James River Corporation Of Virginia Paper towels having bulky inner layer
US5127994A (en) * 1988-05-25 1992-07-07 Eka Nobel Ab Process for the production of paper
US5129988A (en) * 1991-06-21 1992-07-14 Kimberly-Clark Corporation Extended flexible headbox slice with parallel flexible lip extensions and extended internal dividers
US5133832A (en) * 1991-07-08 1992-07-28 The Black Clawson Company Process and system for preparation of waste paper stock with short and long fiber fractionation
US5137599A (en) * 1988-10-03 1992-08-11 Prime Fiber Corporation Conversion of pulp and paper mill sludge to papermaking pulp
US5192388A (en) * 1990-04-17 1993-03-09 Maschinenfabrik Polytype A.G. Process and device for producing a composite web
US5228954A (en) * 1991-05-28 1993-07-20 The Procter & Gamble Cellulose Company Cellulose pulps of selected morphology for improved paper strength potential
US5336373A (en) * 1992-12-29 1994-08-09 Scott Paper Company Method for making a strong, bulky, absorbent paper sheet using restrained can drying
US5397435A (en) * 1993-10-22 1995-03-14 Procter & Gamble Company Multi-ply facial tissue paper product comprising chemical softening compositions and binder materials
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5409572A (en) * 1991-01-15 1995-04-25 James River Corporation Of Virginia High softness embossed tissue
US5468396A (en) * 1994-03-16 1995-11-21 Pulp And Paper Research Institute Of Canada Centrifugal cleaning of pulp and paper process liquids
US5468348A (en) * 1990-07-10 1995-11-21 Beloit Technologies, Inc. Multi-ply web former and method
US5494554A (en) * 1993-03-02 1996-02-27 Kimberly-Clark Corporation Method for making soft layered tissues
US5501768A (en) * 1992-04-17 1996-03-26 Kimberly-Clark Corporation Method of treating papermaking fibers for making tissue
US5510001A (en) * 1993-05-21 1996-04-23 Kimberly-Clark Corporation Method for increasing the internal bulk of throughdried tissue
US5527432A (en) * 1994-01-28 1996-06-18 Advanced Fiber Technology, Inc. Method of dry separating fibers from paper making waste sludge and fiber product thereof
US5529665A (en) * 1994-08-08 1996-06-25 Kimberly-Clark Corporation Method for making soft tissue using cationic silicones
US5543202A (en) * 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5582681A (en) * 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
US5591309A (en) * 1995-02-06 1997-01-07 Kimberly-Clark Corporation Papermaking machine for making uncreped throughdried tissue sheets
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5620565A (en) * 1994-06-29 1997-04-15 Kimberly-Clark Corporation Production of soft paper products from high and low coarseness fibers
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US5730839A (en) * 1995-07-21 1998-03-24 Kimberly-Clark Worldwide, Inc. Method of creping tissue webs containing a softener using a closed creping pocket
US5785813A (en) * 1997-02-24 1998-07-28 Kimberly-Clark Worldwide Inc. Method of treating a papermaking furnish for making soft tissue
US5830320A (en) * 1996-09-18 1998-11-03 Weyerhaeuser Company Method of enhancing strength of paper products and the resulting products
US5830317A (en) * 1995-04-07 1998-11-03 The Procter & Gamble Company Soft tissue paper with biased surface properties containing fine particulate fillers
US5834095A (en) * 1996-12-17 1998-11-10 Kimberly-Clark Worldwide, Inc. Treatment process for cellulosic fibers
US5853539A (en) * 1997-07-21 1998-12-29 Kimberly-Clark Worldwide, Inc. Method of applying dry strength resins for making soft, strong, absorbent tissue structures
US5858021A (en) * 1996-10-31 1999-01-12 Kimberly-Clark Worldwide, Inc. Treatment process for cellulosic fibers
US5993602A (en) * 1997-07-21 1999-11-30 Kimberly-Clark Worldwide, Inc. Method of applying permanent wet strength agents to impart temporary wet strength in absorbent tissue structures
US6001218A (en) * 1994-06-29 1999-12-14 Kimberly-Clark Worldwide, Inc. Production of soft paper products from old newspaper
US6017417A (en) * 1994-04-12 2000-01-25 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US6024834A (en) * 1996-12-17 2000-02-15 Kimberly-Clark Worldwide, Inc. Fractionation process for cellulosic fibers
US6039839A (en) * 1998-02-03 2000-03-21 The Procter & Gamble Company Method for making paper structures having a decorative pattern
US6074527A (en) * 1994-06-29 2000-06-13 Kimberly-Clark Worldwide, Inc. Production of soft paper products from coarse cellulosic fibers
US6156157A (en) * 1995-07-21 2000-12-05 Kimberly-Clark Worldwide, Inc. Method for making soft tissue with improved bulk softness and surface softness
US6207012B1 (en) * 1996-12-23 2001-03-27 Fort James Corporation Hydrophilic, humectant, soft, pliable, absorbent paper having wet strength agents
US6248210B1 (en) * 1998-11-13 2001-06-19 Fort James Corporation Method for maximizing water removal in a press nip
US6296736B1 (en) * 1997-10-30 2001-10-02 Kimberly-Clark Worldwide, Inc. Process for modifying pulp from recycled newspapers
US6372085B1 (en) * 1998-12-18 2002-04-16 Kimberly-Clark Worldwide, Inc. Recovery of fibers from a fiber processing waste sludge
US6387210B1 (en) * 1998-09-30 2002-05-14 Kimberly-Clark Worldwide, Inc. Method of making sanitary paper product from coarse fibers
US6391154B1 (en) * 1997-09-16 2002-05-21 M-Real Oyj Paper web and a method for the production thereof
US6413363B1 (en) * 2000-06-30 2002-07-02 Kimberly-Clark Worldwide, Inc. Method of making absorbent tissue from recycled waste paper
US6511579B1 (en) * 1998-06-12 2003-01-28 Fort James Corporation Method of making a paper web having a high internal void volume of secondary fibers and a product made by the process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US580317A (en) * 1897-04-06 Apparatus for aging fabrics
US162635A (en) 1875-04-27 Improvement in calendering-machines
US5348620A (en) 1992-04-17 1994-09-20 Kimberly-Clark Corporation Method of treating papermaking fibers for making tissue
EP0824157B1 (en) 1996-08-14 2001-12-05 Voith Paper Patent GmbH Headbox and process for the distribution of a fibrous suspension in the headbox of a paper making machine
US6423183B1 (en) 1997-12-24 2002-07-23 Kimberly-Clark Worldwide, Inc. Paper products and a method for applying a dye to cellulosic fibers

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085927A (en) * 1960-11-16 1963-04-16 Int Paper Co Process for preparation of fibers having differing characteristics
US3598696A (en) * 1968-02-14 1971-08-10 Beloit Corp Multiple stage hydraulic headbox
US4207367A (en) * 1970-03-30 1980-06-10 Scott Paper Company Nonwoven fabric
US3695985A (en) * 1970-07-29 1972-10-03 Kimberly Clark Co High bulk laminates
US3791917A (en) * 1973-03-07 1974-02-12 Bird Machine Co Process for producing kraft paper laminate of top stock and base stock layers
US3903342A (en) * 1973-04-30 1975-09-02 Scott Paper Co Soft, absorbent, unitary, laminate-like fibrous web with delaminating strength and method for producing it
US4326000A (en) * 1973-04-30 1982-04-20 Scott Paper Company Soft, absorbent, unitary, laminate-like fibrous web
US3997647A (en) * 1973-10-01 1976-12-14 Kimberly-Clark Corporation Method of making filaments and webs of chemically modified cellulose fibers
US4256111A (en) * 1973-10-01 1981-03-17 Kimberly-Clark Corporation Filaments of chemically modified cellulose fibers and webs and products formed therefrom
US3953638A (en) * 1973-11-26 1976-04-27 The Procter & Gamble Company Multi-ply absorbent wiping product having relatively inextensible center ply bonded to highly extensible outer plies
US4166001A (en) * 1974-06-21 1979-08-28 Kimberly-Clark Corporation Multiple layer formation process for creped tissue
US4113911A (en) * 1974-12-02 1978-09-12 The Buckeye Cellulose Corporation Quiet, strong cloth-like tissue laminate
US4100017A (en) * 1975-05-05 1978-07-11 The Procter & Gamble Company Multi-ply tissue product
US4075382A (en) * 1976-05-27 1978-02-21 The Procter & Gamble Company Disposable nonwoven surgical towel and method of making it
US4145464A (en) * 1976-10-15 1979-03-20 Scott Paper Company Absorbent articles
US4445974A (en) * 1978-04-25 1984-05-01 Aktiebolaget Karlstads Mekaniska Werkstad Apparatus for forming a multilayer jet of paper making stock
US4287251A (en) * 1978-06-16 1981-09-01 King Mary K Disposable absorbent nonwoven structure
US4196245A (en) * 1978-06-16 1980-04-01 Buckeye Cellulos Corporation Composite nonwoven fabric comprising adjacent microfine fibers in layers
