US20040237141A1 - Cytoplasmic male sterility system producing canola hybrids - Google Patents
Cytoplasmic male sterility system producing canola hybrids Download PDFInfo
- Publication number
- US20040237141A1 US20040237141A1 US10/798,840 US79884004A US2004237141A1 US 20040237141 A1 US20040237141 A1 US 20040237141A1 US 79884004 A US79884004 A US 79884004A US 2004237141 A1 US2004237141 A1 US 2004237141A1
- Authority
- US
- United States
- Prior art keywords
- glucosinolate
- restorer
- gene
- plants
- gsl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- GZQVGCZILCMBNC-UHFFFAOYSA-N BC.CBC.F Chemical compound BC.CBC.F GZQVGCZILCMBNC-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/02—Methods or apparatus for hybridisation; Artificial pollination ; Fertility
- A01H1/022—Genic fertility modification, e.g. apomixis
- A01H1/023—Male sterility
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/02—Methods or apparatus for hybridisation; Artificial pollination ; Fertility
- A01H1/021—Methods of breeding using interspecific crosses, i.e. interspecies crosses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/06—Processes for producing mutations, e.g. treatment with chemicals or with radiation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/20—Brassicaceae, e.g. canola, broccoli or rucola
- A01H6/202—Brassica napus [canola]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
Definitions
- This invention relates to improved plants.
- it relates to new plant germplasm of the Brassica species, having a reduced content of undesired glucosinolates.
- High glucosinolate (GSL) content in seed of Brassica napus is an anti-nutritional factor. Meal made from such seed is unsuitable for use in animal feeds.
- Seed GSL level is an expression of the genotype of the female plant and is determined by four to eight separate dominant and additive genes. Two to five genes are involved in alkenyl (one of the aliphatic group) glucosinolate content, while two or three genes are involved in indole glucosinolate content (Rücker and Röbbelen, 1994). Total aliphatics may be determined by up to six genes (Magrath et al. 1993).
- An object of the present invention is to provide Brassica spp. hybrids, seeds, microspores, ovules, pollen, vegetative parts containing low glucosinolate and the restorer gene.
- Yet another object of the present invention is to provide interspecific crosses using fertile, low glucosinolate plants with the ogura cytoplasm as the female, followed by selection for fertility and low glucosinolate.
- a further object of the invention is to provide a method for identifying a restorer line that contains only the portion of the Raphanus sativus material necessary for fertility and not the portion of the Raphanus sativus material that produces high glucosinolate.
- our invention comprises a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene but is essentially free of Raphanus sativus glucosinolate-producing genes.
- the gene restorer line KH, and progeny derived therefrom, seed of which is low in glucosinolates we further provide Brassica napus restorer lines free of glucosinolate-producing genes having a characteristic RFLP signature, as hereinafter described, and a method of producing such lines which comprises crossing Brassica napus restorer and/or hybrid lines with desired Brassica napus germplasm and selecting progeny having a characteristic RFLP signature.
- this invention encompasses hybrids containing the restorer gene without the high glucosinolate material. Additionally, these hybrids can be used to create new restorer lines within the scope of this invention.
- the present invention broadly includes a method of producing an improved restorer line of Brassica for use in a cytoplasmic male sterility system, which comprises forming a plant population from a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene and Raphanus sativus glucosinolate genes. Then breeding with the progeny of the plant population.
- the progeny includes testing the progeny for fertility indicating the Raphanus sativus restorer gene is present and for levels of glucosinolate wherein the presence and absence of Raphanus sativus high glucosinolate production is shown; and selecting progeny which are positive for presence of the restorer gene and negative for the Raphanus sativus with glucosinolate production.
- the inventive methods of this application also include a method of forming Brassica napus hybrid seed and progeny thereof from a cytoplasmic male sterility system which includes a restorer line containing Raphanus sativus restorer gene.
- This method includes the steps of providing a homozygous improved restorer line produced, as outlined above, using the restorer line in a hybrid production field as the pollinator; using cytoplasmic male sterile plants in a hybrid production field as the hybrid seed producing plant; and harvesting the hybrid seed from the male sterile plant.
- the method includes the step of planting the hybrid seed from the male sterile plant and growing a plant therefrom.
- the present invention clearly shows how to form an improved Brassica ssp., an improved Brassica napus plant, having low glucosinolate seeds, the plant containing Raphanus sativus gene material that is capable of restoring fertility to the ogura cytoplasmic male sterile plants, the improvement comprising an improved Brassica napus plant evidencing deficient glucosinolate production from the Raphanus sativus material, wherein the improved plant produced low glucosinolate seeds.
- the present invention describes the molecular marker method. This is a method wherein the markers mapping to similar regions as those in the group consisting of, WG3F7, TG1H12, OPC2, WG4D10, WG6F3 are employed to identify the Raphanus sativus material which contains high glucosinolate producing genes.
- the present invention encompasses not only canola ouality but any low glucosinolate material produced for a cytoplasmic sterile plant containing Raphanus sativus. Any canola quality (erucic acid ⁇ 2% and ⁇ 30 umoles glucosinolates/gram defatted dry meal) restorer line, capable of inducing fertility in Brassica plants containing the INRA Ogura cytoplasmic male sterility. Further, the present invention encompasses Brassica spp. hybrids, seeds, microspores, ovules, pollen, vegetative parts containing low glucosinolate restorer gene. Interspecific crosses using fertile, low glucosinolate plants with the ogura cytoplasm as the female, followed by selection for fertility and low glucosinolate.
- FIG. 1 is a schematic map showing the relation of high GSL genes to the restorer gene in ogura germplasm, as revealed by our work, and the location of probes binding in this area.
- GSL glucosinolate content
- the original Brassica napus restorer material, RF, used in our work, is an F6 line from the cross
- Table 2 shows glucosinolate results from Georgia nursery 1994-95. Bolded cells indicate progeny of low GSL row in 1994 Carman nursery. (GSL ratings 1-9 using Tes-Tape method, where canola quality ⁇ 3. *Duplicate analyses performed on each sample).
- the first test is for quantitative glucosinolate analysis using high performance liquid chromatography. This test is cited in ISO Method 9167-1:1992. Rapeseed—Determination of glucosinolates content—Part 1: Method using high-performance liquid chromatography, International Organization for Standardization, Geneva.
- the putative restorer line KH, RF ⁇ 3 ⁇ BNO559-3-2 was crossed to five genetically-diverse male-sterile lines possessing the ogura cytoplasm. Since the restorer gene was first identified in a backcross-derived line, F1 plants derived from these crosses were expected to segregate evenly for fertiles and steriles. As shown in Tables 3 and 4A, testcross progeny data support the concept of a single dominant gene for restoration. TABLE 3 Female # Steriles # Fertiles 1 36 34 2 50 43 3 78 63 4 71 67 5 76 73 Observed Total 311 280 Expected Total 295.5 295.5
- Table 3 testcross results using BC2F1 plants as restorer gene source.
- BC2 plants were also selfed in order to determine segregation ratios of the BC2F2 population. Six hundred and eighty-six single F2 plants were evaluated for fertility status. Based on the assumption of a single dominant gene originally introduced from the radish parent, the F2 population should have segregated 3 Fertile: 1 Sterile. As shown in Table 5, observed results were close to expected values. TABLE 4A Class Fertile Sterile Number of plants observed 499 187 Theoretical number of plants expected 514.5 171.5
- Table 4A Frequency distribution of F2 population.
- a source of the improved restorer gene was crossed to improved germplasm.
- the resulting hybrids, 94-0186 and 94-0187 underwent microspore culture to produce doubled haploid restorer lines.
- Microspore culture methods utilized were similar to those described by Chen et al (1994) and Mollers et al (1994). These restorer lines have been verified as low glucosinolate.
- BN0611 F3 rows were chosen for being homozygous for the restorer gene. A single plant from each row was crossed to a male sterile line. F1 seeds were planted from each testcross and allowed to flower, at which time fertility of the F1 plants were evaluated.
- the fertile plants did exhibit some abnormal characteristics such as missing petals, malformed buds and bent stigmas. The severity of these traits varied by cross, suggesting some genetic influence by the male.
- Crosses 103 and 104 shows a 1:1 segregation. Emergence data from the field showed that these two males had very few plants in the row, and thus had been mis-classified “homozygous”.
- the second group of data comes from the Carman, Manitoba breeding nursery. As expected, there are some changes in levels of individual glucosinolates due to environmental factors (Mailer and Cornish, 1987). However, it is clear that the level of progoitrin (2-Hydroxy-4-pentenylglucosinolate) and gluconapine are significantly lower in the RF ⁇ 3 ⁇ (BN0559)-3-2 derived lines than in high glucosinolate material with the original restorer gene obtained from INRA.
- DNA was purified from members of a BC1 population that was segregating for the presence of the restorer gene (scored as male fertility in a sterile cytoplasm).
- the DNA samples were digested with restriction endonucleases, subjected to agarose gel electrophoresis, and transferred to nylon membranes (essentially as described by Southern, 1975).
- the membranes were then treated with heat-denatured, 32 P-labeled DNA probes (Sharpe et al, Osborn et al) and, following overnight hybridization and washing at an appropriate stringency, subjected to autoradiography.
- the RFLP patterns revealed by these probes were noted, and the probes giving bands of hybridization showing linkage to the restorer phenotype are shown in Table 5.
- a number of characteristic (“diagnostic”) alleles were seen at the RFLP loci linked to the restorer locus, that are not present in the majority of canola germplasm.
- one oligonucleotide primer was used to generate RAPD patterns, recently published as being linked to the Restorer gene (Landry et al., 1994); this is also shown in Table 5.
- AFLP, RFLP, RAPD, microsatellites, primer and other probes, etc. to give genetic fingerprints of the Raphanus sativus material and surrounding Brassica material is encompassed within the scope of this invention.
- GSL levels of the various plants are shown alongside the genotypes in Table 6.
- GSL levels were -measured by the HPLC method for evaluation of seed glucosinolate content in Brassicas. This indicates that the gene encoding high GSL levels is linked to the diagnostic alleles, and lies on the segment of chromosome marked by pO120, pO119 and pN64. Because of the low frequency of recombination in this region of the genome, it is impossible to quote precise distances. However, it is clear that by selecting fertile plants that lack the diagnostic alleles for the linked loci, it should be possible to improve the frequency of low GSL fertile plants in the backcross progeny.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Nutrition Science (AREA)
- Animal Husbandry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Saccharide Compounds (AREA)
- Glass Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Lubricants (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Our invention comprises a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene but is essentially free of Raphanus sativus genes which produce high glucosinolate. In particular, we provide a gene restorer line, and progeny derived therefrom, seed of which is low in glucosinolates. The Brassica napus restorer lines are free of glucosinolate-producing genes having a characteristic RFLP signature. The method of producing such lines which comprises crossing Brassica napus restorer lines and hybrids with desired Brassica napus germplasm and selecting progeny having a characteristic RFLP signature is also encompassed by the present invention.
Description
- This application is entitled to the benefits of foreign priority under Title 35 U.S.C. section 119. The foreign priority document is United Kingdom application 9513881.4 filed on 07 Jul. 1995.
- This invention relates to improved plants. In particular, it relates to new plant germplasm of theBrassica species, having a reduced content of undesired glucosinolates.
- Economic production ofBrassica spp. hybrids requires a pollination control system and effective transfer of pollen from one parent to the other. The ogura cytoplasmic male sterility (cms) system, developed via protoplast fusion between radish (Raphanus sativus) and rapeseed (Brassica napus) is one of the most promising methods of hybrid production. It provides stable expression of the male sterility trait (Ogura 1968), Pelletier et al. (1983) and an effective nuclear restorer gene (Heyn 1976).
- Initial restorer material showed reduced female fertility which was overcome through backcrossing. Delourme et al. (1991) attributed this to elimination of a portion of the radish chromosome that had been introduced along with the restorer gene. In their work, successive backcross generations produced fertility levels successively closer to normal.
- High glucosinolate (GSL) content in seed ofBrassica napus is an anti-nutritional factor. Meal made from such seed is unsuitable for use in animal feeds. Seed GSL level is an expression of the genotype of the female plant and is determined by four to eight separate dominant and additive genes. Two to five genes are involved in alkenyl (one of the aliphatic group) glucosinolate content, while two or three genes are involved in indole glucosinolate content (Rücker and Röbbelen, 1994). Total aliphatics may be determined by up to six genes (Magrath et al. 1993).
- An object of the present invention is to provideBrassica spp. hybrids, seeds, microspores, ovules, pollen, vegetative parts containing low glucosinolate and the restorer gene.
- Yet another object of the present invention is to provide interspecific crosses using fertile, low glucosinolate plants with the ogura cytoplasm as the female, followed by selection for fertility and low glucosinolate.
- A further object of the invention is to provide a method for identifying a restorer line that contains only the portion of theRaphanus sativus material necessary for fertility and not the portion of the Raphanus sativus material that produces high glucosinolate.
- Accordingly, our invention comprises a gene restorer line ofBrassica napus which contains a Raphanus sativus restorer gene but is essentially free of Raphanus sativus glucosinolate-producing genes. In particular, we provide the gene restorer line KH, and progeny derived therefrom, seed of which is low in glucosinolates. We further provide Brassica napus restorer lines free of glucosinolate-producing genes having a characteristic RFLP signature, as hereinafter described, and a method of producing such lines which comprises crossing Brassica napus restorer and/or hybrid lines with desired Brassica napus germplasm and selecting progeny having a characteristic RFLP signature. Clearly this invention encompasses hybrids containing the restorer gene without the high glucosinolate material. Additionally, these hybrids can be used to create new restorer lines within the scope of this invention.
- The present invention broadly includes a method of producing an improved restorer line ofBrassica for use in a cytoplasmic male sterility system, which comprises forming a plant population from a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene and Raphanus sativus glucosinolate genes. Then breeding with the progeny of the plant population. Furthermore, it includes testing the progeny for fertility indicating the Raphanus sativus restorer gene is present and for levels of glucosinolate wherein the presence and absence of Raphanus sativus high glucosinolate production is shown; and selecting progeny which are positive for presence of the restorer gene and negative for the Raphanus sativus with glucosinolate production.
- The inventive methods of this application also include a method of formingBrassica napus hybrid seed and progeny thereof from a cytoplasmic male sterility system which includes a restorer line containing Raphanus sativus restorer gene. This method includes the steps of providing a homozygous improved restorer line produced, as outlined above, using the restorer line in a hybrid production field as the pollinator; using cytoplasmic male sterile plants in a hybrid production field as the hybrid seed producing plant; and harvesting the hybrid seed from the male sterile plant.
- Additionally, when producing progeny, the method includes the step of planting the hybrid seed from the male sterile plant and growing a plant therefrom.
- The present invention clearly shows how to form an improvedBrassica ssp., an improved Brassica napus plant, having low glucosinolate seeds, the plant containing Raphanus sativus gene material that is capable of restoring fertility to the ogura cytoplasmic male sterile plants, the improvement comprising an improved Brassica napus plant evidencing deficient glucosinolate production from the Raphanus sativus material, wherein the improved plant produced low glucosinolate seeds.
- ABrassica napus plant containing Raphanus sativus restorer gene unlinked from Raphanus sativus glucosinolate genes adapted to restore fertility to ogura cytoplasmic male sterile.
- The present invention describes the molecular marker method. This is a method wherein the markers mapping to similar regions as those in the group consisting of, WG3F7, TG1H12, OPC2, WG4D10, WG6F3 are employed to identify theRaphanus sativus material which contains high glucosinolate producing genes.
- The present invention encompasses not only canola ouality but any low glucosinolate material produced for a cytoplasmic sterile plant containingRaphanus sativus. Any canola quality (erucic acid<2% and <30 umoles glucosinolates/gram defatted dry meal) restorer line, capable of inducing fertility in Brassica plants containing the INRA Ogura cytoplasmic male sterility. Further, the present invention encompasses Brassica spp. hybrids, seeds, microspores, ovules, pollen, vegetative parts containing low glucosinolate restorer gene. Interspecific crosses using fertile, low glucosinolate plants with the ogura cytoplasm as the female, followed by selection for fertility and low glucosinolate.
-
- Additionally in the broad scope of the invention included is theBrassica napus (spring and winter types) or B. rapa containing the low glucosinolate restorer gene as described.
- FIG. 1 is a schematic map showing the relation of high GSL genes to the restorer gene in ogura germplasm, as revealed by our work, and the location of probes binding in this area.
- We now describe genes for high seed glucosinolate content (GSL) which were also introduced with the restorer gene. In addition, we describe our work which has broken the very tight linkage between the radish-derived restorer gene and the non-canola quality levels of glucosinolates in the seed. The resulting lines are the first canola quality restorers for this cms system, which in turn produce the first fully fertile ogura cms canola hybrids. The terms hybrid, line and plant or progeny when used in the claims includes but are not limited to seeds, microspores, protoplasts, cells, ovulas, pollen, vegetative parts, cotyledons, zygotes and the like.
- Background
- The originalBrassica napus restorer material, RF, used in our work, is an F6 line from the cross
- FU58.Darmor BC1/Rest.Darmor BC1//Bienvenu,
- and was obtained from the Institut National de Recherches Agricoles (INRA) in 1992. This material is commercially available under license from INRA. This material is biennial, low erucic acid (C22:1) and high GSL. It therefore required backcrossing into elite spring types for use in our spring hybrid program.
- All fertile F1 plants from RF crossed by spring lines tested high for aliphatic glucosinolate as expected. However, corresponding steriles possessed GSL levels of less than 30 μmoles/gram defatted dry meal. This indicated an extremely tight linkage between the restorer and high GSL genes. Absence of high GSL sterile plants also indicated the lack of high GSL genes normally found in rapeseed. Except for the presence of the radish GSL genes, fertile plants should therefore have been canola quality. High GSL content in seed of fertile plants therefore was derived from radish DNA inserted with the restorer gene.
- Based on the theory of a single dominant gene for fertility restoration and another single dominant gene complex for GSL content, individual plants were expected to segregate as follows in subsequent backcross generations:
- ½ male sterile
- ¼ high GSL, fertile
- ¼ low GSL, fertile
- Of 493 BC1 crosses studied, no low GSL fertile plants were obtained. Over 298 BC2 crosses also failed to produce low GSL restorers. This again points to a very strong linkage between the restorer gene and the radish-derived high GSL genes. Restored plants possessed elevated levels of progoitrin and gluconapin compared to control plants. Levels of sinapine, glucoalysin and glucobrassicanapin fluctuated in the restored plants relative to controls (Table 1).
- Delourme et al. (1994), using RAPD markers, concluded that radish DNA had been retained around the restorer gene. Our RFLP data showed that the portion of theRaphanus chromosome which was introgressed into the Brassica genome contained the radish high GSL genes in addition to the restorer.
- The absence of low GSL restorers was observed as far as the BC7 generation in the 1994 Zeneca Seeds nursery in Carman, Manitoba. Over 700 backcrosses (BC1 to BC6) were performed in the 1994 field program using emasculated fertile plants containing the ogura cytoplasm (therefore containing the restorer gene) as the female. In addition, over 500 doubled haploids from various restorer by germplasm crosses were evaluated. All doubled haploids were high (over 30 μmoles/gram) GSL.
- Of the 700 backcrosses, three gave rise to seed which was found to have low (<30 μmoles/gram dry seed) GSL levels, equal to sterile plants in the row. All three (KH-A, KH-B, KH-C) were BC2 progeny of the proprietary Zeneca Seeds line BNO559 originally crossed to a restorer gene source KH in November 1993. The restorer gene source KH for the line was a BC1 plant of the original restorer source from INRA (RF) crossed twice to a Zeneca Seeds inbred 4372 (RF<2<4372). Review of the history of the line KH (RF<2<4372)<2<BNO559 indicated a prior generation of low GSL results in the controlled environment growth room.
TABLE 1 Comparison of Glucosinolate Profiles of High GSL Restored Plants in ogura Cytoplasm and Corresponding Fertile Parent in Normal Cytoplasm*. # Pedigree PRO EPI SIN NAP ALY GNA 40H GBN GBC NAS NEO ALI IND TOT 1 RF<5<BN0027-22-1-1 11.31 0.36 1.26 0.18 0.19 3.13 2.56 0.22 0.21 0.29 0.02 16.64 3.08 19.72 2 RF<5<BN0027-22-1-2 32.13 0.84 6.42 0.44 1.73 7.75 3.09 0.72 0.19 0.91 0.06 49.83 4.26 54.09 7 RF<4<BN0027-22-1-2 30.89 0.60 7.23 0.26 0.94 8.94 2.09 0.30 0.42 2.96 0.01 49.16 5.49 54.64 8 RF<S<BN0027-22-1-2 29.77 0.58 5.08 0.28 0.93 7.58 1.96 0.48 0.50 1.82 0.01 44.70 4.29 48.99 13 RF<5<BN0027-22-1-3 22.74 0.45 2.80 0.16 1.16 8.26 2.04 0.88 0.27 2.33 0.02 36.45 4.65 41.10 14 RF<5<BN0027-22-1-3 22.37 0.44 3.19 0.18 0.61 5.01 1.77 0.23 0.35 1.53 0.02 32.04 3.87 35.72 15 BN0027-22-1-1 2.27 0.04 1.47 0.12 0.06 0.60 1.52 0.23 0.32 1.64 0.03 4.80 3.51 8.31 16 BN0027-22-1-2 1.79 0.04 1.28 0.11 0.05 0.49 1.50 0.02 0.16 1.97 0.05 3.78 3.68 7.47 17 BN0027-22-1-3 1.12 0.02 0.00 0.10 0.03 0.34 1.20 0.20 0.09 0.98 0.02 1.82 2.29 4.10 Legend for Table 1 ALIPHATIC INDOLE GLUCOSINOLATE Code GLUCOSINOLATE Code MISC. Code Progoitrin PRO 4-Hydroxy 4OH Total ALI Glucobrassicin aliphatics Epiprogoitrin EPI Glucobrassicin GBC Total indoles IND Sinigrin SIN Gluconasturtiin NAS Total GSL TOT Napolederin NAP Neoglucobrassicin NEO Glucoalysin ALY Gluconapin GNA Glucobrassicanapin GBN - To verify that KH was in fact a low GSL restorer (R) line, a three-step approach was used.
- 1) GSL levels of subsequent generations were again evaluated in the field,
- 2) Genetic studies were conducted to verify inheritance of the restorer gene-and
- 3) RFLP analyses were used to determine differences between high GSL and canola-quality lines or low GSL lines and plants.
- 1) Verification of Glucosinolate Levels
- Material was grown in the nursery (November 94-March 95) in Tasmania, Australia for glucosinolate evaluation of a third generation. The three low GSL BC2 lines KH-A, -B, -C, were planted in three separate rows, along with high GSL sister lines (different original cross to BNO559) and non-related restorers in adjacent plots. Since expression of GSL content in the seed is not affected by pollen source (Magrath et el. 1993), both selfed and open-pollinated seed was tested from these rows. As shown in Table 3, only plants descended from KH, the original RF<3<BNO559-3-2, were again low GSL. Sister lines also derived from BNO559 were not. Thus it appears that the break in the linkage between the restorer gene and the adjacent high GSL genes occurred as the result of a specific meiotic event which was “captured” in one cross (Table 2). All radish-derived GSL genes were lost in the one event; therefore, they had been tightly linked together as a complex acting like a single dominant gene linked to the restorer gene.
TABLE 2 Source Gluc (9)* RF<3<(BNO559)-1-2-1)-1 5.4 RF<3<(BN0559)-1-2-1)-2 4.5 RF<3<(BNO559)-2-2-2)-1 5.5 RF<3<(BNO559)-2-2-2)-2 6.6 RF<3<(BNO559)-2-4-1)-1 4.4 RF<3<(BNO559)-2-4-1)-2 5.4 RF<3<(BNO559)-3-1-1)-1 4.4 RF<3<(BNO559)-3-1-1)-2 4.4 RF<3<(BNO559)-3-2-1)-1 2.2 RF<3<(BN0559)-3-2-1)-2 3.2 RF<3<(BN0559)-3-2-2)-1 2.2 RF<3<(BN0559)-3-2-2)-2 2.2 RF<3<(BN0559)-3-2-2)-3 2.3 RF<3<(BN0559)-3-2-3)-1 3.2 RF<3<(BN0559)-3-2-3)-2 2.3 RF<3<(BN0559)-4-3-2)-1 4.5 RF<3<(BN0559)-4-3-2)-2 3.4 - Table 2—shows glucosinolate results from Tasmania nursery 1994-95. Bolded cells indicate progeny of low GSL row in 1994 Carman nursery. (GSL ratings 1-9 using Tes-Tape method, where canola quality <3. *Duplicate analyses performed on each sample).
- There are at least two well known methods of testing for glucosinolate. The first test is for quantitative glucosinolate analysis using high performance liquid chromatography. This test is cited in ISO Method 9167-1:1992. Rapeseed—Determination of glucosinolates content—Part 1: Method using high-performance liquid chromatography, International Organization for Standardization, Geneva.
- The second test is described below:
- The Tes-Tape Method for Evaluation of Seed Glucosinolate Content inBrassicas. (Based on Rakow et al. (1981).
- 1. Place 5 seeds in a microtitre plate well.
- 2. Crush seed using a rod and light hammer stroke, cleaning rod between samples.
- 3. Add 100 μL (microlitres) of distilled water or 100 μL or 1 millimolar sodium ascorbate if seed is old (reduced viability).
- 4. Wait 10 minutes.
- 5. Add 25 μL of 70 g/L charcoal solution.
- 6. Wait 1 minutes.
- 7. Insert a 2 cm strip of Tes-Tape (normally used to test for glucose content in urine of diabetics).
- 8. Wait 5 minutes.
-
- The low GSL trait was expressed for a third consecutive generation in progeny of the RF<2<BNO559-3-2 line (bolded rows). All plants harvested from the line were canola-quality. Sister lines and non-related strains (data not shown) were all high (rapeseed levels). Using a Wilcoxon Rank Test, with normal approximation and a continuity correction of 0.5, the GSL values of the identified line were significantly lower than closely related sister lines (p=0.0001). Statistically, this line is significantly lower in glucosinolates than any other ogura restorer.
- 2) Verification of Restorer Gene using Genetic Studies
- 2.a) Testcrosses
- The putative restorer line KH, RF<3<BNO559-3-2, was crossed to five genetically-diverse male-sterile lines possessing the ogura cytoplasm. Since the restorer gene was first identified in a backcross-derived line, F1 plants derived from these crosses were expected to segregate evenly for fertiles and steriles. As shown in Tables 3 and 4A, testcross progeny data support the concept of a single dominant gene for restoration.
TABLE 3 Female # Steriles # Fertiles 1 36 34 2 50 43 3 78 63 4 71 67 5 76 73 Observed Total 311 280 Expected Total 295.5 295.5 - Table 3—testcross results using BC2F1 plants as restorer gene source.
- The Chi-Square value calculated for Goodness of Fit of these results to the expected 1:1 ratio is 1.626 with 1 degree of freedom (p=0.20). The results are therefore not statistically distinguishable from those expected (Steele and Torrie, 1980).
- 2.b) F2 Segregation Ratios
- BC2 plants were also selfed in order to determine segregation ratios of the BC2F2 population. Six hundred and eighty-six single F2 plants were evaluated for fertility status. Based on the assumption of a single dominant gene originally introduced from the radish parent, the F2 population should have segregated 3 Fertile: 1 Sterile. As shown in Table 5, observed results were close to expected values.
TABLE 4A Class Fertile Sterile Number of plants observed 499 187 Theoretical number of plants expected 514.5 171.5 - Table 4A—Frequency distribution of F2 population.
- The Chi-Square value for Goodness of Fit calculated for these results is 1.868 with 1 degree of freedom (p=0.17). The results are therefore not statistically different from expected values (Steele and Torrie, 1980).
- Examples of using hybrid as source of restorer gene
- Selfing Down of Hybrid
- Low glucosinolate hybrids containing the new restorer gene were grown out. Fertile plants were self pollinated, some with bags, others by brushing pollen manually. F2 seed was harvested from these F1 plants and planted as a population. Fertile plants from the population were selected and grown as F3 rows, thereby providing starting material for breeding approaches such as pedigree breeding, recurrent selection and others.
- As Parent in Traditional Breeding
- Lines containing the improved restorer gene were crossed with other germplasm lines as part of the breeding program. The F1 from these crosses was grown out. Fertile plants were self pollinated and resultant F2 seed harvested. Fertile plants from the F2 population were selected, harvested and grown as F3 rows, thereby providing starting material for breeding approaches such as pedigree breeding, recurrent selection and others.
- As Parent in Doubled Haploid
- A source of the improved restorer gene was crossed to improved germplasm. The resulting hybrids, 94-0186 and 94-0187, underwent microspore culture to produce doubled haploid restorer lines. Microspore culture methods utilized were similar to those described by Chen et al (1994) and Mollers et al (1994). These restorer lines have been verified as low glucosinolate.
- As a Source of Restorer in Backcross Program
- Material containing the improved restorer gene was crossed to selected Zeneca Seeds' inbred lines. Fertile plants were emasculated and crossed again to the inbred line (recurrent parent). Resulting fertiles were backcrossed again to the inbred line. At any generation, selfing down of material could begin to produce new restorer lines. These projects exemplify a backcrossing program to bring the restorer gene into superior germplasm. The RFLP analysis could be employed to assist in early selection of plants having a favorably marker signature for low glucosinolate production in combination with having the restorer gene.
- Field Segregation
- F3 rows from BN0611 were planted in the nursery. The expected segregation ratio was 2:1 (segregating rows: fully fertile rows). Some rows exhibited very poor emergence with most of these containing only fertile plants. Unexpectedly, the segregation results were 340 segregating to 105 fertile, far from the 2:1 ratio expected from a single gene inheritance.
- Doubled Haploids
- The original BN0611 (a BC2 line) underwent microspore culture to produce true-breeding restorer lines. Again, unexpectedly, of the plants which successfully underwent chromosome doubling, the proportion of fertiles was vastly less than expected. The frequency was 254 steriles: 106 fertiles instead of a 1:1 ratio. These results, combined with field results, may indicate that low glucosinolate restoration is controlled by more than a single dominant gene or that theRaphanus sativus material is not well integrated into the genome. Additional theories may ultimately give other reasons for this unexpected segregation ratio.
- Testcrosses
- Twenty BN0611 F3 rows were chosen for being homozygous for the restorer gene. A single plant from each row was crossed to a male sterile line. F1 seeds were planted from each testcross and allowed to flower, at which time fertility of the F1 plants were evaluated.
Cross Male Steriles Fertiles Haploids 0089 BN0611-1)-2-2}:11 0 6 0 0090 BN0611-1)-2-4}:11 0 24 0 0091 BN0611-1)-3-4}:11 0 19 0 0092 BN0611-1)-8-2}:11 0 13 0 0093 BN0611-1)-10-3}:11 0 27 0 0094 BN0611-1)-16-2} 0 24 0 0095 BN0611-1)-22-1}:11 0 26 1 0096 BN0611-1)-22-3}:11 0 15 1 0097 BN0611-1)-22-4} 0 24 0 0098 BN0611-1)-22-5}:11 0 26 0 0099 BN0611-1)-28-3}:11 0 22 1 0100 BN0611-1)-31-1}:11 0 6 1 0101 BN0611-1)-31-4}:11 0 17 1 0102 BN0611-2)-7-2}:11 0 25 2 0103 BN0611-2)-7-3}:11 14 9 1 0104 BN0611-2)-7-6}:11 15 11 0 0105 BN0611-2)-8-5}:11 0 5 0 0106 BN0611-2)-9-5}:11 0 21 1 0107 BN0611-2)-11-4}:11 0 21 0 0108 BN0611-2)-11-5}:11 0 26 0 - The fertile plants did exhibit some abnormal characteristics such as missing petals, malformed buds and bent stigmas. The severity of these traits varied by cross, suggesting some genetic influence by the male.
- Crosses 103 and 104 shows a 1:1 segregation. Emergence data from the field showed that these two males had very few plants in the row, and thus had been mis-classified “homozygous”.
- Many F3 lines included a plant which had traits associated with haploids, i.e. very small buds and flowers. These plants also appeared to have a different leaf type than the other F1's, having a deeper lobed leaf. It may be possible that these plants are aneuploids, and that the extra genetic material could be causing the observed difference in leaf morphology.
- New F3 Lines
- The three low glucosinolate lines crossed by B line have been tested for segregation ratio of the F2 and F3 plants. Table 4B shows results again distinctly different from expected ratios.
TABLE 4B Cross F2 Fertile F2 Sterile F3 Segregating F3 Fertile 0181 n/a n/a 140(110) 25(55) 0184 67(81) 41(27) 57(43) 07(21) 0189 119(118) 38(39) 146(116) 28(58) - These results are far from the expected ratio of two segregating F3 lines for every homozygous line. There is frequently a bias toward fewer fertiles than would be expected from a single gene as the gene approaches homozygosity.
- Glucosinolate Data
- Quantitative glucosinolate data on a number of the lines are included in the following Table 4C.
TABLE 4C Pedigree PRO EPI SIN NAP ALY GNA 4OH GBN GBC NAS NEO ALI IND TOT RF<5<BN0027-22-1-1 11.31 0.36 1.26 0.18 0.19 3.13 2.56 0.22 0.21 0.29 0.02 16.64 3.08 19.72 RF<5<BN0027-22-1-2 32.13 0.64 6.42 0.44 1.73 7.75 3.09 0.72 0.19 0.91 0.06 49.83 4.26 54.09 RF<4<BN0027-22-1-2 30.89 0.60 7.23 0.26 0.94 8.94 2.09 0.30 0.42 2.96 0.01 49.16 5.49 54.64 RF<5<BN0027-22-1-2 29.77 0.58 5.08 0.28 0.93 7.58 1.96 0.48 0.50 1.82 0.01 44.70 4.29 48.99 RF<5<BN0027-22-1-3 22.74 0.45 2.80 0.16 1.16 8.28 2.04 0.88 0.27 2.33 0.02 36.45 4.65 41.10 RF<5<BN0027-22-1-3 22.37 0.44 3.19 0.18 0.61 5.01 1.77 0.23 0.35 1.53 0.02 32.04 3.87 35.72 BN0027-22-1-1 2.27 0.04 1.47 0.12 0.06 0.60 1.52 0.23 0.32 1.64 0.03 4.80 3.51 8.31 BN0027-22-1-2 1.79 0.04 1.28 0.11 0.05 0.49 1.50 0.02 0.16 1.97 0.05 3.78 3.88 7.47 BN0027-22-1-3 1.12 0.20 0.00 0.10 0.03 0.34 1.20 0.20 0.09 0.98 0.02 1.82 2.29 4.10 RF<3<(BN0559)-3-2-1)-8-2 4.39 0.01 0.12 1.70 6.77 2.79 0.01 0.32 0.02 9.79 7.19 16.98 RF<3<(BN0559)-3-2-2)-16-5 4.82 0.01 0.11 1.41 3.91 2.41 0.10 0.24 0.02 9.45 4.32 13.77 RF<3<(BN0559)-3-2-3)-27-2 2.85 0.01 0.08 1.54 4.07 1.26 0.08 0.08 0.01 6.12 4.37 10.49 BN0111 + BN0018 check 1.85 0.01 0.06 0.95 4.15 2.40 0.09 0.08 0.03 5.62 4.50 10.12 - The second group of data (on the previous page) comes from the Carman, Manitoba breeding nursery. As expected, there are some changes in levels of individual glucosinolates due to environmental factors (Mailer and Cornish, 1987). However, it is clear that the level of progoitrin (2-Hydroxy-4-pentenylglucosinolate) and gluconapine are significantly lower in the RF<3<(BN0559)-3-2 derived lines than in high glucosinolate material with the original restorer gene obtained from INRA.
- 3) RFLP Results
- 3.a) Mapping of the Restorer Gene Locus
- In order to determine the position of the restorer gene on theBrassica napus genetic map, DNA was purified from members of a BC1 population that was segregating for the presence of the restorer gene (scored as male fertility in a sterile cytoplasm). The DNA samples were digested with restriction endonucleases, subjected to agarose gel electrophoresis, and transferred to nylon membranes (essentially as described by Southern, 1975). The membranes were then treated with heat-denatured, 32P-labeled DNA probes (Sharpe et al, Osborn et al) and, following overnight hybridization and washing at an appropriate stringency, subjected to autoradiography. The RFLP patterns revealed by these probes were noted, and the probes giving bands of hybridization showing linkage to the restorer phenotype are shown in Table 5. A number of characteristic (“diagnostic”) alleles were seen at the RFLP loci linked to the restorer locus, that are not present in the majority of canola germplasm. In addition to the RFLP probes, one oligonucleotide primer was used to generate RAPD patterns, recently published as being linked to the Restorer gene (Landry et al., 1994); this is also shown in Table 5. The use of AFLP, RFLP, RAPD, microsatellites, primer and other probes, etc. to give genetic fingerprints of the Raphanus sativus material and surrounding Brassica material is encompassed within the scope of this invention.
- 3.b) Characterization of Low GSL Fertile Recombinants
- Representative samples from the backcrosses that generated low GSL recombinants, described in
sections - The GSL levels of the various plants are shown alongside the genotypes in Table 6. (GLS levels were -measured by the HPLC method for evaluation of seed glucosinolate content inBrassicas. This indicates that the gene encoding high GSL levels is linked to the diagnostic alleles, and lies on the segment of chromosome marked by pO120, pO119 and pN64. Because of the low frequency of recombination in this region of the genome, it is impossible to quote precise distances. However, it is clear that by selecting fertile plants that lack the diagnostic alleles for the linked loci, it should be possible to improve the frequency of low GSL fertile plants in the backcross progeny.
TABLE 6 RFLP/RAPD locus Gluco- GSL Segregating OPC2 Fer- sino- (2 plant pN213A WG3F7D TG1H12D 1150 WG4D10J pO9O tility pN64D pO119H pO120F WG6F3E lates reps) FR2<2<4504- + + + + + + F + + + + H 67.5, 1-1/4504-1-1 68.1 pl 6 FR2<2<4504- − − − − ? − S − − − − L 8.3, 1-1/4504-1-1 10.9 pl 12 FR2<2<4504- + + + + + + F + + + + H 69.9, 1-1/4504-1-1 69.6 pl 5 FR2<2<4504- + + + + + + F + + + + H 67.5, 1-1/4504-1-1 68.01 pl 6 FR2<2<4504- + + − − ? − S − − − − L 8.2, 1-1/4504-1-1 7.2 pl 17 RF930307<3< + + + + + + F − − − − L 15.4, BN0559-3-2-2 17.7 pl 3 RF930307<3< + + + + + + F − − − − L 28.2, BN0559-3-2-2 28.5 pl 10 RF930307<3< − − − − − − S − − − − L 26.9, BN0559-3-2-2 27.6 pl 7 RF930307<3< − − − − − − S − − − − L 26.8, BN0559-3-2-2 26.7 pl 4 -
TABLE 7 Allele Origin associated Probe (see with Approx .allele name note 1) Enzyme Restorer size (bp)* pN213 1 EcoRI A 23000 WG3F7 3 EcoRI D 7000 TG1H12 3 EcoRI D 3700 OPC2 4 1150 1150 WG4D10 3 EcoRI J 3400 pO9 2 EcoRI O 19000 pN64 1 EcoRI D 4300 pO119 2 EcoRI H 6500 pO120 2 EcoRI F 4600 WG6F3 3 EcoRI E 13000 - Not only has the present invention been implemented inBrassica napus but it also had been implemented in other Brassica spp.
- Rapa Work with this Gene
-
- At the BC2 generation, both fertile and sterile plants have been obtained in an approximately 50:50 ratio. The plants are morphologically identical to the recurrentB. rapa parent. It is apparent that the restorer gene has been successfully introduced into the Brassica rapa species. Similar crossing techniques could be utilized to introduce this restorer gene into other Brassica species as well.
- Conclusion
- We have produced a clear improvement in the INRA ogura cms system of producing hybrid canolas. A strong linkage between the restorer gene introduced fromRaphanus sativus and high glucosinolate genes from the same source was broken through an intensive crossing program. Based on the literature and all other publicly available information, there were no lines available to produce low glucosinolate, restored hybrids using the ogura cytoplasm until this work. It will now be possible to use this material (KH, and lines derived from it) as a source of fertility in all future canola-quality fertile Brassica hybrids using the ogura cytoplasm.
- Furthermore, using the information given herein about where the probes used are located on the genome of ogura germplasm, it will be possible to use probes to test germplasm of this type to determine if it has the desired combination of restorer gene and low GLS. Accordingly, it is a further feature of our invention to provide ogura germplasm which gives a signal with probes binding in the restorer gene region of the genome, as shown in FIG. 1, but no signal with probes binding in the high GSL region of FIG. 1.
- References
- Chen, Z. Z., S. Snyder, Z. G. Fan and W. H. Loh 1994. Efficient production of doubled haploid plants through chromosome doubling of isolated microspores inBrassica napus. Plant Breeding 113:217-221.
- Delourme, R., F. Eber and M. Renard. 1991. Radish cytoplasmic male sterility in rapeseed: breeding restorer lines with a good female fertility. Proc 8th Int Rapeseed Conf. Saskatoon, Canada. pp. 1506-1510.
- Delourme, R., A. Bouchereau, N. Hubert, M. Renard and B. S. Landry. 1994. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet. 88:741-748.
- Heyn, F. W. 1976. Transfer of restorer genes fromRaphanus to cytoplasmic male-sterile Brassica napus. Cruciferae Newsletter. 1: 15-16.
- Magrath, R.,: C. Herron, A. Giamoustaris and R. Mithen. 1993. The inheritance of aliphatic glucosinolates inBrassica maps. Plant Breeding 111: 55-72.
- Ogura, H. 1968. Studies on the new male sterility in Japanese radish, with special reference on the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ. 6: 39-78.
- Pelletier, G., C. Primard, F. Vedel, P. Chétrit, R. Rémy, P. Rousselle and M. Renard. 1983. Intergeneric cytoplasmic hybridization inCruciferae by protoplast fusion. Mol Gen Genet. 191: 244-250.
- Rakow, D., R. Gmelin and W. Thies. 1981. Enzymatische Darstellung und Eigenschaften einiger Desulfoglucosinolate. Z Naturforsch. 36: 16-22.
- Mailer, R. J. and P. S. Cornish. 1987. Effects of water stress on glucosinolate and oil concentrations in the seed of rape (Brassica napus l.) and turnip rape (Brassica rapa L. var. silvestris±Lam.Fr Briggs). Aust. J. Exp. Agric. 27:707-711.
- Mollers, C., M. C. M. Iqbal and G. Robbelen. 1994. Efficient production of doubled haploidBrassica napus plants by colchicine treatment of microspores. Euphytica 75:95-104.
- R{overscore (u)}cker, B. and G. R{overscore (u)}bbelen. 1994. Inheritance of total and individual glucosinolate contents in seeds of winter oilseed rape (Brassica napus L.). Plant Breeding. 113: 206-216.
- Steele, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. McGraw-Hill Book Company.
Claims (1)
1. A method of producing a restorer line of Brassica having substantially the same glucosinolate level as a corresponding fertile parent for use in an ogura cytoplasmic male sterility system comprising:
A. selecting a fertile parent with microspores comprising a gene restorer line of Brassica napus which contains a Raphanus sativus restorer gene and canola quality levels of glucosinolate particularly levels of progoitrin and gluconasin glucosinolate which are canola levels;
B. culturing selected microspores forming haploids and inducing double haploids;
C. testing the double haploids progeny for fertility indicating the Raphanus sativus restorer gene is present and for levels of glucosinolate wherein the absence of levels of progoitrin and gluconasin glucosinolate and overall glucosinolate production is shown to be substantially the same as the corresponding fertile parent; and
D. selecting progeny which are positive for presence of said restorer gene and negative for elevated glucosinolate production relative to the corresponding fertile parent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/798,840 US20040237141A1 (en) | 1995-07-07 | 2004-03-12 | Cytoplasmic male sterility system producing canola hybrids |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9513881.4A GB9513881D0 (en) | 1995-07-07 | 1995-07-07 | Improved plants |
GB9513881.4 | 1995-07-07 | ||
US08/675,156 US5973233A (en) | 1995-07-07 | 1996-07-03 | Cytoplasmic male sterility system production canola hybrids |
US09/406,037 US6229072B1 (en) | 1995-07-07 | 1999-09-27 | Cytoplasmic male sterility system production canola hybrids |
US09/850,582 US20020049998A1 (en) | 1995-07-07 | 2001-05-07 | Cytoplasmic male sterility system production canola hybrids |
US10/798,840 US20040237141A1 (en) | 1995-07-07 | 2004-03-12 | Cytoplasmic male sterility system producing canola hybrids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/850,582 Continuation US20020049998A1 (en) | 1995-07-07 | 2001-05-07 | Cytoplasmic male sterility system production canola hybrids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040237141A1 true US20040237141A1 (en) | 2004-11-25 |
Family
ID=10777290
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/675,156 Expired - Lifetime US5973233A (en) | 1995-07-07 | 1996-07-03 | Cytoplasmic male sterility system production canola hybrids |
US09/406,037 Expired - Lifetime US6229072B1 (en) | 1995-07-07 | 1999-09-27 | Cytoplasmic male sterility system production canola hybrids |
US09/850,582 Abandoned US20020049998A1 (en) | 1995-07-07 | 2001-05-07 | Cytoplasmic male sterility system production canola hybrids |
US10/798,840 Abandoned US20040237141A1 (en) | 1995-07-07 | 2004-03-12 | Cytoplasmic male sterility system producing canola hybrids |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/675,156 Expired - Lifetime US5973233A (en) | 1995-07-07 | 1996-07-03 | Cytoplasmic male sterility system production canola hybrids |
US09/406,037 Expired - Lifetime US6229072B1 (en) | 1995-07-07 | 1999-09-27 | Cytoplasmic male sterility system production canola hybrids |
US09/850,582 Abandoned US20020049998A1 (en) | 1995-07-07 | 2001-05-07 | Cytoplasmic male sterility system production canola hybrids |
Country Status (11)
Country | Link |
---|---|
US (4) | US5973233A (en) |
EP (2) | EP0784424A4 (en) |
AT (1) | ATE487371T1 (en) |
AU (1) | AU705706B2 (en) |
CA (2) | CA2198125C (en) |
DE (1) | DE69638287D1 (en) |
DK (1) | DK1586235T3 (en) |
ES (1) | ES2354296T3 (en) |
GB (1) | GB9513881D0 (en) |
PT (1) | PT1586235E (en) |
WO (1) | WO1997002737A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225157A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ltd. | Canola variety SW 013154 |
US20060225156A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ldt | Canola variety SW 013186 |
US20060225158A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ltd. | Canola variety SW 013062 |
EP2002711A1 (en) | 2007-06-13 | 2008-12-17 | Syngeta Participations AG | New hybrid system for brassica napus |
US9049865B2 (en) | 2010-04-14 | 2015-06-09 | Bayer Intellectual Property Gmbh | Use of fungicidal active substances for controlling mycoses on plants of the palm family |
US9750206B2 (en) | 2011-02-09 | 2017-09-05 | Dow Agrosciences Llc | HO/LL canola with resistance to clubroot disease |
EP3447151A1 (en) | 2011-09-27 | 2019-02-27 | Dow AgroSciences LLC | Ho/ll canola with resistance to clubroot disease |
Families Citing this family (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9513881D0 (en) * | 1995-07-07 | 1995-09-06 | Zeneca Ltd | Improved plants |
CA2193938A1 (en) | 1996-12-24 | 1998-06-24 | David G. Charne | Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility |
CA2206673A1 (en) * | 1997-06-10 | 1998-12-10 | Lomas K. Tulsieram | Use of molecular markers for genotype determination of the ogura rf gene in brassica napus |
CA2385416A1 (en) * | 1999-09-28 | 2001-04-05 | National Dairy Development Board | Fertility restorer gene for "polima" cytoplasmic male sterility |
US20040117868A1 (en) * | 2002-01-29 | 2004-06-17 | Jun Imamura | Protein participating in restoration from cytoplasmic male sterility to fertility and gene encoding the same |
WO2002088179A1 (en) * | 2001-04-25 | 2002-11-07 | Mitsubishi Chemical Corporation | Protein participating in restoration from cytoplasmic male sterility to fertility and gene encoding the same |
EP1404814B1 (en) * | 2001-07-12 | 2013-06-19 | McGill University | Nuclear fertility restorer genes and methods of use in plants |
US7314971B2 (en) * | 2001-07-12 | 2008-01-01 | Basf Plant Science Gmbh | Nuclear fertility restorer genes and methods of use in plants |
WO2004018639A2 (en) * | 2002-08-23 | 2004-03-04 | Basf Plant Science Gmbh | Male sterility restoration as a selectable marker in plant transformation |
EP1556495A1 (en) * | 2002-10-29 | 2005-07-27 | Genoplante-Valor | Ppr peptide sequences capable of restoring male fertility of plants bearing a male sterility-inducing cytoplasm |
GB0402106D0 (en) | 2004-01-30 | 2004-03-03 | Syngenta Participations Ag | Improved fertility restoration for ogura cytoplasmic male sterile brassica and method |
CL2007003744A1 (en) * | 2006-12-22 | 2008-07-11 | Bayer Cropscience Ag | COMPOSITION THAT INCLUDES A 2-PYRIDILMETILBENZAMIDE DERIVATIVE AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY. |
CL2007003743A1 (en) * | 2006-12-22 | 2008-07-11 | Bayer Cropscience Ag | COMPOSITION THAT INCLUDES FENAMIDONA AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY. |
EP2120558B1 (en) * | 2007-03-12 | 2016-02-10 | Bayer Intellectual Property GmbH | 3,4-Disubstituted phenoxyphenylamidine derivatives and their use as fungicides |
EP1969931A1 (en) * | 2007-03-12 | 2008-09-17 | Bayer CropScience Aktiengesellschaft | Fluoroalkyl phenylamidines and their use as fungicides |
JP2010520900A (en) * | 2007-03-12 | 2010-06-17 | バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト | Phenoxy-substituted phenylamidine derivatives and their use as fungicides |
EP1969934A1 (en) * | 2007-03-12 | 2008-09-17 | Bayer CropScience AG | 4-cycloalkyl or 4-aryl substituted phenoxy phenylamidines and their use as fungicides |
EP1969930A1 (en) * | 2007-03-12 | 2008-09-17 | Bayer CropScience AG | Phenoxy phenylamidines and their use as fungicides |
EP1969929A1 (en) | 2007-03-12 | 2008-09-17 | Bayer CropScience AG | Substituted phenylamidines and their use as fungicides |
JP2010520899A (en) * | 2007-03-12 | 2010-06-17 | バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト | Dihalophenoxyphenylamidine and its use as a fungicide |
US8168567B2 (en) | 2007-04-19 | 2012-05-01 | Bayer Cropscience Ag | Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide |
DE102007045922A1 (en) | 2007-09-26 | 2009-04-02 | Bayer Cropscience Ag | Drug combinations with insecticidal and acaricidal properties |
DE102007045955A1 (en) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Active agent combination, useful e.g. for combating animal pests and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. diazinon, isoxathion, carbofuran or aldicarb |
DE102007045919B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
DE102007045957A1 (en) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Active agent combination, useful e.g. for combating animal pests e.g. insects and treating seeds of transgenic plants, comprises substituted amino-furan-2-one compound and at least one compound e.g. benzoyl urea, buprofezin and cyromazine |
DE102007045920B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Synergistic drug combinations |
DE102007045953B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
DE102007045956A1 (en) * | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Combination of active ingredients with insecticidal and acaricidal properties |
CA2701290A1 (en) * | 2007-10-02 | 2009-04-16 | Bayer Cropscience Ag | Methods of improving plant growth |
EP2090168A1 (en) | 2008-02-12 | 2009-08-19 | Bayer CropScience AG | Method for improving plant growth |
EP2072506A1 (en) | 2007-12-21 | 2009-06-24 | Bayer CropScience AG | Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide |
CN104041403A (en) * | 2008-02-06 | 2014-09-17 | 先锋国际良种公司 | Brassica ogura restorer lines with shortened raphanus fragment (SRF) |
EP2113172A1 (en) * | 2008-04-28 | 2009-11-04 | Bayer CropScience AG | Method for improved utilisation of the production potential of transgene plants |
US7935870B2 (en) * | 2008-05-14 | 2011-05-03 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV354718 |
US7964774B2 (en) | 2008-05-14 | 2011-06-21 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV384196 |
US8829282B2 (en) * | 2008-05-14 | 2014-09-09 | Monsanto Technology, Llc | Plants and seeds of spring canola variety SCV425044 |
US7947877B2 (en) * | 2008-05-14 | 2011-05-24 | Monosanto Technology LLC | Plants and seeds of spring canola variety SCV328921 |
EP2168434A1 (en) | 2008-08-02 | 2010-03-31 | Bayer CropScience AG | Use of azols to increase resistance of plants of parts of plants to abiotic stress |
CA2733958A1 (en) | 2008-08-14 | 2010-02-18 | Bayer Cropscience Ag | Insecticidal 4-phenyl-1h-pyrazoles |
DE102008041695A1 (en) | 2008-08-29 | 2010-03-04 | Bayer Cropscience Ag | Methods for improving plant growth |
JP2010090270A (en) * | 2008-10-08 | 2010-04-22 | Seiko Epson Corp | Printing method by inkjet recording system |
EP2201838A1 (en) | 2008-12-05 | 2010-06-30 | Bayer CropScience AG | Active ingredient-beneficial organism combinations with insecticide and acaricide properties |
EP2198709A1 (en) | 2008-12-19 | 2010-06-23 | Bayer CropScience AG | Method for treating resistant animal pests |
EP2204094A1 (en) | 2008-12-29 | 2010-07-07 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants Introduction |
EP2039770A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
EP2039771A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
EP2039772A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants introduction |
WO2010081689A2 (en) | 2009-01-19 | 2010-07-22 | Bayer Cropscience Ag | Cyclic diones and their use as insecticides, acaricides and/or fungicides |
EP2227951A1 (en) | 2009-01-23 | 2010-09-15 | Bayer CropScience AG | Application of enaminocarbonyl compounds for combating viruses transmitted by insects |
CN102300852B (en) | 2009-01-28 | 2015-04-22 | 拜尔农科股份公司 | Fungicide N-cycloalkyl-N-bicyclicmethylene-carboxamide derivatives |
AR075126A1 (en) | 2009-01-29 | 2011-03-09 | Bayer Cropscience Ag | METHOD FOR THE BEST USE OF THE TRANSGENIC PLANTS PRODUCTION POTENTIAL |
EP2218717A1 (en) | 2009-02-17 | 2010-08-18 | Bayer CropScience AG | Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives |
JP5728735B2 (en) | 2009-02-17 | 2015-06-03 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH | Bactericidal N- (phenylcycloalkyl) carboxamide, N- (benzylcycloalkyl) carboxamide and thiocarboxamide derivatives |
TW201031331A (en) | 2009-02-19 | 2010-09-01 | Bayer Cropscience Ag | Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance |
DE102009001469A1 (en) | 2009-03-11 | 2009-09-24 | Bayer Cropscience Ag | Improving utilization of productive potential of transgenic plant by controlling e.g. animal pest, and/or by improving plant health, comprises treating the transgenic plant with active agent composition comprising prothioconazole |
DE102009001681A1 (en) | 2009-03-20 | 2010-09-23 | Bayer Cropscience Ag | Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi, microorganisms and/or improving plant health, comprises treating plant with a drug composition comprising iprovalicarb |
DE102009001728A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising fluoxastrobin |
DE102009001732A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Improving the production potential of transgenic plant, by combating e.g. animal pests and/or microorganism, and/or increasing plant health, comprises treating the plants with active agent composition comprising trifloxystrobin |
DE102009001730A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Improving utilization of production potential of a transgenic plant by controlling animal pests, phytopathogenic fungi and/or microorganisms and/or the plant health, comprises treating plant with a drug composition comprising spiroxamine |
MX2011009916A (en) | 2009-03-25 | 2011-10-06 | Bayer Cropscience Ag | Active ingredient combinations having insecticidal and acaricidal properties. |
AP3073A (en) | 2009-03-25 | 2014-12-31 | Bayer Cropscience Ag | Active ingredient combinations with insecticidal and acaricidal properties |
UA104887C2 (en) | 2009-03-25 | 2014-03-25 | Баєр Кропсаєнс Аг | Synergic combinations of active ingredients |
JP5462354B2 (en) | 2009-03-25 | 2014-04-02 | バイエル・クロップサイエンス・アーゲー | Active ingredient combinations with insecticidal and acaricidal properties |
WO2010108505A1 (en) | 2009-03-25 | 2010-09-30 | Bayer Cropscience Ag | Active ingredient combinations having insecticidal and acaricidal properties |
EP2232995A1 (en) | 2009-03-25 | 2010-09-29 | Bayer CropScience AG | Method for improved utilisation of the production potential of transgenic plants |
EP2239331A1 (en) | 2009-04-07 | 2010-10-13 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
CN102458125B (en) | 2009-05-06 | 2015-04-29 | 拜尔农作物科学股份公司 | Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides |
EP2251331A1 (en) | 2009-05-15 | 2010-11-17 | Bayer CropScience AG | Fungicide pyrazole carboxamides derivatives |
AR076839A1 (en) | 2009-05-15 | 2011-07-13 | Bayer Cropscience Ag | FUNGICIDE DERIVATIVES OF PIRAZOL CARBOXAMIDAS |
EP2255626A1 (en) | 2009-05-27 | 2010-12-01 | Bayer CropScience AG | Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress |
WO2010139410A2 (en) * | 2009-06-02 | 2010-12-09 | Bayer Cropscience Ag | Use of succinate dehydrogenase inhibitors for controlling sclerotinia ssp. |
US8071848B2 (en) * | 2009-06-17 | 2011-12-06 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV218328 |
BR112012001080A2 (en) | 2009-07-16 | 2015-09-01 | Bayer Cropscience Ag | Combinations of synergistic active substances containing phenyltriazoles |
WO2011015524A2 (en) | 2009-08-03 | 2011-02-10 | Bayer Cropscience Ag | Fungicide heterocycles derivatives |
FR2948533A1 (en) | 2009-08-03 | 2011-02-04 | Limagrain Verneuil Holding | OGURA CYTOPLASMIC MALE STERILITE BRASSICA RESTAURANT PLANT, PROCESS FOR PRODUCTION AND USE THEREOF |
EP2292094A1 (en) * | 2009-09-02 | 2011-03-09 | Bayer CropScience AG | Active compound combinations |
EP2343280A1 (en) | 2009-12-10 | 2011-07-13 | Bayer CropScience AG | Fungicide quinoline derivatives |
CA2782423C (en) | 2009-12-18 | 2019-06-18 | Cargill Incorporated | Brassica plants yielding oils with a low total saturated fatty acid content |
CN102724879B (en) | 2009-12-28 | 2015-10-21 | 拜尔农科股份公司 | Fungicide hydroximoyl-tetrazole derivatives |
JP5894928B2 (en) | 2009-12-28 | 2016-03-30 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | Fungicide hydroxymoyl-heterocyclic derivative |
CN102725282B (en) | 2009-12-28 | 2015-12-16 | 拜尔农科股份公司 | Fungicide hydroximoyl-tetrazole derivatives |
EP2525658B1 (en) | 2010-01-22 | 2017-03-01 | Bayer Intellectual Property GmbH | Acaricides and/or insecticidal agent combinations |
EP2353387A1 (en) | 2010-02-05 | 2011-08-10 | Bayer CropScience AG | Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family |
US8143488B2 (en) * | 2010-02-26 | 2012-03-27 | Monsanto Technoloy LLC | Plants and seeds of spring canola variety SCV470336 |
US8138394B2 (en) * | 2010-02-26 | 2012-03-20 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV431158 |
US8148611B2 (en) * | 2010-02-26 | 2012-04-03 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV453784 |
AR080443A1 (en) | 2010-03-04 | 2012-04-11 | Bayer Cropscience Ag | 2-AMIDOBENCIMIDAZOLES REPLACED WITH FLURUOALQUILO |
US8581048B2 (en) * | 2010-03-09 | 2013-11-12 | Monsanto Technology, Llc | Plants and seeds of spring canola variety SCV119103 |
US8153865B2 (en) * | 2010-03-11 | 2012-04-10 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV152154 |
EP2547204A2 (en) | 2010-03-18 | 2013-01-23 | Bayer Intellectual Property GmbH | Aryl and hetaryl sulfonamides as active agents against abiotic plant stress |
EP2555619A2 (en) | 2010-04-06 | 2013-02-13 | Bayer Intellectual Property GmbH | Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants |
WO2011124553A2 (en) | 2010-04-09 | 2011-10-13 | Bayer Cropscience Ag | Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress |
WO2011134911A2 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
BR112012027558A2 (en) | 2010-04-28 | 2015-09-15 | Bayer Cropscience Ag | '' Compound of formula (I), fungicidal composition and method for the control of crop phytogenic fungi '' |
BR112012027559A2 (en) | 2010-04-28 | 2015-09-08 | Bayer Cropscience Ag | compost, fungicidal composition and method for controlling plant pathogenic fungi |
US9695434B2 (en) | 2010-05-25 | 2017-07-04 | Cargill, Incorporated | Brassica plants yielding oils with a low alpha linolenic acid content |
EP2576765A4 (en) | 2010-05-25 | 2013-12-18 | Cargill Inc | Brassica plants yielding oils with a low alpha linolenic acid content |
PL2576517T3 (en) | 2010-06-03 | 2015-06-30 | Bayer Ip Gmbh | N-[(het)arylalkyl)]pyrazole (thio)carboxamides and their heterosubstituted analogues |
CN102933556B (en) | 2010-06-03 | 2015-08-26 | 拜尔农科股份公司 | N-[(mixing) aryl ethyl] pyrazoles (sulfo-) carboxylic acid amides and the assorted analogue replaced thereof |
UA110703C2 (en) | 2010-06-03 | 2016-02-10 | Байєр Кропсайнс Аг | Fungicidal n-[(trisubstitutedsilyl)methyl]carboxamide |
UA111593C2 (en) | 2010-07-07 | 2016-05-25 | Баєр Інтеллекчуел Проперті Гмбх | ANTRANILIC ACID AMIDES IN COMBINATION WITH FUNGICIDES |
EP3181550B1 (en) | 2010-07-20 | 2019-11-20 | Bayer Intellectual Property GmbH | Benzocycloalkenes as antifungal agents |
MX339683B (en) | 2010-07-20 | 2016-06-06 | Bayer Ip Gmbh | Use of anthranilic acid amide derivatives for controlling insects and spider mites by watering, mixing with soil, drench treatment, droplet applicatio. |
RU2013114710A (en) | 2010-09-03 | 2014-10-10 | Байер Интеллектуэль Проперти Гмбх | Substituted Condensed Pyrimidinones and Dihydropyrimidinones |
EP2618667A2 (en) | 2010-09-22 | 2013-07-31 | Bayer Intellectual Property GmbH | Use of biological or chemical control agents for controlling insects and nematodes in resistant crops |
EP2460406A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Use of fluopyram for controlling nematodes in nematode resistant crops |
WO2012045798A1 (en) | 2010-10-07 | 2012-04-12 | Bayer Cropscience Ag | Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative |
BR112013009590B8 (en) | 2010-10-21 | 2019-03-19 | Bayer Ip Gmbh | compound, fungicidal composition and method |
WO2012052490A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | N-benzyl heterocyclic carboxamides |
UA109460C2 (en) | 2010-11-02 | 2015-08-25 | Байєр Інтелекчуал Проперті Гмбх | N-hetarylmethyl pyrazolylcarboxamides |
CN103369962A (en) | 2010-11-15 | 2013-10-23 | 拜耳知识产权有限责任公司 | 5-halogenopyrazole(thio)carboxamides |
WO2012065947A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazolecarboxamides |
BR112013012080A2 (en) | 2010-11-15 | 2016-07-19 | Bayer Ip Gmbh | n-aryl pyrazole (thio) carboxamides |
CN103281900A (en) | 2010-12-01 | 2013-09-04 | 拜耳知识产权有限责任公司 | Use of fluopyram for controlling nematodes in crops and for increasing yield |
EP2460407A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Agent combinations comprising pyridylethyl benzamides and other agents |
EP2658853A1 (en) | 2010-12-29 | 2013-11-06 | Bayer Intellectual Property GmbH | Fungicide hydroximoyl-tetrazole derivatives |
EP2474542A1 (en) | 2010-12-29 | 2012-07-11 | Bayer CropScience AG | Fungicide hydroximoyl-tetrazole derivatives |
EP2471363A1 (en) | 2010-12-30 | 2012-07-04 | Bayer CropScience AG | Use of aryl-, heteroaryl- and benzylsulfonamide carboxylic acids, -carboxylic acid esters, -carboxylic acid amides and -carbonitriles and/or its salts for increasing stress tolerance in plants |
EP2494867A1 (en) | 2011-03-01 | 2012-09-05 | Bayer CropScience AG | Halogen-substituted compounds in combination with fungicides |
EP2683239A1 (en) | 2011-03-10 | 2014-01-15 | Bayer Intellectual Property GmbH | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
US20140005230A1 (en) | 2011-03-14 | 2014-01-02 | Juergen Benting | Fungicide hydroximoyl-tetrazole derivatives |
US8513487B2 (en) | 2011-04-07 | 2013-08-20 | Zenon LISIECZKO | Plants and seeds of spring canola variety ND-662c |
US8513494B2 (en) | 2011-04-08 | 2013-08-20 | Chunren Wu | Plants and seeds of spring canola variety SCV695971 |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2511255A1 (en) | 2011-04-15 | 2012-10-17 | Bayer CropScience AG | Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives |
AR085568A1 (en) | 2011-04-15 | 2013-10-09 | Bayer Cropscience Ag | 5- (BICYCLE [4.1.0] HEPT-3-EN-2-IL) -PENTA-2,4-DIENOS AND 5- (BICYCLE [4.1.0] HEPT-3-EN-2-IL) -PENT- 2-IN-4-INOS REPLACED AS ACTIVE PRINCIPLES AGAINST ABIOTIC STRESS OF PLANTS |
AR090010A1 (en) | 2011-04-15 | 2014-10-15 | Bayer Cropscience Ag | 5- (CICLOHEX-2-EN-1-IL) -PENTA-2,4-DIENOS AND 5- (CICLOHEX-2-EN-1-IL) -PENT-2-EN-4-INOS REPLACED AS ACTIVE PRINCIPLES AGAINST THE ABIOTIC STRESS OF PLANTS, USES AND TREATMENT METHODS |
AR085585A1 (en) | 2011-04-15 | 2013-10-09 | Bayer Cropscience Ag | VINIL- AND ALQUINILCICLOHEXANOLES SUBSTITUTED AS ACTIVE PRINCIPLES AGAINST STRIPS ABIOTIQUE OF PLANTS |
EA029682B1 (en) | 2011-04-22 | 2018-04-30 | Байер Интеллекчуал Проперти Гмбх | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
US8507761B2 (en) | 2011-05-05 | 2013-08-13 | Teresa Huskowska | Plants and seeds of spring canola variety SCV372145 |
US8513495B2 (en) | 2011-05-10 | 2013-08-20 | Dale Burns | Plants and seeds of spring canola variety SCV291489 |
CN103957711A (en) | 2011-07-04 | 2014-07-30 | 拜耳知识产权有限责任公司 | Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants |
AU2012293636B2 (en) | 2011-08-10 | 2015-12-03 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
JP2014524455A (en) | 2011-08-22 | 2014-09-22 | バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー | Fungicidal hydroxymoyl-tetrazole derivatives |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
BR112014005262A2 (en) | 2011-09-09 | 2017-04-04 | Bayer Ip Gmbh | method for enhancing a vegetable and using a compound of formula (i) or (ii) |
US9090600B2 (en) | 2011-09-12 | 2015-07-28 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4H)-one derivatives |
UA115971C2 (en) | 2011-09-16 | 2018-01-25 | Байєр Інтеллектуал Проперті Гмбх | Use of acylsulfonamides for improving plant yield |
EP2755484A1 (en) | 2011-09-16 | 2014-07-23 | Bayer Intellectual Property GmbH | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
AR087873A1 (en) | 2011-09-16 | 2014-04-23 | Bayer Ip Gmbh | USE OF PHENYLPIRAZOLIN-3-CARBOXYLATES TO IMPROVE PLANT PERFORMANCE |
BR112014006940A2 (en) | 2011-09-23 | 2017-04-04 | Bayer Ip Gmbh | use of 4-substituted 1-phenylpyrazol-3-carboxylic acid derivatives as abiotic stress agents in plants |
PL2764101T3 (en) | 2011-10-04 | 2017-09-29 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013050324A1 (en) | 2011-10-06 | 2013-04-11 | Bayer Intellectual Property Gmbh | Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress |
MX2014005976A (en) | 2011-11-21 | 2014-08-27 | Bayer Ip Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives. |
CA2857438A1 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
CA2859467C (en) | 2011-12-19 | 2019-10-01 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
TWI558701B (en) | 2011-12-29 | 2016-11-21 | 拜耳知識產權公司 | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-sub stituted-1,2,4-oxadiazol-5(2h)-one derivatives |
EP2797891B1 (en) | 2011-12-29 | 2015-09-30 | Bayer Intellectual Property GmbH | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
CN104244714B (en) | 2012-02-22 | 2018-02-06 | 拜耳农作物科学股份公司 | Succinate dehydrogenase inhibitors (SDHI) are used for the purposes for preventing and treating the timber disease in grape |
JP6093381B2 (en) | 2012-02-27 | 2017-03-08 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH | Active compound combination containing thiazolyl isoxazoline and fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
EP2836489B1 (en) | 2012-04-12 | 2016-06-29 | Bayer Cropscience AG | N-acyl-2-(cyclo) alkylpyrrolidines and piperidines useful as fungicides |
JP2015516396A (en) | 2012-04-20 | 2015-06-11 | バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag | N-cycloalkyl-N-[(trisubstituted silylphenyl) methylene]-(thio) carboxamide derivatives |
JP6109295B2 (en) | 2012-04-20 | 2017-04-05 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | N-cycloalkyl-N-[(heterocyclylphenyl) methylene]-(thio) carboxamide derivatives |
US8802935B2 (en) | 2012-04-26 | 2014-08-12 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV942568 |
US8878009B2 (en) | 2012-04-26 | 2014-11-04 | Monsanto Technology, LLP | Plants and seeds of spring canola variety SCV318181 |
US8859857B2 (en) | 2012-04-26 | 2014-10-14 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV259778 |
US8835720B2 (en) | 2012-04-26 | 2014-09-16 | Monsanto Technology Llc | Plants and seeds of spring canola variety SCV967592 |
CN102640700A (en) * | 2012-05-04 | 2012-08-22 | 湖南省作物研究所 | Cabbage type rape Ogura cytoplasmic male sterility (OGU CMS) restorer and transformation method and application thereof |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
US9375005B2 (en) | 2012-05-09 | 2016-06-28 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
CN102696474B (en) * | 2012-05-15 | 2013-11-06 | 西北农林科技大学 | Breeding and application of cytoplasmic male sterility restoring line of brassica napus rapeseed and radish |
AR091104A1 (en) | 2012-05-22 | 2015-01-14 | Bayer Cropscience Ag | COMBINATIONS OF ACTIVE COMPOUNDS THAT INCLUDE A LIPO-CHYTOOLIGOSACARIDE DERIVATIVE AND A NEMATICIDE, INSECTICIDE OR FUNGICIDE COMPOUND |
AU2013289301A1 (en) | 2012-07-11 | 2015-01-22 | Bayer Cropscience Ag | Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress |
AU2013311826A1 (en) | 2012-09-05 | 2015-03-26 | Bayer Cropscience Ag | Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
AU2013333847B2 (en) | 2012-10-19 | 2017-04-20 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
CA2888600C (en) | 2012-10-19 | 2021-08-10 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
PL2908642T3 (en) | 2012-10-19 | 2022-06-13 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants by using carboxamide or thiocarboxamide derivatives |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
US9775349B2 (en) | 2012-11-30 | 2017-10-03 | Bayer Cropscience Ag | Binary fungicidal or pesticidal mixture |
BR112015012055B1 (en) | 2012-11-30 | 2021-01-12 | Bayer Cropscience Ag | ternary fungicidal composition, its preparation process, method to control one or more harmful microorganisms, seed resistant to harmful microorganisms and its treatment method |
BR112015012519A2 (en) | 2012-11-30 | 2017-07-11 | Bayer Cropscience Ag | ternary mixtures fungicides and pesticides |
EP2925135A2 (en) | 2012-11-30 | 2015-10-07 | Bayer CropScience AG | Binary pesticidal and fungicidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014086751A1 (en) | 2012-12-05 | 2014-06-12 | Bayer Cropscience Ag | Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress |
EP2740356A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives |
EP2740720A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
AR093996A1 (en) | 2012-12-18 | 2015-07-01 | Bayer Cropscience Ag | BACTERICIDAL COMBINATIONS AND BINARY FUNGICIDES |
EP2935218A1 (en) | 2012-12-19 | 2015-10-28 | Bayer CropScience AG | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
CN105705490A (en) | 2013-03-07 | 2016-06-22 | 拜耳作物科学股份公司 | Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives |
JP2016522800A (en) | 2013-04-12 | 2016-08-04 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | New triazoline thione derivatives |
MX2015014365A (en) | 2013-04-12 | 2015-12-07 | Bayer Cropscience Ag | Novel triazole derivatives. |
BR112015026235A2 (en) | 2013-04-19 | 2017-10-10 | Bayer Cropscience Ag | method for improving utilization of the potential of transgenic plant production involving the application of a phthaldiamide derivative |
KR20150144779A (en) | 2013-04-19 | 2015-12-28 | 바이엘 크롭사이언스 악티엔게젤샤프트 | Binary insecticidal or pesticidal mixture |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
TW201507722A (en) | 2013-04-30 | 2015-03-01 | Bayer Cropscience Ag | N-(2-halogen-2-phenethyl)carboxamides as nematicides and endoparasiticides |
BR112015031235A2 (en) | 2013-06-26 | 2017-07-25 | Bayer Cropscience Ag | n-cycloalkyl-n - [(bicyclyl-phenyl) methylene] - (thio) carboxamide derivatives |
EA201600097A1 (en) | 2013-07-09 | 2016-06-30 | Байер Кропсайенс Акциенгезельшафт | APPLICATION OF SELECTED PYRIDON CARBOXAMIDES OR THEIR SALTS AS ACTIVE SUBSTANCES AGAINST THE ABIOTIC STRESS OF PLANTS |
CA2918909A1 (en) | 2013-07-25 | 2015-01-29 | Pioneer Hi-Bred International, Inc. | Method for producing hybrid brassica seed |
EP2837287A1 (en) | 2013-08-15 | 2015-02-18 | Bayer CropScience AG | Use of prothioconazole for increasing root growth of Brassicaceae |
EP3041355B1 (en) | 2013-09-03 | 2017-08-09 | Bayer CropScience AG | Use of fungicidal agents for controlling chalara fraxinea on ash trees |
JP6507165B2 (en) | 2013-12-05 | 2019-04-24 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | N-Cycloalkyl-N-{[2- (1-substituted cycloalkyl) phenyl] methylene}-(thio) carboxamide derivative |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
EP2865267A1 (en) | 2014-02-13 | 2015-04-29 | Bayer CropScience AG | Active compound combinations comprising phenylamidine compounds and biological control agents |
EP2865265A1 (en) | 2014-02-13 | 2015-04-29 | Bayer CropScience AG | Active compound combinations comprising phenylamidine compounds and biological control agents |
AR101214A1 (en) | 2014-07-22 | 2016-11-30 | Bayer Cropscience Ag | CIANO-CICLOALQUILPENTA-2,4-DIENOS, CIANO-CICLOALQUILPENT-2-EN-4-INAS, CIANO-HETEROCICLILPENTA-2,4-DIENOS AND CYANO-HETEROCICLILPENT-2-EN-4-INAS REPLACED AS ACTIVE PRINCIPLES PLANTS ABIOTIC |
AR103024A1 (en) | 2014-12-18 | 2017-04-12 | Bayer Cropscience Ag | SELECTED PYRIDONCARBOXAMIDS OR ITS SALTS AS ACTIVE SUBSTANCES AGAINST ABIOTIC PLANTS STRESS |
BR112017022000A2 (en) | 2015-04-13 | 2018-07-03 | Bayer Cropscience Ag | n-cycloalkyl-n- (biheterocyclylethylene) - (thio) carboxamide derivatives. |
UA126326C2 (en) | 2015-04-30 | 2022-09-21 | Монсанто Текнолоджі Елелсі | Methods for producing canola plants with clubroot resistance and compositions thereof |
WO2017102923A1 (en) | 2015-12-15 | 2017-06-22 | Bayer Cropscience Nv | Brassicaceae plants resistant to plasmodiophora brassicae (clubroot) |
AU2017247937A1 (en) | 2016-04-06 | 2018-10-04 | Bayer Cropscience Aktiengesellschaft | Combination of nuclear polyhedrosis virus and diamides |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
US20190281828A1 (en) | 2016-09-22 | 2019-09-19 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
WO2018054832A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
RU2019115286A (en) | 2016-10-26 | 2020-11-27 | Байер Кропсайенс Акциенгезельшафт | APPLICATION OF NIRAZIFLUMIDE TO CONTROL SCLEROTINIA SPP IN SEED TREATMENT |
CN106718822B (en) * | 2016-11-15 | 2019-11-12 | 江西省农业科学院作物研究所 | A kind of cabbage type rape cytoplasmic sterility restorer population improvement method |
RU2755433C2 (en) | 2016-12-08 | 2021-09-16 | Байер Кропсайенс Акциенгезельшафт | Use of insecticides to combat wireworms |
EP3332645A1 (en) | 2016-12-12 | 2018-06-13 | Bayer Cropscience AG | Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress |
WO2018108627A1 (en) | 2016-12-12 | 2018-06-21 | Bayer Cropscience Aktiengesellschaft | Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants |
WO2019025153A1 (en) | 2017-07-31 | 2019-02-07 | Bayer Cropscience Aktiengesellschaft | Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants |
JP2021525774A (en) | 2018-06-04 | 2021-09-27 | バイエル アクチェンゲゼルシャフトBayer Aktiengesellschaft | Herbicidal active bicyclic benzoylpyrazole |
CA3107382A1 (en) | 2018-07-26 | 2020-01-30 | Bayer Aktiengesellschaft | Use of the succinate dehydrogenase inhibitor fluopyram for controlling root rot complex and/or seedling disease complex caused by rhizoctonia solani, fusarium species and pythium species in brassicaceae species |
EA202190783A1 (en) | 2018-09-17 | 2021-07-02 | Байер Акциенгезельшафт | APPLICATION OF FLUOPYRAM, SUCCINATE DEHYDROGENASE INHIBITOR, TO FIGHT CLAVICEPS PURPUREA AND REDUCE SCLEROCIATION IN CEREALS |
EA202190768A1 (en) | 2018-09-17 | 2021-08-09 | Байер Акциенгезельшафт | THE APPLICATION OF ISOFLUCIPRAM FUNGICIDE TO FIGHT CLAVICEPS PURPUREA AND REDUCE SCLEROCIATION IN CEREALS |
AU2022313321A1 (en) | 2021-07-23 | 2024-02-01 | BASF Agricultural Solutions Seed US LLC | Blackleg resistant plants and methods for the identification of blackleg resistant plants |
CN114568294A (en) * | 2022-01-25 | 2022-06-03 | 华中农业大学 | Method for breeding clubroot-resistant variety based on brassica napus Ogu-CMS restorer line |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644066A (en) * | 1992-10-14 | 1997-07-01 | Mitsubishi Chemical Corporation | Methods for introducing a fertility restorer gene and for producing F1 |
US5973233A (en) * | 1995-07-07 | 1999-10-26 | Zenco (No. 4) Limited | Cytoplasmic male sterility system production canola hybrids |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4517763A (en) * | 1983-05-11 | 1985-05-21 | University Of Guelph | Hybridization process utilizing a combination of cytoplasmic male sterility and herbicide tolerance |
US4658084A (en) | 1985-11-14 | 1987-04-14 | University Of Guelph | Hybridization using cytoplasmic male sterility and herbicide tolerance from nuclear genes |
US5356799A (en) * | 1988-02-03 | 1994-10-18 | Pioneer Hi-Bred International, Inc. | Antisense gene systems of pollination control for hybrid seed production |
US5478369A (en) | 1990-06-12 | 1995-12-26 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
FR2667078B1 (en) * | 1990-09-21 | 1994-09-16 | Agronomique Inst Nat Rech | DNA SEQUENCE GIVING MALE CYTOPLASMIC STERILITY, MITOCHONDRIAL, MITOCHONDRIA AND PLANT CONTAINING THE SAME, AND PROCESS FOR THE PREPARATION OF HYBRIDS. |
DE69518679T2 (en) * | 1994-03-10 | 2001-04-12 | Takii Shubyo K.K., Kyoto | Hybrid breeding method for cultivated plants of the Brassicaceae family |
-
1995
- 1995-07-07 GB GBGB9513881.4A patent/GB9513881D0/en active Pending
-
1996
- 1996-07-03 US US08/675,156 patent/US5973233A/en not_active Expired - Lifetime
- 1996-07-03 CA CA002198125A patent/CA2198125C/en not_active Expired - Lifetime
- 1996-07-03 CA CA002273137A patent/CA2273137A1/en not_active Abandoned
- 1996-07-03 WO PCT/US1996/011326 patent/WO1997002737A1/en not_active Application Discontinuation
- 1996-07-03 AU AU64530/96A patent/AU705706B2/en not_active Expired
- 1996-07-03 AT AT05008584T patent/ATE487371T1/en active
- 1996-07-03 EP EP96923663A patent/EP0784424A4/en not_active Withdrawn
- 1996-07-03 DK DK05008584.4T patent/DK1586235T3/en active
- 1996-07-03 PT PT05008584T patent/PT1586235E/en unknown
- 1996-07-03 ES ES05008584T patent/ES2354296T3/en not_active Expired - Lifetime
- 1996-07-03 DE DE69638287T patent/DE69638287D1/en not_active Expired - Lifetime
- 1996-07-03 EP EP05008584A patent/EP1586235B1/en not_active Expired - Lifetime
-
1999
- 1999-09-27 US US09/406,037 patent/US6229072B1/en not_active Expired - Lifetime
-
2001
- 2001-05-07 US US09/850,582 patent/US20020049998A1/en not_active Abandoned
-
2004
- 2004-03-12 US US10/798,840 patent/US20040237141A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644066A (en) * | 1992-10-14 | 1997-07-01 | Mitsubishi Chemical Corporation | Methods for introducing a fertility restorer gene and for producing F1 |
US5973233A (en) * | 1995-07-07 | 1999-10-26 | Zenco (No. 4) Limited | Cytoplasmic male sterility system production canola hybrids |
US6229072B1 (en) * | 1995-07-07 | 2001-05-08 | Adventa Technology Ltd | Cytoplasmic male sterility system production canola hybrids |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225157A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ltd. | Canola variety SW 013154 |
US20060225156A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ldt | Canola variety SW 013186 |
US20060225158A1 (en) * | 2005-03-30 | 2006-10-05 | Sw Seed Ltd. | Canola variety SW 013062 |
EP2002711A1 (en) | 2007-06-13 | 2008-12-17 | Syngeta Participations AG | New hybrid system for brassica napus |
DE102008028357A1 (en) | 2007-06-13 | 2009-02-05 | Syngenta Participations Ag | New hybrid system for Brassica napus |
EP2220930A2 (en) | 2007-06-13 | 2010-08-25 | Syngenta Participations AG | New hybrid system for brassica napus |
US9049865B2 (en) | 2010-04-14 | 2015-06-09 | Bayer Intellectual Property Gmbh | Use of fungicidal active substances for controlling mycoses on plants of the palm family |
US9750206B2 (en) | 2011-02-09 | 2017-09-05 | Dow Agrosciences Llc | HO/LL canola with resistance to clubroot disease |
EP3447151A1 (en) | 2011-09-27 | 2019-02-27 | Dow AgroSciences LLC | Ho/ll canola with resistance to clubroot disease |
Also Published As
Publication number | Publication date |
---|---|
WO1997002737A1 (en) | 1997-01-30 |
EP1586235B1 (en) | 2010-11-10 |
ATE487371T1 (en) | 2010-11-15 |
US20020049998A1 (en) | 2002-04-25 |
GB9513881D0 (en) | 1995-09-06 |
EP0784424A4 (en) | 1998-12-02 |
DK1586235T3 (en) | 2011-01-24 |
ES2354296T3 (en) | 2011-03-11 |
US6229072B1 (en) | 2001-05-08 |
US5973233A (en) | 1999-10-26 |
CA2198125A1 (en) | 1997-01-30 |
DE69638287D1 (en) | 2010-12-23 |
PT1586235E (en) | 2011-01-26 |
EP0784424A1 (en) | 1997-07-23 |
AU705706B2 (en) | 1999-05-27 |
EP1586235A3 (en) | 2005-10-26 |
CA2273137A1 (en) | 1997-01-30 |
AU6453096A (en) | 1997-02-10 |
CA2198125C (en) | 1999-09-14 |
EP1586235A2 (en) | 2005-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6229072B1 (en) | Cytoplasmic male sterility system production canola hybrids | |
Havey | The use of cytoplasmic male sterility for hybrid seed production | |
US20020178470A1 (en) | Plants and seeds of corn variety i181664 | |
CA2451589C (en) | Brassica plant resistant to the fungus leptosphaeria maculans (blackleg) | |
Banga | Heterosis and its utilization | |
Deol et al. | Enarthrocarpus lyratus‐based cytoplasmic male sterility and fertility restorer system in Brassica rapa | |
US20030014773A1 (en) | Cytoplasmic male sterility-based system for hybrid wheat plant and seed production | |
US6166306A (en) | Method of producing hybrid catharanthus using male sterility | |
US20060080748A1 (en) | Cross-incompatibility traits from teosinte and their use in corn | |
US11166433B2 (en) | Cotton variety PX5D28W3FE | |
AU2017276202A1 (en) | Cotton variety PX499096W3FE | |
US6069302A (en) | Hybrid spring oilseed Brassica napus with winter germplasm introgression | |
US11266112B2 (en) | Cotton variety PX3B09W3FE | |
AU2018202457B2 (en) | Cotton Variety PX4A62W3FE | |
AU2018202456B2 (en) | Cotton variety PX4A52W3FE | |
AU2018202454B2 (en) | Cotton variety PX4A54W3FE | |
AU2018202455B2 (en) | Cotton Variety PX4A57W3FE | |
AU2014271254A1 (en) | Cotton variety PX4433-27WRF | |
AU2014271253A1 (en) | Cotton variety PX4433-25WRF | |
Griffin et al. | United States: Linkage tests with a locus conditioning ineffective nodulation response to Rhizobium fredii | |
Hatfield et al. | United States: Allelism tests of T218H and T225H | |
Heer | United States: Enhancing seed set in Glycine falcata | |
Griffin et al. | United States: An additional beta-amylase mobility variant conditioned by the spl locus | |
Skorupska et al. | United States: A new mutation at the ms1 locus | |
Grayhosch et al. | United States: Test for apomixis in ms4 soybean |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |