US2004785A - Method of bracing the circumference of gas-inflated rigid airships - Google Patents
Method of bracing the circumference of gas-inflated rigid airships Download PDFInfo
- Publication number
- US2004785A US2004785A US661918A US66191833A US2004785A US 2004785 A US2004785 A US 2004785A US 661918 A US661918 A US 661918A US 66191833 A US66191833 A US 66191833A US 2004785 A US2004785 A US 2004785A
- Authority
- US
- United States
- Prior art keywords
- bracing
- wires
- members
- gas
- circumference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64B—LIGHTER-THAN AIR AIRCRAFT
- B64B1/00—Lighter-than-air aircraft
Definitions
- My invention relates to gas-inflated rigid airships and refers to a special method of bracing the circumference of such ships.
- Generally rigid airships are built up of cross 5 members, called rings, and of longitudinal girders connecting the circumferences of such rings. It is usual to provide a. wire bracing on the outer circumferential plane of the airship which connects the rings and the longitudinals and against which the pressure of the enclosed gas cells bears.
- wires which serve for such bracing run between corner or crossing points.
- a plurality of wires extend from one corner point it has become necessary to deflect the wires laterally at the points where they cross the longitudinals by means of special fittings. This method causes additional'stresses on the girders in the plane of the tangent.
- tie wires which extend from corner points intermediate the end corner points to which the main bracing wires are fastened. These tie wires according to my invention are so connected to the main bracing wires that the latter wires are so deflected from the straight connecting line, that they run substantially parallel to each other.
- Fig. 1 is a perspective view on a portion of the outer frame work of a rigid airship composed of longitudinal girders and of cross or ring girders.
- Figs. 2 to 5, inclusive represent mere diagrams of the girders with their wire bracing, each figure giving. another example.
- the circumferential cross or ring girders are indicated at l and 2. They are crossed by longitudinal girders 3, 4, 5 and 6. In the example shown in Figs. 1 and 2, there extend two bracing wires l5 and I6 from corner point I to corner point i2. Wire I5 is deflected from the straight line between points I and I! by means of tie wire 25 extending from corner point 8; and wire IS in the same manner is laterally deflected by means of tie wire 26 extending from corner p int [3.
- bracing system of Fig. 1 is represented in Fig. 2. It will be seen that every bracing wire extends over two squares and that four bracing wires start from each corner point, each corner point having two tie wires for deflecting the main wires.
- the bracing system of Fig. 4 comprises six main wires and four tie wires from each corner point, the main wires extending over two squares.
- the example represented in Fig. 5 includes also main bracing wires which are not deflected. There are four wires starting from every corner point, two of them run straight to the corresponding other corner point, whereas the. two others are deflected by means of tie wires from an intermediate corner point, all main wires extending over four squares.
- a rigid airship hull comprising a plurality of spaced longitudinal members, a plurality of spaced transverse members intersecting said longitudinal members, a plurality of bracing wires extending substantially diagonally between points of intersection of said longitudinal members with said transverse members and crossing without connecting thereto at least one of said longitudinal members, and tie wires leading from the intersections of said crossed longitudinal members with said transverse members and deflecting the bracing wires from straight connecting paths.
- strand means extending from the intersections of the transverse and longitudinal members to the intersection of the next adjacent transverse members and other than the next adjacent longitudinal members without being secured to the next adjacent longitudinal member, and strand means extending from the intersections of the next adjacent longitudinal members and the next adjacent transverse members for holding the first-named strand means in substantially parallel relation throughout the greater part of their length.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Road Paving Structures (AREA)
Description
A. FQRSTER June 11, 1935.
Filed March 21, 1955 Patented June 11, 1935 METHOD OF BRACING THE CIRCUMFER- ENCE OF GAS- INFLATED RIGID AIR- SHIPS Arthur Fiirster, Friedrichshafen, Bodensee, Germany, assignor to Luftschifibau Zeppelin Gesellschaft mit beschrankter Haftung, Friedrichshafen, Bodensee, Germany Application March 21,
1933, Serial No. 661,918
In Germany April 4, 1932 3 Claims.
My invention relates to gas-inflated rigid airships and refers to a special method of bracing the circumference of such ships.
Generally rigid airships are built up of cross 5 members, called rings, and of longitudinal girders connecting the circumferences of such rings. It is usual to provide a. wire bracing on the outer circumferential plane of the airship which connects the rings and the longitudinals and against which the pressure of the enclosed gas cells bears.
It is advisable to have the wires which serve for such bracing run between corner or crossing points. As generally a plurality of wires extend from one corner point it has become necessary to deflect the wires laterally at the points where they cross the longitudinals by means of special fittings. This method causes additional'stresses on the girders in the plane of the tangent.
By my new method these disadvantages are avoided, so that the longitudinals have no such additional stresses. For this purpose I provide special tie wires which extend from corner points intermediate the end corner points to which the main bracing wires are fastened. These tie wires according to my invention are so connected to the main bracing wires that the latter wires are so deflected from the straight connecting line, that they run substantially parallel to each other.
This will be understood best when having reference'to the drawing which represents examples embodying my invention.
Fig. 1 is a perspective view on a portion of the outer frame work of a rigid airship composed of longitudinal girders and of cross or ring girders.
Figs. 2 to 5, inclusive, represent mere diagrams of the girders with their wire bracing, each figure giving. another example.
The circumferential cross or ring girders are indicated at l and 2. They are crossed by longitudinal girders 3, 4, 5 and 6. In the example shown in Figs. 1 and 2, there extend two bracing wires l5 and I6 from corner point I to corner point i2. Wire I5 is deflected from the straight line between points I and I! by means of tie wire 25 extending from corner point 8; and wire IS in the same manner is laterally deflected by means of tie wire 26 extending from corner p int [3.
The bracing system of Fig. 1 is represented in Fig. 2. It will be seen that every bracing wire extends over two squares and that four bracing wires start from each corner point, each corner point having two tie wires for deflecting the main wires.
In the example represented in Fig. 3 we also have four wires from each corner point, and also two tie wires; but the main bracing wires extend over three squares, thus subdividing them into smaller spaces. 5
The bracing system of Fig. 4 comprises six main wires and four tie wires from each corner point, the main wires extending over two squares.
The example represented in Fig. 5 includes also main bracing wires which are not deflected. There are four wires starting from every corner point, two of them run straight to the corresponding other corner point, whereas the. two others are deflected by means of tie wires from an intermediate corner point, all main wires extending over four squares.
There are other combinations'and variations possible in my new bracing system, as will occur to those skilled in the art. Therefore, I do not want to be limited to the details described or shown in the drawing. j
What I claim is: I I
1. A rigid airship hull comprising a plurality of spaced longitudinal members, a plurality of spaced transverse members intersecting said longitudinal members, a plurality of bracing wires extending substantially diagonally between points of intersection of said longitudinal members with said transverse members and crossing without connecting thereto at least one of said longitudinal members, and tie wires leading from the intersections of said crossed longitudinal members with said transverse members and deflecting the bracing wires from straight connecting paths.
2. In combination in a structure having a plurality of spaced transverse structural members i with a plurality of spaced longitudinal structural members connecting the transverse members together at spaced intervals, strand means extending from the intersections of the transverse and longitudinal members to the intersection of the next adjacent transverse members and other than the next adjacent longitudinal members without being secured to the next adjacent longitudinal member, and strand means extending from the intersections of the next adjacent longitudinal members and the next adjacent transverse members for holding the first-named strand means in substantially parallel relation throughout the greater part of their length.
3. In combination in a structure having a plurality of spaced transverse structural members with a plurality of spaced longitudinal structural members connecting the transverse members together at spaced intervals, strand means extending from the intersections of the transverse and longitudinal members to the intersection of the next adjacent transverse members and other than the next adjacent-longitudinalrmembers and deflectingzastran'd meansrextending ifrom i the' intersection of the next adjacent longitudinal members and the next adjacent transverse members to the first-named strands, the points of attachment of the deflecting wires with the main strand means being within the outer quarters of each paneLWidth. v r
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2004785X | 1932-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2004785A true US2004785A (en) | 1935-06-11 |
Family
ID=7950897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US661918A Expired - Lifetime US2004785A (en) | 1932-04-04 | 1933-03-21 | Method of bracing the circumference of gas-inflated rigid airships |
Country Status (1)
Country | Link |
---|---|
US (1) | US2004785A (en) |
-
1933
- 1933-03-21 US US661918A patent/US2004785A/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8240607B2 (en) | Aircraft-fuselage assembly concept | |
US2004785A (en) | Method of bracing the circumference of gas-inflated rigid airships | |
US1763835A (en) | Airship | |
CN109552590A (en) | A kind of dirigible | |
US2083051A (en) | Airship | |
US1900743A (en) | Airship | |
US2073297A (en) | Ring bracing of rigid airships | |
US1669592A (en) | Rigid airship | |
US1620507A (en) | Hull construction of rigid airships | |
US1517885A (en) | Stern construction of rigid airships | |
US1631908A (en) | Rigid airship | |
US1894011A (en) | Construction of fuselage or other bodies of aircraft | |
US1503293A (en) | Skeleton framework construction for airships and the like | |
US1298487A (en) | Airship. | |
US1456497A (en) | Skeleton frame construction for airships and the like | |
US1623865A (en) | Airship | |
GB228201A (en) | Improvements in or relating to airships | |
GB292527A (en) | Hull structure for rigid airships | |
US1623951A (en) | Airship frame | |
US1505689A (en) | Rigid frame for airships | |
US1699606A (en) | Mooring mast for lighter-than-air aircraft | |
US1072514A (en) | Dirigible balloon. | |
US1877956A (en) | Airship | |
USRE15885E (en) | Kael aknstein | |
US1662021A (en) | Hull structure for gigid airships |