US4239792A (en) * 1979-02-05 1980-12-16 The Procter & Gamble Company Surface wiping device
US4225382A (en) * 1979-05-24 1980-09-30 The Procter & Gamble Company Method of making ply-separable paper
US4300981A (en) * 1979-11-13 1981-11-17 The Procter & Gamble Company Layered paper having a soft and smooth velutinous surface, and method of making such paper
US4298649A (en) * 1980-01-07 1981-11-03 Kimberly-Clark Corporation Nonwoven disposable wiper
US4482429A (en) * 1980-08-29 1984-11-13 James River-Norwalk, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4377615A (en) * 1980-09-20 1983-03-22 Uni-Charm Corporation Nonwoven fabrics and method of producing the same
US4517054A (en) * 1982-03-02 1985-05-14 Valmet Oy Web-forming section of a paper machine intended for modernization of a fourdrinier wire
US4614566A (en) * 1982-03-02 1986-09-30 Valmet Oy Web-forming section in a paper machine
US4744866A (en) * 1982-03-02 1988-05-17 Valmet Oy Web-forming method in a paper machine
US4469735A (en) * 1982-03-15 1984-09-04 The Procter & Gamble Company Extensible multi-ply tissue paper product
US4436780A (en) * 1982-09-02 1984-03-13 Kimberly-Clark Corporation Nonwoven wiper laminate
US4537822A (en) * 1983-02-08 1985-08-27 Toyo Boseki Kabushiki Kaisha Three-layered fabric material
US4610915A (en) * 1983-03-11 1986-09-09 The Procter & Gamble Company Two-ply nonwoven fabric laminate
US4548856A (en) * 1983-05-16 1985-10-22 Kimberly-Clark Corporation Method for forming soft, bulky absorbent webs and resulting product
US4618524A (en) * 1984-10-10 1986-10-21 Firma Carl Freudenberg Microporous multilayer nonwoven material for medical applications
US4816320A (en) * 1986-06-16 1989-03-28 St Cyr Napoleon Toilet tissue and facial tissue
US4781793A (en) * 1986-07-04 1988-11-01 Valmet Oy Method for improving paper properties in multiply paper using long and short fiber layers
US4853086A (en) * 1986-12-15 1989-08-01 Weyerhaeuser Company Hydrophilic cellulose product and method of its manufacture
US4964954A (en) * 1987-03-03 1990-10-23 Eka Nobel Ab Process for the production of paper
US4897155A (en) * 1987-05-27 1990-01-30 Kamyr, Inc. Method for producing low fines content pulp by subjecting cellulosic chips to low frequency compression-relaxation cycles
US4888092A (en) * 1987-09-22 1989-12-19 The Mead Corporation Primary paper sheet having a surface layer of pulp fines
US4885202A (en) * 1987-11-24 1989-12-05 Kimberly-Clark Corporation Tissue laminate
US4946557A (en) * 1988-03-08 1990-08-07 Eka Nobel Ab Process for the production of paper
US5048589A (en) * 1988-05-18 1991-09-17 Kimberly-Clark Corporation Non-creped hand or wiper towel
US5127994A (en) * 1988-05-25 1992-07-07 Eka Nobel Ab Process for the production of paper
US5137599A (en) * 1988-10-03 1992-08-11 Prime Fiber Corporation Conversion of pulp and paper mill sludge to papermaking pulp
US5002633A (en) * 1988-10-03 1991-03-26 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
US4983258A (en) * 1988-10-03 1991-01-08 Prime Fiber Corporation Conversion of pulp and paper mill waste solids to papermaking pulp
US4964955A (en) * 1988-12-21 1990-10-23 Cyprus Mines Corporation Method of reducing pitch in pulping and papermaking operations
US5011741A (en) * 1990-03-20 1991-04-30 Green Bay Packaging, Inc. Linerboard containing recycled newsprint
US5192388A (en) * 1990-04-17 1993-03-09 Maschinenfabrik Polytype A.G. Process and device for producing a composite web
US5468348A (en) * 1990-07-10 1995-11-21 Beloit Technologies, Inc. Multi-ply web former and method
US5087324A (en) * 1990-10-31 1992-02-11 James River Corporation Of Virginia Paper towels having bulky inner layer
US5409572A (en) * 1991-01-15 1995-04-25 James River Corporation Of Virginia High softness embossed tissue
US5228954A (en) * 1991-05-28 1993-07-20 The Procter & Gamble Cellulose Company Cellulose pulps of selected morphology for improved paper strength potential
US5129988A (en) * 1991-06-21 1992-07-14 Kimberly-Clark Corporation Extended flexible headbox slice with parallel flexible lip extensions and extended internal dividers
US5133832A (en) * 1991-07-08 1992-07-28 The Black Clawson Company Process and system for preparation of waste paper stock with short and long fiber fractionation
US5501768A (en) * 1992-04-17 1996-03-26 Kimberly-Clark Corporation Method of treating papermaking fibers for making tissue
US5336373A (en) * 1992-12-29 1994-08-09 Scott Paper Company Method for making a strong, bulky, absorbent paper sheet using restrained can drying
US5494554A (en) * 1993-03-02 1996-02-27 Kimberly-Clark Corporation Method for making soft layered tissues
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US5616207A (en) * 1993-05-21 1997-04-01 Kimberly-Clark Corporation Method for making uncreped throughdried towels and wipers
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5510001A (en) * 1993-05-21 1996-04-23 Kimberly-Clark Corporation Method for increasing the internal bulk of throughdried tissue
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5397435A (en) * 1993-10-22 1995-03-14 Procter & Gamble Company Multi-ply facial tissue paper product comprising chemical softening compositions and binder materials
US5527432A (en) * 1994-01-28 1996-06-18 Advanced Fiber Technology, Inc. Method of dry separating fibers from paper making waste sludge and fiber product thereof
US5543202A (en) * 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5468396A (en) * 1994-03-16 1995-11-21 Pulp And Paper Research Institute Of Canada Centrifugal cleaning of pulp and paper process liquids
US6017417A (en) * 1994-04-12 2000-01-25 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US6074527A (en) * 1994-06-29 2000-06-13 Kimberly-Clark Worldwide, Inc. Production of soft paper products from coarse cellulosic fibers
US5582681A (en) * 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
US6027610A (en) * 1994-06-29 2000-02-22 Kimberly-Clark Corporation Production of soft paper products from old newspaper
US5620565A (en) * 1994-06-29 1997-04-15 Kimberly-Clark Corporation Production of soft paper products from high and low coarseness fibers
US6001218A (en) * 1994-06-29 1999-12-14 Kimberly-Clark Worldwide, Inc. Production of soft paper products from old newspaper
US5529665A (en) * 1994-08-08 1996-06-25 Kimberly-Clark Corporation Method for making soft tissue using cationic silicones
US5591309A (en) * 1995-02-06 1997-01-07 Kimberly-Clark Corporation Papermaking machine for making uncreped throughdried tissue sheets
US5830317A (en) * 1995-04-07 1998-11-03 The Procter & Gamble Company Soft tissue paper with biased surface properties containing fine particulate fillers
US5730839A (en) * 1995-07-21 1998-03-24 Kimberly-Clark Worldwide, Inc. Method of creping tissue webs containing a softener using a closed creping pocket
US6156157A (en) * 1995-07-21 2000-12-05 Kimberly-Clark Worldwide, Inc. Method for making soft tissue with improved bulk softness and surface softness
US5830320A (en) * 1996-09-18 1998-11-03 Weyerhaeuser Company Method of enhancing strength of paper products and the resulting products
US5858021A (en) * 1996-10-31 1999-01-12 Kimberly-Clark Worldwide, Inc. Treatment process for cellulosic fibers
US6024834A (en) * 1996-12-17 2000-02-15 Kimberly-Clark Worldwide, Inc. Fractionation process for cellulosic fibers
US5834095A (en) * 1996-12-17 1998-11-10 Kimberly-Clark Worldwide, Inc. Treatment process for cellulosic fibers
US6080266A (en) * 1996-12-17 2000-06-27 Kimberly-Clark Worldwide, Inc. Fractionation process for cellulosic fibers
US6207012B1 (en) * 1996-12-23 2001-03-27 Fort James Corporation Hydrophilic, humectant, soft, pliable, absorbent paper having wet strength agents
US5785813A (en) * 1997-02-24 1998-07-28 Kimberly-Clark Worldwide Inc. Method of treating a papermaking furnish for making soft tissue
US5853539A (en) * 1997-07-21 1998-12-29 Kimberly-Clark Worldwide, Inc. Method of applying dry strength resins for making soft, strong, absorbent tissue structures
US5993602A (en) * 1997-07-21 1999-11-30 Kimberly-Clark Worldwide, Inc. Method of applying permanent wet strength agents to impart temporary wet strength in absorbent tissue structures
US6391154B1 (en) * 1997-09-16 2002-05-21 M-Real Oyj Paper web and a method for the production thereof
US6296736B1 (en) * 1997-10-30 2001-10-02 Kimberly-Clark Worldwide, Inc. Process for modifying pulp from recycled newspapers
US6039839A (en) * 1998-02-03 2000-03-21 The Procter & Gamble Company Method for making paper structures having a decorative pattern
US6511579B1 (en) * 1998-06-12 2003-01-28 Fort James Corporation Method of making a paper web having a high internal void volume of secondary fibers and a product made by the process
US6387210B1 (en) * 1998-09-30 2002-05-14 Kimberly-Clark Worldwide, Inc. Method of making sanitary paper product from coarse fibers
US6248210B1 (en) * 1998-11-13 2001-06-19 Fort James Corporation Method for maximizing water removal in a press nip
US6372085B1 (en) * 1998-12-18 2002-04-16 Kimberly-Clark Worldwide, Inc. Recovery of fibers from a fiber processing waste sludge
US6413363B1 (en) * 2000-06-30 2002-07-02 Kimberly-Clark Worldwide, Inc. Method of making absorbent tissue from recycled waste paper

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377995B2 (en) * 2004-05-12 2008-05-27 Kimberly-Clark Worldwide, Inc. Soft durable tissue
US20050252626A1 (en) * 2004-05-12 2005-11-17 Kimberly-Clark Worldwide, Inc. Soft durable tissue
US8216424B2 (en) 2004-09-01 2012-07-10 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US20060042767A1 (en) * 2004-09-01 2006-03-02 Fort James Corporation Multi-ply paper product with moisture strike through resistance and method of making the same
US7799169B2 (en) 2004-09-01 2010-09-21 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US20100319864A1 (en) * 2004-09-01 2010-12-23 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US20100116451A1 (en) * 2004-09-01 2010-05-13 Georgia-Pacific Consumer Products Lp Multi-Ply Paper Product with Moisture Strike Through Resistance and Method of Making the Same
US8025764B2 (en) 2004-09-01 2011-09-27 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US8771466B2 (en) 2008-03-06 2014-07-08 Sca Tissue France Method for manufacturing an embossed sheet comprising a ply of water-soluble material
US8506756B2 (en) 2008-03-06 2013-08-13 Sca Tissue France Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
US20100326613A1 (en) * 2008-03-06 2010-12-30 Yoann Denis Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
US8287986B2 (en) 2008-05-27 2012-10-16 Georgia-Pacific Consumer Products Lp Ultra premium bath tissue
US10760220B2 (en) 2014-04-23 2020-09-01 Hewlett-Packard Development Company, L.P. Packaging material and method for making the same
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint
US11255051B2 (en) 2017-11-29 2022-02-22 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
US12043963B2 (en) 2017-11-29 2024-07-23 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
US11313061B2 (en) 2018-07-25 2022-04-26 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens
US11788221B2 (en) 2018-07-25 2023-10-17 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens
US12116706B2 (en) 2018-07-25 2024-10-15 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens

Also Published As

Publication number Publication date
AU2002330258A1 (en) 2003-07-09
CA2469040A1 (en) 2003-07-03
MXPA04005248A (en) 2004-10-11
CA2469040C (en) 2013-04-02
AU2002330258B2 (en) 2008-04-03
EP1456474A1 (en) 2004-09-15
KR100917520B1 (en) 2009-09-16
US6797114B2 (en) 2004-09-28
WO2003054302A1 (en) 2003-07-03
US20030111198A1 (en) 2003-06-19
KR20040066864A (en) 2004-07-27

Similar Documents

Publication Publication Date Title
US6797114B2 (en) Tissue products
US6821387B2 (en) Use of fractionated fiber furnishes in the manufacture of tissue products, and products produced thereby
US6946058B2 (en) Method and system for manufacturing tissue products, and products produced thereby
EP2758597B1 (en) Soft tissue product comprising cotton
US6861380B2 (en) Tissue products having reduced lint and slough
US5656132A (en) Soft tissue
US20030121627A1 (en) Tissue products having reduced lint and slough
US11781270B2 (en) Methods of making multi-ply fibrous sheets
AU2013392117A1 (en) Soft and strong engineered tissue
EP2758593A2 (en) Tissue product comprising bamboo
US9074324B2 (en) Layered tissue structures comprising macroalgae
US20030111196A1 (en) Tissue products and methods for manufacturing tissue products
US20030121629A1 (en) Use of fractionated fiber furnishes in the manufacture of tissue products, and products produced thereby
JPH0327194A (en) Laminar two-ply tissue and its manufacture
US20230407566A1 (en) Multi-ply paper roducts and methods of making low lint multi-ply paper products

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION