US20040241745A1 - Substance specific to pd-1 - Google Patents

Substance specific to pd-1 Download PDF

Info

Publication number
US20040241745A1
US20040241745A1 US10/485,466 US48546604A US2004241745A1 US 20040241745 A1 US20040241745 A1 US 20040241745A1 US 48546604 A US48546604 A US 48546604A US 2004241745 A1 US2004241745 A1 US 2004241745A1
Authority
US
United States
Prior art keywords
substance
ser
gly
recognizes
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/485,466
Inventor
Tasuku Honjo
Shiro Shibayama
Masayoshi Matsuo
Takao Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Pharmaceutical Co Ltd
Original Assignee
Ono Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Pharmaceutical Co Ltd filed Critical Ono Pharmaceutical Co Ltd
Assigned to ONO PHARMACEUTICAL CO., LTD., HONJO, TASUKU reassignment ONO PHARMACEUTICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONJO, TASUKU, MATSUO, MASAYOSHI, SHIBAYAMA, SHIRO, YOSHIDA, TAKAO
Publication of US20040241745A1 publication Critical patent/US20040241745A1/en
Assigned to HONJO, TASUKU, ONO PHARMACEUTICAL CO., LTD. reassignment HONJO, TASUKU RE-RECORD TO CORRECT THE EXECUTION DATES FOR THE SECOND, THIRD AND FOURTH ASSIGNORS, PREVIOUSLY RECORDED ON REEL 015305 FRAME 0255. Assignors: MATSUO, MASAYOSHI, SHIBAYAMA, SHIRO, YOSHIDA, TAKAO, HONJO, TASUKU
Priority to US12/057,637 priority Critical patent/US7858746B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention is related to a substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker.
  • the immune system acquired the mechanism that can respond to various foreign antigens.
  • the mechanism brings about the diversity of an antigen receptor by recombination of V, (D) and J fragment in T cells and B cells.
  • V, (D) and J fragment in T cells and B cells.
  • this mechanism brought a result that produces self-reactive lymphocytes simultaneously, these self-reactive lymphocytes are removed by the negative selection in the thymus or bone marrow, and are further controlled by the self-tolerance mechanism of clone removal or anergy in the periphery.
  • PD-1 is type I membrane protein of 55 kD belonging to an immunoglobulin family. Both mouse PD-1 and human PD-1 consist of 288 amino acids, and have signal peptide at N terminal (20 amino acid) and hydrophobic region in the middle part, which is a transmembrane region (The EMBO J. 11 (11):3887-3895, 1992); Japanese patent Publication No. 5-336973; EMBL/GenBank/DDJB Acc. No. X67914, Genomics 23:704, 1994; Japanese patent Publication No. 7-291996 (U.S. Pat. No. 5,629,204).
  • PD-1 is expressed during a CD4 ⁇ CD8 ⁇ cell differentiation to a CD4+CD8+ cell (Nishimura H. et. al., Int.Immunol. 8:773-780, 1996, Nishimura H. et. al., J. Exp. Med. 191:891-898, 2000).
  • PD-1 is expressed in T cells and B cells which were activated by the stimulus from an antigen receptor (Agata Y. et. al., Int. Immunol. 8:765-772, 1996), and in bone marrow cells including activated macrophage.
  • PD-1 has ITIM (Immunoreceptor tyrosine-based inhibitory motif) in its intracellular region, therefore it is considered to be a negative regulator in immune reaction.
  • PD-1 deficit mice develop a lupus-like autoimmune disease such as glomerular nephritis and arthritis (C57BL/6 genetic background) (Nishimura H. et. al., Int. Imuunol. 10:1563-1572, 1998, Nishimura H. et. al., Immunity 11:141-151, 1999) and dilated cardiomyopathy-like disease (BALB/c genetic background) (Nishimura H. et. al., Science 291:319-322, 2001), it became clear that PD-1 is a regulator of the development of autoimmune disease, especially one of self-tolerance in the periphery.
  • ITIM Immunoreceptor tyrosine-based inhibitory motif
  • PD-1 is the regulator of various autoimmune diseases, and that it is one of the genes that cause an autoimmune disease.
  • the medical treatment and diagnosis of suppression or enhancement of the immune function, infection, the rejection at the time of a transplant, a neoplasm, etc. could be performed, and as a result of repeating examination wholeheartedly, the inventors reached this invention concerning the substance which controls the function of PD-1.
  • TCR T cell receptor
  • BCR B cell receptor
  • PD-1 is controlling negatively various cells responsible for immunity, such as lymphocytes and myeloid cells etc.
  • ITIM Immunoreceptor tyrosine-based inhibitory motif
  • the inventors considered the molecular mechanism involved in the inhibitory signal transduction of PD-1 to be the recruit of de-phosphorylation enzymes (phosphatases). Therefore, it came to be considered by locating PD-1 near TCR or BCR that it can display the function of PD-1.
  • the inventors confirmed first that the above-mentioned idea was right using anti-PD-1 antibody, and anti-BCR antibody or anti-CD3 antibody.
  • CD3 is the membrane protein expressed on a T cell, and is one component of the complexes that constitute TCR.
  • the divalent antibody was constructed by bridging anti-PD-1 antibody and anti-BCR or anti-CD3 antibody. In the present invention, this divalent antibody is called hybrid antibody. The inventors produced this hybrid antibody for the first time.
  • the present invention relates to,
  • a substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker,
  • the substance according to (1) which is a divalent substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker,
  • the substance according to (1) or (2) which comprises a substance that recognizes PD-1, a substance that recognizes a protein constituting T cell receptor complex or a substance that recognizes a protein constituting B cell receptor complex, and a linker,
  • neurodegenerative disease is selected from the group consisting of Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease,
  • autoimmune disease is selected from the group consisting of glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis.
  • autoimmune disease is selected from the group consisting of glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact
  • a substance that recognizes PD-1 said by the present invention maybe a substance which recognizes PD-1 specifically, for example, anti-PD-1 antibody, the fragment of anti-PD-1 antibody, PD-1 in itself, the fragment of PD-1, ligand of PD-1 (PD-L1 (Freeman G. J. et. al., J. Exp. Med. 192:1027-1034, 2000), PD-L2, PD-H3), the fragment thereof and a low molecule organic compound, etc.
  • PD-L1 Freeman G. J. et. al., J. Exp. Med. 192:1027-1034, 2000
  • PD-L2, PD-H3 ligand of PD-1
  • the Fab portion of the antibody it is not limited to this.
  • a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane said by the present invention may be a substance which recognizes a membrane protein specifically, for example, a substance which specifically recognizes a complex that constitute T cell receptor (TCR) (TCR complex) etc. expressed on T cells, or a substance which specifically recognizes a complex that constitute B cell receptor (BCR) (BCR complex) etc. expressed on B cells, such as the fragment of a protein constituting TCR complex, anti-TCR antibody, the fragment of anti-TCR antibody, the fragment of a protein constituting BCR complex, anti-BCR antibody and the fragment of anti-BCR antibody.
  • TCR T cell receptor
  • BCR BCR complex
  • the Fab portion of an anti-TCR antibody or the Fab portion of an anti-BCR antibody it is not limited to these.
  • anti-TCR antibody Both an anti-TCR antibody and an anti-BCR antibody are available commercially.
  • anti-CD3 antibody ⁇ -CD3 ⁇ mAb, manufactured by Pharmingen
  • anti-IgG (H+L) polyclonal antibody manufactured by Zymed
  • a linker said by the present invention may be a substance which can connect the above mentioned substance recognizing PD-1 and the substance recognizing a membrane protein co-existing with PD-1 on a cell membrane if a suitable distance can be maintained. More specifically, it may be a peptide, amide, etc.
  • a linker can be used what is marketed, for example, Phenylenedimaleimide (manufactured by Aldrich) is available.
  • a substance that specifically recognizes PD-1 which is the subject of the present invention, can be produced as follows, for example.
  • an antibody is chosen as a substance which recognizes PD-1 specifically, and that an antibody is also chosen as a substance which recognizes specifically a membrane protein co-existing with PD-1 on a cell membrane (hereinafter, simply referred to as “the membrane protein”), a substance is called hybrid antibody by this invention.
  • the membrane protein a substance which recognizes specifically a membrane protein co-existing with PD-1 on a cell membrane.
  • a hybrid antibody can be produced by bridging thus obtained anti-PD-1 antibody and anti-membrane antibody with a linker.
  • a hybrid antibody can be produced by bridging each F(ab′) SH thus prepared with a linker.
  • both or one of the two of a substance which specifically recognizes PD-1 and a substance which specifically recognizes a membrane protein co-existing with PD-1 on a cell membrane are a low molecule organic compound
  • a substance can be produced by bridging the compound-to-compound, the compound to antibody, or the compound to Fab with a linker.
  • an immunization step (1) it is desirable to administer PD-1 or the membrane protein to an animal into the peritoneal cavity or foot pad.
  • the animal to be immunized will not be limited especially if it is the one from which the monoclonal antibody is obtained generally such as mouse, rat or the like. In the case of a mouse, the amount of an antigen is enough if 10-200 micrograms is administered per time.
  • the cell fusion of (2) is carried out by excising spleen from an immunized animal with which the antibody titer has fully risen among the animals immunized in the step (1), preparing spleen cell suspension according to a usual method, and adding polyethylene glycol (preferably PEG4000) to a mixture of the spleen cells thus obtained and myeloma cells at 37° C.
  • polyethylene glycol preferably PEG4000
  • PEG4000 polyethylene glycol
  • HGPRT hyperxanthine-guanine phosphoribosyl transferase-defective cell line which cannot survive in HAT medium (a medium containing hypoxanthine, aminopterin and thymidine)
  • HAT medium a medium containing hypoxanthine, aminopterin and thymidine
  • SP-2O—Ag-14 is used as the myeloma cell.
  • the obtained cell fusion mixture is dispensed into a 96-well micro plate at a low density, and cultivated in the HAT medium.
  • HAT medium By culturing them for 1 to 2 weeks, un-fused myeloma cells, hybridomas of myeloma cells themselves, un-fused spleen cells and dybridomas of spleen cells themselves die because their surviving conditions are not satisfied, and only the hybridomas of spleen cell with myeloma cell are propagated.
  • a hybridoma is the one which produces an antibody against PD-1 or the membrane protein is judged by allowing each hybridoma culture supernatant to react with the immobilized antigen, and then determining amount of the antibody in the supernatant specifically adsorbed to the antigen using a labeled second antibody.
  • the step (4) is carried out by cloning the antibody-producing hybridoma in accordance with the soft agar culture method (Monoclonal Antibodies, 372 (1980)). In this case, it is also possible to use the limiting dilution method.
  • the step (5) is carried out by culturing the cloned hybridoma in usual medium and then separating and purifying fromthe culture supernatant, however, to obtain a larger amount of the antibody efficiently a method in which the hybridoma is administered into the abdominal cavity of mouse, allowed to propagate therein and then separated and purified from the ascites is used.
  • the purification can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, affinity chromatography using protein A-sepharose CL-4B (manufactured by Amersham Bioscience) is used more effectively.
  • a hybrid antibody of the present invention recognizes PD-1 specifically, it can be used for the purification and concentration of PD-1, for example, for affinity chromatography etc.
  • the step (7) can be carried out by bridging a linker such as sulfo-EMCS (N-(6-maleimidcaproxy) sulfo-succinimide sodium salt) to amide groups or SH (mercapto) groups of an antibody.
  • a linker such as sulfo-EMCS (N-(6-maleimidcaproxy) sulfo-succinimide sodium salt)
  • amide groups or SH (mercapto) groups of an antibody amide groups
  • one antibody is combined to sulfo-EMCS by amide coupling, un-reacted sulfo-EMCS is discarded by gel filtration, the maleimide groups of the sulfo-EMCS that is bound to the first antibody is reacted with SH (mercapto) groups of the other antibody that is reduced with 2-mercaptoethylamine etc., and then a substance bridged over two kinds of antibodies is size-fractionated using gel filtration.
  • SH mercap
  • the step (8) is carried out by digesting each antibody obtained in the step (6) with pepsin at 37° C. for 48 hours.
  • the separation and purification of F(ab′) 2 digested with pepsin can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 (manufactured by Amersham Bioscience) is used more effectively.
  • the step (9) is carried out by reducing F(ab′) 2 with 2-mercaptoethanol at 30° C. for 30 minutes.
  • the separation and purification of the reduced Fab SH can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 is used more effectively.
  • Fab SH fraction of one antibody is combined with a linker.
  • a linker a substance that is combinable with mercapto (SH) groups of Fab SH may be used, for example, a reaction is performed by adding phenylene dimaleimide for 30 minutes at room temperature. Next, the reaction is followed by adding the other Fab SH multiplied by 1.3 at room temperature for 4 hours.
  • the separation and purification of bispecific substance can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 is used more effectively.
  • the step (11) can be carried out by using the antibody obtained at the step (6) without modification, or by using the antibody with appropriate labeling (for example, biotin-conjugated or FITC-conjugated etc.) in accordance with a usual method.
  • an antigen is immobilized by a usual method, and then an antibody is added.
  • enzyme-conjugated second antibody and biotin-conjugated antibody are used, enzyme-conjugated streptavidin is added, then the specific binding between antigen and antibody is measured in the presence of chromophore-producing substance by using absorptiometer.
  • the obtained low molecule can be combined with the antibody or Fab by introducing the suitable functional group in it.
  • the suitable functional group for example, when maleimide groups is introduced, it is possible to make it combine with mercapto groups of an antibody or Fab.
  • both substances are low molecules, it is possible to synthesize a molecule containing both ones.
  • bispecific antibody in the present invention.
  • the method of producing this bispecific antibody is explained.
  • An antibody gene is isolated from hybridoma cells producing antibodies against PD-1 and the membrane protein, respectively,
  • variable domain of an antibody gene against PD-1 and a variable domain of an antibody gene against the membrane protein are connected using a linker DNA, the connected DNA fragment is inserted to an expression vector, and cells are transfected with the expression vector and propagated,
  • Bispecific antibody can be prepared by separating and purifying the protein thus produced.
  • the step (1) consists of the processes, which isolates RNA from hybridoma cells, and which isolates cDNA encoding an antibody or its partial peptide.
  • RNA or mRNA from hybridoma cells can be carried out in accordance with known methods (hereinafter, if unstated especially, a known method is the method described in Molecular Cloning (Sambrook J., Fritsch E. F. and Maniatis T., Cold Spring Harbor Laboratory Press, 1989) or Current Protocol in Molecular Biology (Ausubel F. M. et al., John Wiley & Sons and Inc.).
  • the cloning of a cDNA encoding an antibody gene or its partial peptide of the present invention can be performed by an amplification using Polymerase Chain Reaction (hereinafter simply referred to as “PCR method”) with synthesized DNA primers having partial nucleotide sequence encoding an antibody of the present invention, or by a selection using hybridization of cDNAs inserted into a suitable vector with a labeled DNA fragment or synthetic DNA encoding an antibody of the present invention partially or entirely. Hybridization can be carried out in accordance with known methods.
  • An antibody gene may be amplified directly by using Reverse Transcriptase Polymerase Chain Reaction (hereinafter simply referred to as “RT-PCR method”) from total RNA or mRNA.
  • Bispecific antibody of the present invention may be prepared by:
  • Examples of expression system for the production of peptide by using recombinant DNA technology are the expression systems using bacteria, yeast, insect cells and mammalian cells.
  • the initiation codon is added to 5′-end of the nucleotide sequence, for example, shown in SEQ ID NO:28, then the expression vector is prepared by connecting the obtained DNA to the downstream of a suitable promoter (e.g., trp promoter, lac promoter, ⁇ PL promoter, and T7 promoter), and by inserting it into a vector (e.g., pBR322, pUC18and pUC19) which functions in an E. coli strain.
  • a suitable promoter e.g., trp promoter, lac promoter, ⁇ PL promoter, and T7 promoter
  • a vector e.g., pBR322, pUC18and pUC19
  • an E. coli strain (e.g., E. coli strain DH1 , E. coli strain JM 109 and E. coli strain HB101) which is transformed with the expression vector described above may be cultured in an appropriate medium to obtain the desired peptide.
  • a signal peptide of bacteria e.g., signal peptide of pel B
  • the desired peptide maybe released in periplasm.
  • a fusion protein with other peptide may be produced easily.
  • an expression vector is prepared by inserting a DNA, for example, having the nucleotide sequence shown in SEQ ID NO: 28, into the downstream of a proper promoter (e.g., SV40 promoter, LTR promoter and metallothione in promoter) in a proper vector (e.g., retro virus vector, papilloma virus vector, vaccinia virus vector and SV40vector).
  • a proper promoter e.g., SV40 promoter, LTR promoter and metallothione in promoter
  • a proper vector e.g., retro virus vector, papilloma virus vector, vaccinia virus vector and SV40vector.
  • suitable mammalian cells e.g., monkey COS-1 cells, COS-7 cells, Chinese hamster CHO cells, mouse L cells, 293 cells etc.
  • suitable mammalian cells e.g., monkey COS-1 cells, COS-7 cells, Chinese hamster CHO cells, mouse L cells, 293 cells etc.
  • the transfected cells are cultured in an appropriate medium, the aimed peptide can be secreted into the culture medium.
  • a transformation of E. coli can be carried out in accordance with the method, for example, described in Proc. Natl. Acad. Sci. (USA) 69:2110, 1972 and Gene 17: 107, 1982.
  • a transfection of mammalian cells can be carried out in accordance with the method, for example, described in Saiboukougaku supl.8:263 (New experimental protocol for cell technology), Shujun-sha, 1995 and Virology 52:456, 1973.
  • a bispecific antibody can be prepared directly by using recombinant DNA technology.
  • Alt et al. FEBS Letter 454:90, 1999
  • VH heavy chain variable domain
  • VL light chain variable domain
  • a peptide linker contains 3 to 12 amino acid residues, but it is not limited particularly to its amino acid sequence (Hudson et al., J. Immunol. Met. 231:177, 1999).
  • the peptide thus obtained can be purified by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography.
  • bispecific antibody of the present invention also recognizes PD-1 specifically, it can be used for the purification and concentration of PD-1, for example, for affinity chromatography etc.
  • a substance that specifically recognizes PD-1 by the present invention is useful for the medical treatment and/or prevention of diseases such as neurodegenerative disease (Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease etc.).
  • diseases such as neurodegenerative disease (Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease etc.).
  • a substance that specifically recognizes PD-1 by the present invention is also useful for the medical treatment and/or prevention of diseases, in which PD-1 is involved and immune responses are enhanced, such as autoimmune diseases (glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis etc.), organ transplant rejection, and allergy.
  • autoimmune diseases glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lup
  • a substance that specifically recognizes PD-1 by the present invention is also useful for the medical treatment and/or prevention of diseases, in which PD-1 is involved and immune responses are reduced, such as neoplasm and infections.
  • administration of the substance that specifically recognizes PD-1 by the present invention can be carried out in systemic or local, generally peroral or parenteral ways.
  • the dosage to be administered depends upon age, body weight, symptom, desired therapeutic effect, route of administration, and duration of the treatment etc.
  • one dose per person is generally between 0.1 mg and 100 mg by oral administration up to several times per day, or between 0.01 mg and 30 mg by parenteral administration (preferably intravenous administration) up to several times per day, or continuous administration between 1 and 24 hrs. per day into vein.
  • the doses to be used depend upon various conditions. Therefore, there are cases in which doses lower than or greater than the ranges specified above may be used.
  • the compounds of the present invention may be administered as inner solid compositions or inner liquid compositions for oral administration, or as injections, liniments or suppositories etc. for parenteral administration.
  • Inner solid compositions for oral administration include compressed tablets, pills, capsules, dispersible powders and granules etc.
  • capsules include hard capsules and soft capsules.
  • one or more of the active compound(s) remains intact, or is/are admixed with excipients (lactose, mannitol, glucose, microcrystalline cellulose and starch etc.), connecting agents (hydroxypropyl cellulose, polyvinylpyrrolidone, magnesium metasilicate aluminate, etc.), disintegrating agents (cellulose calcium glycolate etc.), lubricating agents (magnesium stearate etc.), stabilizing agents, assisting agents for dissolving (glutamic acid, asparaginic acid etc.) etc. to prepare pharmaceuticals by known methods.
  • excipients lactose, mannitol, glucose, microcrystalline cellulose and starch etc.
  • connecting agents hydroxypropyl cellulose, polyvinylpyrrolidone, magnesium metasilicate aluminate, etc.
  • disintegrating agents cellulose calcium glycolate etc.
  • lubricating agents magnesium stearate etc.
  • stabilizing agents assisting agents for dissolving (glutamic acid
  • the pharmaceuticals may, if desired, be coated with coating agent (sugar, gelatin, hydroxypropyl cellulose or hydroxypropylmethyl cellulose phthalate etc.), or be coated with two or more films. Further, coating may include capsules of absorbable materials such as gelatin.
  • Inner liquid compositions for oral administration may contain pharmaceutically acceptable water-agents, suspensions, emulsions, syrups and elixirs etc.
  • one or more of the active compound(s) is/are resolved, suspended or emulsified in inert diluent (s) commonly used in the art (purified water, ethanol or mixture thereof etc.).
  • Such liquid compositions may also comprise wetting agents, suspending agents, emulsifying agent, sweetening agents, flavoring agents, perfuming agents, preserving agents and buffer agents etc.
  • Injections for parenteral administration include solutions, suspensions and emulsions and solid injections, which are dissolved or suspended in solvent when it is used.
  • one or more active compound(s) is/are dissolved, suspended or emulsified in a solvent.
  • Solvents include distilled water for injection, physiological salt solution, plant oil, propylene glycol, polyethylene glycol, alcohol such as ethanol, and mixture thereof etc.
  • Such compositions may comprise additional stabilizing agents, assisting agents for dissolving (glutamic acid, asparaginic acid, POLYSOLBATE80 (resistered trade mark) etc.), suspending agents, emulsifying agents, soothing agent, buffer agents, preserving agents etc.
  • They may be manufactured or prepared by sterilization or by aseptic manipulation in a final process. They may also be manufactured in the form of sterile solid compositions such as freeze-dried compositions, and can be dissolved in sterile water or some other sterile solvent for injection immediately before use.
  • compositions for parenteral administration include liquids for external use, ointments, endermic liniments, aerosols, spray compositions, suppositories and pessaries for vaginal administration etc., which comprise one or more of the active compound(s) and may be prepared by known methods.
  • Spray compositions may comprise additional substances other than inert diluents generally used: e.g. stabilizing agents such as sodium hydrogen sulfate, buffer agents to give isotonicity, isotonic buffer such as sodium chloride, sodium citrate and citric acid.
  • stabilizing agents such as sodium hydrogen sulfate, buffer agents to give isotonicity
  • isotonic buffer such as sodium chloride, sodium citrate and citric acid.
  • the substance that specifically recognizes PD-1 by the present invention can also be used for the screening of substances, which are involved in immune responses, by measuring the expression of PD-1.
  • a substance that specifically recognizes PD-1 by the present invention comprises a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker, is a superior substance recognizable both PD-1 and the membrane protein specifically and transmittable the signal of PD-1.
  • FIG. 1 shows the results of FACS analysis using anti-PD-1/anti-TCR hybrid Fab antibodies
  • FIG. 2 shows the effect of anti-PD-1/anti-TCR hybrid Fab antibodies on activated T cells
  • FIG. 3 shows the inhibitory effect of anti-PD-1/anti-BCR hybrid Fab antibodies on the production of IL-2 by anti-BCR antibody stimulation
  • FIG. 4 shows the effect of anti-PD-1/anti-BCR hybrid Fab antibodies on SHP-2 recruitment after anti-BCR antibody stimulation
  • FIG. 5 shows the plasmid J43-2C11scDb-pSec/hygro B for the expression of J43-2C11 bispecific antibody
  • FIG. 6 shows the effect of J43-2C11 bispecific antibodies on the production of IFN-r by activated mouse spleen T cells.
  • anti-PD-1 antibody and anti-T cell receptor antibody are linked by a linker simply referred to as “anti-PD-1/anti-TCR hybrid antibody”, and a substance in which anti-PD-1 antibody and anti-B cell receptor antibody are linked by a linker “anti-PD-1/anti-BCR hybrid antibody”, respectively.
  • Anti-mouse CD3 ⁇ monoclonal antibodies were substituted with Sodium phosphate (0.1 M, pH7.0) and Nacl (50 mM), then 200 times quantity of sulfo-EMCS (manufactured by Dojin Chemical) were added and incubated at 20° C. for 1 hour. Then the reaction mixture was size-fractionated by gel filtration using Sephacril S-300 [Sodium phosphate (0.1 M, pH7.0)] and major peak fractions were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • Antibodies against mouse PD-1 (produced by the hybridoma cells named (J43) and deposited as international deposition Accession number FERM BP-8118) were substituted with Sodium phosphate (0.1 M, pH6.0), added with 2-mercaptoethylamine (final concentration of 10 mM) and EDTA (final concentration of 1 mM), and reduced at 37° C. for 90 minutes. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-300 [Sodium phosphate (0.1 M, pH6.0)] and major peak fractions (single chain fractions) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously. (1-C) Bridging of Maleimide-conjugated anti-mouse CD3 ⁇ monoclonal antibodies and Reduced anti-PD-1 antibodies
  • Antibodies against mouse PD-1 (produced by the hybridoma cells named (J43) and deposited as international deposition Accession number FERM BP-8118) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (final concentration of 0.2 mg/ml), and digested for 48 hours at 37° C. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′) 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • Anti-mouse CD3 ⁇ monoclonal antibodies (manufactured by Pharmingen) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (final concentration of 0.2 mg/ml), and digested for 48 hours at 37° C. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′) 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • Phenylenedimaleimide (manufactured by Aldrich) (final concentration of 4 mM) was added to the Fab SH fraction of anti-PD-1 antibodies prepared in step (2-A), and incubated for30minutes at room temperature to prepare J43 Fab mal fraction.
  • the J43 Fab mal fraction and the Fab SH fraction of anti-mouse CD3 ⁇ monoclonal antibodies were mixed at the rate of 1:1.3 and incubated for 4 hours at room temperature.
  • an appropriate amount of Tris-HCl (1 M, pH8.0) were added to make the pH of the reaction mixture 8.0, 2-mercaptoethanol (final concentration of 20 mM) was added and incubated at 30° C. for 30 minutes.
  • iodoacetoamide (manufactured by Sigma) was added (final concentration of 25 mM) and incubated for additional 10 minutes at room temperature under light shielding.
  • reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (BsAb fraction) were collected by monitoring the absorbency at 280 nm.
  • the protein content was calculated from the absorbency at 280 nm simultaneously.
  • the cells were added with each 2 ⁇ l (1 ⁇ g) of second antibodies, fill upped to final 100 ⁇ l with FACS buffer, and incubated for 30 minutes on ice. Then they were analyzed by using FACS can. The results were shown in FIG. 1 (in the following figures, hybrid Fab antibody simply referred to as “HFAb”).
  • Spleen was excised from BALB/c mouse. After red blood cells were hemolyzed, the spleen cells were washed once with PBS( ⁇ ) and suspended in medium RPMI1640 (10% FCS, antibiotics) (1 ⁇ 10 8 cells/ml). Next, T cells were prepared by using nylon fiber column (manufactured by WAKO) for T cell separation equilibrated with the medium.
  • Antibodies against mouse PD-1 (the same antibodies as used in Example 1) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (manufactured by SIGMA) (final concentration of 0.2 mg/ml), and digested at 37° C. for 48 hours. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 (manufactured by AmarshamParmacia) [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′) 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • Phenylenedimaleimide manufactured by Aldrich
  • final concentration of 4 mM was added to the Fab SH fraction of J43 anti-PD-1 antibodies, and incubated for 30 minutes at room temperature to prepare J43 Fab mal fraction.
  • the J43 Fab mal fraction and the Fab SH fraction of anti-IgG (H+L) polyclonal antibodies were mixed at the rate of 1:1.3 and incubated for 4 hours at room temperature.
  • an appropriate amount of Tris-HCl (1 M, pH8.0) were added to make the pH of the reaction mixture 8.0, 2-mercaptoethanol (final concentration of 20 mM) was added and incubated at 30° C. for 30 minutes.
  • DNA fragments of mPD1-flag digested with EcoRI were inserted into the EcoRI site of a commercially available expression vector to construct the expression plasmid mPD1-pA.
  • A20IIA1.6 cells (1 ⁇ 10 7 ) in 325 ⁇ l of ice-cold RPMI1640 medium containing 15% FCS and the PD-1 expression plasmid linearized with ScaI in 10 ⁇ l of distilled water were incorporated into a Cuvette for electroporation (Gene Pulser Cuvette 0.4 cm electrode gap, 50, BIO RAD), and pulsed under the condition of 250V/960 ⁇ F (Gene Pulser, BIO RAD).
  • the cells were suspended in 30 ml of medium (RPMI1640 containing 10% FBS, 50 ⁇ l of 2-mercaptoethanol, penicillin and streptomycin), diluted thirtyfold further, and dispensed onto 96-well plates (10 3 /100 ⁇ l/well). After 48 hours, the selection was initiated using final 3 ⁇ M of Puromycin to establish the cell line expressing mouse PD-1.
  • medium RPMI1640 containing 10% FBS, 50 ⁇ l of 2-mercaptoethanol, penicillin and streptomycin
  • A20IIA1.6 cells that was forced to express mouse PD-1 were seeded on 96-well plates (5 ⁇ 10 5 cells/100 ⁇ l).
  • Anti-PD-1/anti-BCR hybrid Fab antibodies (0, 1, 3, 10 ⁇ g/100 ⁇ l) were added, 10 minutes later 100 ⁇ l of anti-mouse IgG (H+L) F(ab′) 2 (manufactured by Zymed) (final concentration of 0.3, 1, 3 ⁇ g/ml) were dispensed and cultivated for 12 hours in a CO 2 incubator (at 37° C.).
  • the culture supernatants were recovered and the concentrations of IL-2 in the culture supernatants were measured by using mouse IL-2 assay kit (manufactured by R & G System). The results were shown in FIG. 3.
  • Anti-PD-1/anti-BCR hybrid Fab antibodies (0, 1, 3, 10 ⁇ g/100 ⁇ l) were added to 3 ⁇ 10 6 of A20IIA1.6 cells (B cell line) that was forced to express mouse PD-1. After 10 minutes, 100 ⁇ l of anti-mouse IgG (H+L) F(ab′) 2 were added and incubated for 5 minutes at room temperature.
  • the cells were suspended in 200 ⁇ l of lysis buffer (composition: Tris-HCl (20 mM, pH7.4), NaCl (150 mM), Na 2 EDTA (1 mM), EGTA (1 mM), 1% Triton-X100, sodium pyrophosphate (2.5 mM), ⁇ -sodium glycerophosphate (1 mM), Na 3 VO 4 (1 mM), leupeptin (1 ⁇ g/ml) and PMSF (1 mM) and left at rest on ice.
  • lysis buffer composition: Tris-HCl (20 mM, pH7.4), NaCl (150 mM), Na 2 EDTA (1 mM), EGTA (1 mM), 1% Triton-X100, sodium pyrophosphate (2.5 mM), ⁇ -sodium glycerophosphate (1 mM), Na 3 VO 4 (1 mM), leupeptin (1 ⁇ g/ml) and PMSF (1 mM)
  • the beads were washed five times with 400 ⁇ l of lysis buffer, added with 20 ⁇ l of lysis buffer and 20 ⁇ l of 2 ⁇ SDS sample buffer, and boiled at 100° C. for 5 minutes. After discarding the beads by centrifugation, 15 ⁇ l of supernatants were subjected to 4-20% SDS-PAGE. After electrophoresis the gels were substituted with blotting buffer and transferred onto PVDF membrane (manufactured by BIO RAD). Then the membrane was blocked with Block Ace (manufactured by Dainippon Pharmaceuticals) for 1 hour at room temperature.
  • Block Ace manufactured by Dainippon Pharmaceuticals
  • the membrane was incubated with anti-SHP-2 antibody (manufactured by SANTA CRUZ) diluted 1/200 for 1 hour at room temperature, then washed three times with TBS-T for 10 minutes.
  • the membrane was incubated with HRP-conjugated anti-rabbit Ig antibody (manufactured by Amersham Bioscience) diluted 1/2000 for 1 hour at room temperature, then washed three times with TBS-T for 10 minutes.
  • the membrane was emitted light by using ECT plus detection kit (manufactured by Amersham Bioscience) and analyzed using luminoimager LAS1000 plus (manufactured by FUJI Film).
  • Anti-mouse PD-1 antibody producing hybridoma (J43) cells were cultured in Hybridoma SFM medium (manufactured by Invitrogen) at 37° C. under 5% CO 2 , a few days after the culture supernatants of hybridoma cells were recovered. IgG fraction was purified from the culture supernatants recovered by using HiTrap Protein G (manufactured by Amersham Bioscience).
  • J43 IgG was subjected to 10-20% SDS-PAGE. After electrophoresis the IgG was electrically transferred from the gel onto PVDF membrane (manufactured by BIO RAD). The membrane transferred was stained with coomassie, the membrane fraction containing the light chain of J43 IgG was removed, and amino terminal 15 residues of the light chain were determined by using peptide sequencer Procise492 (manufactured by Applied Biosystems)(SEQ ID NO:1).
  • RNA was prepared according to the direction of attached document. mRNA was purified from total RNA thus prepared by using Oligotex-MAG mRNA Purification Kit (manufactured by Takara Shuzo).
  • 5′RACE 5′-Full RACE Core Set (manufactured by Takara Shuzo) under the following conditions.
  • Primer No. 2 5′-ccc aag agg tca gga gtt gga-3′ (5′ phosphorylated) (SEQ ID NO:5)
  • Primer No. 3 5′-ttg acc agg cat ccc agg gtc-3′ (SEQ ID NO:6)
  • SEQ ID NO:6 5′-ttg acc agg cat ccc agg gtc-3′
  • Anti-mouse CD3 ⁇ antibody producing hybridoma 145-2C11: manufactured by Pharmingen cells were cultured in Hybridoma SFM medium (manufactured by Invitrogen) at 37° C. under 5% CO 2 , a few days after 5 ⁇ 10 6 hybrisoma cells were lysed with 1 ml of TRIzol (manufactured by Invitrogen). Total RNA was prepared according to the direction of attached document.
  • cDNA was synthesized from 2.5 ⁇ g of total RNA extracted from hybridoma (145-2C11) cells by oligo-dT prime method using Ready-To-Go You-Prime First-Strand Beads (manufactured by Amersham Pharmacia). Operations and procedures were followed by the instructions of attached document.
  • primers No.7 and No.8 were designed.
  • primers No.9 and No.10 were designed. PCR was carried out using these primers and the cDNA library from hybridoma 145-2C11 as a template.
  • Primer No. 7 5′-gag gtg cag ctg gtg gag tct-3′ (SEQ ID NO:12) Primer No.
  • J43 IgG heavy chain cDNA and 145-2C11 IgG light chain cDNA were connected by PCR using linker No.1, No.2, primer No.11 and No.12 to prepare fragment 1 (see FIG. 5).
  • 145-2C11 IgG light chain cDNA and 145-2C11 IgG heavy chain cDNA were connected by PCR using linker No.3, No.4, primer No.13 and No.14 to prepare fragment 2 (see FIG. 5).
  • 145-2C11 IgG heavy chain cDNA and J43 IgG light chain cDNA were connected by PCR using linker No.5, No.6, primer No.15and No.16 to prepare fragment 3 (see FIG. 5).
  • DNA fragments 1, 2 and 3 and plasmid pBluescriptII SK(+) were digested with restriction enzymes EcoRI/KpnI, KpnI/SphI, SphI/XhoI, EcoRI/XhoI, respectively. After electrophoresis on 1% agarose gel, the DNA fragments were purified from the gel using MinElute Gel Extraction Kit. Next, these three fragments and plasmid pBluescriptII SK(+) (manufactured by StrateGene) were connected using DNA Ligation Kit ver.2 (manufactured by Takara Shuzo), then E.
  • Plasmid J43-2C11scDb-pBluescriptII SK(+) was prepared from E. coli , then the nucleotide sequence of the insert was determined (SEQ ID NO:28). The deduced amino acid sequence is shown in sequence listing (SEQ ID NO:29).
  • J43-2C11scDb-pBluescriptII SK(+) was digested with restriction enzymes BamHI and XhoI, the BamHI-XhoI fragment out of BamHI-XhoI and BamHI-BamHI fragments generated by the digestion was connected with BamHI/XhoI digested mammalian expression vector pSecTag2/Hygro B (manufactured by Invitrogen). Next, the pSecTag2/Hygro B connected with BamHI-XhoI fragment was digested again with restriction enzyme BamHI, and connected with the other BamHI-BamHI fragment. E. coli DH5 ⁇ were transformed with the connected plasmid.
  • Plasmid J43-2C11scDb-pSec/Hygro B was prepared from E. coli , then the nucleotide sequence of thus prepared J43-2C11bispecific antibody was determined (SEQ ID NO:30). The deduced amino acid sequence is shown in sequence listing (SEQ ID NO:31)
  • the cells were discarded by centrifugation, then the supernatant was filtrated using 0.22 ⁇ m PVDF filter.
  • the supernatant was enclosed in dialysis tube, dialyzed against PBS containing 40% PEG20000, and concentrated.
  • the concentrated supernatant was purified using HiTrap chelating HP column (manufactured by Amersham Farmacia).
  • the antibodies were purified by gel-filtration using Hiprep 16/60 Sephacryl S-200 High Resolution (manufactured by Amersham Farmacia).
  • Spleen was removed from BALB/c mouse, and cells were prepared using CellStrainer (70 ⁇ m Nyron). The cells were recovered by centrifugation, and red blood cells were hemolyzed by the addition of hemolysis buffer [NH 4 Cl (0.8%), KCO 3 (0.1%) and EDTA (1 mM)]. The cells were washed with PBS ( ⁇ ) once, T cells were enriched by using mouse CD3 + T cell enrichment column kit (manufactured by R&D), and suspended in medium (RPMI1640 containing 10% FBS) in the proportion of 5 ⁇ 10 6 cells/ml.
  • the T cells thus prepared were seeded on 96-well plates (2 ⁇ 10 5 cells/100 ⁇ l /well), which were coated preliminarily with 5 ⁇ g/ml of anti-CD3 antibodies (clone KT3) at 37° C. for 3 hours, added with J43-2C11 bispecific antibody diluted in the medium (0.01, 0.03, 0.1, 0.3, 1 and 3 ⁇ g/100 ⁇ l ), and cultivated for 72 hours at 37° C. under 5% CO 2 . After 72 hours, the culture supernatants were recovered, and the concentrations of IFN-r in the supernatants were determined by using Quantikine Immunoassay Kit (manufactured by R&D).
  • J43-2C11 bispecific antibody suppressed dose dependently the production of IFN-r from activated mouse spleen T cells in vitro.

Abstract

Substances comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker.
As the substances that specifically recognizes PD-1 by the present invention can recognize selectively both PD-1 and a membrane protein co-existing with PD-1 on a cell membrane, and can transmit the suppressive signal of PD-1, they are useful for the medical treatment and/or prevention of the diseases caused by immune abnormality.

Description

    TECHNICAL FIELD
  • The invention is related to a substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker. [0001]
  • BACKGROUND
  • The immune system acquired the mechanism that can respond to various foreign antigens. The mechanism brings about the diversity of an antigen receptor by recombination of V, (D) and J fragment in T cells and B cells. Although this mechanism brought a result that produces self-reactive lymphocytes simultaneously, these self-reactive lymphocytes are removed by the negative selection in the thymus or bone marrow, and are further controlled by the self-tolerance mechanism of clone removal or anergy in the periphery. [0002]
  • Although it is thought that an autoimmune disease is developed by the breakdown of self-tolerance, the researches using various disease model mice have been made towards the elucidation of the mechanism of pathogenesis of the disease. However, there are many still unknown matters about the etiology of an autoimmune disease and the molecular mechanism of self-tolerance. In such a situation, existence of the mouse which shows the symptoms of an autoimmune disease with a single gene deficit is very important, when trying to study the etiology of an autoimmune disease from a molecular biological viewpoint. CTLA4-/-mouse which causes lethal systemic lymphocytes infiltration (Waterhouse P. et. al., Science 270:985˜988, 1995, TivolE.A.et.al., Immunity3: 541˜547, 1995) SHP-1 deficit mothaten mice (Shulltz L. D. et. al., Cell 73: 1445˜1454, 1993) , TGF-beta-1 knockout mouse (Shull M. M. et. al., Nature 359:693-699, 1992), lyn-/-mouse which shows the symptoms of glomerular nephritis (Hibbs M. L. et. al., Cell 83:301-311, 1995), and FCRIIB-/-mouse (Bolland S. & Ravetch J. V., Immunity 13:277-285, 2000) are the representation, and the relation of these molecules and self-tolerance is studied. [0003]
  • PD-1 is type I membrane protein of 55 kD belonging to an immunoglobulin family. Both mouse PD-1 and human PD-1 consist of 288 amino acids, and have signal peptide at N terminal (20 amino acid) and hydrophobic region in the middle part, which is a transmembrane region (The EMBO J. 11 (11):3887-3895, 1992); Japanese patent Publication No. 5-336973; EMBL/GenBank/DDJB Acc. No. X67914, Genomics 23:704, 1994; Japanese patent Publication No. 7-291996 (U.S. Pat. No. 5,629,204). [0004]
  • In a thymocyte, PD-1 is expressed during a CD4−CD8− cell differentiation to a CD4+CD8+ cell (Nishimura H. et. al., Int.Immunol. 8:773-780, 1996, Nishimura H. et. al., J. Exp. Med. 191:891-898, 2000). Moreover, in the periphery, PD-1 is expressed in T cells and B cells which were activated by the stimulus from an antigen receptor (Agata Y. et. al., Int. Immunol. 8:765-772, 1996), and in bone marrow cells including activated macrophage. [0005]
  • PD-1 has ITIM (Immunoreceptor tyrosine-based inhibitory motif) in its intracellular region, therefore it is considered to be a negative regulator in immune reaction. PD-1 deficit mice develop a lupus-like autoimmune disease such as glomerular nephritis and arthritis (C57BL/6 genetic background) (Nishimura H. et. al., Int. Imuunol. 10:1563-1572, 1998, Nishimura H. et. al., Immunity 11:141-151, 1999) and dilated cardiomyopathy-like disease (BALB/c genetic background) (Nishimura H. et. al., Science 291:319-322, 2001), it became clear that PD-1 is a regulator of the development of autoimmune disease, especially one of self-tolerance in the periphery. [0006]
  • DISCLOSURE OF THE INVENTION
  • It is thought that PD-1 is the regulator of various autoimmune diseases, and that it is one of the genes that cause an autoimmune disease. By controlling the function of PD-1, it thought that the medical treatment and diagnosis of suppression or enhancement of the immune function, infection, the rejection at the time of a transplant, a neoplasm, etc. could be performed, and as a result of repeating examination wholeheartedly, the inventors reached this invention concerning the substance which controls the function of PD-1. [0007]
  • The stimulus to lymphocytes which control immunity is transmitted mainly through T cell receptor (TCR) in the case of T cells, and B cell receptor (BCR) in the case of B cells, and the intracellular phosphorylation play an important role in its molecular mechanism. [0008]
  • Since it became clear that PD-1 is controlling negatively various cells responsible for immunity, such as lymphocytes and myeloid cells etc., and PD-1 has ITIM (Immunoreceptor tyrosine-based inhibitory motif) in its intracellular region, the inventors considered the molecular mechanism involved in the inhibitory signal transduction of PD-1 to be the recruit of de-phosphorylation enzymes (phosphatases). Therefore, it came to be considered by locating PD-1 near TCR or BCR that it can display the function of PD-1. The inventors confirmed that the inhibitory signal of PD-1 was transmitted with the substance in which PD-1 was cross-linked to TCR or BCR, and completed this invention. [0009]
  • The inventors confirmed first that the above-mentioned idea was right using anti-PD-1 antibody, and anti-BCR antibody or anti-CD3 antibody. CD3 is the membrane protein expressed on a T cell, and is one component of the complexes that constitute TCR. The divalent antibody was constructed by bridging anti-PD-1 antibody and anti-BCR or anti-CD3 antibody. In the present invention, this divalent antibody is called hybrid antibody. The inventors produced this hybrid antibody for the first time. [0010]
  • Moreover, the knowledge that a signal transmits by cross-linking two kind of receptors using this hybrid antibody is also acquired for the first time. [0011]
  • Namely, the present invention relates to, [0012]
  • 1. A substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker, [0013]
  • 2. The substance according to (1), which is a divalent substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker, [0014]
  • 3. The substance according to (1) or (2), in which a membrane protein is a protein existing on a T cell membrane or B cell membrane, [0015]
  • 4. The substance according to (1) or (2), which comprises a substance that recognizes PD-1, a substance that recognizes a protein constituting T cell receptor complex or a substance that recognizes a protein constituting B cell receptor complex, and a linker, [0016]
  • 5. The substance according to any one of (1) to (4), in which a substance that recognizes PD-1 and in which a substance that recognizes a protein is dimer to pentamer, respectively, [0017]
  • 6. The substance according to any one of (1) to (5), in which one of or both substance that recognizes PD-1 and substance that recognizes a protein are an antibody, [0018]
  • 7. The substance according to any one of (1) to (6), in which one of the two or both substance that recognizes PD-1 and substance that recognizes a protein are a Fab portion of antibody, [0019]
  • 8. The substance according to any one of (1) to (5), in which a linker comprises an organic compound, [0020]
  • 9. The substance according to any one of (1) to (5), in which a linker comprises a peptide, [0021]
  • 10. The substance according to any one of (1) to (5), in which a substance that recognizes PD-1 and in which a substance that recognizes a protein is a peptide, respectively, [0022]
  • 11. The substance according to any one of (1) to (5), in which a substance that recognizes PD-1 and in which a substance that recognizes a protein comprises two or more peptides including a heavy chain variable region and a light chain variable region of antibody, respectively, [0023]
  • 12. The substance according to any one of (1) to (5), in which a substance that recognizes PD-1, in which a substance that recognizes a protein, and in which a linker is a peptide, respectively, [0024]
  • 13. A pharmaceutical composition containing an effective dose of the substance according to (1) for the medical treatment and/or prevention of a disease in which PD-1 participates, [0025]
  • 14. The pharmaceutical composition according to (13), in which disease is selected from the group consisting of neurodegenerative disease, autoimmune disease, organ transplant rejection, neoplasm and infection, [0026]
  • 15. The pharmaceutical composition according to (14), in which neurodegenerative disease is selected from the group consisting of Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, [0027]
  • 16. The pharmaceutical composition according to (14), in which autoimmune disease is selected from the group consisting of glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis. [0028]
  • A substance that recognizes PD-1 said by the present invention maybe a substance which recognizes PD-1 specifically, for example, anti-PD-1 antibody, the fragment of anti-PD-1 antibody, PD-1 in itself, the fragment of PD-1, ligand of PD-1 (PD-L1 (Freeman G. J. et. al., J. Exp. Med. 192:1027-1034, 2000), PD-L2, PD-H3), the fragment thereof and a low molecule organic compound, etc. [0029]
  • In more concretely, it is anti-PD-1 antibody produced by the hybridoma strain “J43”, which was deposited on May 30, 2001 in International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 6, 1-1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken 305-8566 Japan as Accession number FERM P-18356, and transferred to international deposition on Jul. 16, 2002 as international deposition Accession number FERM BP-8118. [0030]
  • Preferably, although it is the Fab portion of the antibody, it is not limited to this. [0031]
  • A substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane said by the present invention may be a substance which recognizes a membrane protein specifically, for example, a substance which specifically recognizes a complex that constitute T cell receptor (TCR) (TCR complex) etc. expressed on T cells, or a substance which specifically recognizes a complex that constitute B cell receptor (BCR) (BCR complex) etc. expressed on B cells, such as the fragment of a protein constituting TCR complex, anti-TCR antibody, the fragment of anti-TCR antibody, the fragment of a protein constituting BCR complex, anti-BCR antibody and the fragment of anti-BCR antibody. [0032]
  • Preferably, although it is the Fab portion of an anti-TCR antibody or the Fab portion of an anti-BCR antibody, it is not limited to these. [0033]
  • Both an anti-TCR antibody and an anti-BCR antibody are available commercially. For example, anti-CD3 antibody (α-CD3ε mAb, manufactured by Pharmingen) as an anti-TCR antibody, and anti-IgG (H+L) polyclonal antibody (manufactured by Zymed) as an anti-BCR antibody are available, respectively. [0034]
  • A linker said by the present invention may be a substance which can connect the above mentioned substance recognizing PD-1 and the substance recognizing a membrane protein co-existing with PD-1 on a cell membrane if a suitable distance can be maintained. More specifically, it may be a peptide, amide, etc. [0035]
  • A linker can be used what is marketed, for example, Phenylenedimaleimide (manufactured by Aldrich) is available. [0036]
  • A substance that specifically recognizes PD-1, which is the subject of the present invention, can be produced as follows, for example. [0037]
  • In the case that an antibody is chosen as a substance which recognizes PD-1 specifically, and that an antibody is also chosen as a substance which recognizes specifically a membrane protein co-existing with PD-1 on a cell membrane (hereinafter, simply referred to as “the membrane protein”), a substance is called hybrid antibody by this invention. The method of producing this hybrid antibody is explained. [0038]
  • (1) Animals are immunized with PD-1 or the membrane protein as an antigen, [0039]
  • (2) Spleen cells from the immunized animal and myeloma cells are fused, [0040]
  • (3) Cells producing monoclonal antibody against the antigen (PD-1 or the membrane protein) are screened among thus obtained hybridoma cells, [0041]
  • (4) Aimed hybridoma cells are cloned, [0042]
  • (5) Cloned hybridoma cells are grown, [0043]
  • (6) Antibodies produced are isolated and purified, [0044]
  • (7) A hybrid antibody can be produced by bridging thus obtained anti-PD-1 antibody and anti-membrane antibody with a linker. [0045]
  • Alternatively, [0046]
  • (8) To obtain F(ab′)[0047] 2, the antibodies produced are treated with pepsin, isolated and purified,
  • (9) Each F(ab′)[0048] 2 thus prepared is reduced, isolated and purified,
  • (10)A hybrid antibody can be produced by bridging each F(ab′)[0049] SH thus prepared with a linker.
  • In the case that both or one of the two of a substance which specifically recognizes PD-1 and a substance which specifically recognizes a membrane protein co-existing with PD-1 on a cell membrane (the membrane protein) are a low molecule organic compound, [0050]
  • ([0051] 11) A low molecule compound which inhibits the binding of each antibody to PD-1 or the membrane protein which is a corresponding antigen, respectively, is found out by using antibody produced by the above-mentioned technique and suitable detection equipment,
  • (12) A substance can be produced by bridging the compound-to-compound, the compound to antibody, or the compound to Fab with a linker. [0052]
  • It is as follows when each step is explained more concretely. [0053]
  • In an immunization step (1), it is desirable to administer PD-1 or the membrane protein to an animal into the peritoneal cavity or foot pad. Moreover, the animal to be immunized will not be limited especially if it is the one from which the monoclonal antibody is obtained generally such as mouse, rat or the like. In the case of a mouse, the amount of an antigen is enough if 10-200 micrograms is administered per time. [0054]
  • The cell fusion of (2) is carried out by excising spleen from an immunized animal with which the antibody titer has fully risen among the animals immunized in the step (1), preparing spleen cell suspension according to a usual method, and adding polyethylene glycol (preferably PEG4000) to a mixture of the spleen cells thus obtained and myeloma cells at 37° C. Some kinds, such as P3X63Ag8, P3/NS1/1-Ag4-1, and SP-2/0-Ag-14, are known as the mouse myeloma cell, and all of them are easily available. [0055]
  • As the myeloma cell, HGPRT (hypoxanthine-guanine phosphoribosyl transferase)-defective cell line which cannot survive in HAT medium (a medium containing hypoxanthine, aminopterin and thymidine) is useful, and it is further preferred that it is a cell line in which the myeloma cells themselves do not secrete any antibody. Preferably, SP-2O—Ag-14 is used. [0056]
  • Next, the obtained cell fusion mixture is dispensed into a 96-well micro plate at a low density, and cultivated in the HAT medium. By culturing them for 1 to 2 weeks, un-fused myeloma cells, hybridomas of myeloma cells themselves, un-fused spleen cells and dybridomas of spleen cells themselves die because their surviving conditions are not satisfied, and only the hybridomas of spleen cell with myeloma cell are propagated. [0057]
  • In the screening of (3), whether or not a hybridoma is the one which produces an antibody against PD-1 or the membrane protein is judged by allowing each hybridoma culture supernatant to react with the immobilized antigen, and then determining amount of the antibody in the supernatant specifically adsorbed to the antigen using a labeled second antibody. [0058]
  • The step (4) is carried out by cloning the antibody-producing hybridoma in accordance with the soft agar culture method (Monoclonal Antibodies, 372 (1980)). In this case, it is also possible to use the limiting dilution method. [0059]
  • The step (5) is carried out by culturing the cloned hybridoma in usual medium and then separating and purifying fromthe culture supernatant, however, to obtain a larger amount of the antibody efficiently a method in which the hybridoma is administered into the abdominal cavity of mouse, allowed to propagate therein and then separated and purified from the ascites is used. [0060]
  • In the step (6), the purification can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, affinity chromatography using protein A-sepharose CL-4B (manufactured by Amersham Bioscience) is used more effectively. [0061]
  • Since a hybrid antibody of the present invention recognizes PD-1 specifically, it can be used for the purification and concentration of PD-1, for example, for affinity chromatography etc. [0062]
  • The step (7) can be carried out by bridging a linker such as sulfo-EMCS (N-(6-maleimidcaproxy) sulfo-succinimide sodium salt) to amide groups or SH (mercapto) groups of an antibody. First, one antibody is combined to sulfo-EMCS by amide coupling, un-reacted sulfo-EMCS is discarded by gel filtration, the maleimide groups of the sulfo-EMCS that is bound to the first antibody is reacted with SH (mercapto) groups of the other antibody that is reduced with 2-mercaptoethylamine etc., and then a substance bridged over two kinds of antibodies is size-fractionated using gel filtration. [0063]
  • The step (8) is carried out by digesting each antibody obtained in the step (6) with pepsin at 37° C. for 48 hours. The separation and purification of F(ab′) [0064] 2 digested with pepsin can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 (manufactured by Amersham Bioscience) is used more effectively.
  • The step (9) is carried out by reducing F(ab′)[0065] 2 with 2-mercaptoethanol at 30° C. for 30 minutes. The separation and purification of the reduced FabSH can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 is used more effectively.
  • In the step (10), Fab[0066] SH fraction of one antibody is combined with a linker. As a linker, a substance that is combinable with mercapto (SH) groups of FabSH may be used, for example, a reaction is performed by adding phenylene dimaleimide for 30 minutes at room temperature. Next, the reaction is followed by adding the other FabSH multiplied by 1.3 at room temperature for 4 hours. The separation and purification of bispecific substance can be carried out by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography, however, gel filtration using Sephacryl S-200 is used more effectively.
  • The step (11) can be carried out by using the antibody obtained at the step (6) without modification, or by using the antibody with appropriate labeling (for example, biotin-conjugated or FITC-conjugated etc.) in accordance with a usual method. In the case that ELISA method is used, an antigen is immobilized by a usual method, and then an antibody is added. Next, when enzyme-conjugated second antibody and biotin-conjugated antibody are used, enzyme-conjugated streptavidin is added, then the specific binding between antigen and antibody is measured in the presence of chromophore-producing substance by using absorptiometer. By using this assay system a low molecule that specifically recognizes PD-1 or the membrane protein can be obtained. [0067]
  • In the step (12), when one of the two is an antibody or Fab, the obtained low molecule can be combined with the antibody or Fab by introducing the suitable functional group in it. For example, when maleimide groups is introduced, it is possible to make it combine with mercapto groups of an antibody or Fab. Moreover, when both substances are low molecules, it is possible to synthesize a molecule containing both ones. [0068]
  • In the case that an antibody is chosen as a substance which recognizes PD-1 specifically, that an antibody is also chosen as a substance which recognizes specifically a membrane protein co-existing with PD-1 on a cell membrane, and that both antibodies are included in the same peptide, the substance is called bispecific antibody in the present invention. The method of producing this bispecific antibody is explained. [0069]
  • (1) An antibody gene is isolated from hybridoma cells producing antibodies against PD-1 and the membrane protein, respectively, [0070]
  • (2) A variable domain of an antibody gene against PD-1 and a variable domain of an antibody gene against the membrane protein are connected using a linker DNA, the connected DNA fragment is inserted to an expression vector, and cells are transfected with the expression vector and propagated, [0071]
  • (3) Bispecific antibody can be prepared by separating and purifying the protein thus produced. [0072]
  • It is as follows when each step is explained more concretely. [0073]
  • The step (1) consists of the processes, which isolates RNA from hybridoma cells, and which isolates cDNA encoding an antibody or its partial peptide. [0074]
  • The process which isolates total RNA or mRNA from hybridoma cells can be carried out in accordance with known methods (hereinafter, if unstated especially, a known method is the method described in Molecular Cloning (Sambrook J., Fritsch E. F. and Maniatis T., Cold Spring Harbor Laboratory Press, 1989) or Current Protocol in Molecular Biology (Ausubel F. M. et al., John Wiley & Sons and Inc.). [0075]
  • The cloning of a cDNA encoding an antibody gene or its partial peptide of the present invention can be performed by an amplification using Polymerase Chain Reaction (hereinafter simply referred to as “PCR method”) with synthesized DNA primers having partial nucleotide sequence encoding an antibody of the present invention, or by a selection using hybridization of cDNAs inserted into a suitable vector with a labeled DNA fragment or synthetic DNA encoding an antibody of the present invention partially or entirely. Hybridization can be carried out in accordance with known methods. An antibody gene may be amplified directly by using Reverse Transcriptase Polymerase Chain Reaction (hereinafter simply referred to as “RT-PCR method”) from total RNA or mRNA. [0076]
  • (2) Bispecific antibody of the present invention may be prepared by: [0077]
  • i) A method of peptide synthesis, or [0078]
  • ii) A method of production using recombinant DNA technology, preferably, by the method described in ii) in an industrial production. [0079]
  • Examples of expression system (host-vector system) for the production of peptide by using recombinant DNA technology are the expression systems using bacteria, yeast, insect cells and mammalian cells. [0080]
  • For example, in an [0081] E. Coli expression system, the initiation codon (ATG) is added to 5′-end of the nucleotide sequence, for example, shown in SEQ ID NO:28, then the expression vector is prepared by connecting the obtained DNA to the downstream of a suitable promoter (e.g., trp promoter, lac promoter, λ PL promoter, and T7 promoter), and by inserting it into a vector (e.g., pBR322, pUC18and pUC19) which functions in an E. coli strain.
  • Then, an [0082] E. coli strain (e.g., E. coli strain DH1, E. coli strain JM 109 and E. coli strain HB101) which is transformed with the expression vector described above may be cultured in an appropriate medium to obtain the desired peptide. When a signal peptide of bacteria (e.g., signal peptide of pel B) is utilized, the desired peptide maybe released in periplasm. Furthermore, a fusion protein with other peptide may be produced easily.
  • In a mammalian cell expression system, an expression vector is prepared by inserting a DNA, for example, having the nucleotide sequence shown in SEQ ID NO: 28, into the downstream of a proper promoter (e.g., SV40 promoter, LTR promoter and metallothione in promoter) in a proper vector (e.g., retro virus vector, papilloma virus vector, vaccinia virus vector and SV40vector). Next, suitable mammalian cells (e.g., monkey COS-1 cells, COS-7 cells, Chinese hamster CHO cells, mouse L cells, 293 cells etc.) are transfected with the expression vector thus obtained, and then the transfected cells are cultured in an appropriate medium, the aimed peptide can be secreted into the culture medium. [0083]
  • A transformation of [0084] E. coli can be carried out in accordance with the method, for example, described in Proc. Natl. Acad. Sci. (USA) 69:2110, 1972 and Gene 17: 107, 1982.
  • A transfection of mammalian cells can be carried out in accordance with the method, for example, described in Saiboukougaku supl.8:263 (New experimental protocol for cell technology), Shujun-sha, 1995 and Virology 52:456, 1973. [0085]
  • It is known that a bispecific antibody can be prepared directly by using recombinant DNA technology. For example, Alt et al. (FEBS Letter 454:90, 1999) reported the generation of a bispecific antibody (it is referred to a single-chain diabody) directed against carcinoembryonic antigen and [0086] E. coli beta-galactosidase. In said fragment, a heavy chain variable domain (VH) of one antibody is connected to a light chain variable domain (VL) of the other antibody with a short linker, which prevent the pairing of these two continuous domains on the same chain. Therefore, the VH and VL domains of this fragment are obliged to pair with each complementary VL and VH domain on other chain, and thereby form two antigen binding sites.
  • It is preferred that a peptide linker contains 3 to 12 amino acid residues, but it is not limited particularly to its amino acid sequence (Hudson et al., J. Immunol. Met. 231:177, 1999). [0087]
  • (3) The peptide thus obtained can be purified by usual methods such as salting out, ion exchange chromatography, gel filtration, hydrophobic chromatography and affinity chromatography. [0088]
  • Since bispecific antibody of the present invention also recognizes PD-1 specifically, it can be used for the purification and concentration of PD-1, for example, for affinity chromatography etc. [0089]
  • Industrial Applicability
  • Application for Pharmaceuticals: [0090]
  • The greatest and important usage of a substance that specifically recognizes PD-1 by the present invention is for the medical treatment of the following disease. [0091]
  • A substance that specifically recognizes PD-1 by the present invention is useful for the medical treatment and/or prevention of diseases such as neurodegenerative disease (Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease etc.). [0092]
  • A substance that specifically recognizes PD-1 by the present invention is also useful for the medical treatment and/or prevention of diseases, in which PD-1 is involved and immune responses are enhanced, such as autoimmune diseases (glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis etc.), organ transplant rejection, and allergy. [0093]
  • A substance that specifically recognizes PD-1 by the present invention is also useful for the medical treatment and/or prevention of diseases, in which PD-1 is involved and immune responses are reduced, such as neoplasm and infections. [0094]
  • For the above mentioned usage, administration of the substance that specifically recognizes PD-1 by the present invention can be carried out in systemic or local, generally peroral or parenteral ways. [0095]
  • The dosage to be administered depends upon age, body weight, symptom, desired therapeutic effect, route of administration, and duration of the treatment etc. In human adults, one dose per person is generally between 0.1 mg and 100 mg by oral administration up to several times per day, or between 0.01 mg and 30 mg by parenteral administration (preferably intravenous administration) up to several times per day, or continuous administration between 1 and 24 hrs. per day into vein. [0096]
  • As mentioned above, the doses to be used depend upon various conditions. Therefore, there are cases in which doses lower than or greater than the ranges specified above may be used. [0097]
  • The compounds of the present invention may be administered as inner solid compositions or inner liquid compositions for oral administration, or as injections, liniments or suppositories etc. for parenteral administration. [0098]
  • Examples of Inner solid compositions for oral administration include compressed tablets, pills, capsules, dispersible powders and granules etc. Examples of capsules include hard capsules and soft capsules. [0099]
  • In such inner solid compositions, one or more of the active compound(s) remains intact, or is/are admixed with excipients (lactose, mannitol, glucose, microcrystalline cellulose and starch etc.), connecting agents (hydroxypropyl cellulose, polyvinylpyrrolidone, magnesium metasilicate aluminate, etc.), disintegrating agents (cellulose calcium glycolate etc.), lubricating agents (magnesium stearate etc.), stabilizing agents, assisting agents for dissolving (glutamic acid, asparaginic acid etc.) etc. to prepare pharmaceuticals by known methods. The pharmaceuticals may, if desired, be coated with coating agent (sugar, gelatin, hydroxypropyl cellulose or hydroxypropylmethyl cellulose phthalate etc.), or be coated with two or more films. Further, coating may include capsules of absorbable materials such as gelatin. [0100]
  • Inner liquid compositions for oral administration may contain pharmaceutically acceptable water-agents, suspensions, emulsions, syrups and elixirs etc. In such liquid compositions, one or more of the active compound(s) is/are resolved, suspended or emulsified in inert diluent (s) commonly used in the art (purified water, ethanol or mixture thereof etc.). Such liquid compositions may also comprise wetting agents, suspending agents, emulsifying agent, sweetening agents, flavoring agents, perfuming agents, preserving agents and buffer agents etc. [0101]
  • Injections for parenteral administration include solutions, suspensions and emulsions and solid injections, which are dissolved or suspended in solvent when it is used. In such compositions, one or more active compound(s) is/are dissolved, suspended or emulsified in a solvent. Solvents include distilled water for injection, physiological salt solution, plant oil, propylene glycol, polyethylene glycol, alcohol such as ethanol, and mixture thereof etc. Such compositions may comprise additional stabilizing agents, assisting agents for dissolving (glutamic acid, asparaginic acid, POLYSOLBATE80 (resistered trade mark) etc.), suspending agents, emulsifying agents, soothing agent, buffer agents, preserving agents etc. They may be manufactured or prepared by sterilization or by aseptic manipulation in a final process. They may also be manufactured in the form of sterile solid compositions such as freeze-dried compositions, and can be dissolved in sterile water or some other sterile solvent for injection immediately before use. [0102]
  • Other compositions for parenteral administration include liquids for external use, ointments, endermic liniments, aerosols, spray compositions, suppositories and pessaries for vaginal administration etc., which comprise one or more of the active compound(s) and may be prepared by known methods. [0103]
  • Spray compositions may comprise additional substances other than inert diluents generally used: e.g. stabilizing agents such as sodium hydrogen sulfate, buffer agents to give isotonicity, isotonic buffer such as sodium chloride, sodium citrate and citric acid. For preparation of such spray compositions, for example, the methods described in the U.S. Pat. No. 2,868,691 and 3,095,355 may be used. [0104]
  • Since PD-1 is involved in immune responses, the substance that specifically recognizes PD-1 by the present invention can also be used for the screening of substances, which are involved in immune responses, by measuring the expression of PD-1. [0105]
  • Effect of the Invention
  • A substance that specifically recognizes PD-1 by the present invention comprises a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker, is a superior substance recognizable both PD-1 and the membrane protein specifically and transmittable the signal of PD-1.[0106]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the results of FACS analysis using anti-PD-1/anti-TCR hybrid Fab antibodies; [0107]
  • FIG. 2 shows the effect of anti-PD-1/anti-TCR hybrid Fab antibodies on activated T cells; [0108]
  • FIG. 3 shows the inhibitory effect of anti-PD-1/anti-BCR hybrid Fab antibodies on the production of IL-2 by anti-BCR antibody stimulation; [0109]
  • FIG. 4 shows the effect of anti-PD-1/anti-BCR hybrid Fab antibodies on SHP-2 recruitment after anti-BCR antibody stimulation; [0110]
  • FIG. 5 shows the plasmid J43-2C11scDb-pSec/hygro B for the expression of J43-2C11 bispecific antibody; and [0111]
  • FIG. 6 shows the effect of J43-2C11 bispecific antibodies on the production of IFN-r by activated mouse spleen T cells.[0112]
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The present invention is more specifically explained by means of the following examples, but is not limited only to these examples. [0113]
  • Hereinafter, a substance in which anti-PD-1 antibody and anti-T cell receptor antibody are linked by a linker simply referred to as “anti-PD-1/anti-TCR hybrid antibody”, and a substance in which anti-PD-1 antibody and anti-B cell receptor antibody are linked by a linker “anti-PD-1/anti-BCR hybrid antibody”, respectively. A substance in which the Fab[0114] SH portion of anti-PD-1 antibody and the FabSH portion of anti-T cell receptor antibody are linked by a linker hereinafter simply referred to as “anti-PD-1/anti-TCR hybrid Fab antibody”, and a substance in which the FabSH portion of anti-PD-1 antibody and the FabSH portion of anti-B cell receptor antibody are linked by a linker “anti-PD-1/anti-BCR hybrid Fab antibody”, respectively.
  • EXAMPLE 1 (1) Preparation of Anti-PD-1/Anti-TCR Hybrid Antibodies
  • (1-A) Introduction of Maleimide to Anti-Mouse CD3ε Monoclonal Antibodies [0115]
  • Anti-mouse CD3ε monoclonal antibodies were substituted with Sodium phosphate (0.1 M, pH7.0) and Nacl (50 mM), then 200 times quantity of sulfo-EMCS (manufactured by Dojin Chemical) were added and incubated at 20° C. for 1 hour. Then the reaction mixture was size-fractionated by gel filtration using Sephacril S-300 [Sodium phosphate (0.1 M, pH7.0)] and major peak fractions were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously. [0116]
  • (1-B) Reduction of Anti-PD-1 Antibodies [0117]
  • Antibodies against mouse PD-1 (produced by the hybridoma cells named (J43) and deposited as international deposition Accession number FERM BP-8118) were substituted with Sodium phosphate (0.1 M, pH6.0), added with 2-mercaptoethylamine (final concentration of 10 mM) and EDTA (final concentration of 1 mM), and reduced at 37° C. for 90 minutes. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-300 [Sodium phosphate (0.1 M, pH6.0)] and major peak fractions (single chain fractions) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously. (1-C) Bridging of Maleimide-conjugated anti-mouse CD3ε monoclonal antibodies and Reduced anti-PD-1 antibodies [0118]
  • Maleimide-conjugated anti-mouse CD3ε monoclonal antibodies and Reduced anti-PD-1 antibodies were mixed at the rate of 1:4 and incubated at 15° C. for 18 hours. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-300 [Sodium phosphate (0.1 M, pH7.0)] and major peak fractions were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously. [0119]
  • (2) Preparation of Anti-PD-1/Anti-TCR Hybrid Fab Antibodies
  • (2-A) Preparation of F(ab′)[0120] 2 Fraction of Anti-PD-1 Antibodies
  • Antibodies against mouse PD-1 (produced by the hybridoma cells named (J43) and deposited as international deposition Accession number FERM BP-8118) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (final concentration of 0.2 mg/ml), and digested for 48 hours at 37° C. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′)[0121] 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (2-B) Preparation of Fab[0122] SH Fraction of Anti-PD-1 Antibodies
  • 2-mercaptoethanol (final concentration of 20 mM) was added to reduce the F(ab′)[0123] 2 fraction at 30° C. for 30 minutes. After cooling the reaction mixture on ice, it was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (FabSH fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (2-C) Preparation of F(ab′)[0124] 2 Fraction of Anti-Mouse CD3ε Monoclonal Antibodies
  • Anti-mouse CD3ε monoclonal antibodies (manufactured by Pharmingen) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (final concentration of 0.2 mg/ml), and digested for 48 hours at 37° C. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′)[0125] 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (2-D) Preparation of Fab[0126] SH Fraction of Anti-Mouse CD3ε Monoclonal Antibodies
  • 2-mercaptoethanol (final concentration of 20 mM) was added to reduce the F(ab′)[0127] 2 fraction at 30° C. for 30 minutes. After cooling the reaction mixture on ice, it was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (FabSH fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (2-E) Bridging of Fab[0128] SH Fraction of Anti-PD-1 Antibodies and FabSH Fraction of Anti-Mouse CD3ε Monoclonal Antibodies
  • Phenylenedimaleimide (manufactured by Aldrich) (final concentration of 4 mM) was added to the Fab[0129] SH fraction of anti-PD-1 antibodies prepared in step (2-A), and incubated for30minutes at room temperature to prepare J43 Fabmal fraction. The J43 Fabmal fraction and the FabSH fraction of anti-mouse CD3ε monoclonal antibodies were mixed at the rate of 1:1.3 and incubated for 4 hours at room temperature. Next, an appropriate amount of Tris-HCl (1 M, pH8.0) were added to make the pH of the reaction mixture 8.0, 2-mercaptoethanol (final concentration of 20 mM) was added and incubated at 30° C. for 30 minutes. Then iodoacetoamide (manufactured by Sigma) was added (final concentration of 25 mM) and incubated for additional 10 minutes at room temperature under light shielding.
  • Finally, the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (BsAb fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously. [0130]
  • EXAMPLE 2 Confirmation of Reactivity of Anti-PD-1/Anti-TCR Hybrid Fab Antibodies on Cell Surface Antigen (PD-1 and CD3)
  • 1×10[0131] 6 cells were recovered from mPD-1/A 20IIA1.6 cells as a PD-1 positive and CD3 negative cell, and naive T cells prepared from mouse spleen cells as a PD-1 negative and CD3 positive cell, respectively. The cells were added with 91 μl of FACS buffer (PBS(−) containing 0.5% BSA, EDTA (2 mM) and 0.01% NaN3), 5 μl of mouse serum and 4 μl of hybrid antibodies (2 μg) and incubated for 30 minutes on ice. After washing with PBS(−) once, the cells were added with each 2 μl (1 μg) of second antibodies, fill upped to final 100 μl with FACS buffer, and incubated for 30 minutes on ice. Then they were analyzed by using FACS can. The results were shown in FIG. 1 (in the following figures, hybrid Fab antibody simply referred to as “HFAb”).
  • Analysis whether the prepared anti-PD-1/anti-TCR hybrid Fab antibodies actually react with the cell surface antigens by using FACS[0132] sort (manufactured by Becton Dickinson) showed the results that the antibodies reacted with both surface antigens.
  • EXAMPLE 3 Effect of Anti-PD-1/Anti-TCR Hybrid Fab Antibodies on Activated T cells
  • (A) Preparation of Spleen T Cells [0133]
  • Spleen was excised from BALB/c mouse. After red blood cells were hemolyzed, the spleen cells were washed once with PBS(−) and suspended in medium RPMI1640 (10% FCS, antibiotics) (1×10[0134] 8 cells/ml). Next, T cells were prepared by using nylon fiber column (manufactured by WAKO) for T cell separation equilibrated with the medium.
  • (B) Effect of Anti-PD-1/Anti-TCR Hybrid Fab Antibodies on Activated Spleen T Cells [0135]
  • Ninety six-well plates were coated with 0.5 μg/ml and 5 μg/ml of anti-CD3 antibodies (clone KT3, manufactured by Immuntech) at 37° C. for 3 hours. T cells (2×10[0136] 5 cells/well/200 μl ) were seeded on the plates, anti-PD-1/anti-TCR hybrid antibodies (0.03, 0.1, 0.3, 1, 3 μg/100 ml) were added, and incubated in a CO2 incubator (at 37° C.). After 72 hours, cytokine (IFN-r, IL-2, IL-4 and IL-10) concentrations in the recovered culture supernatants were measured by using assay kit (manufactured by R & D System).
  • As the results shown in FIG. 2, after 72 hours when 3 μg of anti-PD-1/anti-TCR hybrid Fab antibodies were used, the results were obtained that the stimulation by the antibodies both in 0.5 μg/ml and 5 μg/ml suppressed the production of IFN-r, IL-4 and IL-10 dominantly. [0137]
  • EXAMPLE 4 Preparation of Anti-PD-1/Anti-BCR Hybrid Fab Antibodies
  • (A) Preparation of F(ab′)[0138] 2 Fraction of Anti-PD-1 Antibodies
  • Antibodies against mouse PD-1 (the same antibodies as used in Example 1) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (manufactured by SIGMA) (final concentration of 0.2 mg/ml), and digested at 37° C. for 48 hours. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 (manufactured by AmarshamParmacia) [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′)[0139] 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (B) Preparation of Fab[0140] SH Fraction of Anti-PD-1 Antibodies
  • 2-mercaptoethanol (final concentration of 20 mM) was added to reduce the F(ab′)[0141] 2 fraction at 30° C. for 30 minutes. After cooling the reaction mixture on ice, it was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (FabSH fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (C) Preparation of F(ab′)[0142] 2 Fraction of Anti-IgG (H+L) Polyclonal Antibodies
  • Rabbit anti-mouse IgG (H+L) polyclonal antibodies (manufactured by Zymed) were substituted with pepsin-buffer [(sodium acetate 0.1 M, pH4.5), NaCl (0.1 M)], added with pepsin (final concentration of 0.2 mg/ml), and digested at 37° C. for 48 hours. Then the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [Tris-HCl (0.2 M, pH8.0), EDTA (10 mM)] and major peak fractions (F(ab′)[0143] 2 fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (D) Preparation of Fab[0144] SH Fraction of Anti-IgG (H+L) Polyclonal Antibodies
  • 2-mercaptoethanol (final concentration of 20 mM) was added to reduce the F(ab′)[0145] 2 fraction at 30° C. for 30 minutes. After cooling the reaction mixture on ice, it was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (FabSH fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • (E) Bridging of Fab[0146] SH Fraction of Anti-PD-1 Antibodies and FabSH Fraction of Anti-IgG (H+L) Polyclonal Antibodies
  • Phenylenedimaleimide (manufactured by Aldrich) (final concentration of 4 mM) was added to the Fab[0147] SH fraction of J43 anti-PD-1 antibodies, and incubated for 30 minutes at room temperature to prepare J43 Fabmalfraction. The J43 Fabmal fraction and the FabSH fraction of anti-IgG (H+L) polyclonal antibodies were mixed at the rate of 1:1.3 and incubated for 4 hours at room temperature. Next, an appropriate amount of Tris-HCl (1 M, pH8.0) were added to make the pH of the reaction mixture 8.0, 2-mercaptoethanol (final concentration of 20 mM) was added and incubated at 30° C. for 30 minutes. Then iodoacetoamide (manufactured by SIGMA) was added (final concentration of 25 mM) and incubated for additional 10 minutes at room temperature under light shielding. Finally, the reaction mixture was size-fractionated by gel filtration using Sephacryl S-200 [sodium acetate (50 mM, pH6.3), EDTA (1 mM)] and major peak fractions (BsAb fraction) were collected by monitoring the absorbency at 280 nm. The protein content was calculated from the absorbency at 280 nm simultaneously.
  • EXAMPLE 5 Effect of Anti-PD-1/Anti-BCR Hybrid Fab Antibodies on B Cell Line
  • (A) Generation of A20IIA1.6 (B cell line) that was Forced to Express Mouse PD-1 [0148]
  • (1) Construction of expression plasmid for mouse PD-1 [0149]
  • DNA fragments of mPD1-flag digested with EcoRI were inserted into the EcoRI site of a commercially available expression vector to construct the expression plasmid mPD1-pA. [0150]
  • (2) Transfection [0151]
  • A20IIA1.6 cells (1×10[0152] 7) in 325 μl of ice-cold RPMI1640 medium containing 15% FCS and the PD-1 expression plasmid linearized with ScaI in 10 μl of distilled water were incorporated into a Cuvette for electroporation (Gene Pulser Cuvette 0.4 cm electrode gap, 50, BIO RAD), and pulsed under the condition of 250V/960 μF (Gene Pulser, BIO RAD). After leaving at rest for 10 minutes at room temperature, the cells were suspended in 30 ml of medium (RPMI1640 containing 10% FBS, 50 μl of 2-mercaptoethanol, penicillin and streptomycin), diluted thirtyfold further, and dispensed onto 96-well plates (103/100 μl/well). After 48 hours, the selection was initiated using final 3 μM of Puromycin to establish the cell line expressing mouse PD-1.
  • (B) Effect of Anti-PD-1/Anti-BCR Hybrid Fab Antibodies on A20IIA1.6 Cells that was Forced to Express Mouse PD-1 [0153]
  • A20IIA1.6 cells that was forced to express mouse PD-1 were seeded on 96-well plates (5×10[0154] 5 cells/100 μl). Anti-PD-1/anti-BCR hybrid Fab antibodies (0, 1, 3, 10 μg/100 μl) were added, 10 minutes later 100 μl of anti-mouse IgG (H+L) F(ab′)2 (manufactured by Zymed) (final concentration of 0.3, 1, 3 μg/ml) were dispensed and cultivated for 12 hours in a CO2 incubator (at 37° C.). The culture supernatants were recovered and the concentrations of IL-2 in the culture supernatants were measured by using mouse IL-2 assay kit (manufactured by R & G System). The results were shown in FIG. 3.
  • The studies using various doses of anti-PD-1/anti-BCR hybrid Fab antibodies and anti-BCR antibodies F(ab′)[0155] 2 showed the suppressive effects of the hybrid Fab antibodies in all cases, regardless of the concentration of anti-BCR antibodies F(ab′)2.
  • (C) Confirmation of SHP-2 Recruitment [0156]
  • Anti-PD-1/anti-BCR hybrid Fab antibodies (0, 1, 3, 10 μg/100 μl) were added to 3×10[0157] 6 of A20IIA1.6 cells (B cell line) that was forced to express mouse PD-1. After 10 minutes, 100 μl of anti-mouse IgG (H+L) F(ab′)2 were added and incubated for 5 minutes at room temperature. After discarding the supernatants by centrifugation, the cells were suspended in 200 μl of lysis buffer (composition: Tris-HCl (20 mM, pH7.4), NaCl (150 mM), Na2EDTA (1 mM), EGTA (1 mM), 1% Triton-X100, sodium pyrophosphate (2.5 mM), β-sodium glycerophosphate (1 mM), Na3VO4 (1 mM), leupeptin (1 μg/ml) and PMSF (1 mM) and left at rest on ice. After 30 minutes, the supernatants were recovered by centrifugation, 20 μl of protein G-cepharose beads (manufactured by Amersham Bioscience) added, and incubated at 4° C. for 30 minutes. After recovering the supernatants by centrifugation, 20 μl of protein G-cepharose beads bound beforehand with anti-FLAG antibodies (manufactured by SIGMA) were added and mixed over night at 4° C.
  • The beads were washed five times with 400 μl of lysis buffer, added with 20 μl of lysis buffer and 20 μl of 2× SDS sample buffer, and boiled at 100° C. for 5 minutes. After discarding the beads by centrifugation, 15 μl of supernatants were subjected to 4-20% SDS-PAGE. After electrophoresis the gels were substituted with blotting buffer and transferred onto PVDF membrane (manufactured by BIO RAD). Then the membrane was blocked with Block Ace (manufactured by Dainippon Pharmaceuticals) for 1 hour at room temperature. [0158]
  • The membrane was incubated with anti-SHP-2 antibody (manufactured by SANTA CRUZ) diluted 1/200 for 1 hour at room temperature, then washed three times with TBS-T for 10 minutes. Next, the membrane was incubated with HRP-conjugated anti-rabbit Ig antibody (manufactured by Amersham Bioscience) diluted 1/2000 for 1 hour at room temperature, then washed three times with TBS-T for 10 minutes. Finally the membrane was emitted light by using ECT plus detection kit (manufactured by Amersham Bioscience) and analyzed using luminoimager LAS1000 plus (manufactured by FUJI Film). [0159]
  • Since anti-PD-1/anti-BCR hybrid Fab antibodies suppressed the production of IL-2 from anti-BCR antibody stimulated B cells, the evaluation whether the effects were caused by the recruitment of phosphatase SHP-2 to ITIM of PD-1was carried out. As shown in FIG. 4, by adjusting the amount of samples with that of PD-1 as a control, the determination of the quantity of SHP-2 recruitment resulted in the obvious recruitment of SHP-2, in 1 and 10 μg, as compared with control hybrid antibodies. [0160]
  • EXAMPLE 6 cDNA Cloning of Anti-Mouse PD-1 Antibody J43
  • (1) Preparation of Anti-Mouse PD-1 Antibody J43 [0161]
  • Anti-mouse PD-1 antibody producing hybridoma (J43) cells were cultured in Hybridoma SFM medium (manufactured by Invitrogen) at 37° C. under 5% CO[0162] 2, a few days after the culture supernatants of hybridoma cells were recovered. IgG fraction was purified from the culture supernatants recovered by using HiTrap Protein G (manufactured by Amersham Bioscience).
  • (2) Peptide Sequencing [0163]
  • J43 IgG was subjected to 10-20% SDS-PAGE. After electrophoresis the IgG was electrically transferred from the gel onto PVDF membrane (manufactured by BIO RAD). The membrane transferred was stained with coomassie, the membrane fraction containing the light chain of J43 IgG was removed, and amino terminal 15 residues of the light chain were determined by using peptide sequencer Procise492 (manufactured by Applied Biosystems)(SEQ ID NO:1). [0164]
  • (3) Extraction of RNA [0165]
  • 5×10[0166] 6 hybridoma cells were lysed with 1 ml of TRIzol (manufactured by Invitrogen). Total RNA was prepared according to the direction of attached document. mRNA was purified from total RNA thus prepared by using Oligotex-MAG mRNA Purification Kit (manufactured by Takara Shuzo).
  • (4) Cloning of Light Chain cDNA (3′RACE) Degenerated primer (primer No.1) was designed based on the amino terminal sequence (YELTQPPSASVNVGE) of the light chain determined by peptide sequencing. 3′RACE was carried out by using 3′-Full RACE Core Set (manufactured by Takara Shuzo) under the following conditions. [0167]
    Primer No. 1 5′-ta(c/t) ga(a/g) ct(g/a/t/c) ac(g/a/t/c) ca(a/g) (SEQ ID NO:2)
    cc(g/a/t/c) cc-3′
    1) Synthesis of first strand cDNA
    10 × RNA polymerase chain reaction (PCR) buffer 2
    J43 mRNA (50 ng/μl) 2
    Magnesium chloride (25 mM) 4
    dNTP mixture (each 10 mM) 2
    AMV Reverse Transcriptase XL (5 U/μl) 1
    Oligo dT-3sites Adapter primer (2.5 pmol/μl) 1
    Ribonuclease (RNase) inhibitor (40 U/μl) 0.5
    dH2O 7.5
    15 μl
    30° C. 10 min. → 50° C. → 30 min. → 95° C. 5 min. → 4° C. 5 min.
    2) Polymerase chain reaction (PCR)
    First strand cDNA 1
    Primer No. 1 (20 pmol/μl) 1
    Anchorprimer 1
    dH2O 22
    One shot LA PCR Mix™ 25
    50 μl
    95° C. 5 min. → (94° C. 29 sec., 50° C. 20 sec., 72° C. 60 sec.) × 30 cycles
  • The PCR products were subjected to electrophoresis using 1% Agarose gel, then the gel was stained by EtBr. DNA fragment was recovered from the gel by using MinElute Gel Extraction Kit (manufactured by Quiagen), the DNA fragment recovered was ligated to pGEM-T Easy Vector (manufactured by Promega) by using DNA Ligation Kit ver.2 (manufactured by Takara Shuzo). [0168] E. coli DH5α was transformed with the ligated plasmid. Finally, the plasmid was purified from E. coli and J43 IgG light chain cDNA was sequenced (SEQ ID NO:3). The deduced amino acid sequence of the cDNA is shown in sequence listing (SEQ ID NO:4).
  • (5) Cloning of Heavy Chain cDNA (5′RACE) [0169]
  • To perform 5′RACE, primers for constant region were designed based upon the reported information of hamster IgG heavy chain cDNA sequence (GenBank Accession No.U17166). 5′RACE was carried out by using 5′-Full RACE Core Set (manufactured by Takara Shuzo) under the following conditions. [0170]
    Primer No. 2 5′-ccc aag agg tca gga gtt gga-3′ (5′ phosphorylated) (SEQ ID NO:5)
    Primer No. 3 5′-ttg acc agg cat ccc agg gtc-3′ (SEQ ID NO:6)
    Primer No. 4 5′-cgt aag ctg gaa ctc tgg agc-3′ (SEQ ID NO:7)
    Primer No. 5 5′-tgg ttg tgc tgt cac agg cag-3′ (SEQ ID NO:8)
    Primer No. 6 5′-tgc aca cct tcc cat ctg tcc t-3′ (SEQ ID NO:9)
    1) Synthesis of first strand cDNA
    J43 total RNA (2 μg/μl) 2
    10 × RNA polymerase chain reaction (PCR) buffer 1.5
    Ribonuclease (RNase) inhibitor (40 U/μl) 0.5
    AMV Reverse Transcriptase XL (5 U/μl) 1
    Primer No. 2 (100 pmol/μl) 2
    dH2O 8
    15 μl
    30° C. 10 min. → 50° C. → 40 min. → 30° C. 2 min.
    2) Degeneration of hybrid RNA
    First strand cDNA 15
    5 × Hybrid RNA Degeneration buffer 15
    dH2O 45
    Ribonuclease H (RNaseH) 1
    76 μl
    30° 1 hour
    After the reaction, ethanol precipitation was carried out.
    3) Cyclization of single chain cDNA by ligation
    5 × RNA (ssDNA) Ligation buffer 8
    40% Polyethylene glycol (PEG) #6000 20
    dH2O 12
    Pellet after ethanol precipitation
    T4 RNA ligase 1
    41 μl
    15° C. 15 hours
    4) First PCR
    Sample after ligation 1
    Primer No. 3 (5 pmol/μl) 2
    Primer No. 4 (5 pmol/μl) 2
    dH2O 20
    One shot LA PCR Mix™ 25
    50 μl
    94° C. 3 min. → (94° C. → 30 sec., 52° C. 30 sec, 72° C. 120 sec.) × 25 cycles
    5) Second PCR
    Product of first PCR 2
    Primer No. 5 (5 pmol/μl) 2
    Primer No. 6 (5 pmol/μl) 2
    dH2O 20
    One shot LA PCR Mix™ 25
    50 μl
    94° C. 3 min. → (94° C. 30 sec., 52° C. 30 sec, 72° C. 120 sec.) × 30 cycles
  • The PCR products were subjected to electrophoresis using 1% Agarose gel, then the gel was stained by EtBr. DNA fragment was recovered from the gel by using MinElute Gel Extraction Kit (manufactured by Quiagen), the DNA fragment recovered was ligated to pGEM-T Easy Vector (manufactured by Promega) by using DNA Ligation Kit ver.2 (manufactured by Takara Shuzo). [0171] E. coli DH5α was transformed with the ligated plasmid. Finally, the plasmid was purified from E. coli and J43 IgG heavy chain cDNA was sequenced (SEQ ID NO:10). The deduced amino acid sequence of the cDNA is shown in sequence listing (SEQ ID NO:11)
  • EXAMPLE 7 cDNA Cloning of Anti-Mouse CD3ε Antibody
  • (1) Preparation of RNA [0172]
  • Anti-mouse CD3ε antibody producing hybridoma (145-2C11: manufactured by Pharmingen) cells were cultured in Hybridoma SFM medium (manufactured by Invitrogen) at 37° C. under 5% CO[0173] 2, a few days after 5×106 hybrisoma cells were lysed with 1 ml of TRIzol (manufactured by Invitrogen). Total RNA was prepared according to the direction of attached document.
  • (1) Preparation of cDNA Library [0174]
  • cDNA was synthesized from 2.5 μg of total RNA extracted from hybridoma (145-2C11) cells by oligo-dT prime method using Ready-To-Go You-Prime First-Strand Beads (manufactured by Amersham Pharmacia). Operations and procedures were followed by the instructions of attached document. [0175]
  • (3) cDNA Cloning of Heavy and Light Chains [0176]
  • Based upon the reported cDNA sequence information of heavy chain variable region of hybridoma 145-2C11 (GenBank Accession No.AF000357), primers No.7 and No.8 were designed. Also, based upon the cDNA sequence information of light chain variable region of 145-2C11 (GenBank Accession No.AF000356), primers No.9 and No.10 were designed. PCR was carried out using these primers and the cDNA library from hybridoma 145-2C11 as a template. [0177]
    Primer No. 7 5′-gag gtg cag ctg gtg gag tct-3′ (SEQ ID NO:12)
    Primer No. 8 5′-tga gga gac ggt gac cat ggt t-3′ (SEQ ID NO:13)
    Primer No. 9 5′-gac atc cag atg acc cag tct c-3′ (SEQ ID NO:14)
    Primer No. 10 5′-ttt gat ttc cag ctt ggt gcc ag-3′ (SEQ ID NO:15)
    cDNA library 2
    Primer No. 7 or No. 9 (5 pmol/μl) 2
    Primer No. 8 or No. 10 (5 pmol/μl) 2
    dH2O 20
    One shot LA PCR Mix™ 25
    50 μl
    (94° C. 30 sec., 52° C. 30 sec., 72° C. 120 sec.) × 30 cycles
  • The PCR products were subjected to electrophoresis using 1% Agarose gel, then the gel was stained by EtBr. DNA fragments were recovered from the gel by using MinElute Gel Extraction Kit (manufactured by Quiagen), the DNA fragments recovered was ligated to pGEM-T Easy Vector (manufactured by Promega) by using DNA Ligation Kit ver.2 (manufactured by Takara Shuzo). [0178] E. coli DH5α were transformed with the ligated plasmids. Finally, the plasmids were purified from E. coli, and both DNA were sequenced. It was confirmed that their sequences were identical to those of GenBank Accession No.AF000357and GenBank Accession No.AF000356, respectively.
  • EXAMPLE 8 Constraction of Expression Plasmid for J43-2C11 Bispecific Antibody
  • J43 IgG heavy chain cDNA and 145-2C11 IgG light chain cDNA were connected by PCR using linker No.1, No.2, primer No.11 and No.12 to prepare fragment 1 (see FIG. 5). Next, 145-2C11 IgG light chain cDNA and 145-2C11 IgG heavy chain cDNA were connected by PCR using linker No.3, No.4, primer No.13 and No.14 to prepare fragment 2 (see FIG. 5). 145-2C11 IgG heavy chain cDNA and J43 IgG light chain cDNA were connected by PCR using linker No.5, No.6, primer No.15and No.16 to prepare fragment 3 (see FIG. 5). [0179]
    Primer No. 11 5′-ttt gaa ttc aga ggt gcg gct tct gga gtc t-3′ (SEQ ID NO:16)
    Primer No. 12 5′-gat cag gag ctt agg agc ttt cc-3′ (SEQ ID NO:17)
    Primer No. 13 5′-cag gcc agt cag gac att agc aa-3′ (SEQ ID NO:18)
    Primer No. 14 5′-taa tgt atg cga ccg act cca gc-3′ (SEQ ID NO:19)
    Primer No. 15 5′-tga ggc ctc tgg att cac ctt ca-3′ (SEQ ID NO:20)
    Primer No. 16 5′-aaa aaa aaa ctc gag gac cta gga cgg tga gct ggg t-3′ (SEQ ID NO:21)
    Linker No. 1 5′-agg gac cca agt cac tgt ctc ctc agg tgg agg cgg ttc aga (SEQ ID NO:22)
    cat cca gat gac cca gtc tcc at-3′
    Linker No. 2 5′-tcc ctg ggt tca gtg aca gag gag tcc acc tcc gcc aag tct (SEQ ID NO:23)
    gta ggt cta ctg ggt cag agg ta-3′
    Linker No. 3 5′-acc tgg cac caa gct gga aat caa agg tgg agg cgg ttc agg (SEQ ID NO:24)
    cgg agg tgg ctc tgg cgg tgg cgg atc gga ggt gca gct ggt gga
    gtc tgg gg-3′
    Linker No. 4 5′-tgg acc gtg gtt cga cct tta gtt tcc acc tcc gcc aag tcc (SEQ ID NO:25)
    gcc tcc acc gag acc gcc acc gcc tag cct cca cgt cga cca cct
    cag acc cc-3′
    Linker No. 5 5′-agg aac cat ggt cac cgt ctc ctc agg tgg agg cgg ttc ata (SEQ ID NO:26)
    tga gct gac tca gcc acc ttc ag-3′
    Linker No. 6 5′-tcc ttg gta cca gtg gca gag gag tcc acc tcc gcc aag tat (SEQ ID NO:27)
    act cga ctg agt cgg tgg aag tc-3′
    PCR condition for fragments 1, 2 and 3
    First PCR
    Template 1 2
    Template 2 2
    Linker (100 ng/μl) 2
    Linker (100 ng/μl) 2
    dH2O 17
    One shot LA PCR Mix™ 25
    50 μl
    95° C. 5 min., → (94° C. 30 sec., 40° C. 30 sec., 72° C. 60 sec.) × 20 cycles
    Second PCR
    Product of first PCR 5
    Primer (5 pmol/μl) 2
    Primer (5 pmol/μl) 2
    dH2O 16
    One shot LA PCR Mix™ 25
    50 μl
    95° C. 5 min., → (94° C. 30 sec., 50° C. 30 sec., 72° C. 60 sec.) × 30 cycles
  • The DNA fragments 1, 2 and 3 and plasmid pBluescriptII SK(+) (manufactured by StrateGene) were digested with restriction enzymes EcoRI/KpnI, KpnI/SphI, SphI/XhoI, EcoRI/XhoI, respectively. After electrophoresis on 1% agarose gel, the DNA fragments were purified from the gel using MinElute Gel Extraction Kit. Next, these three fragments and plasmid pBluescriptII SK(+) (manufactured by StrateGene) were connected using DNA Ligation Kit ver.2 (manufactured by Takara Shuzo), then [0180] E. coli DH5α were transformed with the connected plasmid. Plasmid J43-2C11scDb-pBluescriptII SK(+) was prepared from E. coli, then the nucleotide sequence of the insert was determined (SEQ ID NO:28). The deduced amino acid sequence is shown in sequence listing (SEQ ID NO:29).
  • J43-2C11scDb-pBluescriptII SK(+) was digested with restriction enzymes BamHI and XhoI, the BamHI-XhoI fragment out of BamHI-XhoI and BamHI-BamHI fragments generated by the digestion was connected with BamHI/XhoI digested mammalian expression vector pSecTag2/Hygro B (manufactured by Invitrogen). Next, the pSecTag2/Hygro B connected with BamHI-XhoI fragment was digested again with restriction enzyme BamHI, and connected with the other BamHI-BamHI fragment. [0181] E. coli DH5α were transformed with the connected plasmid. Finally, Plasmid J43-2C11scDb-pSec/Hygro B was prepared from E. coli, then the nucleotide sequence of thus prepared J43-2C11bispecific antibody was determined (SEQ ID NO:30). The deduced amino acid sequence is shown in sequence listing (SEQ ID NO:31)
  • EXAMPLE 9 Expression of J43-2C11 Bispecific Antibody
  • 6×10[0182] 6 293 T cells were suspended in 20 ml of medium (DMEM containing 10% FBS) and seeded into 150 mm dish coated with Type Ic collagen. Next day, the cells were washed with 10 ml of DMEM and transfected with J43-2C11scDb-pSec/Hygro B by using LipofectAMINE-plus. After 3 hours, 5 ml of DMEM containing 40% FBS were added to the cells. At day 2, the cells were washed with 10 ml of DMEM, added 20 ml of new DMEM, and the culture supernatant was recovered at day 4.
  • The cells were discarded by centrifugation, then the supernatant was filtrated using 0.22 μm PVDF filter. The supernatant was enclosed in dialysis tube, dialyzed against PBS containing 40% PEG20000, and concentrated. The concentrated supernatant was purified using HiTrap chelating HP column (manufactured by Amersham Farmacia). To purify further, the antibodies were purified by gel-filtration using Hiprep 16/60 Sephacryl S-200 High Resolution (manufactured by Amersham Farmacia). [0183]
  • EXAMPLE 10 Suppression of T Cell Activation
  • Spleen was removed from BALB/c mouse, and cells were prepared using CellStrainer (70 μm Nyron). The cells were recovered by centrifugation, and red blood cells were hemolyzed by the addition of hemolysis buffer [NH[0184] 4Cl (0.8%), KCO3 (0.1%) and EDTA (1 mM)]. The cells were washed with PBS (−) once, T cells were enriched by using mouse CD3+T cell enrichment column kit (manufactured by R&D), and suspended in medium (RPMI1640 containing 10% FBS) in the proportion of 5×106 cells/ml. The T cells thus prepared were seeded on 96-well plates (2×105 cells/100 μl /well), which were coated preliminarily with 5 μg/ml of anti-CD3 antibodies (clone KT3) at 37° C. for 3 hours, added with J43-2C11 bispecific antibody diluted in the medium (0.01, 0.03, 0.1, 0.3, 1 and 3 μg/100 μl ), and cultivated for 72 hours at 37° C. under 5% CO2. After 72 hours, the culture supernatants were recovered, and the concentrations of IFN-r in the supernatants were determined by using Quantikine Immunoassay Kit (manufactured by R&D).
  • As shown in FIG. 6, J43-2C11 bispecific antibody suppressed dose dependently the production of IFN-r from activated mouse spleen T cells in vitro. [0185]
  • 1 31 1 15 PRT Mus musculus 1 Tyr Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu 1 5 10 15 2 20 DNA Artificial Sequence Designed DNA based on amino terminal sequence of monoclonal antibody J43 light chain to act as a degenerated primer 2 taygarctna cncarccncc 20 3 798 DNA Mus musculus CDS (1)..(642) mat_peptide (1)..(642) 3 tat gag ctg act cag cca cct tca gca tca gtc aat gta gga gag act 48 Tyr Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu Thr 1 5 10 15 gtc aaa atc acc tgc tct ggg gac caa ttg ccg aaa tat ttt gca gat 96 Val Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala Asp 20 25 30 tgg ttt cat caa agg tca gac cag acc att ttg caa gtg ata tat gat 144 Trp Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr Asp 35 40 45 gat aat aag cgc ccc tcg ggg atc cct gaa aga atc tct ggg tcc agc 192 Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser Ser 50 55 60 tca ggg aca aca gcc acc ttg acc atc aga gat gtc cgg gct gag gat 240 Ser Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu Asp 65 70 75 80 gaa ggt gac tat tac tgt ttc tca gga tat gtt gat agt gat agc aaa 288 Glu Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser Lys 85 90 95 ttg tat gtt ttt ggc agc gga acc cag ctc acc gtc cta ggt gga ccc 336 Leu Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly Gly Pro 100 105 110 aag tct tct ccc aaa gtc aca gtg ttt cca cct tca cct gag gag ctc 384 Lys Ser Ser Pro Lys Val Thr Val Phe Pro Pro Ser Pro Glu Glu Leu 115 120 125 cgg aca aac aaa gcc aca ctg gtg tgt ctg gtt aat gac ttc tac ccg 432 Arg Thr Asn Lys Ala Thr Leu Val Cys Leu Val Asn Asp Phe Tyr Pro 130 135 140 ggt tct gca aca gtg acc tgg aag gca aat gga gca act atc aat gat 480 Gly Ser Ala Thr Val Thr Trp Lys Ala Asn Gly Ala Thr Ile Asn Asp 145 150 155 160 ggg gtg aag act aca aag cct tcc aaa cag ggc caa aac tac atg acc 528 Gly Val Lys Thr Thr Lys Pro Ser Lys Gln Gly Gln Asn Tyr Met Thr 165 170 175 agc agc tac cta agt ttg aca gca gac cag tgg aaa tct cac aac agg 576 Ser Ser Tyr Leu Ser Leu Thr Ala Asp Gln Trp Lys Ser His Asn Arg 180 185 190 gtt tcc tgc caa gtt acc cat gaa ggg gaa act gtg gag aag agt ttg 624 Val Ser Cys Gln Val Thr His Glu Gly Glu Thr Val Glu Lys Ser Leu 195 200 205 tcc cct gca gaa tgt ctc taggagccca gtctttttct tagcccagga 672 Ser Pro Ala Glu Cys Leu 210 agcctggagc tacgggaccc agaatgtggt cttctctcta ttctatcaat ctcaaacctt 732 ctgctcttac ccactgagta ttcaataaag tatcattagt taatcaaaaa aaaaaaaaaa 792 acaaaa 798 4 214 PRT Mus musculus 4 Tyr Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu Thr 1 5 10 15 Val Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala Asp 20 25 30 Trp Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr Asp 35 40 45 Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser Ser 50 55 60 Ser Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu Asp 65 70 75 80 Glu Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser Lys 85 90 95 Leu Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly Gly Pro 100 105 110 Lys Ser Ser Pro Lys Val Thr Val Phe Pro Pro Ser Pro Glu Glu Leu 115 120 125 Arg Thr Asn Lys Ala Thr Leu Val Cys Leu Val Asn Asp Phe Tyr Pro 130 135 140 Gly Ser Ala Thr Val Thr Trp Lys Ala Asn Gly Ala Thr Ile Asn Asp 145 150 155 160 Gly Val Lys Thr Thr Lys Pro Ser Lys Gln Gly Gln Asn Tyr Met Thr 165 170 175 Ser Ser Tyr Leu Ser Leu Thr Ala Asp Gln Trp Lys Ser His Asn Arg 180 185 190 Val Ser Cys Gln Val Thr His Glu Gly Glu Thr Val Glu Lys Ser Leu 195 200 205 Ser Pro Ala Glu Cys Leu 210 5 21 DNA Cricetulus migratorius modified_base (1)..(1) phosphorylated 5 cccaagaggt caggagttgg a 21 6 21 DNA Cricetulus migratorius 6 ttgaccaggc atcccagggt c 21 7 21 DNA Cricetulus migratorius 7 cgtaagctgg aactctggag c 21 8 21 DNA Cricetulus migratorius 8 tggttgtgct gtcacaggca g 21 9 22 DNA Cricetulus migratorius 9 tgcacacctt cccatctgtc ct 22 10 548 DNA Mus musculus CDS (66)..(548) sig_peptide (66)..(128) mat_peptide (129)..(548) 10 ggaggcagag gactctagcc ctgtcttccc attcagtgag cagcactgaa aacaagacca 60 tcaac atg gga ttg gga ctg cag tgg gtt ttc ttt gtt gct ctt tta aaa 110 Met Gly Leu Gly Leu Gln Trp Val Phe Phe Val Ala Leu Leu Lys -20 -15 -10 ggt gtc cac tgt gag gtg cgg ctt ctg gag tct ggt gga gga tta gtg 158 Gly Val His Cys Glu Val Arg Leu Leu Glu Ser Gly Gly Gly Leu Val -5 -1 1 5 10 aag cct gag ggg tca ctg aaa ctc tcc tgt gtg gcc tct gga ttc acc 206 Lys Pro Glu Gly Ser Leu Lys Leu Ser Cys Val Ala Ser Gly Phe Thr 15 20 25 ttc agt gac tat ttc atg agc tgg gtc cgc cag gct cca ggg aag ggg 254 Phe Ser Asp Tyr Phe Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 30 35 40 ctg gag tgg gtt gct cac ata tac acg aaa agt tat aat tat gca act 302 Leu Glu Trp Val Ala His Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr 45 50 55 tat tac tcg ggt tcg gtg aaa ggc aga ttc acc atc tcc aga gat gat 350 Tyr Tyr Ser Gly Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp 60 65 70 tcc cga agc atg gtc tac ctg caa atg aac aac ctg aga act gag gac 398 Ser Arg Ser Met Val Tyr Leu Gln Met Asn Asn Leu Arg Thr Glu Asp 75 80 85 90 acg gcc act tat tac tgt aca aga gat gga agc gga tat ccc tct ctg 446 Thr Ala Thr Tyr Tyr Cys Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu 95 100 105 gat ttc tgg ggt caa ggg acc caa gtc act gtc tcc tca gcc aca aca 494 Asp Phe Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Ala Thr Thr 110 115 120 aca gcc cca tct gtc tat ccc ttg gcc cct gcc tgt gac agc aca acc 542 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Ala Cys Asp Ser Thr Thr 125 130 135 aaa tcg 548 Lys Ser 140 11 161 PRT Mus musculus 11 Met Gly Leu Gly Leu Gln Trp Val Phe Phe Val Ala Leu Leu Lys Gly -20 -15 -10 Val His Cys Glu Val Arg Leu Leu Glu Ser Gly Gly Gly Leu Val Lys -5 -1 1 5 10 Pro Glu Gly Ser Leu Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe 15 20 25 Ser Asp Tyr Phe Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 30 35 40 Glu Trp Val Ala His Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr Tyr 45 50 55 Tyr Ser Gly Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser 60 65 70 75 Arg Ser Met Val Tyr Leu Gln Met Asn Asn Leu Arg Thr Glu Asp Thr 80 85 90 Ala Thr Tyr Tyr Cys Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu Asp 95 100 105 Phe Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Ala Thr Thr Thr 110 115 120 Ala Pro Ser Val Tyr Pro Leu Ala Pro Ala Cys Asp Ser Thr Thr Lys 125 130 135 Ser 140 12 21 DNA Mus musculus 12 gaggtgcagc tggtggagtc t 21 13 22 DNA Mus musculus 13 tgaggagacg gtgaccatgg tt 22 14 22 DNA Mus musculus 14 gacatccaga tgacccagtc tc 22 15 23 DNA Mus musculus 15 tttgatttcc agcttggtgc cag 23 16 31 DNA Mus musculus 16 tttgaattca gaggtgcggc ttctggagtc t 31 17 23 DNA Mus musculus 17 gatcaggagc ttaggagctt tcc 23 18 23 DNA Mus musculus 18 caggccagtc aggacattag caa 23 19 23 DNA Mus musculus 19 taatgtatgc gaccgactcc agc 23 20 23 DNA Mus musculus 20 tgaggcctct ggattcacct tca 23 21 37 DNA Mus musculus 21 aaaaaaaaac tcgaggacct aggacggtga gctgggt 37 22 65 DNA Artificial Sequence Designed DNA to act as a linker between the heavy chain of J43 and the light chain of 145-2C11 22 agggacccaa gtcactgtct cctcaggtgg aggcggttca gacatccaga tgacccagtc 60 tccat 65 23 65 DNA Artificial Sequence Designed DNA to act as a linker between the heavy chain of J43 and the light chain of 145-2C11 23 tccctgggtt cagtgacaga ggagtccacc tccgccaagt ctgtaggtct actgggtcag 60 aggta 65 24 95 DNA Artificial Sequence Designed DNA to act as a linker between the heavy and light chains of 145-2C11 24 acctggcacc aagctggaaa tcaaaggtgg aggcggttca ggcggaggtg gctctggcgg 60 tggcggatcg gaggtgcagc tggtggagtc tgggg 95 25 95 DNA Artificial Sequence Designed DNA to act as a linker between the heavy and light chains of 145-2C11 25 tggaccgtgg ttcgaccttt agtttccacc tccgccaagt ccgcctccac cgagaccgcc 60 accgcctagc ctccacgtcg accacctcag acccc 95 26 65 DNA Artificial Sequence Designed DNA to act as a linker between the heavy chain of 145-2C11 and the light chain of J43 26 aggaaccatg gtcaccgtct cctcaggtgg aggcggttca tatgagctga ctcagccacc 60 ttcag 65 27 65 DNA Artificial Sequence Designed DNA to act as a linker between the heavy chain of 145-2C11 and the light chain of J43 27 tccttggtac cagtggcaga ggagtccacc tccgccaagt atactcgact gagtcggtgg 60 aagtc 65 28 1437 DNA Artificial Sequence Designed DNA to produce the bispecific antibody 28 gag gtg cgg ctt ctg gag tct ggt gga gga tta gtg aag cct gag ggg 48 Glu Val Arg Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Glu Gly 1 5 10 15 tca ctg aaa ctc tcc tgt gtg gcc tct gga ttc acc ttc agt gac tat 96 Ser Leu Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30 ttc atg agc tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtt 144 Phe Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 gct cac ata tac acg aaa agt tat aat tat gca act tat tac tcg ggt 192 Ala His Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr Tyr Tyr Ser Gly 50 55 60 tcg gtg aaa ggc aga ttc acc atc tcc aga gat gat tcc cga agc atg 240 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Arg Ser Met 65 70 75 80 gtc tac ctg caa atg aac aac ctg aga act gag gac acg gcc act tat 288 Val Tyr Leu Gln Met Asn Asn Leu Arg Thr Glu Asp Thr Ala Thr Tyr 85 90 95 tac tgt aca aga gat gga agc gga tat ccc tct ctg gat ttc tgg ggt 336 Tyr Cys Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu Asp Phe Trp Gly 100 105 110 caa ggg acc caa gtc act gtc tcc tca ggt gga ggc ggt tca gac atc 384 Gln Gly Thr Gln Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp Ile 115 120 125 cag atg acc cag tct cca tca tca ctg cct gcc tcc ctg gga gac aga 432 Gln Met Thr Gln Ser Pro Ser Ser Leu Pro Ala Ser Leu Gly Asp Arg 130 135 140 gtc act atc aat tgt cag gcc agt cag gac att agc aat tat tta aac 480 Val Thr Ile Asn Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn 145 150 155 160 tgg tac cag cag aaa cca ggg aaa gct cct aag ctc ctg atc tat tat 528 Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr 165 170 175 aca aat aaa ttg gca gat gga gtc cca tca agg ttc agt ggc agt ggt 576 Thr Asn Lys Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly 180 185 190 tct ggg aga gat tct tct ttc act atc agc agc ctg gaa tcc gaa gat 624 Ser Gly Arg Asp Ser Ser Phe Thr Ile Ser Ser Leu Glu Ser Glu Asp 195 200 205 att gga tct tat tac tgt caa cag tat tat aac tat ccg tgg acg ttc 672 Ile Gly Ser Tyr Tyr Cys Gln Gln Tyr Tyr Asn Tyr Pro Trp Thr Phe 210 215 220 gga cct ggc acc aag ctg gaa atc aaa ggt gga ggc ggt tca ggc gga 720 Gly Pro Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly 225 230 235 240 ggt ggc tct ggc ggt ggc gga tcg gag gtg cag ctg gtg gag tct ggg 768 Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly 245 250 255 gga ggc ttg gtg cag cct gga aag tcc ctg aaa ctc tcc tgt gag gcc 816 Gly Gly Leu Val Gln Pro Gly Lys Ser Leu Lys Leu Ser Cys Glu Ala 260 265 270 tct gga ttc acc ttc agc ggc tat ggc atg cac tgg gtc cgc cag gct 864 Ser Gly Phe Thr Phe Ser Gly Tyr Gly Met His Trp Val Arg Gln Ala 275 280 285 cca ggg agg ggg ctg gag tcg gtc gca tac att act agt agt agt att 912 Pro Gly Arg Gly Leu Glu Ser Val Ala Tyr Ile Thr Ser Ser Ser Ile 290 295 300 aat atc aaa tat gct gac gct gtg aaa ggc cgg ttc acc gtc tcc aga 960 Asn Ile Lys Tyr Ala Asp Ala Val Lys Gly Arg Phe Thr Val Ser Arg 305 310 315 320 gac aat gcc aag aac tta ctg ttt cta caa atg aac att ctc aag tct 1008 Asp Asn Ala Lys Asn Leu Leu Phe Leu Gln Met Asn Ile Leu Lys Ser 325 330 335 gag gac aca gcc atg tac tac tgt gca aga ttc gac tgg gac aaa aat 1056 Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Phe Asp Trp Asp Lys Asn 340 345 350 tac tgg ggc caa gga acc atg gtc acc gtc tcc tca ggt gga ggc ggt 1104 Tyr Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly Gly 355 360 365 tca tat gag ctg act cag cca cct tca gca tca gtc aat gta gga gag 1152 Ser Tyr Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu 370 375 380 act gtc aaa atc acc tgc tct ggg gac caa ttg ccg aaa tat ttt gca 1200 Thr Val Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala 385 390 395 400 gat tgg ttt cat caa agg tca gac cag acc att ttg caa gtg ata tat 1248 Asp Trp Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr 405 410 415 gat gat aat aag cgc ccc tcg ggg atc cct gaa aga atc tct ggg tcc 1296 Asp Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser 420 425 430 agc tca ggg aca aca gcc acc ttg acc atc aga gat gtc cgg gct gag 1344 Ser Ser Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu 435 440 445 gat gaa ggt gac tat tac tgt ttc tca gga tat gtt gat agt gat agc 1392 Asp Glu Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser 450 455 460 aaa ttg tat gtt ttt ggc agc gga acc cag ctc acc gtc cta ggt 1437 Lys Leu Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly 465 470 475 29 479 PRT Artificial Sequence Designed DNA to produce the bispecific antibody 29 Glu Val Arg Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Glu Gly 1 5 10 15 Ser Leu Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30 Phe Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ala His Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr Tyr Tyr Ser Gly 50 55 60 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Arg Ser Met 65 70 75 80 Val Tyr Leu Gln Met Asn Asn Leu Arg Thr Glu Asp Thr Ala Thr Tyr 85 90 95 Tyr Cys Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu Asp Phe Trp Gly 100 105 110 Gln Gly Thr Gln Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp Ile 115 120 125 Gln Met Thr Gln Ser Pro Ser Ser Leu Pro Ala Ser Leu Gly Asp Arg 130 135 140 Val Thr Ile Asn Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn 145 150 155 160 Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr 165 170 175 Thr Asn Lys Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly 180 185 190 Ser Gly Arg Asp Ser Ser Phe Thr Ile Ser Ser Leu Glu Ser Glu Asp 195 200 205 Ile Gly Ser Tyr Tyr Cys Gln Gln Tyr Tyr Asn Tyr Pro Trp Thr Phe 210 215 220 Gly Pro Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly 225 230 235 240 Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly 245 250 255 Gly Gly Leu Val Gln Pro Gly Lys Ser Leu Lys Leu Ser Cys Glu Ala 260 265 270 Ser Gly Phe Thr Phe Ser Gly Tyr Gly Met His Trp Val Arg Gln Ala 275 280 285 Pro Gly Arg Gly Leu Glu Ser Val Ala Tyr Ile Thr Ser Ser Ser Ile 290 295 300 Asn Ile Lys Tyr Ala Asp Ala Val Lys Gly Arg Phe Thr Val Ser Arg 305 310 315 320 Asp Asn Ala Lys Asn Leu Leu Phe Leu Gln Met Asn Ile Leu Lys Ser 325 330 335 Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Phe Asp Trp Asp Lys Asn 340 345 350 Tyr Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly Gly 355 360 365 Ser Tyr Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu 370 375 380 Thr Val Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala 385 390 395 400 Asp Trp Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr 405 410 415 Asp Asp Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser 420 425 430 Ser Ser Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu 435 440 445 Asp Glu Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser 450 455 460 Lys Leu Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly 465 470 475 30 1656 DNA Artificial Sequence Designed protein to act as the bispecific antibody 30 atg gag aca gac aca ctc ctg cta tgg gta ctg ctg ctc tgg gtt cca 48 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro -20 -15 -10 ggt tcc act ggt gac gcg gcc cag ccg gcc agg cgc gcg cgc cgt acg 96 Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Arg Arg Ala Arg Arg Thr -5 -1 1 5 10 aag ctt ggt acc gag ctc gga tcc ccc ggg ctg cag gaa ttc gag gtg 144 Lys Leu Gly Thr Glu Leu Gly Ser Pro Gly Leu Gln Glu Phe Glu Val 15 20 25 cgg ctt ctg gag tct ggt gga gga tta gtg aag cct gag ggg tca ctg 192 Arg Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Glu Gly Ser Leu 30 35 40 aaa ctc tcc tgt gtg gcc tct gga ttc acc ttc agt gac tat ttc atg 240 Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Asp Tyr Phe Met 45 50 55 agc tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtt gct cac 288 Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala His 60 65 70 75 ata tac acg aaa agt tat aat tat gca act tat tac tcg ggt tcg gtg 336 Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr Tyr Tyr Ser Gly Ser Val 80 85 90 aaa ggc aga ttc acc atc tcc aga gat gat tcc cga agc atg gtc tac 384 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Arg Ser Met Val Tyr 95 100 105 ctg caa atg aac aac ctg aga act gag gac acg gcc act tat tac tgt 432 Leu Gln Met Asn Asn Leu Arg Thr Glu Asp Thr Ala Thr Tyr Tyr Cys 110 115 120 aca aga gat gga agc gga tat ccc tct ctg gat ttc tgg ggt caa ggg 480 Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu Asp Phe Trp Gly Gln Gly 125 130 135 acc caa gtc act gtc tcc tca ggt gga ggc ggt tca gac atc cag atg 528 Thr Gln Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp Ile Gln Met 140 145 150 155 acc cag tct cca tca tca ctg cct gcc tcc ctg gga gac aga gtc act 576 Thr Gln Ser Pro Ser Ser Leu Pro Ala Ser Leu Gly Asp Arg Val Thr 160 165 170 atc aat tgt cag gcc agt cag gac att agc aat tat tta aac tgg tac 624 Ile Asn Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr 175 180 185 cag cag aaa cca ggg aaa gct cct aag ctc ctg atc tat tat aca aat 672 Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Asn 190 195 200 aaa ttg gca gat gga gtc cca tca agg ttc agt ggc agt ggt tct ggg 720 Lys Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly 205 210 215 aga gat tct tct ttc act atc agc agc ctg gaa tcc gaa gat att gga 768 Arg Asp Ser Ser Phe Thr Ile Ser Ser Leu Glu Ser Glu Asp Ile Gly 220 225 230 235 tct tat tac tgt caa cag tat tat aac tat ccg tgg acg ttc gga cct 816 Ser Tyr Tyr Cys Gln Gln Tyr Tyr Asn Tyr Pro Trp Thr Phe Gly Pro 240 245 250 ggc acc aag ctg gaa atc aaa ggt gga ggc ggt tca ggc gga ggt ggc 864 Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly 255 260 265 tct ggc ggt ggc gga tcg gag gtg cag ctg gtg gag tct ggg gga ggc 912 Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly 270 275 280 ttg gtg cag cct gga aag tcc ctg aaa ctc tcc tgt gag gcc tct gga 960 Leu Val Gln Pro Gly Lys Ser Leu Lys Leu Ser Cys Glu Ala Ser Gly 285 290 295 ttc acc ttc agc ggc tat ggc atg cac tgg gtc cgc cag gct cca ggg 1008 Phe Thr Phe Ser Gly Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly 300 305 310 315 agg ggg ctg gag tcg gtc gca tac att act agt agt agt att aat atc 1056 Arg Gly Leu Glu Ser Val Ala Tyr Ile Thr Ser Ser Ser Ile Asn Ile 320 325 330 aaa tat gct gac gct gtg aaa ggc cgg ttc acc gtc tcc aga gac aat 1104 Lys Tyr Ala Asp Ala Val Lys Gly Arg Phe Thr Val Ser Arg Asp Asn 335 340 345 gcc aag aac tta ctg ttt cta caa atg aac att ctc aag tct gag gac 1152 Ala Lys Asn Leu Leu Phe Leu Gln Met Asn Ile Leu Lys Ser Glu Asp 350 355 360 aca gcc atg tac tac tgt gca aga ttc gac tgg gac aaa aat tac tgg 1200 Thr Ala Met Tyr Tyr Cys Ala Arg Phe Asp Trp Asp Lys Asn Tyr Trp 365 370 375 ggc caa gga acc atg gtc acc gtc tcc tca ggt gga ggc ggt tca tat 1248 Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly Gly Ser Tyr 380 385 390 395 gag ctg act cag cca cct tca gca tca gtc aat gta gga gag act gtc 1296 Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu Thr Val 400 405 410 aaa atc acc tgc tct ggg gac caa ttg ccg aaa tat ttt gca gat tgg 1344 Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala Asp Trp 415 420 425 ttt cat caa agg tca gac cag acc att ttg caa gtg ata tat gat gat 1392 Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr Asp Asp 430 435 440 aat aag cgc ccc tcg ggg atc cct gaa aga atc tct ggg tcc agc tca 1440 Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser Ser Ser 445 450 455 ggg aca aca gcc acc ttg acc atc aga gat gtc cgg gct gag gat gaa 1488 Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu Asp Glu 460 465 470 475 ggt gac tat tac tgt ttc tca gga tat gtt gat agt gat agc aaa ttg 1536 Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser Lys Leu 480 485 490 tat gtt ttt ggc agc gga acc cag ctc acc gtc cta ggt cct cga gga 1584 Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly Pro Arg Gly 495 500 505 ggg ccc gaa caa aaa ctc atc tca gaa gag gat ctg aat agc gcc gtc 1632 Gly Pro Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val 510 515 520 gac cat cat cat cat cat cat tga 1656 Asp His His His His His His 525 530 31 551 PRT Artificial Sequence Designed protein to act as the bispecific antibody 31 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro -20 -15 -10 Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Arg Arg Ala Arg Arg Thr -5 -1 1 5 10 Lys Leu Gly Thr Glu Leu Gly Ser Pro Gly Leu Gln Glu Phe Glu Val 15 20 25 Arg Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Glu Gly Ser Leu 30 35 40 Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe Ser Asp Tyr Phe Met 45 50 55 Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala His 60 65 70 75 Ile Tyr Thr Lys Ser Tyr Asn Tyr Ala Thr Tyr Tyr Ser Gly Ser Val 80 85 90 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Arg Ser Met Val Tyr 95 100 105 Leu Gln Met Asn Asn Leu Arg Thr Glu Asp Thr Ala Thr Tyr Tyr Cys 110 115 120 Thr Arg Asp Gly Ser Gly Tyr Pro Ser Leu Asp Phe Trp Gly Gln Gly 125 130 135 Thr Gln Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp Ile Gln Met 140 145 150 155 Thr Gln Ser Pro Ser Ser Leu Pro Ala Ser Leu Gly Asp Arg Val Thr 160 165 170 Ile Asn Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr 175 180 185 Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Asn 190 195 200 Lys Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly 205 210 215 Arg Asp Ser Ser Phe Thr Ile Ser Ser Leu Glu Ser Glu Asp Ile Gly 220 225 230 235 Ser Tyr Tyr Cys Gln Gln Tyr Tyr Asn Tyr Pro Trp Thr Phe Gly Pro 240 245 250 Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly 255 260 265 Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly 270 275 280 Leu Val Gln Pro Gly Lys Ser Leu Lys Leu Ser Cys Glu Ala Ser Gly 285 290 295 Phe Thr Phe Ser Gly Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly 300 305 310 315 Arg Gly Leu Glu Ser Val Ala Tyr Ile Thr Ser Ser Ser Ile Asn Ile 320 325 330 Lys Tyr Ala Asp Ala Val Lys Gly Arg Phe Thr Val Ser Arg Asp Asn 335 340 345 Ala Lys Asn Leu Leu Phe Leu Gln Met Asn Ile Leu Lys Ser Glu Asp 350 355 360 Thr Ala Met Tyr Tyr Cys Ala Arg Phe Asp Trp Asp Lys Asn Tyr Trp 365 370 375 Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly Gly Ser Tyr 380 385 390 395 Glu Leu Thr Gln Pro Pro Ser Ala Ser Val Asn Val Gly Glu Thr Val 400 405 410 Lys Ile Thr Cys Ser Gly Asp Gln Leu Pro Lys Tyr Phe Ala Asp Trp 415 420 425 Phe His Gln Arg Ser Asp Gln Thr Ile Leu Gln Val Ile Tyr Asp Asp 430 435 440 Asn Lys Arg Pro Ser Gly Ile Pro Glu Arg Ile Ser Gly Ser Ser Ser 445 450 455 Gly Thr Thr Ala Thr Leu Thr Ile Arg Asp Val Arg Ala Glu Asp Glu 460 465 470 475 Gly Asp Tyr Tyr Cys Phe Ser Gly Tyr Val Asp Ser Asp Ser Lys Leu 480 485 490 Tyr Val Phe Gly Ser Gly Thr Gln Leu Thr Val Leu Gly Pro Arg Gly 495 500 505 Gly Pro Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val 510 515 520 Asp His His His His His His 525 530

