US20050008884A1 - Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film - Google Patents

Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film Download PDF

Info

Publication number
US20050008884A1
US20050008884A1 US10/705,016 US70501603A US2005008884A1 US 20050008884 A1 US20050008884 A1 US 20050008884A1 US 70501603 A US70501603 A US 70501603A US 2005008884 A1 US2005008884 A1 US 2005008884A1
Authority
US
United States
Prior art keywords
layer
composite film
film according
thickness
carrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/705,016
Inventor
Johann Kappacher
Erich Bernsteiner
Andreas Hollebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senoplast Klepsch and Co GmbH
Original Assignee
Senoplast Klepsch and Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3680271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050008884(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Senoplast Klepsch and Co GmbH filed Critical Senoplast Klepsch and Co GmbH
Assigned to SENOPLAST KLEPSCH & CO. GMBH & CO. KG reassignment SENOPLAST KLEPSCH & CO. GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERNSTEINER, ERICH, HOLLEBAUER, ANDREAS, KAPPACHER, JOHANN
Publication of US20050008884A1 publication Critical patent/US20050008884A1/en
Assigned to SENOPLAST KLEPSCH & CO. GMBH reassignment SENOPLAST KLEPSCH & CO. GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SENOPLAST KLEPSCH & CO. GMBH & CO. KG
Priority to US12/961,036 priority Critical patent/US8613824B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B96/00Details of cabinets, racks or shelf units not covered by a single one of groups A47B43/00 - A47B95/00; General details of furniture
    • A47B96/20Furniture panels or like furniture elements
    • A47B96/205Composite panels, comprising several elements joined together
    • A47B96/206Composite panels, comprising several elements joined together with laminates comprising planar, continuous or separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2355/00Specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of index codes B32B2323/00 - B32B2333/00
    • B32B2355/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/261In terms of molecular thickness or light wave length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer

Definitions

  • the present invention concerns a multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film, in particular furniture film, comprising at least one carrier layer which has ABS, in particular ABS with admixtures, and/or polystyrene, in particular polystyrene with admixtures and/or high-impact polystyrene, and/or polyester, in particular amorphous polyester copolymer.
  • thermoplastic decorative films in the furniture sector particularly when high-shine surfaces are involved, high demands are made in terms of scratch resistance, abrasion resistance, chemical resistance, tension tearing resistance and optical values such as shine, long- and short-wave factors as well as surface fine roughness.
  • Environmental awareness is also increasingly advancing into the furniture sector, so that demands are also additionally being made in terms of the material nature of the thermoplastic films. The materials and processes used at the present time do not always satisfy those conditions.
  • PVC carrier films substantially satisfy all physical and optical requirements as are made in respect of furniture films, but on the other hand nowadays they are deemed to be ecologically questionable.
  • a more ecologically advantageous variant was marketed, using a base film of pigmented amorphous polyester copolymer, instead of the pigmented PVC base film.
  • EP 0 987 102 A2 contains a base of polyethylene and, besides the scratch-resistant coating, also an overlay film of transparent amorphous polyester copolymer.
  • EP 0 704 482 B1 defines a plurality of structures in which polyolefins are homogenised with polymers of other chemical classes (styrene copolymers, polymethacrylates) and processed to constitute films for furniture and articles of furniture.
  • Japanese specification No 08311301 A describes an ABS film to which a defined addition of polycaprolactone is added as a processing aid for the calendering process. In addition it may also contain between 5 and 50 percent by weight of methacrylate raw material.
  • Co-extruded panels of polymethylmethacrylate (PMMA) and ABS are also known as high-shine film materials.
  • the furniture films are produced in that case by co-extrusion by way of a wide-slot nozzle.
  • An alternative form of processing represents thermoshaping of those films with subsequent adhesion thereof to wood fibre panels.
  • a further alternative form of processing is represented by glueing on to flat surfaces and hot edging.
  • processing of the thermoplastic, high-shine furniture films and mats is effected by way of pressing, laminating or shaping on wood or foam cores. In order to be able to process the films on the existing machines the films must satisfy defined technical conditions.
  • thermoshapability at low temperatures (100° C.) and a corresponding processing window of between 90 and 120° C.
  • the object of the invention is to provide a composite film which on the one hand affords an ecologically appropriate alternative, which has defined surface qualities, to the PVC-based films substantially used hitherto in the state of the art, and which on the other hand satisfies the above-specified technical requirements.
  • Section 6 of a thickness which corresponds to the thickness of the composite film to be tested is stored prior to the beginning of the test for 24 hours at 23° C. and 50% relative air humidity;
  • thermoshapability of the composite films is an aspect of central significance for the subsequent use thereof in the furniture industry as furniture films.
  • thermoshapability is used in particular to mean that the composite films, with processes in accordance with the state of the art, can be precisely matched to the surface configuration of the item of furniture to be coated.
  • Critical locations when applying such composite films are in particular corners, edges, recesses and so forth in the item of furniture. In that respect it is crucial that the composite films can also be adapted as exactly as possible to small corners, radii and edges.
  • the carrier layer of the composite film is of a thickness of between 100 and 1000 ⁇ m.
  • Composite films according to the invention in that range of thicknesses can be well processed. In addition they have the thickness necessary in regard to the quality requirements.
  • Particularly advantageous alternative configurations of the composite films provide that they have at least one carrier layer with amorphous polyester copolymer, wherein, in the single-axis tensile testing of such a composite film, a maximum tensile force of between 50 Newtons and 120 Newtons, preferably between 65 Newtons and 105 Newtons, occurs. It is advantageous with those films for the film to be of a thickness of between 200 and 600 ⁇ m, preferably between 300 and 450 ⁇ m.
  • composite films have at least one carrier layer with ABS and/or polystyrene, preferably HIPS (high impact polystyrene), wherein in the single-axis tensile testing of such a composite film a maximum tensile force of between 50 Newtons and 230 Newtons, preferably between 105 Newtons and 230 Newtons, occurs. It is particularly desirable in that respect that, in the tensile testing of such a composite film, a maximum tensile force of between 105 Newtons and 180 Newtons occurs. In addition it is provided that those composite films are of a thickness of between 400 and 1000 ⁇ m, preferably between 600 and 800 ⁇ m.
  • HIPS high impact polystyrene
  • Particularly preferred variants of the composite film have at least one carrier layer of ABS, in particular in ABS with admixtures and/or polystyrene, in particular polystyrene with admixtures and/or high impact polystyrene, and/or polyesters, in particular amorphous polyester copolymer. It is provided in that respect that the composite film, under a cover layer, has a single-layer extrudate or an at least double-layer co-extrudate, as the carrier layer. That represents a basic structure of the films according to the invention, which particularly well enjoys the properties required in the above-described test.
  • Preferred embodiments provide that at least one carrier layer of the composite film have UV-stabilisers and/or UV-absorbers and/or pigments, preferably for coloration purposes, and in a proportion by volume of between 0.1 and 10%.
  • the film attains its desired optical properties and also retains them even if it is exposed to sunlight over many years.
  • Preferred embodiments further provide that the carrier layer and/or at least one layer of the carrier layer have additives for Vicat reduction, with a proportion by weight of between 1 and 70%.
  • a variant provides that the carrier layer and/or at least one layer of the carrier layer have polycaprolactone with a proportion by weight of between 0.5 and 15%.
  • a further variant provides that the carrier layer and/or at least one layer of the carrier layer have amorphous polyester copolymer with a proportion by weight of between 30 and 70%.
  • Those additives serve in particular to provide the composite film with superior physical properties.
  • a preferred embodiment provides that in at least one layer—preferably facing away from the cover layer—the carrier layer has recycled material from the ongoing production process.
  • a primer layer can be applied to the side of the carrier layer, which is in opposite relationship to the cover layer of the composite film.
  • the primer layer serves to connect the composite film to the body to which it is applied.
  • the carrier layer is of a thickness of between 94 and 98% of the overall thickness of the composite film.
  • the cover layer of the composite film is co-extruded together with the carrier layer and has PMMA or impact-resistant modified PMMA.
  • a selected group of composite films according to the invention provides that the composite film is of an overall thickness of between 500 and 1000 ⁇ m, preferably between 500 and 800 ⁇ m.
  • the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably in the range of between 3 and 4%, of the overall thickness of the composite film.
  • the first layer thereof is of a thickness of between 5 and 20%, preferably between 10 and 15%, of the overall thickness of the composite film
  • the second layer of the carrier layer is of a thickness of between 74 and 93%, preferably between 75 and 85%, of the overall thickness of the composite film.
  • a transparent scratch-resistant coating is laminated on to the carrier layer or applied by thermal transfer printing.
  • the composite film is of an overall thickness of between 200 and 600 ⁇ m, preferably between 300 and 450 ⁇ m. In comparison with the composite films in which the cover layer of the composite film is co-extruded together with the carrier layer in a co-extrusion process, it is thus possible here to achieve a thinner overall thickness for the composite film if the cover layer is applied by lamination.
  • the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably between 1 and 3%, of the overall thickness of the composite film.
  • the first layer thereof is of a thickness of between 20 and 40%, preferably between 25 and 35% of the overall thickness of the composite film and the second layer of the carrier layer is of a thickness of between 60 and 75%, preferably between 65 and 70% of the overall thickness of the composite film.
  • a transparent scratch-resistant coating is applied to the carrier layer by printing or lacquering, as the cover layer.
  • the composite films are of an overall thickness of between 200 and 600 ⁇ m, preferably between 300 and 450 ⁇ m.
  • the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably between 1 and 3%, of the overall thickness of the composite film.
  • the first layer thereof is of a thickness of between 20 and 40%, preferably between 25 and 35%, of the overall thickness of the composite film
  • the second layer of the carrier layer is of a thickness of between 60 and 75%, preferably between 65 and 70%, of the overall layer of the composite film.
  • a select embodiment provides moreover that the carrier layer has an additional co-extruded layer facing towards the primer layer, the additional layer preferably comprising amorphous polyester copolymer with anti-blocking additive.
  • the cover layer is of a multi-layer structure and is laminated in the form of a ready pre-product on to the carrier layer.
  • the cover layer has four layers, wherein the first layer is a transparent scratch-resistant coating, preferably with UV-stabilisers and/or UV-absorbers, the second layer is a transparent overlay film comprising amorphous polyester copolymer, preferably with UV-stabilisers and/or UV-absorbers, the third layer is a decorative layer and the fourth layer is a primer layer.
  • the composite film is of an overall thickness of between 200 and 600 ⁇ m, preferably between 300 and 450 ⁇ m.
  • the cover layer is of a thickness of between 30 and 40%, preferably between 33 and 37%, of the overall thickness of the composite film.
  • the side of the carrier layer which is opposite to the decorative layer, has at least one decorative layer and/or at least one colour cover layer and/or at least one primer layer, wherein preferably the cover layer has a transparent scratch-resistant coating with UV-stabilisers and/or UV-absorbers.
  • the co-extruded carrier layer is at least 80% and preferably 95% of the overall thickness of the composite film.
  • the first layer of the carrier layer is chemically and/or mechanically matted.
  • the carrier layer is transparent.
  • the decorative and/or colour cover layer or layers is or are applied to the carrier layer using copper intaglio printing and/or flexographic printing and/or screen printing and/or offset printing.
  • FIG. 1 is a diagrammatic view relating to the testing process for composite films according to the invention.
  • FIGS. 2 through 5 show embodiments according to the invention of various composite films.
  • a tensile testing operation is effected in accordance with ISO 527-1:1996 at a defined testing temperature at a constant testing speed.
  • the variation in the testing tensile force which is necessary to maintain the constant testing speed throughout the entire duration of the testing procedure is recorded in dependence on the testing time.
  • the tensile force which occurs at a maximum during the tensile testing procedure serves as a criterion in regard to the deformability of the films on diaphragm pressing installations.
  • FIG. 1 diagrammatically shows the test body 21 which is clamped between the gripping clamps 22 and 23 and pulled in the direction 26 at a constant speed with a pulling device 25 and thereby stretched.
  • the tensile forces which occur in that case at the test body are recorded by means of a force measuring device 24 in dependence on time.
  • the nominal stretch is measured by suitable means (not shown here) in accordance with ISO 527-1:1996.
  • the testing apparatus which is used for the deformation tests must satisfy the conditions defined in ISO 527-1:1996 Section 5.
  • test body of type 1 B in accordance with ISO 527-2:1996 Section 6 is used for the tensile testing operations.
  • the removal of the test bodies from the composite film to be tested should be effected in such a way that the longitudinal axis of the test body is parallel to the extrusion direction or calendering direction.
  • Production of the test bodies must be effected by milling of the films by means of a suitable milling template.
  • the edges of the milled test bodies must be free from tears or milling burrs. If required the milled test bodies must be fine-ground at the edges while still in the template by means of abrasive paper (international grain size 220).
  • implementation of the tensile testing is to be carried out on a plurality of test bodies from one and the same composite film, in which case the arithmetic mean must be in the value range according to the invention, having regard to the standard deviation.
  • test bodies The choice of the number of test bodies is based on ISO 527-1:1996 Section 7.1, that testing specification requiring only one testing direction (parallel to the extrusion direction).
  • test bodies which break in the shoulder region or which stretch out of shape into the shoulder region must be rejected.
  • Test bodies which have slipped out of the gripping clamp or in which an obvious fault has resulted in premature failure may also not be included in the evaluation. Repetition tests with a corresponding number of new test bodies have to be carried out.
  • test bodies Before carrying out the tensile testing operation, based on ISO 291 (incorporated by reference) (‘Plastic materials normal climates for conditioning and testing’) the test bodies are stored for 24 hours at 23° C. room temperature and a relative air humidity of 50%.
  • the testing apparatus must be provided with a suitable climate chamber.
  • the test bodies pre-treated as described above are clamped in the testing apparatus and heated for 10 minutes in the climate chamber which is temperature-controlled at 80° C. After the expiry of that period of time the tensile testing procedure is started.
  • test bodies The dimensions of the test bodies, the clamping of the test bodies and the application of the prestressing are effected in accordance with ISO 527-1:1996 Sections 9.2 through 9.5.
  • the tensile testing operation is effected in a speed-controlled mode at a testing speed of 800 mm/min, which is constant for the duration of the tensile testing operation.
  • the tensile force which currently applies at any moment in time is variable and, after application of the constant testing speed, arises out of the resistance to stretch, which is variable in respect of time, of the test body.
  • Evaluation of the tensile test is effected within a stretch range of between 0% and 100%, in that case the nominal stretch ⁇ t of the test body, as defined in ISO 527-1:1996 Section 10.2, is used.
  • the test report may contain all information which is set forth in ISO 527-1:1996 Section 12.
  • test bodies which were taken from the films corresponding to this patent must have a maximally occurring tensile force which is at least in the range of between 30 and 280 Newtons (N) in the above-described tensile test within a nominal stretch range of between 0 and 100%.
  • N Newtons
  • FIG. 2 shows a diagrammatic view of the layer structure of the embodiments of the composite film A 1 through A 7 .
  • Layer 1 - thickness 4% PMMA + preferably 0.1-3% pigments for colouring + UV stabilisation preferably comprising UV-stabilisers and/or UV-absorbers or: PMMA + UV stabilisation layer 2 - thickness: 15% ABS + 0.5-10% pigments for colouring + optionally UV stabilisation or: ABS + 0.5-10% pigments + optionally UV stabilisation + optionally additive for Vicat reduction: 10% polycaprolactone or 50% amorphous polyester copolymer layer 3 - thickness: 80% ABS + 0.5-10% pigments for colouring or: ABS + 0.5-10% pigments + additive for Vicat reduction; 10% polycaprolactone or 50% amorphous polyester copolymer + recycled material from ongoing production process layer 4 - thickness: 1% primer (applied by printing).
  • the layers 2 and 3 are the carrier layer the layers 1 through 3 are produced in the co- extrusion process layer 1 is the cover layer in layer 1 both impact-modified and also standard PMMA can be used the layer 2 can be omitted but is generally produced.
  • Layer 1 - thickness: 4% PMMA + 0.1-3% pigments for colouring + UV stabilisation preferably comprising UV-stabilisers and/or UV-absorbers or: PMMA + UV stabilisation layer 2 - thickness: 15% HIPS ( high impact polystyrene) + 0.5-10% pigments for colouring + optionally UV stabilisation or: HIPS + 0.5-10% pigments + optionally UV stabilisation + optionally additive for Vicat reduction: 2% polycaprolactone or 50% amorphous polyester copolymer layer 3 - thickness: 80% HIPS + 0.5-10% pigments for colouring + recycled material from the ongoing production process or: HIPS + 0.5-10% pigments + additive for Vicat reduction
  • the layers 2 and 3 are the carrier layer the layers 1 through 3 are produced in the co- extrusion process layer 1 is the cover layer in layer 1 both impact-modified and also standard PMMA can be used the layer 2 can be omitted but is generally produced.
  • Layer 1 - thickness 4% PMMA + 0.1-3% pigments for colouring + UV stabilisation preferably comprising UV-stabilisers and/or UV-absorbers or: PMMA + UV stabilisation layer 2 - thickness: 15% amorphous polyester copolymer + 0.5-10% pigments for colouring + optionally UV stabilisation layer 3 - thickness: 80% amorphous polyester copolymer + 0.5-10% pigments for colouring + recycled material from ongoing production process layer 4 - thickness: 1% primer (applied by printing).
  • the layers 2 and 3 are the carrier layer the layers 1 through 3 are produced in the co- extrusion process layer 1 is the cover layer in layer 1 both impact-modified and also standard PMMA can be used the layer 2 can be omitted but is generally produced.
  • the layer 1 is applied inline or exline by lamination or thermal transfer printing the layers 2-3 are produced in the co-extrusion process and are the carrier layer the layer 2 can be omitted but is generally produced.
  • the layer 1 is applied inline or exline by lamination or thermal transfer printing the layers 2-3 are produced in the co-extrusion process and are the carrier layer the layer 2 can be omitted but is generally produced.
  • the layer 1 is applied by printing or lacquering the layers 2-3 are produced in the co-extrusion process and are the carrier layer the layer 2 can be omitted but is generally produced.
  • the layer 1 is applied by printing or lacquering the layers 2-3 are produced in the co-extrusion process and
  • FIG. 3 shows a composite film according to the invention in which the carrier layer is of a triple-layer structure.
  • the precise layer structure is for example as follows: A8 - Laminate - overall thickness 0.40 mm Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally UV stabilisation (preferably comprising UV- stabilisers and/or UV-absorber) layer 2 - thickness: 10% amorphous polyester copolymer + 0.5-10% pigments for colouring + optionally UV stabilisation (preferably comprising UV- stabilisers and/or US-absorber) + optionally anti- blocking additive layer 3 - thickness: 85% amorphous polyester copolymer + 0.5-10% pigments for colouring + recycled material from ongoing production process layer 5 - thickness: 2% amorphous polyester copolymer + anti-blocking additive layer 4 - thickness: 1% primer (applied by printing).
  • the layer 1 is applied inline or exline by lamination or thermal transfer printing the layers 2, 3 and 5 are produced in the co- extrusion process
  • FIG. 4 shows the structure of a composite film according to the invention in which the cover layer is of a multi-layer structure.
  • the precise layer structure is for example as follows: A9 - Laminate - overall thickness 0.40 mm Layer 6 - thickness: 2% Transparent scratch-resistant coating + optionally UV stabilisation layer 7 - thickness: 30% transparent overlay film comprising amorphous polyester copolymer + optionally UV-stabilisation layer 8 - thickness: 1% decorative layer layer 9 - thickness: 1% primer (applied by printing) layer 2 - thickness: 20% HIPS + 0.5-10% pigments for colouring + optionally UV stabilisation or: HIPS + 0.5-10% pigments + optionally UV stabilisation + additive for Vicat reduction: 2% polycaprolactone or 50% amorphous polyester copolymer layer 3 - thickness: 45% HIPS + 0.5-10% pigments for colouring or: HIPS + 0.5-10% pigments + additive for Vicat reduction; 2% polycaprolactone or 50% amorphous polyester copolymer + recycled material
  • FIG. 5 shows a composite film according to the invention whose main characteristic is that the decorative layers are applied between the carrier layer and the primer layer, under the carrier layer.
  • the precise layer structure in that respect is for example as follows: A10 - Lacquering - overall thickness 0.40 mm Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally UV stabilisation (preferably comprising UV- stabilisers and/or UV-absorber); (high shine-matt) layer 10 - thickness: amorphous polyester 10% copolymer + anti-blocking additive + optionally UV stabilisation (preferably comprising UV-stabilisers and/or UV-absorber) layer 11 - thickness: amorphous polyester copolymer + recycled 83% material from ongoing production process layer 12 - thickness: 2% amorphous polyester copolymer + anti-blocking additive layer 13 - thickness: 1% decorative layer (for example wood fibre) layer 14 - thickness: 1% colour cover layer (for example wood brown) layer 4 - thickness: 1% primer (applied by printing).
  • the layer 10 can be chemically or mechanically matted, it is produced using an extrusion process the layers 10-12 are produced in the co- extrusion process and are the carrier layer layers 13 and 14 are applied by copper intaglio, flexographic, screen or offset printing.
  • PMMA polymethylmethacrylate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • HIPS polystyrene impact modified (high impact)

Abstract

The invention relates to a multilayer composite foil substantially free from polyvinyl chloride and polyolefins, more particularly a furniture foil, comprising ABS, especially ABS with admixtures, and/or polystyrene, especially polystyrene with admixtures and/or high shock-resistant polystyrene, and/or polyester, especially amorphous polyester copolymer, wherein a maximum tensile force ranging between 30 and 280 Newton is attained during a uniaxial tensile test of one test body consisting of the composite foil, wherein the uniaxial tensile test complies with special test regulations.

Description

  • The present invention concerns a multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film, in particular furniture film, comprising at least one carrier layer which has ABS, in particular ABS with admixtures, and/or polystyrene, in particular polystyrene with admixtures and/or high-impact polystyrene, and/or polyester, in particular amorphous polyester copolymer.
  • When using thermoplastic decorative films in the furniture sector, particularly when high-shine surfaces are involved, high demands are made in terms of scratch resistance, abrasion resistance, chemical resistance, tension tearing resistance and optical values such as shine, long- and short-wave factors as well as surface fine roughness. Environmental awareness is also increasingly advancing into the furniture sector, so that demands are also additionally being made in terms of the material nature of the thermoplastic films. The materials and processes used at the present time do not always satisfy those conditions.
  • Furniture films of thermoplastic materials are produced for example by lamination/coating of a thin scratch-resistant layer on to a pigmented polyvinyl chloride (PVC) carrier film and subsequent application of a primer layer at the rear side. Admittedly, PVC carrier films substantially satisfy all physical and optical requirements as are made in respect of furniture films, but on the other hand nowadays they are deemed to be ecologically questionable. A more ecologically advantageous variant was marketed, using a base film of pigmented amorphous polyester copolymer, instead of the pigmented PVC base film. Further alternatives on a polyolefinic carrier basis are described in EP 0 987 102 A2, which contains a base of polyethylene and, besides the scratch-resistant coating, also an overlay film of transparent amorphous polyester copolymer. In addition, EP 0 704 482 B1 defines a plurality of structures in which polyolefins are homogenised with polymers of other chemical classes (styrene copolymers, polymethacrylates) and processed to constitute films for furniture and articles of furniture. EP 0 875 374 A2 describes a product for which a carrier film comprising polyolefins, ABS (=acrylonitrile-butadiene-styrene copolymers), ASA (=acrylonitrile-styrene-acrylic ester copolymers), AES (=thermoplastic quadrupolymer of acrylonitrile-ethylene-propylene-styrene), PET (=polyethylene terephthalate) or an amorphous polyester is laminated with an overlay film of an amorphous polyester. Japanese specification No 08311301 A describes an ABS film to which a defined addition of polycaprolactone is added as a processing aid for the calendering process. In addition it may also contain between 5 and 50 percent by weight of methacrylate raw material.
  • Co-extruded panels of polymethylmethacrylate (PMMA) and ABS are also known as high-shine film materials. The furniture films are produced in that case by co-extrusion by way of a wide-slot nozzle. An alternative form of processing represents thermoshaping of those films with subsequent adhesion thereof to wood fibre panels. A further alternative form of processing is represented by glueing on to flat surfaces and hot edging. In general terms, processing of the thermoplastic, high-shine furniture films and mats is effected by way of pressing, laminating or shaping on wood or foam cores. In order to be able to process the films on the existing machines the films must satisfy defined technical conditions. Thus in particular inter alia they must enjoy good thermoshapability at low temperatures (100° C.) and a corresponding processing window of between 90 and 120° C. In addition the film should have improved surface properties (shine, long wave, short wave, UV—(=ultraviolet light)resistance, scratch resistance, chemical resistance) as well as good adhesion properties to wood materials, pieces of wood or foam cores. Those demands are only partially or not at all fulfilled by the PVC-free films in the state of the art, which are the aim from an ecological point of view.
  • Therefore the object of the invention is to provide a composite film which on the one hand affords an ecologically appropriate alternative, which has defined surface qualities, to the PVC-based films substantially used hitherto in the state of the art, and which on the other hand satisfies the above-specified technical requirements.
  • In accordance with the invention that is achieved in that, in the single-axis tensile testing of a test body comprising the composite film, a maximum tensile force of between 30 Newtons and 280 Newtons occurs, wherein the single-axis tensile testing procedure satisfies the following testing specification:
  • a) a test body in accordance with type 1 B as set forth in ISO 527-2:1996 (incorporated by reference) Section 6 of a thickness which corresponds to the thickness of the composite film to be tested is stored prior to the beginning of the test for 24 hours at 23° C. and 50% relative air humidity;
  • b) the step of clamping the test body pretreated in that way into a testing apparatus in accordance with ISO 527-1:1996 (incorporated by reference) Section 5 is then effected, wherein the longitudinal axis of the test body is parallel to the composite film extrusion or calendering direction, and the prestressing is applied in accordance with ISO 527-1:1996 Sections 9.2 and 9.5;
  • c) subsequent implementation of the single-axis tensile test is effected in accordance with ISO 527-1:1996 at a constant testing speed of 800 mm/min and at a constant temperature of 80° C., wherein immediately prior in time to the beginning of implementation of the tensile test the clamped test body remains in a climatic chamber temperature-controlled at 80° C. for a period of 10 minutes, and
  • d) during the implementation of the tensile test recording of the tensile forces which occur is effected in dependence on the test time from the beginning of the testing procedure in a range of nominal stretch εt (in accordance with ISO 527-1:1996 Section 10.2) of between 0% and 100%.
  • Besides the above-specified surface properties, it is particularly important in regard to the composite films according to the invention that they satisfy the criteria in respect of thermoshapability in the above-stated temperature ranges. Thermoshapability of the composite films is an aspect of central significance for the subsequent use thereof in the furniture industry as furniture films. In this respect the term thermoshapability is used in particular to mean that the composite films, with processes in accordance with the state of the art, can be precisely matched to the surface configuration of the item of furniture to be coated. Critical locations when applying such composite films are in particular corners, edges, recesses and so forth in the item of furniture. In that respect it is crucial that the composite films can also be adapted as exactly as possible to small corners, radii and edges.
  • In that respect it was found in accordance with the invention that those films which satisfy a single-axis tensile testing procedure as is set forth in the characterising portion of claim 1 and set out in greater detail hereinafter have the required properties in respect of thermoshapability. It is important in regard to the tensile testing that the test body is not pre-loaded prior to executing the tensile testing procedure according to the invention.
  • In the preferred embodiments it is provided that the carrier layer of the composite film is of a thickness of between 100 and 1000 μm. Composite films according to the invention in that range of thicknesses can be well processed. In addition they have the thickness necessary in regard to the quality requirements.
  • Particularly advantageous alternative configurations of the composite films provide that they have at least one carrier layer with amorphous polyester copolymer, wherein, in the single-axis tensile testing of such a composite film, a maximum tensile force of between 50 Newtons and 120 Newtons, preferably between 65 Newtons and 105 Newtons, occurs. It is advantageous with those films for the film to be of a thickness of between 200 and 600 μm, preferably between 300 and 450 μm. Another advantageous group of composite films provides that they have at least one carrier layer with ABS and/or polystyrene, preferably HIPS (high impact polystyrene), wherein in the single-axis tensile testing of such a composite film a maximum tensile force of between 50 Newtons and 230 Newtons, preferably between 105 Newtons and 230 Newtons, occurs. It is particularly desirable in that respect that, in the tensile testing of such a composite film, a maximum tensile force of between 105 Newtons and 180 Newtons occurs. In addition it is provided that those composite films are of a thickness of between 400 and 1000 μm, preferably between 600 and 800 μm.
  • Particularly preferred variants of the composite film have at least one carrier layer of ABS, in particular in ABS with admixtures and/or polystyrene, in particular polystyrene with admixtures and/or high impact polystyrene, and/or polyesters, in particular amorphous polyester copolymer. It is provided in that respect that the composite film, under a cover layer, has a single-layer extrudate or an at least double-layer co-extrudate, as the carrier layer. That represents a basic structure of the films according to the invention, which particularly well enjoys the properties required in the above-described test.
  • Preferred embodiments provide that at least one carrier layer of the composite film have UV-stabilisers and/or UV-absorbers and/or pigments, preferably for coloration purposes, and in a proportion by volume of between 0.1 and 10%. By virtue of that addition, the film attains its desired optical properties and also retains them even if it is exposed to sunlight over many years.
  • Preferred embodiments further provide that the carrier layer and/or at least one layer of the carrier layer have additives for Vicat reduction, with a proportion by weight of between 1 and 70%. A variant provides that the carrier layer and/or at least one layer of the carrier layer have polycaprolactone with a proportion by weight of between 0.5 and 15%. A further variant provides that the carrier layer and/or at least one layer of the carrier layer have amorphous polyester copolymer with a proportion by weight of between 30 and 70%. Those additives serve in particular to provide the composite film with superior physical properties.
  • In the case of a multilayer and preferably a double-layer structure of the co-extrudate of the carrier layer a preferred embodiment provides that in at least one layer—preferably facing away from the cover layer—the carrier layer has recycled material from the ongoing production process.
  • A primer layer can be applied to the side of the carrier layer, which is in opposite relationship to the cover layer of the composite film. The primer layer serves to connect the composite film to the body to which it is applied.
  • Preferred embodiments provide that, in the case of its single-layer structure, the carrier layer is of a thickness of between 94 and 98% of the overall thickness of the composite film.
  • Furthermore, preferred embodiments provide that the cover layer of the composite film is co-extruded together with the carrier layer and has PMMA or impact-resistant modified PMMA. A selected group of composite films according to the invention provides that the composite film is of an overall thickness of between 500 and 1000 μm, preferably between 500 and 800 μm. In addition it is provided in selected embodiments that the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably in the range of between 3 and 4%, of the overall thickness of the composite film.
  • In addition it is provided in selected embodiments that, in the case of a double-layer carrier layer, the first layer thereof is of a thickness of between 5 and 20%, preferably between 10 and 15%, of the overall thickness of the composite film, and the second layer of the carrier layer is of a thickness of between 74 and 93%, preferably between 75 and 85%, of the overall thickness of the composite film.
  • Other embodiments provide that, as the cover layer, a transparent scratch-resistant coating is laminated on to the carrier layer or applied by thermal transfer printing. In regard to this group of the composite films according to the invention it is provided that the composite film is of an overall thickness of between 200 and 600 μm, preferably between 300 and 450 μm. In comparison with the composite films in which the cover layer of the composite film is co-extruded together with the carrier layer in a co-extrusion process, it is thus possible here to achieve a thinner overall thickness for the composite film if the cover layer is applied by lamination.
  • In these embodiments it is further provided that the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably between 1 and 3%, of the overall thickness of the composite film.
  • Preferred embodiments provide in this respect that, in the case of a double-layer carrier layer, the first layer thereof is of a thickness of between 20 and 40%, preferably between 25 and 35% of the overall thickness of the composite film and the second layer of the carrier layer is of a thickness of between 60 and 75%, preferably between 65 and 70% of the overall thickness of the composite film.
  • Other preferred embodiments provide that a transparent scratch-resistant coating is applied to the carrier layer by printing or lacquering, as the cover layer. In that case the composite films are of an overall thickness of between 200 and 600 μm, preferably between 300 and 450 μm. These embodiments further provide that the cover layer of the composite film is of a layer thickness of between 1 and 5%, preferably between 1 and 3%, of the overall thickness of the composite film.
  • In the case of a double-layer carrier layer of the composite film, selected embodiments provide that the first layer thereof is of a thickness of between 20 and 40%, preferably between 25 and 35%, of the overall thickness of the composite film, and the second layer of the carrier layer is of a thickness of between 60 and 75%, preferably between 65 and 70%, of the overall layer of the composite film.
  • A select embodiment provides moreover that the carrier layer has an additional co-extruded layer facing towards the primer layer, the additional layer preferably comprising amorphous polyester copolymer with anti-blocking additive.
  • Another preferred embodiment provides that the cover layer is of a multi-layer structure and is laminated in the form of a ready pre-product on to the carrier layer. In that respect it is preferably provided that the cover layer has four layers, wherein the first layer is a transparent scratch-resistant coating, preferably with UV-stabilisers and/or UV-absorbers, the second layer is a transparent overlay film comprising amorphous polyester copolymer, preferably with UV-stabilisers and/or UV-absorbers, the third layer is a decorative layer and the fourth layer is a primer layer. It is provided in these films in accordance with the invention that the composite film is of an overall thickness of between 200 and 600 μm, preferably between 300 and 450 μm. In addition embodiments according to the invention in that respect provide that the cover layer is of a thickness of between 30 and 40%, preferably between 33 and 37%, of the overall thickness of the composite film.
  • Other embodiments according to the invention provide that the side of the carrier layer, which is opposite to the decorative layer, has at least one decorative layer and/or at least one colour cover layer and/or at least one primer layer, wherein preferably the cover layer has a transparent scratch-resistant coating with UV-stabilisers and/or UV-absorbers. It is provided in those preferred embodiments that the co-extruded carrier layer is at least 80% and preferably 95% of the overall thickness of the composite film. In addition it is provided in preferred embodiments that the first layer of the carrier layer is chemically and/or mechanically matted.
  • Further embodiments provide that the carrier layer is transparent. Preferred embodiments further provide that the decorative and/or colour cover layer or layers is or are applied to the carrier layer using copper intaglio printing and/or flexographic printing and/or screen printing and/or offset printing. By virtue of the application of the decorative layers or colour cover layers on the side of the carrier layer, which after application of the composite film to the article of furniture faces towards the article of furniture, the decorative or colour cover layers is or are particularly well protected by the carrier layer from abrasion and damage in use of the article of furniture.
  • Further features and details of the present invention will be apparent from the specific description hereinafter.
  • In the drawing:
  • FIG. 1 is a diagrammatic view relating to the testing process for composite films according to the invention, and
  • FIGS. 2 through 5 show embodiments according to the invention of various composite films.
  • The testing process diagrammatically shown in FIG. 1 serves to determine the deformation characteristics of co-extruded composite films in a single-axis tensile testing procedure for determining the deformability of those films for example on diaphragm pressing installations (=a type of installation often used in the processing of composite films).
  • In accordance with the invention a tensile testing operation is effected in accordance with ISO 527-1:1996 at a defined testing temperature at a constant testing speed. In this respect the variation in the testing tensile force which is necessary to maintain the constant testing speed throughout the entire duration of the testing procedure is recorded in dependence on the testing time. The tensile force which occurs at a maximum during the tensile testing procedure serves as a criterion in regard to the deformability of the films on diaphragm pressing installations.
  • FIG. 1 diagrammatically shows the test body 21 which is clamped between the gripping clamps 22 and 23 and pulled in the direction 26 at a constant speed with a pulling device 25 and thereby stretched. The tensile forces which occur in that case at the test body are recorded by means of a force measuring device 24 in dependence on time. The nominal stretch is measured by suitable means (not shown here) in accordance with ISO 527-1:1996.
  • The testing apparatus which is used for the deformation tests must satisfy the conditions defined in ISO 527-1:1996 Section 5.
  • A test body of type 1B in accordance with ISO 527-2:1996 Section 6 is used for the tensile testing operations. The removal of the test bodies from the composite film to be tested should be effected in such a way that the longitudinal axis of the test body is parallel to the extrusion direction or calendering direction. Production of the test bodies must be effected by milling of the films by means of a suitable milling template. The edges of the milled test bodies must be free from tears or milling burrs. If required the milled test bodies must be fine-ground at the edges while still in the template by means of abrasive paper (international grain size 220).
  • As a certain scatter in respect of the measurement values is to be expected in any measuring or testing procedure, implementation of the tensile testing is to be carried out on a plurality of test bodies from one and the same composite film, in which case the arithmetic mean must be in the value range according to the invention, having regard to the standard deviation.
  • The choice of the number of test bodies is based on ISO 527-1:1996 Section 7.1, that testing specification requiring only one testing direction (parallel to the extrusion direction).
  • Based on ISO 527-1:1996 Sections 7.2 and 7.3 test bodies which break in the shoulder region or which stretch out of shape into the shoulder region must be rejected. Test bodies which have slipped out of the gripping clamp or in which an obvious fault has resulted in premature failure may also not be included in the evaluation. Repetition tests with a corresponding number of new test bodies have to be carried out.
  • Before carrying out the tensile testing operation, based on ISO 291 (incorporated by reference) (‘Plastic materials normal climates for conditioning and testing’) the test bodies are stored for 24 hours at 23° C. room temperature and a relative air humidity of 50%.
  • Implementation of the test according to the invention is effected at elevated temperature T1=80° C. For that purpose the testing apparatus must be provided with a suitable climate chamber. The test bodies pre-treated as described above are clamped in the testing apparatus and heated for 10 minutes in the climate chamber which is temperature-controlled at 80° C. After the expiry of that period of time the tensile testing procedure is started.
  • The dimensions of the test bodies, the clamping of the test bodies and the application of the prestressing are effected in accordance with ISO 527-1:1996 Sections 9.2 through 9.5.
  • The tensile testing operation is effected in a speed-controlled mode at a testing speed of 800 mm/min, which is constant for the duration of the tensile testing operation.
  • With this testing method, the tensile force which currently applies at any moment in time is variable and, after application of the constant testing speed, arises out of the resistance to stretch, which is variable in respect of time, of the test body.
  • Evaluation and representation of the test results are effected in accordance with ISO 527-1:1996 Section 10.
  • It is possible to use both stress-stretch diagrams (see ISO 527-1:1996 FIG. 1) and also tensile force/stretch diagrams, for evaluating the tensile test. The relationship between tensile stress and tensile force can be found from ISO 527-1:1996 Section 10.1.
  • Evaluation of the tensile test is effected within a stretch range of between 0% and 100%, in that case the nominal stretch εt of the test body, as defined in ISO 527-1:1996 Section 10.2, is used.
  • The test report may contain all information which is set forth in ISO 527-1:1996 Section 12.
  • Accordingly the test bodies which were taken from the films corresponding to this patent must have a maximally occurring tensile force which is at least in the range of between 30 and 280 Newtons (N) in the above-described tensile test within a nominal stretch range of between 0 and 100%. A further subdivision of the required tensile force range for specific film types is specified hereinbefore.
  • FIG. 2 shows a diagrammatic view of the layer structure of the embodiments of the composite film A1 through A7.
  • The specific layer structure of these embodiments and the percentage thickness proportions of the layers 1 through 4 and additives in the individual layers and remarks on the layers are to be found in the listing set forth hereinafter:
    A1 - Co-extrudate - overall thickness 0.75 mm
    Layer 1 - thickness: 4% PMMA + preferably 0.1-3% pigments for
    colouring + UV stabilisation preferably comprising
    UV-stabilisers and/or UV-absorbers
    or: PMMA + UV stabilisation
    layer 2 - thickness: 15% ABS + 0.5-10% pigments for colouring + optionally UV stabilisation
    or: ABS + 0.5-10% pigments + optionally UV
    stabilisation + optionally additive for Vicat
    reduction: 10% polycaprolactone or 50% amorphous polyester
    copolymer
    layer 3 - thickness: 80% ABS + 0.5-10% pigments for colouring
    or: ABS + 0.5-10% pigments + additive for Vicat
    reduction; 10% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layers 2 and 3 are the carrier layer
    the layers 1 through 3 are produced in the co-
    extrusion process
    layer
    1 is the cover layer
    in layer 1 both impact-modified and also
    standard PMMA can be used
    the layer 2 can be omitted but is generally
    produced.
    A2 - Co-extrudate - overall thickness 0.75 mm
    Layer 1 - thickness: 4% PMMA + 0.1-3% pigments for colouring + UV
    stabilisation preferably comprising UV-stabilisers
    and/or UV-absorbers
    or: PMMA + UV stabilisation
    layer 2 - thickness: 15% HIPS (=high impact polystyrene) + 0.5-10%
    pigments for colouring + optionally UV
    stabilisation
    or: HIPS + 0.5-10% pigments + optionally UV
    stabilisation + optionally additive for Vicat
    reduction: 2% polycaprolactone or 50%
    amorphous polyester copolymer
    layer 3 - thickness: 80% HIPS + 0.5-10% pigments for colouring + recycled
    material from the ongoing production
    process
    or: HIPS + 0.5-10% pigments + additive for Vicat
    reduction; 2% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layers 2 and 3 are the carrier layer
    the layers 1 through 3 are produced in the co-
    extrusion process
    layer
    1 is the cover layer
    in layer 1 both impact-modified and also
    standard PMMA can be used
    the layer 2 can be omitted but is generally
    produced.
    A3 - Co-extrudate - overall thickness 0.75 mm
    Layer 1 - thickness: 4% PMMA + 0.1-3% pigments for colouring + UV
    stabilisation preferably comprising UV-stabilisers
    and/or UV-absorbers
    or: PMMA + UV stabilisation
    layer 2 - thickness: 15% amorphous polyester copolymer + 0.5-10%
    pigments for colouring + optionally UV
    stabilisation
    layer 3 - thickness: 80% amorphous polyester copolymer + 0.5-10%
    pigments for colouring + recycled material from
    ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layers 2 and 3 are the carrier layer
    the layers 1 through 3 are produced in the co-
    extrusion process
    layer
    1 is the cover layer
    in layer 1 both impact-modified and also
    standard PMMA can be used
    the layer 2 can be omitted but is generally
    produced.
    A4 - Laminate - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally
    UV stabilisation
    layer 2 - thickness: 30% ABS + 0.5-10% pigments for colouring + optionally
    UV stabilisation
    or: ABS + 0.5-10% pigments + optionally UV
    stabilisation + optionally additive for Vicat
    reduction: 10% polycaprolactone or 50%
    amorphous polyester copolymer
    layer 3 - thickness: 67% ABS + 0.5-10% pigments for colouring
    or: ABS + 0.5-10% pigments + additive for Vicat
    reduction; 10% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 1 is applied inline or exline by
    lamination or thermal transfer printing
    the layers 2-3 are produced in the co-extrusion
    process and are the carrier layer
    the layer 2 can be omitted but is generally
    produced.
    A5 - Laminate - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally
    UV stabilisation
    layer 2 - thickness: 30% HIPS + 0.5-10% pigments for colouring + optionally
    UV stabilisation
    or: HIPS + 0.5-10% pigments + optionally UV
    stabilisation + optionally additive for Vicat
    reduction: 2% polycaprolactone or 50%
    amorphous polyester copolymer
    layer 3 - thickness: 67% HIPS + 0.5-10% pigments for colouring
    or: HIPS + 0.5-10% pigments + additive for Vicat
    reduction; 2% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 1 is applied inline or exline by
    lamination or thermal transfer printing
    the layers 2-3 are produced in the co-extrusion
    process and are the carrier layer
    the layer 2 can be omitted but is generally
    produced.
    A6 - Lacquering - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally
    UV stabilisation
    layer 2 - thickness: 30% ABS + 0.5-10% pigments for colouring + optionally
    UV stabilisation
    or: ABS + 0.5-10% pigments + optionally UV
    stabilisation, additive for Vicat reduction: 10%
    polycaprolactone or 50% amorphous polyester
    copolymer
    layer 3 - thickness: 67% ABS + 0.5-10% pigments for colouring
    or: ABS + 0.5-10% pigments + additive for Vicat
    reduction; 10% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 1 is applied by printing or lacquering
    the layers 2-3 are produced in the co-extrusion
    process and are the carrier layer
    the layer 2 can be omitted but is generally
    produced.
    A7 - Lacquering - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant coating + optionally
    UV stabilisation
    layer 2 - thickness: 30% HIPS + 0.5-10% pigments for colouring + optionally
    UV stabilisation
    or: HIPS + 0.5-10% pigments + optionally UV
    stabilisation + additive for Vicat reduction: 2%
    polycaprolactone or 50% amorphous polyester
    copolymer
    layer 3 - thickness: 67% HIPS + 0.5-10% pigments for colouring
    or: HIPS + 0.5-10% pigments + additive for Vicat
    reduction; 2% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 1 is applied by printing or lacquering
    the layers 2-3 are produced in the co-extrusion
    process and are the carrier layer
    the layer 2 can be omitted but is generally
    produced.
  • FIG. 3 shows a composite film according to the invention in which the carrier layer is of a triple-layer structure. The precise layer structure is for example as follows:
    A8 - Laminate - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant coating +
    optionally UV stabilisation
    (preferably comprising UV-
    stabilisers and/or UV-absorber)
    layer 2 - thickness: 10% amorphous polyester copolymer + 0.5-10%
    pigments for colouring + optionally UV
    stabilisation (preferably comprising UV-
    stabilisers and/or US-absorber) +
    optionally anti-
    blocking additive
    layer 3 - thickness: 85% amorphous polyester copolymer + 0.5-10%
    pigments for colouring +
    recycled material from
    ongoing production process
    layer 5 - thickness: 2% amorphous polyester
    copolymer + anti-blocking
    additive
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 1 is applied inline or exline by
    lamination or thermal transfer printing
    the layers 2, 3 and 5 are produced in the co-
    extrusion process and are the carrier layer.
  • FIG. 4 shows the structure of a composite film according to the invention in which the cover layer is of a multi-layer structure. The precise layer structure is for example as follows:
    A9 - Laminate - overall thickness 0.40 mm
    Layer 6 - thickness: 2% Transparent scratch-resistant
    coating + optionally
    UV stabilisation
    layer 7 - thickness: 30% transparent overlay film comprising amorphous
    polyester copolymer +
    optionally UV-stabilisation
    layer 8 - thickness: 1% decorative layer
    layer 9 - thickness: 1% primer (applied by printing)
    layer 2 - thickness: 20% HIPS + 0.5-10% pigments
    for colouring + optionally
    UV stabilisation
    or: HIPS + 0.5-10% pigments + optionally UV
    stabilisation + additive for Vicat reduction: 2%
    polycaprolactone or 50% amorphous polyester
    copolymer
    layer 3 - thickness: 45% HIPS + 0.5-10% pigments for colouring
    or: HIPS + 0.5-10% pigments + additive for Vicat
    reduction; 2% polycaprolactone or 50%
    amorphous polyester copolymer + recycled
    material from ongoing production process
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 6 is applied by printing or
    lacquering to the layer 7
    the layer 7 can be chemically or mechanically
    matted, it is produced using an extrusion
    process layers 8 and 9
    are applied to the layer 7 by
    copper intaglio, flexographic, screen or offset
    printing
    the layers 2-3 are produced in the co-extrusion
    process and are the carrier layer
    the layer 2 can be omitted but is generally
    produced
    the overall structure is afforded by
    lamination or a pressing operation
    of the intermediate product
    of layers 6-9 (=pre-product)
    with the previously
    co-extruded intermediate product
    consisting of the
    layers 2 and 3
    the layer 4 is applied to the overall laminate by
    printing.
  • FIG. 5 shows a composite film according to the invention whose main characteristic is that the decorative layers are applied between the carrier layer and the primer layer, under the carrier layer. The precise layer structure in that respect is for example as follows:
    A10 - Lacquering - overall thickness 0.40 mm
    Layer 1 - thickness: 2% Transparent scratch-resistant
    coating + optionally
    UV stabilisation (preferably comprising UV-
    stabilisers and/or UV-absorber);
    (high shine-matt)
    layer 10 - thickness: amorphous polyester
    10% copolymer + anti-blocking
    additive + optionally UV
    stabilisation (preferably
    comprising UV-stabilisers and/or UV-absorber)
    layer 11 - thickness: amorphous polyester copolymer + recycled
    83% material from ongoing production process
    layer 12 - thickness: 2% amorphous polyester
    copolymer + anti-blocking
    additive
    layer 13 - thickness: 1% decorative layer (for example wood fibre)
    layer 14 - thickness: 1% colour cover layer (for example wood brown)
    layer 4 - thickness: 1% primer (applied by printing).
    Remarks: the layer 10 can be chemically or mechanically
    matted, it is produced using
    an extrusion process
    the layers 10-12 are produced in the co-
    extrusion process and are the carrier layer
    layers 13 and 14 are
    applied by copper intaglio,
    flexographic, screen or offset printing.
  • The materials shown in the various embodiments in FIGS. 2 through 5 involve the following material characteristics:
  • 1. PMMA: polymethylmethacrylate
      • impact-resistance modifier content: 0-30% by weight, preferably 0-15%
      • E-modulus tension in accordance with ISO 527;1800-3400 MPa, preferably 2500-3300 MPa
      • Vicat softening temperature, ° C., ISO 306 (incorporated by reference) (50° C./h 50N); 90-109° C., preferably 100-109° C.
  • 2. ABS: acrylonitrile-butadiene-styrene copolymer
      • melt flow rate MFR (ISO 1133 (incorporated by reference) (220° C./10 kg) in g/10 min, between 3.5 and 8, preferably between 4.0 and 6.5
      • E-modulus tension in accordance with ISO 527;1400-2300 MPa,
      • Vicat softening temperature, ° C., ISO 306 (50° C./h 50N); 90-103° C., preferably 99-101° C.
  • 3. HIPS: polystyrene impact modified (high impact)
      • melt flow rate MFR (ISO 1133 (220° C./10 kg) in g/10 min, between 3.5 and 6.5
      • E-modulus tension in accordance with ISO 527;1100-2100 MPa,
      • acrylonitrile proportion of 4-12%
      • Vicat softening temperature, ° C., ISO 306 (50° C./h); 82-93° C., preferably 90-93° C.
  • 4. Amorphous polyester copolymer:
      • E-modulus tension in accordance with ISO 527:1600-2400 MPa
      • Vicat softening temperature, ° C., ISO 306:80-90° C., preferably 85° C.

Claims (57)

1. A multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film, comprising at least one carrier layer which has ABS or polystyrene or polyester, characterised in that in the single-axis tensile testing of a test body comprising the composite film, a maximum tensile force of between 30 Newtons and 280 Newtons occurs, wherein the single-axis tensile testing procedure satisfies the following testing specification (FIG. 1):
a) a test body in accordance with type 1 B as set forth in ISO 527-2:1996 Section 6 of a thickness which corresponds to the thickness of the composite film to be tested is stored prior to the beginning of the test for 24 hours at 23° C. and 50% relative air humidity;
b) the step of clamping the test body pretreated in that way into a testing apparatus in accordance with ISO 527-1:1996 Section 5 is then effected, wherein the longitudinal axis of the test body is parallel to the composite film extrusion or calendering direction, and the prestressing is applied in accordance with ISO 527-1:1996 Sections 9.2 and 9.5;
c) subsequent implementation of the single-axis tensile test is effected in accordance with ISO 527-1:1996 at a constant testing speed of 800 mm/min and at a constant temperature of 80° C., wherein immediately prior in time to the beginning of implementation of the tensile test the clamped test body remains in a climatic chamber temperature-controlled at 80° C. for a period of 10 minutes, and
d) during the implementation of the tensile test recording of the tensile forces which occur is effected in dependence on the test time from the beginning of the testing procedure in a range of nominal stretch εt (in accordance with ISO 527-1:1996 Section 10.2) of between 0% and 100%.
2. A composite film according to claim 1 which is a furniture film.
3. A composite film according to claim 1 characterised in that the ABS is an ABS with admixtures.
4. A composite film according to claim 1 characterised in that the polystyrene is a polystyrene with admixtures or a high impact polystyrene.
5. A composite film according to claim 1 characterised in that the polyester is an amorphous polyester copolymer.
6. A composite film according to claim 1 characterised in that the carrier layer of the composite film is of a thickness of between 100 and 1000 μm.
7. A composite film according to claim 1 characterised in that it has at least one carrier layer with amorphous polyester copolymer, wherein in the single-axis tensile testing of such a composite film a maximum tensile force of between 50 Newtons and 120 Newtons, or between 65 Newtons and 105 Newtons, occurs.
8. A composite film according to claim 7 characterised in that it is of a thickness of between 200 and 600 μm, or between 300 and 450 μm.
9. A composite film according to claim 1 characterised in that it has at least one carrier layer with ABS or polystyrene wherein in the single-axis tensile testing of such a composite film a maximum tensile force of between 50 Newtons and 230 Newtons, or between 105 Newtons and 235 Newtons, occurs.
10. A composite film according to claim 9 characterised in that in the tensile testing of such a composite film a maximum tensile force of between 105 Newtons and 180 Newtons occurs.
11. A composite film according to claim 9 characterised in that the polystyrene is HIPS.
12. A composite film according to claim 9 characterised in that it is of a thickness of between 400 and 1000 μm, or between 600 and 800 μm.
13. A composite film according to claim 1 characterised in that the composite film under a cover layer has a single-layer extrudate or at least double-layer co-extrudate as the carrier layer.
14. A composite film according to claim 13 characterised in that at least one layer of the composite film has UV-stabilisers or UV-absorbers or pigments in a proportion by volume of between 0.1 and 10%.
15. A composite film according to claim 13 characterised in that the carrier layer or at least one layer of the carrier layer has additives for Vicat reduction with a proportion by weight of between 1 and 70%.
16. A composite film according to claim 13 characterised in that the carrier layer or at least one layer of the carrier layer have polycaprolactone in a proportion by weight of between 0.5 and 15%.
17. A composite film according to claim 13 characterised in that the carrier layer or at least one layer of the carrier layer have amorphous polyester copolymer in a proportion by weight of between 30 and 70%.
18. A composite film according to claim 13 characterised in that the carrier layer, in the case of a multi-layer, in at least one layer has recycled material from the ongoing production process.
19. A composite film according to claim 18 characterised in that the carrier layer has a double-layer structure.
20. A composite film according to claim 13 characterised in that a primer layer is applied to the side of the carrier layer, which is in opposite relationship to the cover layer of the composite film.
21. A composite film according to claim 13 characterised in that in the case of the single-layer structure thereof the carrier layer is of a thickness of between 94 and 98% of the overall thickness of the composite film.
22. A composite film according to claim 13 characterised in that the cover layer of the composite film is co-extruded together with the carrier layer and has PMMA or impact-resistant modified PMMA.
23. A composite film according to claim 13 characterised in that the composite film has an overall thickness of between 500 and 1000 μm, or between 500 and 800 μm.
24. A composite film according to claim 13 characterised in that the cover layer of the composite film is of a layer thickness of between 1 and 5%, or in the range of from 3 to 4%, of the overall thickness of the composite film.
25. A composite film according to claim 13 characterised in that in the case of a double-layer carrier layer the first layer thereof is of a thickness of between 5 and 20%, or between 10 and 15%, of the overall thickness of the composite film and the second layer of the carrier layer is of a thickness of between 74 and 93%, or between 75 and 85%, of the overall thickness of the composite film.
26. A composite film according to claim 13 characterised in that as the cover layer a transparent scratch-resistant coating is laminated on the carrier layer or applied by thermal transfer printing.
27. A composite film according to claim 26 characterised in that the composite film is of an overall thickness of between 200 and 600 μm, or between 300 and 450 μm.
28. A composite film according to claim 26 characterised in that the cover layer of the composite film is of a layer thickness of between 1 and 5%, or between 1 and 3%, of the overall thickness of the composite film.
29. A composite film according to claim 26 characterised in that in the case of a double-layer carrier layer the first layer thereof is of a thickness of between 20 and 40%, or between 25 and 35%, of the overall thickness of the composite film and the second layer of the carrier layer is of a thickness of between 60 and 75%, or between 65 and 70%, of the overall thickness of the composite film.
30. A composite film according to claim 26 characterised in that as the cover layer a transparent scratch-resistant coating is applied to the carrier layer by printing or lacquering.
31. A composite film according to claim 30 characterised in that the composite film is of an overall thickness of between 200 and 600 μm, or between 300 and 450 μm.
32. A composite film according to claim 26 characterised in that the cover layer of the composite film is of a layer thickness of between 1 and 5%, or between 1 and 3%, of the overall thickness of the composite film.
33. A composite film according to claim 30 characterised in that in the case of a double-layer carrier layer the first layer thereof is of a thickness of between 20 and 40%, or between 25 and 35%, of the overall thickness of the composite film and the second layer of the carrier layer is of a thickness of between 60 and 75%, or between 65 and 70%, of the overall thickness of the composite film.
34. A composite film according to claim 13 characterised in that the carrier layer has an additional co-extruded layer facing towards the primer layer.
35. A composite film according to claim 34 characterised in that the additional co-extruded layer comprises amorphous polyester copolymer with anti-blocking additive.
36. A composite film according to claim 13 characterised in that the cover layer is of a multi-layer structure and is laminated as a finished pre-product on to the carrier layer.
37. A composite film according to claim 36 characterised in that the cover layer has four layers, wherein the first layer is a transparent scratch-resistant coating, the second layer is a transparent overlay film comprising amorphous polyester copolymer, the third layer is a decorative layer and the fourth layer is a primer layer.
38. A composite film according to claim 36 characterised in that the composite film is of an overall thickness of between 200 and 600 μm, or between 300 and 450 μm.
39. A composite film according to claim 36 characterised in that the cover layer is of a thickness of between 30 and 40%, or between 33 and 37%, of the overall thickness of the composite film.
40. A composite film according to claim 13 characterised in that the side of the carrier layer, which is in opposite relationship to the cover layer, has at least one decorative layer or at least one colour cover layer or at least one primer layer.
41. A composite film according to claim 40 characterised in that the cover layer has a transparent scratch-resistant coating with UV-stabilisers and/or UV-absorbers.
42. A composite film according to claim 40 characterised in that the co-extruded carrier layer is at least 80% of the overall thickness of the composite film.
43. A composite film according to claim 40 characterised in that the first layer of the carrier layer is chemically and/or mechanically matted.
44. A composite film according to claim 40 characterised in that the decorative or colour cover layer(s) is(are) applied to the carrier layer by copper intaglio printing or flexographic printing or screen printing or offset printing.
45. A composite film according to claim 40 characterised in that the carrier layer is transparent.
46. A multi-layer, substantially vinyl- and polyolefin-free composite film, which has at least one carrier layer comprising ABS or polystyrene or polyester characterised in that the composite film under a cover layer has a single-layer extrudate or at least double-layer co-extrudate as the carrier layer.
47. A composite film according to claim 46 which is a furniture film.
48. A composite film according to claim 46 characterised in that the ABS is an ABS with admixtures.
49. A composite film according to claim 46 characterised in that the polystyrene is a polystyrene with admixtures or a high impact polystyrene.
50. A composite film according to claim 46 characterised in that the polyester is an amorphous polyester copolymer.
51. A composite film according to claim 46 characterised in that as the cover layer a transparent scratch-resistant coating is laminated on the carrier layer or applied by thermal transfer printing.
52. A composite film according to claim 46 characterised in that as the cover layer a transparent scratch-resistant coating is applied to the carrier layer by printing or lacquering.
53. A composite film according to claim 46 characterised in that the carrier layer has an additional co-extruded layer facing towards the primer layer, or comprising amorphous polyester copolymer with anti-blocking additive.
54. A composite film according to claim 53 characterised in that the additional co-extruded layer comprises amorphous polyester copolymer with anti-blocking additive.
55. A composite film according to claim 46 characterised in that the cover layer is of a multi-layer structure and is laminated as a finished pre-product on to the carrier.
56. A composite film according to claim 46 characterised in that the side of the carrier layer, which is in opposite relationship to the cover layer, has at least one decorative layer or at least one colour cover layer or at least one primer layer.
57. A composite film according to claim 56 characterised in that the cover layer has a transparent scratch-resistant coating with US-stabilisers or UV-absorbers.
US10/705,016 2001-05-10 2003-11-10 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film Abandoned US20050008884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/961,036 US8613824B2 (en) 2001-05-10 2010-12-06 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA742/2001 2001-05-10
AT0074201A AT410196B (en) 2001-05-10 2001-05-10 MULTILAYER ESSENTIAL POLYVINYL CHLORIDE AND POLYOLEFIN FREE COMPOSITE FILM
PCT/AT2002/000129 WO2002090109A1 (en) 2001-05-10 2002-04-25 Multilayer, compound foil for furniture substantially free from polyvinyl chloride and polyolefins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000129 Continuation WO2002090109A1 (en) 2001-05-10 2002-04-25 Multilayer, compound foil for furniture substantially free from polyvinyl chloride and polyolefins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/961,036 Division US8613824B2 (en) 2001-05-10 2010-12-06 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film

Publications (1)

Publication Number Publication Date
US20050008884A1 true US20050008884A1 (en) 2005-01-13

Family

ID=3680271

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/705,016 Abandoned US20050008884A1 (en) 2001-05-10 2003-11-10 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film
US12/961,036 Expired - Fee Related US8613824B2 (en) 2001-05-10 2010-12-06 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/961,036 Expired - Fee Related US8613824B2 (en) 2001-05-10 2010-12-06 Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film

Country Status (7)

Country Link
US (2) US20050008884A1 (en)
EP (1) EP1412179B1 (en)
AT (2) AT410196B (en)
DE (1) DE50205534D1 (en)
DK (1) DK1412179T3 (en)
ES (1) ES2256533T3 (en)
WO (1) WO2002090109A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111519A1 (en) * 2004-11-12 2006-05-25 Strand Marc A Polyester blends with improved stress whitening for film and sheet applications
US20100009207A1 (en) * 2008-07-10 2010-01-14 Sabic Innovative Plastics Ip B.V. Formable thermoplastic multi-layer article, a formed multi-layer article, an article, and a method of making an article
CN103813903A (en) * 2011-09-01 2014-05-21 塞诺桑有限公司 Composite body
EP3603962A3 (en) * 2018-07-31 2020-04-08 Jin Ya Dian Technology Co., Ltd. Composite layer structure, decorated molding article and method for fabricating the same
JP2020059215A (en) * 2018-10-10 2020-04-16 凸版印刷株式会社 Decorative sheet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180564A1 (en) * 2001-12-14 2003-09-25 Torsten Marquardt Surface film for laminating on to a substrate
US7514147B2 (en) 2003-01-14 2009-04-07 Sabic Innovative Plastics Ip B.V. Formable thermoplastic multi-layer laminate, a formed multi-layer laminate, an article, and a method of making an article
US7524447B2 (en) 2004-07-20 2009-04-28 Sabic Innovative Plastics Ip B.V. Method for manufacturing formable thermoplastic laminates
AT12285U1 (en) * 2010-08-31 2012-03-15 Senoplast Klepsch & Co Gmbh MULTILAYER BODIES COMPRISING A SUBSTRATE AND A PLASTIC SURFACE
WO2013030385A1 (en) * 2011-09-01 2013-03-07 Senoplast Klepsch & Co. Gmbh Composite body
EP2653069B1 (en) * 2012-04-16 2016-07-20 Laufen Bathrooms AG Furniture structure
US8568152B1 (en) * 2012-04-19 2013-10-29 Pass & Seymour, Inc. Shutter assembly for electrical devices
US9496726B2 (en) 2013-07-31 2016-11-15 Leviton Manufacturing Co., Inc. Multiport USB charger
EP3558674B3 (en) 2016-12-21 2022-08-31 Athlone Extrusions Limited A thermoformable extruded sheet with granite effect
DE102017104169A1 (en) * 2017-02-28 2018-08-30 ambigence GmbH & Co. KG Wall of a furniture body, method for making such a wall and furniture body or furniture with such a wall

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549941A (en) * 1993-10-29 1996-08-27 Atohaas Bolding C.V. Craze resistant transparent sheet
US6183842B1 (en) * 1997-04-28 2001-02-06 Riken Vinyl Industry Co., Ltd. Decorative laminated sheet
US20010008700A1 (en) * 1995-06-26 2001-07-19 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
US6333094B1 (en) * 1998-09-19 2001-12-25 Alkor Gmbh Kunststoffe Multilayer thermoformable composite synthetic veneer film for furniture and process for producing same
US6777089B1 (en) * 1999-04-21 2004-08-17 Basf Aktiengesellschaft Radiation-curable composite layered sheet or film
US6861128B1 (en) * 1998-12-16 2005-03-01 Basell Polyolefine Gmbh Layered composite based on thermoplastic polymers
US20060269723A1 (en) * 2003-10-31 2006-11-30 Gerhard Kager Multi-layer composite body

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690920A (en) * 1970-06-03 1972-09-12 Pasco R Santurri Laminable film having an integral glutinous ground coating
DE2730899A1 (en) * 1977-07-08 1979-02-01 Basf Ag Decorative thermoplastic laminates for sanitary applications - with transparent top layer over a patterned substrate
US4293603A (en) * 1980-01-09 1981-10-06 Hayman Chaffey Charles R Acrylic sheet-lacquer laminates and articles of furniture made therefrom
US4684568A (en) * 1986-04-21 1987-08-04 E. I. Du Pont De Nemours And Company Vapor-permeable liquid-impermeable fabric
DE3709229A1 (en) * 1987-03-20 1988-09-29 Roehm Gmbh ADHESIVE DECORATIVE FILM MADE OF POLYCARBONATE PLASTIC
DE3837589A1 (en) * 1988-11-05 1990-05-10 Roehm Gmbh UV-ABSORBENT METHACRYLATE PROTECTIVE LAYER FOR POLYCARBONATE
DE3905790A1 (en) * 1989-02-24 1990-09-06 Bayer Ag MULTILAYER COMPOSITE
DE4214192A1 (en) * 1992-04-30 1993-11-11 Bayer Ag Composite molded body
AT401494B (en) 1994-09-06 1996-09-25 Klepsch Senoplast COMPOSITE PLATE
DE4435277A1 (en) 1994-10-01 1996-04-04 Alkor Gmbh Plastic film for furniture or furniture parts and process for processing the same
JPH08311301A (en) 1995-05-23 1996-11-26 Asahi Chem Ind Co Ltd Abs resin composition for calendering
AT404240B (en) * 1996-04-25 1998-09-25 Isovolta LAMINATE CONSISTING OF A BASE AND COVER LAYER AND METHOD FOR PRODUCING A DECORATIVE SURFACE ON THIS LAMINATE
US6096410A (en) * 1996-10-29 2000-08-01 Mitsubishi Polyester Film Corporation Polyester film for decorative plate or decorative sheet
DE29713779U1 (en) * 1997-08-02 1997-10-09 Sommer Allibert Lignotock Gmbh Multi-layer molded part
JP2000085054A (en) * 1998-09-14 2000-03-28 Daicel Chem Ind Ltd Collapsible laminate and manufacture thereof
DE19936304A1 (en) 1998-09-19 2000-03-23 Alkor Gmbh Plastics film or laminate useful for thermoforming, especially in furniture manufacture
AU1319600A (en) 1998-10-23 2000-05-15 Dow Chemical Company, The Multilayer structures
GB2344596A (en) 1998-12-09 2000-06-14 Du Pont Flame retarded and UV light stabilised polyester film
JP2000233480A (en) * 1999-02-16 2000-08-29 C I Kasei Co Ltd Laminated decorative sheet made of polyester resin
US6138842A (en) * 2000-02-11 2000-10-31 Crr Biomedical, Inc. Point of sale display
DE20022048U1 (en) * 2000-12-28 2001-03-29 Moeller Gmbh Plastic flat material for the production of strong edges of furniture
DE102006050971A1 (en) * 2006-10-23 2008-04-24 Paul Hartmann Ag Absorbing incontinence article for use as sanitary article, has side sections with reinforcing unit considerably formed as sections and provided in area that bypasses edges, where unit catches longitudinal edge area and part of sections

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549941A (en) * 1993-10-29 1996-08-27 Atohaas Bolding C.V. Craze resistant transparent sheet
US20010008700A1 (en) * 1995-06-26 2001-07-19 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
US6183842B1 (en) * 1997-04-28 2001-02-06 Riken Vinyl Industry Co., Ltd. Decorative laminated sheet
US6333094B1 (en) * 1998-09-19 2001-12-25 Alkor Gmbh Kunststoffe Multilayer thermoformable composite synthetic veneer film for furniture and process for producing same
US6861128B1 (en) * 1998-12-16 2005-03-01 Basell Polyolefine Gmbh Layered composite based on thermoplastic polymers
US6777089B1 (en) * 1999-04-21 2004-08-17 Basf Aktiengesellschaft Radiation-curable composite layered sheet or film
US20060269723A1 (en) * 2003-10-31 2006-11-30 Gerhard Kager Multi-layer composite body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111519A1 (en) * 2004-11-12 2006-05-25 Strand Marc A Polyester blends with improved stress whitening for film and sheet applications
US8071695B2 (en) 2004-11-12 2011-12-06 Eastman Chemical Company Polyeste blends with improved stress whitening for film and sheet applications
US20100009207A1 (en) * 2008-07-10 2010-01-14 Sabic Innovative Plastics Ip B.V. Formable thermoplastic multi-layer article, a formed multi-layer article, an article, and a method of making an article
CN103813903A (en) * 2011-09-01 2014-05-21 塞诺桑有限公司 Composite body
EP3603962A3 (en) * 2018-07-31 2020-04-08 Jin Ya Dian Technology Co., Ltd. Composite layer structure, decorated molding article and method for fabricating the same
US20220347985A1 (en) * 2018-07-31 2022-11-03 Kimi Sawa Enterprise Limited Composite layer structure, decorated molding article and method for fabricating the same
JP2020059215A (en) * 2018-10-10 2020-04-16 凸版印刷株式会社 Decorative sheet
JP7322375B2 (en) 2018-10-10 2023-08-08 凸版印刷株式会社 Decorative sheet and method for forming decorative sheet

Also Published As

Publication number Publication date
US20110135807A1 (en) 2011-06-09
DE50205534D1 (en) 2006-03-30
AT410196B (en) 2003-02-25
ATA7422001A (en) 2002-07-15
WO2002090109A1 (en) 2002-11-14
EP1412179A1 (en) 2004-04-28
US8613824B2 (en) 2013-12-24
EP1412179B1 (en) 2006-01-04
ATE314928T1 (en) 2006-02-15
ES2256533T3 (en) 2006-07-16
DK1412179T3 (en) 2006-05-22

Similar Documents

Publication Publication Date Title
US8613824B2 (en) Multi-layer, substantially polyvinyl chloride- and polyolefin-free composite film
US6673412B2 (en) Composite materials containing a metallic layer and methods for producing same
CA2384132A1 (en) Conformable multilayer films
DE202014010984U1 (en) Embossed and melt-laminated multilayer composite film
CN109311219B (en) Black film
CN109789685B (en) Laminated decorative film and method for producing same, and decorative molded body and method for producing same
KR20190087202A (en) Biaxially stretched polypropylene deco sheet film and method for manufacturing veneer using the same
JP2000094609A (en) Coating film for decorative sheet and decorative sheet
JP2006272835A (en) Polyester based laminate, its manufacturing method, and thermal adhesive for laminate
US11325361B2 (en) Multilayered polyolefin films
USH2104H1 (en) Polyolefin foam/film composite and method for making the same
JP2006123235A (en) Non-halogen type decorative sheet and non-halogen type decorative material
JP7443681B2 (en) makeup sheet
JP3558148B2 (en) Manufacturing method of decorative sheet
US20040209100A1 (en) Protective masking film
WO2017073077A1 (en) Injection-molded complex and decorative sheet, and methods for producing same
JP2000129206A (en) Composition for top coat layer and decorative sheet
EP4029692A1 (en) Decorative material and decorative member
JP6965752B2 (en) Decorative sheet and decorative material
JP6965753B2 (en) Decorative sheet and decorative material
JP2001232724A (en) Decorative thermoplastic resin sheet
KR20220067827A (en) Acrylic sheet laminate and method of preparing the same
JPH10217401A (en) Decorative sheet
JPH1017679A (en) Decorative sheet
JP2003340977A (en) Decorative sheet having improved machinability

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENOPLAST KLEPSCH & CO. GMBH & CO. KG, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAPPACHER, JOHANN;BERNSTEINER, ERICH;HOLLEBAUER, ANDREAS;REEL/FRAME:014693/0995

Effective date: 20031007

AS Assignment

Owner name: SENOPLAST KLEPSCH & CO. GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SENOPLAST KLEPSCH & CO. GMBH & CO. KG;REEL/FRAME:018090/0525

Effective date: 20050911

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION