US20040236402A1 - Partial encapsulation of stents - Google Patents

Partial encapsulation of stents Download PDF

Info

Publication number
US20040236402A1
US20040236402A1 US10/873,062 US87306204A US2004236402A1 US 20040236402 A1 US20040236402 A1 US 20040236402A1 US 87306204 A US87306204 A US 87306204A US 2004236402 A1 US2004236402 A1 US 2004236402A1
Authority
US
United States
Prior art keywords
slits
medical device
plurality
implantable medical
eptfe tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/873,062
Inventor
Richard Layne
Sandra Cundy
Debra Bebb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bard Peripheral Vascular Inc
Original Assignee
Bard Peripheral Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US11826999P priority Critical
Priority to US09/388,496 priority patent/US6398803B1/en
Priority to US09/848,740 priority patent/US6770087B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26816146&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040236402(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US10/873,062 priority patent/US20040236402A1/en
Application filed by Bard Peripheral Vascular Inc filed Critical Bard Peripheral Vascular Inc
Publication of US20040236402A1 publication Critical patent/US20040236402A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1026Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina with slitting or removal of material at reshaping area prior to reshaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/109Embedding of laminae within face of additional laminae

Abstract

An implantable medical device having a first and second ePTFE tube with a support layer positioned therebetween. The support layer may include a plurality of ring stents or may be a single stent structure. Slits may be cut into the first and/or second ePTFE tube to provide flexibility to the implantable medical device. These slits may be cut in any direction (longitudinally, circumferentially, diagonally, etc.) and may be oriented with respect to the support layer such that a desired degree of flexibility may be attained. The first and second ePTFE tubes may be bonded together through openings in the support layer to produce a partially encapsulated stent device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of application Ser. No. 09/848,740, filed May 3, 2001, which is a division of application Ser. No. 09/388,496, filed Sep. 2, 1999, now U.S. Pat. No. 6,398,803, which claims the benefit of provisional application Ser. No. 60/118,269, filed Feb. 2, 1999. This application expressly incorporates by reference the entirety of each of the above-mentioned applications as if fully set forth herein.[0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable. [0002]
  • REFERENCE TO A COMPACT DISK APPENDIX
  • Not applicable. [0003]
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to the field of medical devices, and more particularly, to encapsulation of stents. [0004]
  • Stents and related endoluminal devices are currently used by medical practitioners to treat portions of the vascular system that become so narrowed that blood flow is restricted. Stents are tubular structures, usually of metal, which are radially expandable to hold a narrowed blood vessel in an open configuration. Such narrowing (stenosis) occurs, for example, as a result of the disease process known as arteriosclerosis. Angioplasty of a coronary artery to correct arteriosclerosis may stimulate excess tissue proliferation which then blocks (restenosis) the newly reopened vessel. While stents are most often used to “prop open” blood vessels, they can also be used to reinforce collapsed or narrowed tubular structures in the respiratory system, the reproductive system, biliary ducts or any other tubular body structure. However, stents are generally mesh-like so that endothelial and other cells can grow through the openings resulting in restenosis of the vessel. [0005]
  • Polytetrafluoroethylene (PTFE) has proven unusually advantageous as a material from which to fabricate blood vessel grafts or prostheses used to replace damaged or diseased vessels. This is partially because PTFE is extremely biocompatible causing little or no immunogenic reaction when placed within the human body. This is also because in its preferred form, expanded PTFE (ePTFE), the material is light and porous and is potentially colonized by living cells becoming a permanent part of the body. The process of making ePTFE of vascular graft grade is well known to one of ordinary skill in the art. Suffice it to say that the critical step in this process is the expansion of PTFE into ePTFE following extrusion from a paste of crystalline PTFE particles. Expansion represents a controlled longitudinal stretching in which the PTFE is stretched up to several hundred percent of its original length. During the expansion process fibrils of PTFE are drawn out of aggregated PTFE particle (nodes), thereby creating a porous structure. [0006]
  • If stents could be enclosed in ePTFE, cellular infiltration could be limited, hopefully preventing or limiting restenosis. Early attempts to produce a stent enshrouded with ePTFE focused around use of adhesives or physical attachment such as suturing. However, such methods are far from ideal, and suturing, in particular, is very labor intensive. More recently, methods have been developed for encapsulating a stent between two tubular ePTFE members whereby the ePTFE of one-member contacts and bonds to the ePTFE of the other member through the openings in the stent. However, such a monolithically encapsulated stent tends to be rather inflexible. In particular, radial expansion of the stent may stress and tear the ePTFE. There is a continuing need for a stent that is encapsulated to prevent cellular intrusion and to provide a smooth inner surface blood flow and yet still capable of expansion without tearing or delaminating and is relatively more flexible. [0007]
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to encapsulated stents wherein flexibility of the stent is retained, despite encapsulation. [0008]
  • It is an object of this invention to provide a stent device that has improved flexibility, yet maintains its shape upon expansion. [0009]
  • It is also an object of this invention to provide a stent encapsulated to prevent cellular infiltration wherein portions of the stent can move during radial expansion without stressing or tearing the encapsulating material. [0010]
  • These and additional objects are accomplished by an encapsulation process that leaves portions of the stent free to move during expansion without damaging the ePTFE covering. The most basic form of this invention is produced by placing a stent over an inner ePTFE tube (e.g., supported on a mandrel) and then covering the outer surface of the stent with an outer ePTFE tube into which slits have been cut. The outer ePTFE tube is then laminated to the inner ePTFE tube through openings in the stent structure to capture the stent. By selecting the size and location of the slits, it is possible to leave critical parts of the stent unencapsulated to facilitate flexibility and expansion. Not only does the slit prevent capture of the underlying PTFE, it forms a focal point for the ePTFE to flex. A more complex form of the process is to place over the stent an ePTFE sleeve into which apertures have been cut. This “lacey” outer sleeve leaves portions of the stent exposed for increased flexibility and for movement of the stent portions during expansion without damaging the ePTFE. Although a single stent can be used, these approaches lend themselves to use of a plurality of individual ring stents spaced apart along an inner ePTFE tube and covered by a “lacey” ePTFE sleeve. [0011]
  • In the present invention, individual ring stents are partially encapsulated using the procedure outlined above. Preferably, ring stents of zigzag sinusoidal structure are placed “in phase” (e.g., peaks and valleys of one stent aligned with those of a neighboring stent) on the surface of a tubular ePTFE graft supported by a mandrel. A sleeve of ePTFE is cut using CO[0012] 2 laser so that openings are created, resulting in a “lacey” pattern. This “lacey” sleeve is then placed over the ring stents. The resulting structure is then subjected to heat and pressure so that regions of ePTFE become laminated or fused together where the lacey sleeve contacts the tubular graft. In addition, the ends of the stent can be completely encapsulated, by known methods, to stabilize the overall structure.
  • A more complete understanding of the encapsulation process will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. Reference will be made to the appended sheets of drawings which will first be described briefly.[0013]
  • BRIEF SUMMARY OF THE DRAWINGS
  • FIG. 1 is a perspective view of a tubular ePTFE member with individual ring stents arranged thereon. [0014]
  • FIG. 2 is a perspective view of the “lacey” sleeve of the present invention. [0015]
  • FIG. 3 is a perspective view of the sleeve in FIG. 2 placed over the structure of FIG. 1. [0016]
  • FIG. 4 is a perspective view of one configuration of the slitted sleeve of the present invention with longitudinally oriented slits. [0017]
  • FIG. 5 is a perspective view of a second configuration of the slitted sleeve of the present invention with circumferentially oriented slits. [0018]
  • FIG. 6 is a perspective view of a third configuration of the slitted sleeve as it is placed over the structure in FIG. 1. [0019]
  • FIG. 7 is a perspective view of an alternate embodiment of the present invention.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention satisfies the need for an encapsulated stent device to prevent restenosis that is flexible upon expansion and contraction so that the general structural form is retained. This is accomplished encapsulating a stent or a plurality of stent rings using an ePTFE covering into which openings have been cut. [0021]
  • Referring now to the drawings, in which like reference numbers represent similar or identical structures throughout, FIG. 1 illustrates an initial step in constructing the partially encapsulated stent of the present invention. A tubular ePTFE graft [0022] 20 is placed over a mandrel for the assembly of a device 10 (FIG. 3). A stent is then placed over the graft 20. In a preferred embodiment, as shown in FIG. 1, a series of zigzag sinusoidal ring stents 30 are placed over the outer surface of the graft 20. Alternatively, one or more stents wherein each stent comprises more than one ring or hoop (e.g., where the rings are helically connected) can be used. The ring stents 30 can be made of any material but a preferred material is metal. The zigzag ring stents 30 may be assembled “in phase” with each adjacent ring stent having peaks and valleys aligned. Alternatively, the individual stents 30 can be “out of phase” to different degrees. It will be apparent that the phase relation of adjacent stents 30 will alter the lateral flexibility as well as the longitudinal compressibility of the structure. The phase relationship can be varied along the length of the device 10, thereby altering the physical properties in different portions of the device 10. Having individual ring stents 30, as opposed to a single tubular stent, provides the advantage that the periodicity, or the number and precise shape of the zigzags per ring, can readily be varied along the length of the graft to influence flexibility and stability properties of the structure. Also, spacing of the individual stents (number of stents per unit length) as well as the phase relationship of stent to stent can be varied to produce stent grafts with desired properties. By placing the ring stents 30 over the outer surface of the tubular ePTFE graft 20, the resulting structure has an inner (luminal) surface that is completely smooth to facilitate the flow of blood. However, there may be instances where the ring stents 30 or other tubular stents are advantageously placed in contact with the inner graft surface or on both the inner and outer surfaces, as one of ordinary skill in the art will readily appreciate.
  • FIG. 2 shows the structure of a “lacey” graft comprising a sleeve of ePTFE [0023] 40 into which apertures have been cut. This “lacey” graft 40 is placed over the ring stents 30 in the preferred embodiment. The “lacey” graft 40 is created by cutting openings 44 in a tubular ePTFE graft 42. The openings 44 were cut into the sleeve by a CO2 laser, although any other cutting technology could readily be employed. The “lacey” graft 40 is slid over the ring stents 30 and the underlying tubular graft 20 to form the preferred structure 10 shown in FIG. 3. The structure 10 is then exposed to heat and pressure, such as that caused by wrapping with PTFE tape followed by heating in an oven, thereby causing the ePTFE regions of the “lacey” graft 40 to fuse or laminate to the tubular graft 20 wherever they touch each other. It should be appreciated that the circumferential sections of ePTFE 46 that are placed over the ring stents 30 can encompass many different designs. As illustrated, a sleeve 42 with openings 44 cut out is one way of accomplishing the goal of flexibility and stability. The openings 44 between the rings of ePTFE 46 can be altered to control the degree of flexibility and stability desired. In the preferred embodiment shown in FIG. 3, the “lacey” graft 40 forms a number of circumferential sections 46, which are intended to cover a portion of the circumference of each ring stent 30, leaving the ends of the zigzags uncovered. By circumferentially covering only a portion of each ring stent 30, the maximum amount of lateral flexibility is provided.
  • However, circumferentially covering the individual ring stents [0024] 30 without any longitudinal support would result in a structure with little longitudinal strength and stability that would be prone to “telescoping”. Thus, the longitudinal sections 48 that connect the rings of ePTFE 46 are important, because the longitudinal sections 48 are completely laminated to the underlying graft 20 and act as “anti-compression” devices by resisting the shortening of the structure 10 (the double thickness of ePTFE resists telescoping of the longitudinal sections 48). The width of the circumferential sections 46 and the longitudinal sections 48 control longitudinal strength and stability versus lateral flexibility. By adjusting these parameters, grafts can be made more or less flexible with greater or lesser anti-compression strength. In the preferred embodiment, four longitudinal sections 48 are formed and the ends of the structure 10 are completely encapsulated for greater stability. Of course, a larger number of longitudinal sections 48 could be formed. Also the longitudinal sections 48 may themselves zigzag or may be helically arranged depending on how the openings 44 are cut into the sleeve 42. Each different structure will possess different properties. Similarly, the circumferential sections 46 can have different forms and may be undulating. There is nothing to preclude a covering with a more complex pattern where circumferential sections and longitudinal sections are difficult to discern or are even nonexistent.
  • A second embodiment of the present invention can be seen in FIGS. 4-6. Instead of having a “lacey” graft structure, a slitted outer sleeve is used to provide partial encapsulation of the stent, the slits providing flexibility to the structure, allowing the stent to expand and retract more readily. In FIG. 4, four longitudinal slits [0025] 52 run the length of the stent, leaving 5 to 10 mm of uncut sleeve at the ends. The slits are formed at 0°, 90°, 180°, and 270°, and are oriented to pass over a peak portion of each zigzag ring stent 30 (FIG. 6). FIG. 5 shows circumferential slits 62, wherein slits are cut circumferentially around the sleeve 60 at spaced intervals, preferably to coincide with a stent ring. At each radial section, two slits are cut around the circumference at evenly spaced intervals. In a first radial section, the slits span from 0° to 90° and from 180° to 270°. Each successive radial section has a pair of slits which are offset 90° from the previous pair. Thus, a second radial section will have slits spanning from 90° to 180° and from 270° to 0°. Beside the configurations shown in FIGS. 4 and 5, a number of other slit configurations are possible, including diagonal and sinusoidal as will be appreciated by one skilled in the art. As shown in FIG. 6, a sleeve 70 is placed over the ring stents 30 and the underlying tubular graft 20 to form a new structure 80. The longitudinal slits 72, which are cut into sleeve 70, differ from the slits 52 shown in FIG. 4 in that they do not span the length of the structure 80 and are staggered around the circumference of the sleeve 70. Ideally, the slits are aligned over the peaks in the zigzag ring stents 30. Once the slits 72 are cut into the sleeve 70 using any of the known methods, the structure 80 is exposed to heat and pressure, such as that caused by wrapping with PTFE tape and heating in an oven, thereby causing the ePTFE regions of the slitted graft 70 to fuse or laminate to the tubular graft 20. The slits 72 in the slitted outer sleeve 70 can be formed by using a C0 2 laser, razor blade or any other suitable technique known in the art. The slits enhance the flexibility of the encapsulated structure and allow radial expansion without tearing of the ePTFE. In addition, a plurality of slits help the expanded graft to grip onto the vessel wall. This is particularly important where an encapsulated stent graft is spanning a region of damaged or weakened vessel as in an aneurysm. Further, during the healing process tissues readily grow into the slits further anchoring the graft to the vessel wall.
  • An advantage that cutting slits into an ePTFE sleeve offers is that it is somewhat easier to manufacture than is the “lacey” graft. Because no material is removed the sleeve is somewhat stronger than a “lacey graft”. There are a multitude of configurations possible, including cutting the slits in asymmetric fashion to achieve desired results, such as using radial, longitudinal and diagonal cuts simultaneously. Moreover, a greater number of slits can be cut into a region of the structure in which greater expansion is desired. [0026]
  • Although the above examples are described with the “lacey” and slitted grafts being placed over a stent which is itself placed over a tubular graft, this orientation can be readily reversed. That is, the “lacey” or slitted grafts can be placed on a mandrel; a stent or stents can be then placed over the “lacey” or slitted grafts, and a tubular graft can be then placed over the stent or stents. This results in a structure wherein part or much of the luminal surface is provided by the outer graft, providing superior healing as only a single layer of ePTFE would separate body tissues from the blood. Moreover, a structure with two “lacey” or slitted grafts is possible. As shown in FIG. 7, the openings [0027] 112 in the outer graft 110 are arranged out of phase with the openings 122 in the inner graft 120. Such a configuration provides a blood tight structure wherein a majority of the final surface area of the device 100 comprises a single layer separating body tissue from the circulating blood. Also, the areas occupied by the stent(s) 30 and by overlap between the two grafts 110, 120 present a barrier to cellular infiltration. The described structure has the advantage of a smaller profile when compressed because the overall amount of PTFE is reduced. In a further embodiment, a combination of the “lacey” graft and slitted graft could be produced.
  • Having thus described preferred embodiments of the partial encapsulation of stents, it will be apparent by those skilled in the art how certain advantages of the present invention have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. For example, zigzag stent rings have been illustrated, but it should be apparent that the inventive concepts described above would be equally applicable to sinusoidal and other stent designs. Moreover, the words used in this specification to describe the invention and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification structure, material or acts beyond the scope of the commonly defined meanings. Thus, if an element can be understood in the context of this specification as including more than one meaning, then its use in a claim must be understood as being generic to all possible meanings supported by the specification and by the word itself. The definitions of the words or elements of the following claims are, therefore, defined in this specification to include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. The described embodiments are to be considered illustrative rather than restrictive. The invention is further defined by the following claims. [0028]

Claims (24)

What is claimed as new and desired to be protected by Letters Patent of the United States:
1. An implantable medical device, comprising:
a first and second extruded ePTFE tube, wherein said first ePTFE tube comprises a plurality of slits formed therein; and
a radially expandable support layer comprising at least one stent, wherein said support layer is positioned between said first and second ePTFE tubes and is at least partially encapsulated therebetween.
2. The implantable medical device according to claim 1, wherein said plurality of slits are oriented longitudinally on said first ePTFE tube.
3. The implantable medical device according to claim 2, wherein each of said plurality of slits span a majority of the longitudinal length of said first ePTFE tube, leaving an unslitted region at both a proximal and distal end of said first ePTFE tube.
4. The implantable medical device according to claim 3, wherein said region at both proximal and distal ends of said first ePTFE tube has a length in the range of approximately 5 mm to 10 mm.
5. The implantable medical device according to claim 3, wherein each of said plurality of slits is approximately equivalent in length.
6. The implantable medical device according to claim 5, wherein said plurality of slits comprise four slits spaced equidistantly around the circumference of said first ePTFE tube.
7. The implantable medical device according to claim 2, wherein said plurality of slits are positioned in spaced apart intervals around the circumference of said first ePTFE tube.
8. The implantable medical device according to claim 7, wherein two or more slits are positioned at each of selected circumferential positions on said first ePTFE tube.
9. The implantable medical device according to claim 2, wherein said support layer comprises a plurality of ring stents formed in a zigzag pattern of alternating peaks and valleys.
10. The implantable medical device according to claim 9, wherein said ring stents are positioned longitudinally such that the alternating peaks and valleys of neighboring ring stents are in phase with one another.
11. The implantable medical device according to claim 10, wherein each of said plurality of slits is oriented to pass over either a ring stent peak or valley.
12. The implantable medical device according to claim 1, wherein said plurality of slits are oriented circumferentially on said first ePTFE tube.
13. The implantable medical device according to claim 12, wherein said plurality of slits are positioned in spaced apart intervals along the length of said first ePTFE tube.
14. The implantable medical device according to claim 13, wherein two or more slits are positioned at each of selected longitudinal positions on said ePTFE tube.
15. The implantable medical device according to claim 14, wherein two slits are positioned at each of said longitudinal positions, said slits having approximately the same arc length, each of the ends of said slits being spaced approximately equidistantly from one another.
16. The implantable medical device according to claim 15, wherein the two slits at successive longitudinal positions are circumferentially offset from one another, such that taken together they span substantially the entire circumference of said first ePTFE tube.
17. An implantable medical device, comprising:
a first and second extruded ePTFE tube, wherein said first ePTFE tube comprises a plurality of slits formed therein, wherein said plurality of slits are oriented longitudinally on said first ePTFE tube; and
a radially expandable support layer comprising at least one stent, wherein said support layer is positioned between said first and second ePTFE tubes and is at least partially encapsulated therebetween.
18. An implantable medical device, comprising:
a first and second extruded ePTFE tube, wherein said first ePTFE tube comprises a plurality of slits formed therein, wherein said plurality of slits are oriented circumferentially on said first ePTFE tube; and
a radially expandable support layer comprising at least one stent, wherein said support layer is positioned between said first and second ePTFE tubes and is at least partially encapsulated therebetween.
19. An implantable medical device, comprising:
a first and second extruded ePTFE tube, wherein said first ePTFE tube comprises a plurality of slits formed therein; and
a radially expandable support layer comprising a plurality of ring stents formed in a zigzag pattern of alternating peaks and valleys, wherein said support layer is positioned between said first and second ePTFE tubes and is at least partially encapsulated therebetween.
20. A method for making an implantable medical device, comprising the steps of:
providing a first and second extruded ePTFE tube;
cutting a plurality of slits in said first ePTFE tube;
positioning a radially expandable support layer, comprising at least one stent, between said first and second ePTFE tubes; and
subjecting the device to heat and pressure such that said first and second ePTFE tubes bond together through openings in said support layer.
21. The method according to claim 20, wherein the cutting step comprises cutting the plurality of slits in a longitudinal direction in said first ePTFE tube.
22. The method according to claim 21, wherein said support layer comprises a plurality of ring stents formed in a zigzag pattern of alternating peaks and valleys, and wherein the positioning step comprises orienting the alternating peaks and valleys of neighboring ring stents in phase with one another.
23. The method according to claim 22, wherein the positioning step further comprises positioning the slits to pass over either a ring stent peak or valley
24. The method according to claim 20, wherein the cutting step comprises cutting the plurality of slits in a circumferential direction in said first ePTFE tube.
US10/873,062 1999-02-02 2004-06-21 Partial encapsulation of stents Abandoned US20040236402A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11826999P true 1999-02-02 1999-02-02
US09/388,496 US6398803B1 (en) 1999-02-02 1999-09-02 Partial encapsulation of stents
US09/848,740 US6770087B2 (en) 1999-02-02 2001-05-03 Partial encapsulation of stents
US10/873,062 US20040236402A1 (en) 1999-02-02 2004-06-21 Partial encapsulation of stents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/873,062 US20040236402A1 (en) 1999-02-02 2004-06-21 Partial encapsulation of stents
US12/538,361 US7914639B2 (en) 1999-02-02 2009-08-10 Partial encapsulation of stents
US13/023,403 US8617337B2 (en) 1999-02-02 2011-02-08 Partial encapsulation of stents
US14/104,893 US10213328B2 (en) 1999-02-02 2013-12-12 Partial encapsulation of stents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/848,740 Division US6770087B2 (en) 1999-02-02 2001-05-03 Partial encapsulation of stents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/538,361 Division US7914639B2 (en) 1999-02-02 2009-08-10 Partial encapsulation of stents

Publications (1)

Publication Number Publication Date
US20040236402A1 true US20040236402A1 (en) 2004-11-25

Family

ID=26816146

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/388,496 Active US6398803B1 (en) 1999-02-02 1999-09-02 Partial encapsulation of stents
US09/848,740 Active US6770087B2 (en) 1999-02-02 2001-05-03 Partial encapsulation of stents
US10/873,062 Abandoned US20040236402A1 (en) 1999-02-02 2004-06-21 Partial encapsulation of stents
US12/538,361 Active US7914639B2 (en) 1999-02-02 2009-08-10 Partial encapsulation of stents
US13/023,403 Active 2019-09-21 US8617337B2 (en) 1999-02-02 2011-02-08 Partial encapsulation of stents
US14/104,893 Active 2021-04-15 US10213328B2 (en) 1999-02-02 2013-12-12 Partial encapsulation of stents

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/388,496 Active US6398803B1 (en) 1999-02-02 1999-09-02 Partial encapsulation of stents
US09/848,740 Active US6770087B2 (en) 1999-02-02 2001-05-03 Partial encapsulation of stents

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/538,361 Active US7914639B2 (en) 1999-02-02 2009-08-10 Partial encapsulation of stents
US13/023,403 Active 2019-09-21 US8617337B2 (en) 1999-02-02 2011-02-08 Partial encapsulation of stents
US14/104,893 Active 2021-04-15 US10213328B2 (en) 1999-02-02 2013-12-12 Partial encapsulation of stents

Country Status (9)

Country Link
US (6) US6398803B1 (en)
EP (1) EP1148843B2 (en)
JP (1) JP4248151B2 (en)
AT (1) AT237287T (en)
CA (1) CA2371964C (en)
DE (1) DE60002161T3 (en)
ES (1) ES2195883T3 (en)
MX (1) MXPA01007790A (en)
WO (1) WO2000045741A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030499A1 (en) * 2006-02-28 2009-01-29 C.R. Bard, Inc. Flexible stretch stent-graft
US20090088833A1 (en) * 2007-09-28 2009-04-02 Maximiliano Soetermans Double wall stent with retrieval member
US20090294035A1 (en) * 1999-02-02 2009-12-03 C. R. Bard, Inc. Partial encapsulation of stents
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US8257640B2 (en) 2009-08-07 2012-09-04 Zeus Industrial Products, Inc. Multilayered composite structure with electrospun layer
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8617441B2 (en) 1995-03-10 2013-12-31 Bard Peripheral Vascular, Inc. Methods for making an encapsulated stent
US8647458B2 (en) 1995-03-10 2014-02-11 Bard Peripheral Vascular, Inc. Methods for making a supported graft
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9227388B2 (en) 2011-10-10 2016-01-05 W. L. Gore & Associates, Inc. Devices and methods for attaching support frames to substrates
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US10010395B2 (en) 2012-04-05 2018-07-03 Zeus Industrial Products, Inc. Composite prosthetic devices

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US20090112302A1 (en) * 2001-11-28 2009-04-30 Josh Stafford Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US7491232B2 (en) * 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7044134B2 (en) * 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US20060122691A1 (en) * 1998-12-03 2006-06-08 Jacob Richter Hybrid stent
US6673103B1 (en) * 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility
US6652570B2 (en) * 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US7553329B2 (en) 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
US7220281B2 (en) 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
JP4247519B2 (en) 1999-08-18 2009-04-02 イントリンジック セラピューティックス インコーポレイテッド Apparatus and method for the nucleus pulposus augmentation and retention
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
EP1624832A4 (en) 1999-08-18 2008-12-24 Intrinsic Therapeutics Inc Devices and method for augmenting a vertebral disc nucleus
US6936072B2 (en) 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US6652567B1 (en) * 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US20040106972A1 (en) * 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
US8845713B2 (en) * 2000-05-12 2014-09-30 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US6964676B1 (en) 2000-04-14 2005-11-15 Scimed Life Systems, Inc. Stent securement system
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
JP2004512920A (en) * 2000-11-17 2004-04-30 エアベル、ライムント Endovascular prosthesis
US6945991B1 (en) * 2000-11-28 2005-09-20 Boston Scientific/Scimed Life Systems, Inc. Composite tubular prostheses
US6673105B1 (en) * 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
EP1448117B1 (en) 2001-11-28 2013-05-22 Aptus Endosystems, Inc. Endovascular aneurysm repair system
EP2349086B1 (en) 2008-10-16 2017-03-22 Medtronic Vascular, Inc. Devices and systems for endovascular staple and/or prosthesis delivery and implantation
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
CN101466316B (en) 2005-10-20 2012-06-27 阿普特斯内系统公司 Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool
US20050070992A1 (en) * 2001-11-28 2005-03-31 Aptus Endosystems, Inc. Prosthesis systems and methods sized and configured for the receipt and retention of fasteners
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
US6776604B1 (en) * 2001-12-20 2004-08-17 Trivascular, Inc. Method and apparatus for shape forming endovascular graft material
US7090693B1 (en) 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20030171801A1 (en) * 2002-03-06 2003-09-11 Brian Bates Partially covered intraluminal support device
US7288111B1 (en) * 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US7691461B1 (en) 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
EP1528901A1 (en) 2002-08-15 2005-05-11 GMP Cardiac Care, Inc. Stent-graft with rails
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US7435255B1 (en) * 2002-11-13 2008-10-14 Advnaced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making
US7150758B2 (en) * 2003-03-06 2006-12-19 Boston Scientific Santa Rosa Corp. Kink resistant endovascular graft
DE602004018282D1 (en) * 2003-03-17 2009-01-22 Ev3 Endovascular Inc Stent with a laminated thin film composite
GB0309616D0 (en) 2003-04-28 2003-06-04 Angiomed Gmbh & Co Loading and delivery of self-expanding stents
US8021418B2 (en) * 2003-06-19 2011-09-20 Boston Scientific Scimed, Inc. Sandwiched radiopaque marker on covered stent
EP1638485B1 (en) 2003-06-20 2011-03-02 Intrinsic Therapeutics, Inc. Device for delivering an implant through an annular defect in an intervertebral disc
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
AU2014229559C1 (en) * 2013-03-14 2018-07-12 Medinol Ltd. Helical hybrid stent
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
DE10333511A1 (en) * 2003-07-17 2005-02-03 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Stent and stent delivery system, comprising balloon enveloped by two rings made of specifically bent wires
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
GB0322511D0 (en) * 2003-09-25 2003-10-29 Angiomed Ag Lining for bodily lumen
US8287586B2 (en) * 2003-11-08 2012-10-16 Cook Medical Technologies Llc Flareable branch vessel prosthesis and method
US20050137677A1 (en) * 2003-12-17 2005-06-23 Rush Scott L. Endovascular graft with differentiable porosity along its length
US7530994B2 (en) * 2003-12-30 2009-05-12 Scimed Life Systems, Inc. Non-porous graft with fastening elements
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8591568B2 (en) * 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
WO2006071244A1 (en) * 2004-12-29 2006-07-06 Boston Scientific Limited Medical devices including metallic films and methods for making the same
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US20050197687A1 (en) * 2004-03-02 2005-09-08 Masoud Molaei Medical devices including metallic films and methods for making same
US20050216043A1 (en) * 2004-03-26 2005-09-29 Blatter Duane D Stented end graft vessel device for anastomosis and related methods for percutaneous placement
WO2005099629A1 (en) 2004-03-31 2005-10-27 Cook Incorporated Stent deployment device
US8034096B2 (en) 2004-03-31 2011-10-11 Cook Medical Technologies Llc Stent-graft with graft to graft attachment
US8048140B2 (en) 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
US20050223440A1 (en) * 2004-03-31 2005-10-06 Council Of Scientific And Industrial Research Tissue culture process for producing cotton plants
US20050230039A1 (en) * 2004-04-19 2005-10-20 Michael Austin Stent with protective pads or bulges
US7955373B2 (en) * 2004-06-28 2011-06-07 Boston Scientific Scimed, Inc. Two-stage stent-graft and method of delivering same
US7901447B2 (en) * 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US8632580B2 (en) * 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8992592B2 (en) * 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US20060142838A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
ES2671416T3 (en) 2005-05-13 2018-06-06 Boston Scientific Limited integrated stent having a loop repositioning and / or retrieval
US7854760B2 (en) * 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
JP5203192B2 (en) * 2005-07-27 2013-06-05 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc The stent-graft device and method for placement in open surgery
DE602006019753D1 (en) * 2005-09-01 2011-03-03 Medtronic Vascular Inc Method and apparatus for treating aneurysms of the a. thoracic
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
WO2007040485A1 (en) * 2005-09-22 2007-04-12 Novovascular, Inc. Stent covered by a layer having a layer opening
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
EP1978893A2 (en) * 2006-02-03 2008-10-15 Design & Performance - Cyprus Limited Implantable graft assembly and aneurysm treatment
EP2059189A4 (en) * 2006-08-29 2013-07-10 Bard Inc C R Helical high fatigue stent-graft
WO2008033678A2 (en) * 2006-09-14 2008-03-20 C. R. Bard, Inc. Compressed inner covering hinged segmented stent-graft
EP2063811A4 (en) * 2006-09-18 2014-07-23 Bard Inc C R Single layer eptfe and discrete bio-resorbable rings
US9427343B2 (en) * 2007-06-22 2016-08-30 David L. Bogert Locked segments pushable stent-graft
US10154917B2 (en) * 2007-06-22 2018-12-18 C. R. Bard, Inc. Helical and segmented stent-graft
US20110196492A1 (en) 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US8906081B2 (en) 2007-09-13 2014-12-09 W. L. Gore & Associates, Inc. Stented vascular graft
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
CN101917929A (en) 2007-10-04 2010-12-15 特里瓦斯库拉尔公司 Modular vascular graft for low profile percutaneous delivery
JP2011500283A (en) * 2007-10-26 2011-01-06 クック クリティカル ケア インコーポレーテッドCook Critical Care Incorporated Vascular conduit and delivery system installed in an open surgery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8795577B2 (en) 2007-11-30 2014-08-05 Cook Medical Technologies Llc Needle-to-needle electrospinning
WO2009086015A2 (en) * 2007-12-21 2009-07-09 Boston Scientific Scimed, Inc. Flexible stent-graft device having patterned polymeric coverings
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US20090259290A1 (en) * 2008-04-14 2009-10-15 Medtronic Vascular, Inc. Fenestration Segment Stent-Graft and Fenestration Method
WO2009134337A1 (en) * 2008-05-01 2009-11-05 Aneuclose Llc Aneurysm occlusion device
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
DE202008009604U1 (en) * 2008-07-17 2008-11-27 Sahl, Harald, Dr. Membrane implant for the treatment of cerebral artery aneurysms
US20100042202A1 (en) * 2008-08-13 2010-02-18 Kamal Ramzipoor Composite stent having multi-axial flexibility
GB0816965D0 (en) * 2008-09-16 2008-10-22 Angiomed Ag Stent device adhesively bonded to a stent device pusher
US20100100170A1 (en) 2008-10-22 2010-04-22 Boston Scientific Scimed, Inc. Shape memory tubular stent with grooves
US20100131002A1 (en) * 2008-11-24 2010-05-27 Connor Robert A Stent with a net layer to embolize and aneurysm
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
GB0901496D0 (en) 2009-01-29 2009-03-11 Angiomed Ag Delivery device for delivering a stent device
AU2014240264B2 (en) * 2009-04-22 2016-05-26 Medinol Ltd. Helical hybrid stent
GB0909319D0 (en) 2009-05-29 2009-07-15 Angiomed Ag Transluminal delivery system
WO2011031364A1 (en) * 2009-09-14 2011-03-17 Circulite, Inc Endovascular anastomotic connector device, delivery system, and methods of delivery and use
EP2480280B1 (en) 2009-09-22 2017-02-01 Doheny Eye Institute Adjustable cannula systems and devices
US8333727B2 (en) * 2009-10-08 2012-12-18 Circulite, Inc. Two piece endovascular anastomotic connector
US8637109B2 (en) * 2009-12-03 2014-01-28 Cook Medical Technologies Llc Manufacturing methods for covering endoluminal prostheses
DE102009060280B4 (en) * 2009-12-23 2011-09-22 Acandis Gmbh & Co. Kg Medical implant and process for producing such an implant
EP2519189B1 (en) 2009-12-28 2014-05-07 Cook Medical Technologies LLC Endoluminal device with kink-resistant regions
US8906057B2 (en) * 2010-01-04 2014-12-09 Aneuclose Llc Aneurysm embolization by rotational accumulation of mass
US9750866B2 (en) 2010-02-11 2017-09-05 Circulite, Inc. Cannula lined with tissue in-growth material
WO2011100552A1 (en) * 2010-02-11 2011-08-18 Circulte, Inc. Devices, methods and systems for establishing supplemental blood flow in the circulatory system
US8425548B2 (en) 2010-07-01 2013-04-23 Aneaclose LLC Occluding member expansion and then stent expansion for aneurysm treatment
WO2012085807A1 (en) * 2010-12-19 2012-06-28 Inspiremd Ltd. Stent with sheath and metal wire retainer
US9138232B2 (en) 2011-05-24 2015-09-22 Aneuclose Llc Aneurysm occlusion by rotational dispensation of mass
US9662196B2 (en) * 2011-09-27 2017-05-30 Cook Medical Technologies Llc Endoluminal prosthesis with steerable branch
US20140358221A1 (en) * 2011-10-10 2014-12-04 National University Of Singapore Membrane for Covering a Peripheral Surface of a Stent
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
US20150005869A1 (en) * 2012-02-14 2015-01-01 Neograft Technologies, Inc. Kink Resistant Graft Devices and Related Systems and Methods
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
AU2013334737B2 (en) * 2012-10-23 2017-01-12 Zorion Medical Inc. Fully absorbable intraluminal devices and methods of manufacturing the same
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
EP2958526A4 (en) * 2013-02-25 2016-10-05 Univ California Thin film vascular stent for arterial disease
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US9999542B2 (en) 2014-07-16 2018-06-19 Doheny Eye Institute Systems, methods, and devices for cannula insertion
JP6436572B2 (en) * 2015-03-13 2018-12-12 テルモ株式会社 Medical devices
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
EP3313330A4 (en) 2015-06-29 2019-03-20 480 Biomedical Inc Scaffold loading and delivery systems
KR101772482B1 (en) * 2015-07-27 2017-08-29 (주) 태웅메디칼 Anti-migration stent
US10076430B2 (en) * 2015-10-19 2018-09-18 Cook Medical Technologies Llc Devce with tensioners
US9486323B1 (en) 2015-11-06 2016-11-08 Spinal Stabilization Technologies Llc Nuclear implant apparatus and method following partial nuclectomy
CN109414332A (en) * 2016-06-23 2019-03-01 M.I.泰克株式会社 Porous support for digestive organs
WO2018026904A1 (en) * 2016-08-03 2018-02-08 Spence Paul A Devices, systems and methods to improve placement and prevent heart block with percutaneous aortic valve replacement
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4324574A (en) * 1980-12-19 1982-04-13 E. I. Du Pont De Nemours And Company Felt-like layered composite of PTFE and glass paper
US4647416A (en) * 1983-08-03 1987-03-03 Shiley Incorporated Method of preparing a vascular graft prosthesis
US4776337A (en) * 1985-11-07 1988-10-11 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4954126A (en) * 1982-04-30 1990-09-04 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5139480A (en) * 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5211658A (en) * 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5234456A (en) * 1990-02-08 1993-08-10 Pfizer Hospital Products Group, Inc. Hydrophilic stent
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5242399A (en) * 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5258027A (en) * 1991-01-24 1993-11-02 Willy Rusch Ag Trachreal prosthesis
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5354309A (en) * 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
US5384019A (en) * 1993-10-29 1995-01-24 E. I. Du Pont De Nemours And Company Membrane reinforced with modified leno weave fabric
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5421955A (en) * 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5437083A (en) * 1993-05-24 1995-08-01 Advanced Cardiovascular Systems, Inc. Stent-loading mechanism
US5458615A (en) * 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5474563A (en) * 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5522881A (en) * 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5527355A (en) * 1994-09-02 1996-06-18 Ahn; Sam S. Apparatus and method for performing aneurysm repair
US5527353A (en) * 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
US5549663A (en) * 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5554181A (en) * 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5569295A (en) * 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5573520A (en) * 1991-09-05 1996-11-12 Mayo Foundation For Medical Education And Research Flexible tubular device for use in medical applications
US5591223A (en) * 1992-11-23 1997-01-07 Children's Medical Center Corporation Re-expandable endoprosthesis
US5593417A (en) * 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5632840A (en) * 1994-09-22 1997-05-27 Advanced Cardiovascular System, Inc. Method of making metal reinforced polymer stent
US5645559A (en) * 1992-05-08 1997-07-08 Schneider (Usa) Inc Multiple layer stent
US5649950A (en) * 1992-01-22 1997-07-22 C. R. Bard System for the percutaneous transluminal front-end loading delivery and retrieval of a prosthetic occluder
US5653727A (en) * 1987-10-19 1997-08-05 Medtronic, Inc. Intravascular stent
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5683453A (en) * 1992-01-08 1997-11-04 Expandable Grafts Partnership Apparatus for bilateral intra-aortic bypass
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5700286A (en) * 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US5723003A (en) * 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5728131A (en) * 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5749880A (en) * 1995-03-10 1998-05-12 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5755774A (en) * 1994-06-27 1998-05-26 Corvita Corporation Bistable luminal graft endoprosthesis
US5755770A (en) * 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824054A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5824046A (en) * 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
US5843166A (en) * 1997-01-17 1998-12-01 Meadox Medicals, Inc. Composite graft-stent having pockets for accomodating movement
US5843161A (en) * 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5849037A (en) * 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
US5851232A (en) * 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5928279A (en) * 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US6004348A (en) * 1995-03-10 1999-12-21 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US6015431A (en) * 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6673103B1 (en) * 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility

Family Cites Families (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612897A (en) * 1898-10-25 Construction of tubes and cylinders
US1505591A (en) * 1923-06-06 1924-08-19 Thomas H Edelblute Block for car wheels
US2642625A (en) * 1950-06-23 1953-06-23 Sprague Electric Co Process for producing thin polytetrahaloethylene films
US3027601A (en) * 1957-07-22 1962-04-03 Minnesota Mining & Mfg Polytetrafluoroethylene films and method for making same
US3105492A (en) * 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3060517A (en) * 1959-08-18 1962-10-30 Du Pont Fabrication of massive shaped articles of polytetrafluoroethylene
BE607748A (en) * 1960-09-02
US3281511A (en) * 1964-05-15 1966-10-25 Gen Plastics Corp Method of preparing microporous tetrafluoroethylene resin sheets
US3196194A (en) * 1964-06-04 1965-07-20 Pennsylvania Fluorocarbon Co I Fep-fluorocarbon tubing process
US3304557A (en) * 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
US3887761A (en) * 1967-09-07 1975-06-03 Gore & Ass Tape wrapped conductor
US3767500A (en) * 1971-12-28 1973-10-23 Tme Corp Method of laminating long strips of various materials
US3992725A (en) * 1973-11-16 1976-11-23 Homsy Charles A Implantable material and appliances and method of stabilizing body implants
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
US4061517A (en) * 1975-08-27 1977-12-06 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets
JPS5654016B2 (en) * 1976-11-11 1981-12-23
JPS6037734B2 (en) * 1978-10-12 1985-08-28 Sumitomo Electric Industries
DE3019996C2 (en) * 1980-05-24 1990-02-08 Deutsche Institute Fuer Textil- Und Faserforschung Stuttgart - Stiftung Des Oeffentlichen Rechts, 7306 Denkendorf, De
US4416028A (en) * 1981-01-22 1983-11-22 Ingvar Eriksson Blood vessel prosthesis
US4604762A (en) * 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
US4596837A (en) * 1982-02-22 1986-06-24 Daikin Industries Ltd. Semisintered polytetrafluoroethylene article and production thereof
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
JPH0472845B2 (en) * 1982-12-14 1992-11-19 Daikin Ind Ltd
JPH0428736B2 (en) * 1982-12-14 1992-05-15 Nitsuto Denko Kk
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US5067957A (en) * 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
DE3345513A1 (en) 1983-12-16 1985-07-04 Braun Melsungen Ag A process for preparing a gefaessprothese
EP0157178B1 (en) * 1984-03-01 1988-11-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4629458A (en) * 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
FR2600524B1 (en) * 1986-01-13 1991-10-18 Galtier Claude artificial esophagus.
US4767418A (en) * 1986-02-13 1988-08-30 California Institute Of Technology Luminal surface fabrication for cardiovascular prostheses
SE453258B (en) * 1986-04-21 1988-01-25 Medinvent Sa Elastic, sjelvexpanderande prosthesis and method for its forward tell up
JPH0533650B2 (en) * 1986-05-28 1993-05-20 Daikin Ind Ltd
US5071609A (en) * 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5143085A (en) * 1987-05-13 1992-09-01 Wilson Bruce C Steerable memory alloy guide wires
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US5171805A (en) * 1987-08-05 1992-12-15 Daikin Industries Ltd. Modified polytetrafluoroethylene and process for preparing the same
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5124523A (en) * 1987-12-23 1992-06-23 Swiss Aluminium Ltd. Process for adapting the frequency band of an oscillating circuit made from a metal-plastic-metal sandwich foil useful as an identification label, and sandwich foil for implementing the process
FR2627982B1 (en) * 1988-03-02 1995-01-27 Artemis Tubular endoprosthesis for anatomical conduits, and instrument and method for its implementation
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5219361A (en) * 1988-09-16 1993-06-15 Clemson University Soft tissue implant with micron-scale surface texture to optimize anchorage
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5464438A (en) 1988-10-05 1995-11-07 Menaker; Gerald J. Gold coating means for limiting thromboses in implantable grafts
US4935068A (en) * 1989-01-23 1990-06-19 Raychem Corporation Method of treating a sample of an alloy
US5078726A (en) * 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US4969896A (en) * 1989-02-01 1990-11-13 Interpore International Vascular graft prosthesis and method of making the same
US4957669A (en) * 1989-04-06 1990-09-18 Shiley, Inc. Method for producing tubing useful as a tapered vascular graft prosthesis
JP2678945B2 (en) 1989-04-17 1997-11-19 有限会社ナイセム Artificial blood vessel and its production method and artificial vascular substrate
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
DE3918736C2 (en) * 1989-06-08 1998-05-14 Christian Dr Vallbracht Plastic coated metal mesh stents
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5135503A (en) * 1990-05-16 1992-08-04 Advanced Cardiovascular Systems, Inc. Shaping ribbon for guiding members
EP0461791B1 (en) 1990-06-11 1997-01-02 Hector D. Barone Aortic graft and apparatus for repairing an abdominal aortic aneurysm
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
WO1992003107A1 (en) 1990-08-28 1992-03-05 Meadox Medicals, Inc. Self-supporting woven vascular graft
AR246020A1 (en) * 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
DE69118083T2 (en) * 1990-10-09 1996-08-22 Cook Inc Percutaneous stent assembly
EP0506918B1 (en) 1990-10-18 1996-01-03 SONG, Ho Young Self-expanding endovascular stent
DE69129098T2 (en) 1990-12-18 1998-09-17 Advanced Cardiovascular System A method for producing a super-elastic guide member
US5163951A (en) * 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
US5116360A (en) * 1990-12-27 1992-05-26 Corvita Corporation Mesh composite graft
FR2671482A1 (en) 1991-01-16 1992-07-17 Seguin Jacques Vascular endoprosthesis
US5156620A (en) * 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
EP0571527B1 (en) 1991-02-14 1996-04-24 Baxter International Inc. Method of manufacturing pliable biological graft materials
US5231989A (en) * 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
US5116365A (en) * 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
CA2068584C (en) 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
US5863366A (en) 1995-06-07 1999-01-26 Heartport, Inc. Method of manufacture of a cannula for a medical device
CA2074349C (en) * 1991-07-23 2004-04-20 Shinji Tamaru Polytetrafluoroethylene porous film and preparation and use thereof
US5630806A (en) 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5370681A (en) 1991-09-16 1994-12-06 Atrium Medical Corporation Polyumenal implantable organ
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
JP2961287B2 (en) 1991-10-18 1999-10-12 グンゼ株式会社 Biological conduit dilator, their preparation and stent
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5167614A (en) * 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain Stent for transluminal implantation.
US5282849A (en) 1991-12-19 1994-02-01 University Of Utah Research Foundation Ventricle assist device with volume displacement chamber
JP3419797B2 (en) 1992-01-10 2003-06-23 松下電器産業株式会社 Switching power supply unit
SE469653B (en) 1992-01-13 1993-08-16 Lucocer Ab Poroest implants
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5591224A (en) 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5354329A (en) 1992-04-17 1994-10-11 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
CA2475058C (en) 1992-10-13 2008-12-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5370691A (en) 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5433996A (en) 1993-02-18 1995-07-18 W. L. Gore & Associates, Inc. Laminated patch tissue repair sheet material
US5429869A (en) 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US5334201A (en) 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
EP0695152A1 (en) 1993-04-23 1996-02-07 Schneider (Usa) Inc., Covered stent and stent delivery device
EP0621015B1 (en) 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
US5349964A (en) 1993-05-05 1994-09-27 Intelliwire, Inc. Device having an electrically actuatable section with a portion having a current shunt and method
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
CA2121159C (en) 1993-07-16 2005-03-29 Kenneth Dean Conger Contoured tire building drum and method of building an extended mobility tire
DE69428282D1 (en) 1993-08-18 2001-10-18 Gore & Ass Thin-walled, seamless, porous polytetrafluoroäthylenrohr
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
JPH07102413A (en) 1993-09-16 1995-04-18 Japan Gore Tex Inc Polytetrafluoroethylene filament
GB2281865B (en) 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
BR9405622A (en) 1993-09-30 1999-09-08 Endogad Res Pty Ltd intraluminal graft
US5609624A (en) 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
DE4336705C2 (en) 1993-10-27 1996-11-28 Hoffmann Elektrokohle Sliding contact element and method for connecting an electrical terminal conductor having a sliding contact element
AU1091095A (en) 1993-11-08 1995-05-29 Harrison M. Lazarus Intraluminal vascular graft and method
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
DE69507800T2 (en) 1994-05-19 1999-07-22 Scimed Life Systems Inc Improved tissue supporting devices
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
EP0792627B2 (en) 1994-06-08 2003-10-29 Cardiovascular Concepts, Inc. System for forming a bifurcated graft
ES2239322T3 (en) 1994-06-27 2005-09-16 Bard Peripheral Vascular, Inc. Polytetrafluoroethylene radially expandable and expandable endovascular stents formed subject.
JP2749263B2 (en) 1994-07-07 1998-05-13 三洋電機株式会社 Frame synchronization regeneration circuit
US5556426A (en) 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
AU3783295A (en) 1994-11-16 1996-05-23 Advanced Cardiovascular Systems Inc. Shape memory locking mechanism for intravascular stent
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
DE19524653A1 (en) 1994-12-23 1996-06-27 Ruesch Willy Ag Placeholder for disposing in a body tube
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5522883A (en) 1995-02-17 1996-06-04 Meadox Medicals, Inc. Endoprosthesis stent/graft deployment system
WO1996025897A2 (en) 1995-02-22 1996-08-29 Menlo Care, Inc. Covered expanding mesh stent
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
DE19508805C2 (en) 1995-03-06 2000-03-30 Lutz Freitag A stent for disposing in a body tube having a flexible supporting framework consisting of at least two wires having different shape memory function
US5556414A (en) 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
AT169484T (en) 1995-04-01 1998-08-15 Variomed Ag Stent for transluminal implantation in hollow organs
US5693089A (en) 1995-04-12 1997-12-02 Inoue; Kanji Method of collapsing an implantable appliance
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US6863686B2 (en) 1995-04-17 2005-03-08 Donald Shannon Radially expandable tape-reinforced vascular grafts
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
EP1018977B1 (en) 1995-05-26 2004-12-08 SurModics, Inc. Method and implantable article for promoting endothelialization
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
MX9601944A (en) 1995-06-07 1997-08-30 Advanced Cardiovascular System Coiled reinforced retractable sleeve for stent delivery catheter.
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
ES2224132T3 (en) 1995-08-24 2005-03-01 Bard Peripheral Vascular, Inc. Method of assembling a endoluminal covered stent.
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US6053943A (en) 1995-12-08 2000-04-25 Impra, Inc. Endoluminal graft with integral structural support and method for making same
DE69531872T2 (en) 1995-12-08 2004-07-22 Bard Peripheral Vascular, Inc., Tempe A process for preparing an endoluminal graft having an integral supporting structure
CA2542014C (en) 1995-12-14 2011-04-12 Gore Enterprise Holdings, Inc. Kink resistant stent-graft
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US5607478A (en) 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5718159A (en) 1996-04-30 1998-02-17 Schneider (Usa) Inc. Process for manufacturing three-dimensional braided covered stent
US6312454B1 (en) 1996-06-13 2001-11-06 Nitinol Devices & Components Stent assembly
US20050113909A1 (en) 1996-07-03 2005-05-26 Shannon Donald T. Polymer coated stents
US6120535A (en) 1996-07-29 2000-09-19 Radiance Medical Systems, Inc. Microporous tubular prosthesis
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
AU4489197A (en) 1996-09-20 1998-04-14 Sid D. Fleischman Radially expanding prostheses and systems for their deployment
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
AU727411B2 (en) 1996-12-03 2000-12-14 Atrium Medical Corporation Multi-stage prosthesis
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5961545A (en) 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6039755A (en) 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US5769817A (en) 1997-02-28 1998-06-23 Schneider (Usa) Inc. Coextruded balloon and method of making same
DE69828798T2 (en) 1997-03-05 2006-01-05 Boston Scientific Ltd., St. Michael Konformanliegende multilayer stent device
US5897588A (en) * 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
NL1007584C2 (en) * 1997-11-19 1999-05-20 Cordis Europ Vena cava filter.
US6156062A (en) 1997-12-03 2000-12-05 Ave Connaught Helically wrapped interlocking stent
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
DE69935716T2 (en) 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael Stent with smooth end
US6547814B2 (en) 1998-09-30 2003-04-15 Impra, Inc. Selective adherence of stent-graft coverings
US6398803B1 (en) * 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
AU763781B2 (en) 1999-05-20 2003-07-31 Boston Scientific Limited Stent-graft with increased flexibility
US6364904B1 (en) 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
GB0003387D0 (en) 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
US6585760B1 (en) 2000-06-30 2003-07-01 Vascular Architects, Inc AV fistula and function enhancing method
US6808533B1 (en) 2000-07-28 2004-10-26 Atrium Medical Corporation Covered stent and method of covering a stent
US6770086B1 (en) 2000-11-02 2004-08-03 Scimed Life Systems, Inc. Stent covering formed of porous polytetraflouroethylene
US6673105B1 (en) 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US7288111B1 (en) * 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
MXPA06006470A (en) 2003-12-12 2006-08-23 Bard Inc C R Implantable medical devices with fluorinated polymer coatings, and methods of coating thereof.
US20050131515A1 (en) 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4324574A (en) * 1980-12-19 1982-04-13 E. I. Du Pont De Nemours And Company Felt-like layered composite of PTFE and glass paper
US4954126B1 (en) * 1982-04-30 1996-05-28 Ams Med Invent S A Prosthesis comprising an expansible or contractile tubular body
US4954126A (en) * 1982-04-30 1990-09-04 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4647416A (en) * 1983-08-03 1987-03-03 Shiley Incorporated Method of preparing a vascular graft prosthesis
US4776337A (en) * 1985-11-07 1988-10-11 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337B1 (en) * 1985-11-07 2000-12-05 Cordis Corp Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5653727A (en) * 1987-10-19 1997-08-05 Medtronic, Inc. Intravascular stent
US5234456A (en) * 1990-02-08 1993-08-10 Pfizer Hospital Products Group, Inc. Hydrophilic stent
US5242399A (en) * 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5139480A (en) * 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5258027A (en) * 1991-01-24 1993-11-02 Willy Rusch Ag Trachreal prosthesis
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5573520A (en) * 1991-09-05 1996-11-12 Mayo Foundation For Medical Education And Research Flexible tubular device for use in medical applications
US5354309A (en) * 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
US5766238A (en) * 1991-10-28 1998-06-16 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5421955B1 (en) * 1991-10-28 1998-01-20 Advanced Cardiovascular System Expandable stents and method for making same
US5728158A (en) * 1991-10-28 1998-03-17 Advanced Cardiovascular Systems, Inc. Expandable stents
US5421955A (en) * 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5603721A (en) * 1991-10-28 1997-02-18 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5735893A (en) * 1991-10-28 1998-04-07 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5514154A (en) * 1991-10-28 1996-05-07 Advanced Cardiovascular Systems, Inc. Expandable stents
US5211658A (en) * 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5683453A (en) * 1992-01-08 1997-11-04 Expandable Grafts Partnership Apparatus for bilateral intra-aortic bypass
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5649950A (en) * 1992-01-22 1997-07-22 C. R. Bard System for the percutaneous transluminal front-end loading delivery and retrieval of a prosthetic occluder
US5443496A (en) * 1992-03-19 1995-08-22 Medtronic, Inc. Intravascular radially expandable stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5645559A (en) * 1992-05-08 1997-07-08 Schneider (Usa) Inc Multiple layer stent
US5876448A (en) * 1992-05-08 1999-03-02 Schneider (Usa) Inc. Esophageal stent
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5591223A (en) * 1992-11-23 1997-01-07 Children's Medical Center Corporation Re-expandable endoprosthesis
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5474563A (en) * 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5437083A (en) * 1993-05-24 1995-08-01 Advanced Cardiovascular Systems, Inc. Stent-loading mechanism
US5738674A (en) * 1993-05-24 1998-04-14 Advanced Cardiovascular Systems, Inc. Stent loading mechanism
US5546646A (en) * 1993-05-24 1996-08-20 Advanced Cardiovascular Systems, Inc. Method for mounting an intravascular stent on a catheter
US5458615A (en) * 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5718973A (en) * 1993-08-18 1998-02-17 W. L. Gore & Associates, Inc. Tubular intraluminal graft
US5810870A (en) * 1993-08-18 1998-09-22 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5384019A (en) * 1993-10-29 1995-01-24 E. I. Du Pont De Nemours And Company Membrane reinforced with modified leno weave fabric
US5527353A (en) * 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
US5569295A (en) * 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5824043A (en) * 1994-03-09 1998-10-20 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5549663A (en) * 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5554181A (en) * 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5755774A (en) * 1994-06-27 1998-05-26 Corvita Corporation Bistable luminal graft endoprosthesis
US5522881A (en) * 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5527355A (en) * 1994-09-02 1996-06-18 Ahn; Sam S. Apparatus and method for performing aneurysm repair
US5723003A (en) * 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5632840A (en) * 1994-09-22 1997-05-27 Advanced Cardiovascular System, Inc. Method of making metal reinforced polymer stent
US5649977A (en) * 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5700286A (en) * 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5755770A (en) * 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US6004348A (en) * 1995-03-10 1999-12-21 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5749880A (en) * 1995-03-10 1998-05-12 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5849037A (en) * 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5728131A (en) * 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5593417A (en) * 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5843161A (en) * 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) * 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5928279A (en) * 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5824046A (en) * 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
US6015431A (en) * 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US5843166A (en) * 1997-01-17 1998-12-01 Meadox Medicals, Inc. Composite graft-stent having pockets for accomodating movement
US5851232A (en) * 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5824054A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US6673103B1 (en) * 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647458B2 (en) 1995-03-10 2014-02-11 Bard Peripheral Vascular, Inc. Methods for making a supported graft
US8617441B2 (en) 1995-03-10 2013-12-31 Bard Peripheral Vascular, Inc. Methods for making an encapsulated stent
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US20090294035A1 (en) * 1999-02-02 2009-12-03 C. R. Bard, Inc. Partial encapsulation of stents
US10213328B2 (en) 1999-02-02 2019-02-26 Bard Peripheral Vascular, Inc. Partial encapsulation of stents
US8617337B2 (en) 1999-02-02 2013-12-31 Bard Peripheral Vascular, Inc. Partial encapsulation of stents
US9603731B2 (en) 2003-06-27 2017-03-28 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9456910B2 (en) 2003-06-27 2016-10-04 Medinol Ltd. Helical hybrid stent
US20110166638A1 (en) * 2006-02-28 2011-07-07 C. R. Bard, Inc. Flexible stretch stent-graft
US9504556B2 (en) 2006-02-28 2016-11-29 C. R. Bard, Inc. Flexible stretch stent-graft
US9622850B2 (en) 2006-02-28 2017-04-18 C.R. Bard, Inc. Flexible stretch stent-graft
US20090030499A1 (en) * 2006-02-28 2009-01-29 C.R. Bard, Inc. Flexible stretch stent-graft
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US20090088833A1 (en) * 2007-09-28 2009-04-02 Maximiliano Soetermans Double wall stent with retrieval member
US9943428B2 (en) 2008-01-11 2018-04-17 W. L. Gore & Associates, Inc. Stent having adjacent elements connected by flexible webs
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US8262979B2 (en) 2009-08-07 2012-09-11 Zeus Industrial Products, Inc. Process of making a prosthetic device from electrospun fibers
US8257640B2 (en) 2009-08-07 2012-09-04 Zeus Industrial Products, Inc. Multilayered composite structure with electrospun layer
US9034031B2 (en) 2009-08-07 2015-05-19 Zeus Industrial Products, Inc. Prosthetic device including electrostatically spun fibrous layer and method for making the same
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9227388B2 (en) 2011-10-10 2016-01-05 W. L. Gore & Associates, Inc. Devices and methods for attaching support frames to substrates
US10010395B2 (en) 2012-04-05 2018-07-03 Zeus Industrial Products, Inc. Composite prosthetic devices

Also Published As

Publication number Publication date
DE60002161T3 (en) 2013-12-24
US20010032009A1 (en) 2001-10-18
ES2195883T3 (en) 2003-12-16
US20140107763A1 (en) 2014-04-17
DE60002161D1 (en) 2003-05-22
EP1148843B2 (en) 2013-08-07
US20090294035A1 (en) 2009-12-03
US10213328B2 (en) 2019-02-26
AT237287T (en) 2003-05-15
EP1148843B1 (en) 2003-04-16
JP2002536055A (en) 2002-10-29
EP1148843A1 (en) 2001-10-31
US7914639B2 (en) 2011-03-29
CA2371964A1 (en) 2000-08-10
US6398803B1 (en) 2002-06-04
JP4248151B2 (en) 2009-04-02
WO2000045741A1 (en) 2000-08-10
US20110126966A1 (en) 2011-06-02
US6770087B2 (en) 2004-08-03
MXPA01007790A (en) 2002-07-02
DE60002161T2 (en) 2003-12-04
US8617337B2 (en) 2013-12-31
CA2371964C (en) 2008-10-28

Similar Documents

Publication Publication Date Title
EP2255750B1 (en) Helical stent having improved flexibility and expandability
JP4087853B2 (en) Expandable stent-graft coated with expanded polytetrafluoroethylene
US7842079B2 (en) Apparatus for a stent having an expandable web structure and delivery system
CA2498176C (en) Medical device amenable to fenestration
CA2250614C (en) Endoprosthesis having multiple bridging junctions and procedure
DE69736238T2 (en) Stent with serving
US6685739B2 (en) Implantable prosthetic valve
CN1217630C (en) Ladder-type expandable stent
US6551351B2 (en) Spiral wound stent
EP1515667B1 (en) Implantable prosthesis with leak-resistant seal
EP1342455B1 (en) Expandable supportive branched endoluminal grafts
JP4801838B2 (en) Intraluminal stent
CA2566929C (en) Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US9737422B2 (en) Stent
CA2259543C (en) Stented, radially expandable, tubular ptfe grafts
US5800520A (en) Tubular endoluminar prosthesis having oblique ends
US6325823B1 (en) Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US8663311B2 (en) Device comprising biodegradable bistable or multistable cells and methods of use
US6270524B1 (en) Flexible, radially expansible luminal prostheses
JP4256262B2 (en) Reverse rotating stratification of ePTFE to improve the mechanical properties of the prosthesis
JP4017821B2 (en) Supported graft and a method of manufacturing the same
RU2234288C2 (en) Stent having controllable division
US8623065B2 (en) Exterior supported self-expanding stent-graft
US20070112415A1 (en) Braided stent
US5755772A (en) Radially expansible vascular prosthesis having reversible and other locking structures