Claims (20)

1. A substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker.
2. The substance according to claim 1, which is a divalent substance comprising a substance that recognizes PD-1, a substance that recognizes a membrane protein co-existing with PD-1 on a cell membrane, and a linker.
3. The substance according to claim 1, in which a membrane protein is a protein existing on a T cell membrane or B cell membrane.
4. The substance according to claim 1, which comprises a substance that recognizes PD-1, a substance that recognizes a protein constituting T cell receptor complex or a substance that recognizes a protein constituting B cell receptor complex, and a linker.
5. The substance according to claim 1, in which a substance that recognizes PD-1 and in which a substance that recognizes a protein is dimer to pentamer, respectively.
6. The substance according to claim 1, in which one of or both substance that recognizes PD-1 and substance that recognizes a protein are an antibody.
7. The substance according to claim 1, in which one of the two or both substance that recognizes PD-1 and substance that recognizes a protein are a Fab portion of antibody.
8. The substance according to claim 1, in which a linker comprises an organic compound.
9. The substance according to claim 1, in which a linker comprises a peptide.
10. The substance according to claim 1, in which a substance that recognizes PD-1 and in which a substance that recognizes a protein is a peptide, respectively.
11. The substance according to claim 1, in which a substance that recognizes PD-1 and in which a substance that recognizes a protein comprises two or more peptides including a heavy chain variable region and a light chain variable region of antibody, respectively.
12. The substance according to claim 1, in which a substance that recognizes PD-1, in which a substance that recognizes a protein, and in which a linker is a peptide, respectively.
13. A pharmaceutical composition containing an effective dose of the substance according to claim 1 for the medical treatment and/or prevention of a disease in which PD-1 participates.
14. The pharmaceutical composition according to claim 13, in which disease is selected from the group consisting of neurodegenerative disease, autoimmune disease, organ transplant rejection, neoplasm and infection.
15. The pharmaceutical composition according to claim 14, in which neulodegenerative disease is selected from the group consisting of Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease.
16. The pharmaceutical composition according to claim 14, in which autoimmune disease is selected from the group consisting of glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis.
17. A method for the medical treatment and/or prevention of a disease in which PD-1 participates which comprises administering to a subject in need thereof an effective amount of the substance according to claim 1.
18. The method according to claim 17, in which disease is selected from the group consisting of neurodegenerative disease, autoimmune disease, organ transplant rejection, neoplasm and infection.
19. The method according to claim 18, in which neurodegenerative disease is selected from the group consisting of Parkinson's disease, parkinsonian syndrome, Huntington's disease, Machado-Joseph disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease.
20. The method according to claim 18, in which autoimmune disease is selected from the group consisting of glomerular nephritis, arthritis, dilated cardiomyopathy-like disease, ulcerative colitis, Sjogren's syndrome, Crohn's disease, systemic lupus erythematosus, chronic rheumatoid arthritis, multiple sclerosis, Psoriasis, allergic contact dermatitis, polymyositis, scleroderma, periarteritis nodosa, rheumatic fever, vitiligo vulgaris, insulin-dependent diabetes mellitus, Behcet's Syndrome and chronic thyroiditis.
US10/485,466 2001-07-31 2002-07-30 Substance specific to pd-1 Abandoned US20040241745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/057,637 US7858746B2 (en) 2001-07-31 2008-03-28 Substance that specifically recognizes PD-1

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-232303 2001-07-31
JP2001232303 2001-07-31
PCT/JP2002/007735 WO2003011911A1 (en) 2001-07-31 2002-07-30 Substance specific to pd-1

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/057,637 Division US7858746B2 (en) 2001-07-31 2008-03-28 Substance that specifically recognizes PD-1

Publications (1)

Publication Number Publication Date
US20040241745A1 true US20040241745A1 (en) 2004-12-02

Family

ID=19064242

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/485,466 Abandoned US20040241745A1 (en) 2001-07-31 2002-07-30 Substance specific to pd-1
US12/057,637 Expired - Lifetime US7858746B2 (en) 2001-07-31 2008-03-28 Substance that specifically recognizes PD-1

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/057,637 Expired - Lifetime US7858746B2 (en) 2001-07-31 2008-03-28 Substance that specifically recognizes PD-1

Country Status (5)

Country Link
US (2) US20040241745A1 (en)
EP (1) EP1445264B1 (en)
JP (1) JP4249013B2 (en)
AT (1) ATE524495T1 (en)
WO (1) WO2003011911A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091372A1 (en) * 2009-09-01 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US20110091463A1 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
US8722855B2 (en) 2009-10-28 2014-05-13 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8735546B2 (en) 2010-08-03 2014-05-27 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
WO2014194293A1 (en) 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
US8987418B2 (en) 2013-03-15 2015-03-24 Abbvie Inc. Dual specific binding proteins directed against IL-1β and/or IL-17
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9035027B2 (en) 2008-06-03 2015-05-19 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9046513B2 (en) 2010-08-26 2015-06-02 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9045551B2 (en) 2012-11-01 2015-06-02 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9067999B1 (en) 2002-07-03 2015-06-30 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9084776B2 (en) 2005-05-09 2015-07-21 E.R. Squibb & Sons, L.L.C. Methods for treating cancer using anti-PD-1 antibodies
US9109026B2 (en) 2008-06-03 2015-08-18 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US9120870B2 (en) 2011-12-30 2015-09-01 Abbvie Inc. Dual specific binding proteins directed against IL-13 and IL-17
CN105085680A (en) * 2014-05-23 2015-11-25 复旦大学 Humanized anti-PD-1 and c-MET bispecific antibody, and preparation method and application thereof
US20160075782A1 (en) 2005-07-01 2016-03-17 E.R. Squibb & Sons, L. L. C. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
WO2017106061A1 (en) 2015-12-14 2017-06-22 Macrogenics, Inc. Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof
US9701749B2 (en) 2011-08-11 2017-07-11 Ono Pharmaceutical Co., Ltd. Therapeutic agent for autoimmune diseases comprising PD-1 agonist
US9815897B2 (en) 2013-05-02 2017-11-14 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US9840554B2 (en) 2015-06-15 2017-12-12 Abbvie Inc. Antibodies against platelet-derived growth factor (PDGF)
US9914783B1 (en) 2016-09-14 2018-03-13 Abbvie Biotherapeutics Inc. Anti-PD-1 antibodies and their uses
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
EP3456346A1 (en) 2015-07-30 2019-03-20 MacroGenics, Inc. Pd-1 and lag-3 binding molecules and methods of use thereof
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
CN111670203A (en) * 2018-02-09 2020-09-15 小野药品工业株式会社 Bispecific antibodies
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
US11155624B2 (en) 2016-11-01 2021-10-26 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
EP3876986A4 (en) * 2018-09-18 2022-06-01 Pandion Operations, Inc. Targeted immunotolerance
US11407830B2 (en) 2017-01-09 2022-08-09 Tesaro, Inc. Methods of treating cancer with anti-PD-1 antibodies
TWI809286B (en) * 2019-07-05 2023-07-21 日商小野藥品工業股份有限公司 Treatment of hematological cancer with pd-1/cd3 bispecific protein

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2508660C (en) * 2002-12-23 2013-08-20 Wyeth Antibodies against pd-1 and uses therefor
EP2270051B1 (en) * 2003-01-23 2019-05-15 Ono Pharmaceutical Co., Ltd. Antibody specific for human PD-1 and CD3
WO2007122815A1 (en) * 2006-04-14 2007-11-01 Ono Pharmaceutical Co., Ltd. Bivalent antibody directed against bir1
CA2855098C (en) 2007-06-18 2018-02-27 Merck Sharp & Dohme B.V. Antibodies to human programmed death receptor pd-1
SG10201708690SA (en) 2008-12-09 2017-12-28 Genentech Inc Anti-pd-l1 antibodies and their use to enhance t-cell function
EP2961831B1 (en) 2013-02-26 2020-06-10 Memorial Sloan Kettering Cancer Center Compositions and methods for immunotherapy
JP6634625B2 (en) * 2014-05-01 2020-01-22 株式会社アネロファーマ・サイエンス Heterologous polypeptide expression cassette
PT3169341T (en) 2014-07-16 2019-09-09 Transgene Sa Oncolytic virus for expression of immune checkpoint modulators
US9982052B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
CA2957258C (en) 2014-08-05 2023-11-07 MabQuest SA Immunological reagents
CN115040532A (en) 2014-10-10 2022-09-13 伊黛拉制药有限公司 Treatment of cancer using TLR9 agonists and checkpoint inhibitors
TWI773646B (en) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 Lag-3-binding molecules and methods of use thereof
BR112018000768A2 (en) 2015-07-13 2018-09-25 Cytomx Therapeutics Inc anti-pd-1 antibodies, activatable anti-pd-1 antibodies and methods of use
CN108136025B (en) 2015-07-16 2022-09-06 比奥克斯塞尔医疗股份有限公司 A novel method of treating cancer using immunomodulation
WO2017024465A1 (en) 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
PE20181322A1 (en) 2015-09-01 2018-08-14 Agenus Inc ANTI-PD1 ANTIBODY AND ITS METHODS OF USE
WO2017058859A1 (en) 2015-09-29 2017-04-06 Celgene Corporation Pd-1 binding proteins and methods of use thereof
US11214617B2 (en) 2016-01-22 2022-01-04 MabQuest SA Immunological reagents
WO2017125815A2 (en) 2016-01-22 2017-07-27 MabQuest SA Immunological reagents
EP3420001B1 (en) 2016-02-25 2021-12-01 Cell Medica Switzerland AG Binding members to pd-l1
CA3016474A1 (en) 2016-03-15 2017-09-21 Mersana Therapeutics, Inc. Napi2b-targeted antibody-drug conjugates and methods of use thereof
JP2019534859A (en) 2016-09-19 2019-12-05 セルジーン コーポレイション Method for treating vitiligo using PD-1 binding protein
SG11201901950TA (en) 2016-09-19 2019-04-29 Celgene Corp Methods of treating immune disorders using pd-1 binding proteins
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
WO2018123999A1 (en) 2016-12-28 2018-07-05 学校法人近畿大学 Method for selecting individuals to be administered immune checkpoint inhibitor
US20180271996A1 (en) 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
KR20190141658A (en) * 2017-03-29 2019-12-24 셀진 코포레이션 Formulations Comprising PD-1 Binding Proteins and Methods for Making the Same
CN107353326B (en) * 2017-05-09 2020-11-03 中山大学附属口腔医院 Non-antibody binding proteins that bind to PD-1 receptor and uses thereof
US20200317783A1 (en) * 2017-10-06 2020-10-08 Ono Pharmaceutical Co., Ltd. Bispecific antibody
WO2019104289A1 (en) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
TW201929908A (en) 2017-12-21 2019-08-01 美商梅爾莎納醫療公司 Pyrrolobenzodiazepine antibody conjugates
CN109160949B (en) * 2018-07-23 2021-05-14 中国医学科学院血液病医院(血液学研究所) Mouse anti-human PD-1 monoclonal antibody and application
EP3873534A1 (en) 2018-10-29 2021-09-08 Mersana Therapeutics, Inc. Cysteine engineered antibody-drug conjugates with peptide-containing linkers
TW202102544A (en) 2019-04-04 2021-01-16 日商小野藥品工業股份有限公司 Bispecific antibody
WO2021020416A1 (en) 2019-07-30 2021-02-04 小野薬品工業株式会社 Bispecific antibody
WO2021025140A1 (en) 2019-08-08 2021-02-11 小野薬品工業株式会社 Dual-specific protein
CN115197299A (en) * 2021-04-09 2022-10-18 中山大学附属口腔医院 PD-1 receptor and ligand PD-L1 dual-targeting non-antibody binding polypeptide or derivative thereof and application thereof
IL286430A (en) * 2021-09-14 2023-04-01 Yeda Res & Dev Multispecific antibodies for use in treating diseases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629204A (en) * 1994-03-01 1997-05-13 Ono Pharmaceutical Co., Ltd. Peptide related to human programmed cell death and DNA encoding it
US7029674B2 (en) * 2001-04-02 2006-04-18 Wyeth Methods for downmodulating immune cells using an antibody to PD-1

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL354286A1 (en) * 1999-08-23 2003-12-29 Dana-Farber Cancer Institutedana-Farber Cancer Institute Pd-1, a receptor for b7-4, and uses therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629204A (en) * 1994-03-01 1997-05-13 Ono Pharmaceutical Co., Ltd. Peptide related to human programmed cell death and DNA encoding it
US7029674B2 (en) * 2001-04-02 2006-04-18 Wyeth Methods for downmodulating immune cells using an antibody to PD-1

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439962B2 (en) 2002-07-03 2016-09-13 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9073994B2 (en) 2002-07-03 2015-07-07 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9393301B2 (en) 2002-07-03 2016-07-19 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9067999B1 (en) 2002-07-03 2015-06-30 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9402899B2 (en) 2002-07-03 2016-08-02 Ono Pharmaceutical Co., Ltd. Immunopotentiative composition
US9492540B2 (en) 2005-05-09 2016-11-15 Ono Pharmaceutical Co., Ltd. Methods for treating cancer using anti-PD-1 antibodies
US9492539B2 (en) 2005-05-09 2016-11-15 Ono Pharmaceutical Co., Ltd. Monoclonal antibodies to Programmed Death 1 (PD-1)
US9387247B2 (en) 2005-05-09 2016-07-12 Ono Pharmaceutical Co., Ltd. Monoclonal antibodies to programmed death 1 (PD-1)
US9358289B2 (en) 2005-05-09 2016-06-07 Ono Pharmaceutical Co., Ltd. Methods for treating cancer using anti-PD-1 antibodies in combination with anti-CTLA-4 antibodies
US10441655B2 (en) 2005-05-09 2019-10-15 Ono Pharmaceutical Co., Ltd. Monoclonal antibodies to programmed death 1 (PD-1)
US9084776B2 (en) 2005-05-09 2015-07-21 E.R. Squibb & Sons, L.L.C. Methods for treating cancer using anti-PD-1 antibodies
US9580507B2 (en) 2005-07-01 2017-02-28 E.R. Squibb & Sons, L. L. C. Human monoclonal antibodies to programmed death ligand 1 (PD-L1)
US20160075782A1 (en) 2005-07-01 2016-03-17 E.R. Squibb & Sons, L. L. C. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
US9580505B2 (en) 2005-07-01 2017-02-28 E.R. Squibb & Sons, L. L. C. Human monoclonal antibodies to programmed death ligand 1 (PD-L1)
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9109026B2 (en) 2008-06-03 2015-08-18 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US9035027B2 (en) 2008-06-03 2015-05-19 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
US8586714B2 (en) 2009-09-01 2013-11-19 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
US20110091372A1 (en) * 2009-09-01 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US20110091463A1 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
US8716450B2 (en) 2009-10-15 2014-05-06 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8722855B2 (en) 2009-10-28 2014-05-13 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US8735546B2 (en) 2010-08-03 2014-05-27 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9493560B2 (en) 2010-08-03 2016-11-15 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9046513B2 (en) 2010-08-26 2015-06-02 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
EP3403672A1 (en) 2011-04-20 2018-11-21 Medlmmune, LLC Antibodies and other molecules that bind b7-h1 and pd-1
US9205148B2 (en) 2011-04-20 2015-12-08 Medimmune, Llc Antibodies and other molecules that bind B7-H1 and PD-1
US10647770B2 (en) 2011-08-11 2020-05-12 Ono Pharmaceutical Co., Ltd. Therapeutic agent for autoimmune diseases comprising PD-1 agonist
US9701749B2 (en) 2011-08-11 2017-07-11 Ono Pharmaceutical Co., Ltd. Therapeutic agent for autoimmune diseases comprising PD-1 agonist
US9120870B2 (en) 2011-12-30 2015-09-01 Abbvie Inc. Dual specific binding proteins directed against IL-13 and IL-17
US9163093B2 (en) 2012-11-01 2015-10-20 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9944720B2 (en) 2012-11-01 2018-04-17 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9045551B2 (en) 2012-11-01 2015-06-02 Abbvie Inc. Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof
US9062108B2 (en) 2013-03-15 2015-06-23 Abbvie Inc. Dual specific binding proteins directed against IL-1 and/or IL-17
US8987418B2 (en) 2013-03-15 2015-03-24 Abbvie Inc. Dual specific binding proteins directed against IL-1β and/or IL-17
US9815897B2 (en) 2013-05-02 2017-11-14 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US10738117B2 (en) 2013-05-02 2020-08-11 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
WO2014194293A1 (en) 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US11708412B2 (en) 2013-09-26 2023-07-25 Novartis Ag Methods for treating hematologic cancers
US9683048B2 (en) 2014-01-24 2017-06-20 Novartis Ag Antibody molecules to PD-1 and uses thereof
US9815898B2 (en) 2014-01-24 2017-11-14 Novartis Ag Antibody molecules to PD-1 and uses thereof
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11827704B2 (en) 2014-01-24 2023-11-28 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11155620B2 (en) 2014-01-31 2021-10-26 Novartis Ag Method of detecting TIM-3 using antibody molecules to TIM-3
US10981990B2 (en) 2014-01-31 2021-04-20 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
CN105085680A (en) * 2014-05-23 2015-11-25 复旦大学 Humanized anti-PD-1 and c-MET bispecific antibody, and preparation method and application thereof
US11098119B2 (en) 2014-06-26 2021-08-24 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
US9840554B2 (en) 2015-06-15 2017-12-12 Abbvie Inc. Antibodies against platelet-derived growth factor (PDGF)
US11623959B2 (en) 2015-07-30 2023-04-11 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
EP3981792A1 (en) 2015-07-30 2022-04-13 MacroGenics, Inc. Pd-1-binding molecules and methods of use thereof
US10577422B2 (en) 2015-07-30 2020-03-03 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
EP3456346A1 (en) 2015-07-30 2019-03-20 MacroGenics, Inc. Pd-1 and lag-3 binding molecules and methods of use thereof
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
WO2017106061A1 (en) 2015-12-14 2017-06-22 Macrogenics, Inc. Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof
US11840571B2 (en) 2015-12-14 2023-12-12 Macrogenics, Inc. Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
US10730953B2 (en) 2016-09-14 2020-08-04 Abbvie Biotherapeutics Inc. Anti-PD-1 antibodies and their uses
US9914783B1 (en) 2016-09-14 2018-03-13 Abbvie Biotherapeutics Inc. Anti-PD-1 antibodies and their uses
US11155624B2 (en) 2016-11-01 2021-10-26 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US11407830B2 (en) 2017-01-09 2022-08-09 Tesaro, Inc. Methods of treating cancer with anti-PD-1 antibodies
US11091550B2 (en) 2018-02-09 2021-08-17 Ono Pharmaceutical Co., Ltd. Bispecific antibody
CN111670203A (en) * 2018-02-09 2020-09-15 小野药品工业株式会社 Bispecific antibodies
TWI804572B (en) * 2018-02-09 2023-06-11 日商小野藥品工業股份有限公司 Bispecific antibody
EP3876986A4 (en) * 2018-09-18 2022-06-01 Pandion Operations, Inc. Targeted immunotolerance
TWI809286B (en) * 2019-07-05 2023-07-21 日商小野藥品工業股份有限公司 Treatment of hematological cancer with pd-1/cd3 bispecific protein

Also Published As

Publication number Publication date
EP1445264A4 (en) 2006-01-18
EP1445264B1 (en) 2011-09-14
US7858746B2 (en) 2010-12-28
WO2003011911A1 (en) 2003-02-13
JPWO2003011911A1 (en) 2004-11-18
EP1445264A1 (en) 2004-08-11
ATE524495T1 (en) 2011-09-15
JP4249013B2 (en) 2009-04-02
US20090076250A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US7858746B2 (en) Substance that specifically recognizes PD-1
US9783609B2 (en) Substance specific to human PD-1
US8329178B2 (en) Antibodies against CXCR4 and methods of use thereof
KR100191152B1 (en) Cd4 specific recombinant antibody
JP4065554B2 (en) Antibody preparation
AU2002226086B2 (en) Silensed anti-CD28 antibodies and use thereof
CN113603781A (en) Therapeutic agents and methods for enhancing immune response in tumor microenvironment
AU2002226086A1 (en) Silensed anti-CD28 antibodies and use thereof
RU2736650C2 (en) Activator of regulatory t cells and use thereof
TW202118792A (en) Anti-hk2 chimeric antigen receptor (car)
US20040116675A1 (en) Silenced anti-cd28 antibodies and use thereof
KR20010074697A (en) Immunological reagent specifically interacting with the extracellular domain of the human zeta chain
Doll Development of therapeutic proteins for the treatment of rheumatoid arthritis and chronic cardiac rejection

Legal Events

Date Code Title Description
AS Assignment

Owner name: ONO PHARMACEUTICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONJO, TASUKU;SHIBAYAMA, SHIRO;MATSUO, MASAYOSHI;AND OTHERS;REEL/FRAME:015305/0255

Effective date: 20040120

Owner name: HONJO, TASUKU, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONJO, TASUKU;SHIBAYAMA, SHIRO;MATSUO, MASAYOSHI;AND OTHERS;REEL/FRAME:015305/0255

Effective date: 20040120

AS Assignment

Owner name: ONO PHARMACEUTICAL CO., LTD., JAPAN

Free format text: RE-RECORD TO CORRECT THE EXECUTION DATES FOR THE SECOND, THIRD AND FOURTH ASSIGNORS, PREVIOUSLY RECORDED ON REEL 015305 FRAME 0255.;ASSIGNORS:HONJO, TASUKU;SHIBAYAMA, SHIRO;MATSUO, MASAYOSHI;AND OTHERS;REEL/FRAME:016157/0553;SIGNING DATES FROM 20040120 TO 20040122

Owner name: HONJO, TASUKU, JAPAN

Free format text: RE-RECORD TO CORRECT THE EXECUTION DATES FOR THE SECOND, THIRD AND FOURTH ASSIGNORS, PREVIOUSLY RECORDED ON REEL 015305 FRAME 0255.;ASSIGNORS:HONJO, TASUKU;SHIBAYAMA, SHIRO;MATSUO, MASAYOSHI;AND OTHERS;REEL/FRAME:016157/0553;SIGNING DATES FROM 20040120 TO 20040122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION