US20040204708A1 - Apparatus to treat esophageal sphincters - Google Patents
Apparatus to treat esophageal sphincters Download PDFInfo
- Publication number
- US20040204708A1 US20040204708A1 US10/838,292 US83829204A US2004204708A1 US 20040204708 A1 US20040204708 A1 US 20040204708A1 US 83829204 A US83829204 A US 83829204A US 2004204708 A1 US2004204708 A1 US 2004204708A1
- Authority
- US
- United States
- Prior art keywords
- sphincter
- introducer
- arm
- coupled
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000005070 sphincter Anatomy 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 claims description 34
- 239000012530 fluid Substances 0.000 claims description 21
- 239000012809 cooling fluid Substances 0.000 claims 3
- 210000000111 lower esophageal sphincter Anatomy 0.000 description 31
- 210000001519 tissue Anatomy 0.000 description 28
- 230000003902 lesion Effects 0.000 description 25
- 210000003238 esophagus Anatomy 0.000 description 20
- 210000002460 smooth muscle Anatomy 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 12
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 10
- 230000035515 penetration Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 210000002784 stomach Anatomy 0.000 description 9
- 238000002604 ultrasonography Methods 0.000 description 8
- 238000012800 visualization Methods 0.000 description 8
- 230000017074 necrotic cell death Effects 0.000 description 7
- 210000003484 anatomy Anatomy 0.000 description 6
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- -1 polyethylenes Polymers 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000003236 esophagogastric junction Anatomy 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000005779 cell damage Effects 0.000 description 3
- 208000037887 cell injury Diseases 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 210000003736 gastrointestinal content Anatomy 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 208000034657 Convalescence Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 238000012084 abdominal surgery Methods 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920000249 biocompatible polymer Polymers 0.000 description 2
- 210000002318 cardia Anatomy 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002357 laparoscopic surgery Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 208000036764 Adenocarcinoma of the esophagus Diseases 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 208000005422 Foreign-Body reaction Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 102000000543 Histamine Receptors Human genes 0.000 description 1
- 108010002059 Histamine Receptors Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010030178 Oesophageal obstruction Diseases 0.000 description 1
- 206010030201 Oesophageal ulcer Diseases 0.000 description 1
- 206010030216 Oesophagitis Diseases 0.000 description 1
- 206010067268 Post procedural infection Diseases 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009858 acid secretion Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000151 anti-reflux effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 208000028653 esophageal adenocarcinoma Diseases 0.000 description 1
- 208000006881 esophagitis Diseases 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 210000002599 gastric fundus Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000024798 heartburn Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000651 myofibroblast Anatomy 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B18/0218—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/345—Cannulas for introduction into a natural body opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/00267—Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00482—Digestive system
- A61B2018/00488—Esophagus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00553—Sphincter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
- A61B2018/00648—Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00821—Temperature measured by a thermocouple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00827—Current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00892—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0262—Characteristics of handpieces or probes using a circulating cryogenic fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0293—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B2018/044—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
- A61B2018/046—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1861—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1869—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4222—Evaluating particular parts, e.g. particular organs
- A61B5/4233—Evaluating particular parts, e.g. particular organs oesophagus
Definitions
- This invention relates generally to an apparatus to treat sphincters, and more particularly to an apparatus to treat esophageal sphincters.
- Gastroesophageal reflux disease is a common gastroesophageal disorder in which the stomach contents are ejected into the lower esophagus due to a dysfunction of the lower esophageal sphincter (LES). These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity.
- the reported incidence of GERD in the U.S. is as high as 10% of the population (Castell DO; Johnston BT: Gastroesophageal Reflux Disease: Current Strategies For Patient Management. Arch Fam Med, 5(4):221-7; (1996 April)).
- GERD GERD causes adenocarcinoma, or cancer of the esophagus, which is increasing in incidence faster than any other cancer (Reynolds J C: Influence Of Pathophysiology, Severity, And Cost On The Medical Management Of Gastroesophageal Reflux Disease. Am J Health Syst Pharm, 53(22 Suppl 3):S5-12 (1996 Nov. 15)).
- Laparoscopic Nissen fundoplication reported by Dallemagne et al. Surgical Laparoscopy and Endoscopy, Vol. 1, No. 3, (1991), pp. 138-43 arid by Hindler et al. Surgical Laparoscopy and Endoscopy, Vol. 2, No. 3, (1992), pp. 265-272, involves essentially the same steps as Nissen fundoplication with the exception that surgical manipulation is performed through a plurality of surgical cannula introduced using trocars inserted at various positions in the abdomen.
- an object of the present invention is to provide an apparatus that reduces a frequency of sphincter relaxation.
- a further object of the invention is to provide an apparatus to controllably produce a lesion in a sphincter without creating a permanent impairment of the sphincter's ability to achieve a physiologically normal state of closure.
- Still another object of the invention is to provide an apparatus to create a tightening of a sphincter without permanently damaging anatomical structures near the sphincter.
- Another object of the invention is to provide an apparatus to create controlled cell necrosis in a lower esophageal sphincter to reduce a frequency of reflux of stomach contents into an esophagus.
- An expandable device means includes a plurality of arm means. Each arm means has a distal section means and a proximal section means. Each of the distal section means of the arm means are coupled and each of the proximal section means of the arm means are coupled to the introducer means distal portion means.
- the expandable device means is configured to at least partially dilate a sphincter in a deployed state.
- An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
- an expandable device means is coupled to an introducer distal portion means.
- the expandable device means includes a first arm means with a proximal and distal section means and a second arm means with proximal and distal section means. The first and second arm distal portion means are coupled.
- the expandable device means is configured to at least partially dilate a sphincter in a deployed state.
- An energy delivery device means is coupled to the expandable device means.
- the energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter while minimizing cell necrosis of a mucosal layer of the sphincter.
- FIG. 1 is an illustrated lateral view of the upper GI tract depicting the position of the sphincter treatment apparatus of the present invention in the lower esophageal sphincter.
- FIG. 2 is a lateral view of the present invention illustrating the introducer, expansion device and energy delivery device.
- FIG. 3 depicts a lateral view of an embodiment of the invention that illustrates the use of a sheath to introduce and deploy the expansion device.
- FIG. 4 illustrates a lateral view of the basket assembly used in an embodiment of the invention.
- FIG. 5 is a lateral view of the basket assembly illustrating the placement of struts on the basket assembly.
- FIG. 6A is a lateral view of the junction between the basket arms and the introducer illustrating a lumen in the basket arm that can be used for the advancement of energy delivery devices.
- FIG. 6B is a frontal view of a basket arm in an alternative embodiment of the invention illustrating a track in the arm used to advance the movable wire.
- FIG. 7A is a cross-sectional view of a section of a basket arm and an energy delivery device illustrating stepped and tapered sections in the basket arm apertures and energy delivery device.
- FIG. 8A is a lateral view of the basket assembly illustrating the use of the advancement member and introducer to position energy delivery devices into the sphincter wall.
- FIG. 8B is a lateral view of the basket assembly illustrating the use of the advancement member and basket arms to position energy delivery devices into the sphincter wall.
- FIG. 9 is a cross sectional view illustrating the use of a needle electrode in combination with an angled aperture segment to select and maintain a constant penetration angle into the sphincter wall.
- FIG. 10 is a lateral view illustrating the placement of needle electrodes into the sphincter wall by expansion of the basket assembly.
- FIG. 11 is a lateral view illustrating the use of an insulation layer on the needle electrode to protect an area of tissue from RF energy.
- FIG. 12 depicts the fluid source and flow path to deliver fluid to treatment site using the introducer.
- FIG. 13 is a cross sectional view illustrating a visualization device coupled to an embodiment of the invention.
- FIG. 14 is an enlarged lateral view illustrating the placement of sensors on/adjacent the energy delivery device and the coupling of sensors to a feedback control system.
- FIG. 15 is a flow chart illustrating a sphincter treatment method using the apparatus of the present invention.
- FIG. 16 is a lateral view of sphincter smooth muscle tissue illustrating electrical foci and electrically conductive pathways for the origination and conduction of aberrant electrical signals in the smooth muscle of the lower esophageal sphincter or other tissue.
- FIG. 17 is a lateral view of a sphincter wall illustrating the infiltration of tissue healing cells into a lesion in the smooth tissue of a sphincter following treatment with the sphincter treatment apparatus of the present invention.
- FIG. 18 is a view similar to that of FIG. 17 illustrating shrinkage of the lesion site caused by cell infiltration.
- FIG. 19 is a lateral view of the esophageal wall illustrating the preferred placement of lesions in the smooth muscle layer of a esophageal sphincter.
- FIGS. 20 A-D are lateral views of the sphincter wall illustrating various patterns of lesions created by the apparatus of the present invention.
- FIG. 21 depicts a block diagram of the feed back control system that can be used with an embodiment of the invention.
- FIG. 22 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 21.
- FIG. 23 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 21.
- a sphincter treatment apparatus 10 delivers energy to a treatment site 12 to produce lesions 14 in a sphincter 16 , such as the lower esophageal sphincter (LES).
- sphincter treatment apparatus 10 comprises a flexible elongate shaft 18 , also called introducer 18 , coupled to an expansion device 20 , in turn coupled with one or more energy delivery devices 22 .
- Introducer 18 has a distal extremity also called introducer end 19 .
- Energy delivery devices 22 are configured to be coupled to a power source.
- Expansion device 20 comprises a plurality of arms 24 , with proximal and distal arms ends 25 and 26 . Proximal arm ends 25 are coupled to introducer end 19 . Expansion device 20 has a central longitudinal axis 28 and is moveable between contracted and expanded/deployed states substantially there along. Expansion device 20 is configured to be positionable in a sphincter 16 (such as the LES) or adjacent anatomical structure (such as the cardia of the stomach) and is further configured to partially dilate sphincter 16 when in the deployed state.
- Energy delivery devices 22 are configured to be introduceable from introducer 18 and to contact and/or penetrate a targeted treatment site 12 in a sphincter wall 30 or adjoining anatomical structure. They are further configured to deliver energy to treatment site 12 .
- introducer 18 is configured to be coupled to expansion device 20 and has sufficient length to position expansion device 20 in the LES and/or stomach using a transoral approach.
- Typical lengths for introducer 18 include a range of 40-180 cm.
- Introducer 18 may be circular or oval in cross section.
- introducer 18 may be flexible, articulated, coil-reinforced, or steerable, or any combination thereof.
- Suitable materials for introducer 18 include polyethylenes, polyurethanes, silicones and other biocompatible polymers known to those skilled in the art. Introducer 18 may also be coated with a lubricious coating as is well known to those skilled in the art.
- Introducer 18 may have one or more lumens 32 , that extend the full length of introducer 18 , or only a portion thereof. Lumens 32 may be used as paths for the delivery of fluids and gases, as well as providing channels for cables, catheters, guide wires, pull wires, insulated wires, and optical fibers.
- an introduction member 34 also called a sheath 34 , is used to introduce sphincter treatment apparatus 10 into the LES.
- Sheath 34 can also function as a sheath for expansion device 20 to keep it in a nondeployed or contracted state during introduction into the LES.
- sheath 34 contains a sheath lumen 36 of sufficient inner diameter to allow free movement of sphincter treatment apparatus 10 within sheath lumen 36 .
- Sheath 34 , sheath lumen 36 and sphincter treatment apparatus 10 are configured to allow expansion device 20 to go from a contracted state to an expanded state and vice versa by either i) the retraction or advancement of sheath 34 , or ii) the advancement or withdrawal of sphincter treatment apparatus 10 .
- Sheath 34 may be flexible, articulated, coil-reinforced or steerable, or any combination thereof Suitable materials for sheath 34 include polyethylenes, polyurethanes, silicones, polytetrafluoroethylenes and other biocompatible polymers known to those skilled in the art.
- Typical diameters for sheath lumen 36 include 0.1 to 2 inches, while typical lengths include 40-180 cms.
- expansion device 20 comprises one or more elongated arms 24 that are joined at their proximal ends 25 and distal ends 26 to form a basket assembly 38 .
- Proximal arm end 25 is attached to a supporting structure, which can be distal end 19 of introducer 18 or a proximal cap 40 .
- distal arm end 26 is also attached to a supporting structure which can be a distal basket-cap 42 or introducer 18 .
- Arms 24 are of a sufficient number, two or more, to sufficiently open and efface the folds of sphincter 16 to allow treatment with sphincter treatment apparatus 10 , while preventing herniation of sphincter wall 30 into the spaces 44 between arms 24 .
- Arms 24 may form a variety of geometric shapes including, curved, rectangular, trapezoidal, triangular, or any combination thereof Also, arms 24 can have an outwardly bowed shaped memory for expanding basket assembly 38 into engagement with sphincter wall 30 . Arms 24 may be preshaped at time of manufacture or shaped by the physician. Arms 24 can have a variety of cross sectional geometries including, circular, rectangular and crescent-shaped. The circumferential spacing of arms 24 can be symmetrical or asymmetrical with respect to a circumference around longitudinal axis 28 . Suitable materials for arms 24 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art. Arms 24 may also be color-coded to facilitate their identification via visual medical imaging methods and equipment, such as endoscopic methods, which are well known to those skilled in the art.
- a supporting member 46 is attached to two or more arms 24 .
- Supporting member 46 also called strut 46
- Strut 46 can be attached to arms 24 along a circumference of basket assembly 38 .
- Strut 46 may also contain apertures 50 in one or more places that extend through strut 46 to arm 24 as will be discussed herein.
- the cross sectional geometry of strut 46 can be rectangular, circular or crescent-shaped. Suitable materials for strut 46 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art.
- arms 24 may be solid or hollow with a continuous arm lumen 48 that may be coupled with introducer lumens 32 . Also arms 24 may have one or more apertures 50 that may coupled to arm lumen 48 . Coupled lumens 32 and 48 , and apertures 50 provide a path for the delivery of a fluid or energy delivery device 22 from introducer 18 to the surface or interior of sphincter wall 30 . As shown in FIG. 6B, arms 24 may also have a partially open channel 52 , also called a track 52 , that functions as a guide track for the travel of an advancement member (discussed herein) and/or energy delivery device 22 that permit the controlled placement of energy delivery devices 22 at or into sphincter wall 30 .
- a partially open channel 52 also called a track 52
- apertures 50 may have tapered sections 54 and/or stepped sections 56 in all or part of their length, that are used to control the penetration depth of energy delivery devices 22 into sphincter wall 30 as will be discussed herein.
- Energy delivery devices 22 may have similar tapered sections 54 ′ and/or stepped sections 56 ′.
- energy delivery devices 22 can be coupled to an energy device delivery member 57 , also called an advancement member 57 .
- Advancement member 57 can be an insulated wire, an insulated guide wire, a plastic-coated stainless steel hypotube with internal wiring or a plastic catheter with internal wiring as is well known to those skilled in the art.
- Advancement member 57 is configured to be able to introduce energy delivery device 22 into sphincter wall 30 via introducer 18 (see FIG. 8A) or basket assembly 38 as will be discussed herein (see FIG. 8B).
- Advancement member 57 is of sufficient length to position energy delivery device 22 in the LES and/or stomach using a transoral approach. Typical lengths for advancement member 57 include a range of 40-180 cms.
- energy delivery device 22 has a distal portion 58 that is configured to penetrate sphincter wall 30 with a minimum amount of tearing of the mucosal and submucosal layers 60 and 62 of sphincter 16 . This is facilitated by maintaining a constant angle of penetration 64 , also called penetration angle 64 , of distal portion 58 into sphincter wall 30 during the time that energy delivery device 22 is advanced into sphincter wall 30 .
- the typical range for penetration angle 64 lies between 1 and 90°.
- Needle 58 ′ is of sufficient sharpness and length to penetrate into the smooth muscle of sphincter wall 30 .
- needle 58 ′ can be a needle electrode 58 .
- Distal portion 58 , including needle 58 ′ and needle electrode 58 can also be stepped or tapered to enable control of energy delivery device (see FIG. 7).
- Suitable materials for needle 58 ′ and needle electrodes 58 ′′ include 304 stainless steel and other metals known to those skilled in the art.
- energy delivery device 22 is coupled to arm 24 . As shown in FIG. 10, this can be accomplished by attaching needle 58 ′ to arm 24 . When sphincter treatment apparatus 10 is properly positioned at the treatment site 12 , needles 58 ′ are deployed by expansion of basket assembly 38 , resulting in the protrusion of needle 58 ′ into the smooth muscle tissue of sphincter wall 30 (see FIG. 10). Referring back to FIG. 9, coupling can also be accomplished by employing arm 24 to introduce energy delivery device 22 into sphincter wall 30 via use of arm lumen 48 .
- suitable power sources and energy delivery devices 22 that can be employed in one or more embodiments of the invention include or more of the following: (i) a radio-frequency (RF) source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with a closed channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source, (x) a microwave source providing energy from 915 MHz to 2.45 GHz and coupled to a microwave antenna, or (xi) an ultrasound power source coupled to an ultrasound
- RF radio-frequency
- the power source utilized is an RF source and energy delivery device 22 is one or more RF electrodes 66 , also described as electrodes 66 .
- all of the other herein mentioned power sources and energy delivery devices are equally applicable to sphincter treatment apparatus 10 .
- RF electrode 66 may be operated in either bipolar or monopolar mode with a ground pad electrode. In a monopolar mode of delivering RF energy, a single electrode 66 is used in combination with an indifferent electrode patch that is applied to the body to form the other electrical contact and complete an electrical circuit. Bipolar operation is possible when two or more electrodes 66 are used. Multiple electrodes 66 may be used. These electrodes may be cooled as described herein. Electrodes 66 can be attached to advancement member 57 by the use of soldering methods which are well known to those skilled in the art.
- RF electrodes 66 can have an insulating layer 68 , covering an insulated segment 70 except for an exposed segment 72 .
- an insulator or insulation layer is a barrier to either thermal or electromagnetic energy flow including RF energy flow.
- Insulated segment 70 is of sufficient length to extend into sphincter wall 30 and minimize the transmission of RF energy to a protected site 74 near or adjacent to insulated segment 70 .
- Typical lengths for insulated segment 70 include, but are not limited to, 1-4 mm.
- Suitable materials for insulating layer 68 include electrically insulating plastics and other materials well known to those skilled in the art.
- the depth of penetration of energy delivery device 22 into sphincter wall 30 is controllable. This can be accomplished by the selection and control of the dimensional relationships (e.g. the amount of clearance between inner and outer diameters) of energy delivery devices 22 and/or advancement member 57 to one or more of the following elements: arm lumen 48 , apertures 50 and track 52 . Control of penetration depth can also be accomplished through the use of tapered and/or stepped sections in one or more of the preceding elements as is discussed herein. In another embodiment, penetration depth control can be accomplished by the use of one or more of a variety of positional control means, known to those skilled in the art, that are coupled to sphincter treatment apparatus 10 . Such positional control means include stepper motor systems, indexing mechanisms and micromanipulators.
- fluid can be delivered to treatment site 12 via introducer 18 . This is accomplished by the coupling of introducer 18 to a fluid source 76 via introducer lumen 32 .
- FIG. 13 another embodiment of sphincter treatment apparatus 10 includes a visualization device 78 coupled to introducer 18 .
- Visualization device 78 can include a combination of one or more of the following: a viewing scope, an expanded eyepiece, fiber optics (both imaging and illuminating fibers), video imaging devices and the like.
- one or more sensors 80 may be positioned adjacent to or on electrode 66 for sensing the physical properties of sphincter tissue at treatment site 12 .
- Sensors 80 permit accurate determination of the physical properties of sphincter wall 30 at an electrode-tissue interface 82 .
- Such physical properties include temperature, electrical conductivity, electrical capacitance, thermal conductivity, density, thickness, strength, elasticity, moisture content, optical reflectance, optical transmittance, optical absorption acoustical impedance and acoustical absorption.
- Sensors 80 can be positioned at any position on expansion device 20 , electrode 66 or basket assembly 38 .
- Suitable sensors that may be used for sensor 80 include: thermocouples, fiber optics, photomultipliers, resistive wires, thermocouple IR detectors, thin film sensors, anemometric sensors and ultrasound sensors.
- Sensor 80 can be coupled to a feedback control system 84 , described herein. The coupling of sensor 80 to feedback control system 84 can be used to regulate the delivery of energy, fluids and gases to one or more of the following locations: treatment site 12 , sphincter wall 30 , and electrode tissue interface 82 .
- FIG. 15 is a flow chart illustrating a method for using sphincter treatment apparatus 10 .
- sphincter treatment apparatus 10 is introduced into the esophagus under local anesthesia and positioned at treatment site 12 .
- Sphincter treatment apparatus 10 can be introduced into the esophagus by itself or through a lumen in an endoscope (not shown), such as disclosed in U.S. Pat. Nos. 5,448,990 and 5,275,608, incorporated herein by reference, or a similar esophageal access device known to those skilled in the art.
- Basket assembly 38 is expanded as described herein. This serves to temporarily dilate the LES sufficiently to efface all or a portion of the folds of the LES.
- esophageal dilation and subsequent LES fold effacement can be accomplished by insufflation of the esophagus (a known technique) using gas introduced into the esophagus through introducer lumen 32 , an endoscope, or others esophageal access devices known to those skilled in the art.
- insufflation of the esophagus a known technique
- gas introduced into the esophagus through introducer lumen 32 , an endoscope, or others esophageal access devices known to those skilled in the art.
- the diagnostic phase of the procedure then begins and can be performed using a variety of diagnostic methods known to those skilled in the art including the following: (i) visualization of the interior surface of the esophagus via an endoscope or other viewing apparatus inserted into the esophagus, (ii) visualization of the interior morphology of the esophageal wall using ultrasonography to establish a baseline for the tissue to be treated, (iii) impedance measurement to determine the electrical conductivity between esophageal mucosal and submucosal layers 60 and 62 and sphincter treatment apparatus 10 , and (iv) measurement and surface mapping of electropotential signals of the LES and surrounding anatomical structures during varying time intervals which may include such events as depolarization, contraction and repolarization of gastroesophageal smooth muscle tissue.
- This latter technique is done to determine target treatment sites 12 in the LES or adjoining anatomical structures that are acting as electrical foci 107 or electrically conductive pathways 109 for abnormal or inappropriate polarization and relaxation of the smooth muscle of the LES (Refer to FIG. 16).
- the treatment phase of the procedure begins.
- the delivery of energy to treatment site 12 can be conducted under feedback control, manually or by a combination of both.
- Feedback control (described herein) enables sphincter treatment apparatus 10 to be positioned and retained in the esophagus during treatment with minimal attention by the physician.
- Electrodes 66 can be multiplexed in order to treat the entire targeted treatment site 12 or only a portion thereof.
- Feedback can be included and is achieved by the use of one or more of the following methods: (i) visualization, (ii) impedance measurement, (iii) ultrasonography, (iv) temperature measurement; and, (v) contractile force measurement via manometry.
- the feedback mechanism permits the selected on-off switching of different electrodes 66 in a desired pattern, which can be sequential from one electrode 66 to an adjacent electrode 66 , or can jump around between non-adjacent electrodes 66 .
- Individual electrodes 66 are multiplexed and volumetrically controlled by a controller.
- the area and magnitude of cell injury in the LES or sphincter 16 can vary. However, it is desirable to deliver sufficient energy to the targeted treatment site 12 to be able to achieve tissue temperatures in the range of 55-95° C. and produce lesions 14 at depths ranging from 1-4 mms from the interior surface of the LES or sphincter wall 30 .
- Typical energies delivered to the esophageal or stomach wall include, but are not limited to, a range between 100 and 50,000 joules per electrode 66 .
- resulting lesions 14 have a sufficient magnitude and area of cell injury to cause an infiltration of lesion 14 by fibroblasts 110 , myofibroblasts 112 , macrophages 114 and other cells involved in the tissue healing process (refer to FIG. 17). As shown in FIG. 18, these cells cause a contraction of tissue around lesion 14 , decreasing its volume and/or altering the biomechanical properties at lesion 14 so as to result in a tightening of the LES or sphincter 16 . These changes are reflected in transformed lesion 141 .
- the diameter of lesions 14 can vary between 0.1 to 4 mm.
- lesions 14 are less than 4 mmns in less than 4 mms in diameter in order to reduce the risk of thermal damage to mucosal and submucosal layers 60 and 62 .
- a 2 mm diameter lesion 14 centered in the wall of the smooth muscle provides a 1 mm buffer zone on either side of lesion 14 to prevent damage to mucosal and submucosal layers 60 and 62 and the adventitia (not shown), while still allowing for cell infiltration and subsequent sphincter tightening on approximately 50% of the thickness of the wall of the smooth muscle (refer to FIG. 19).
- lesions 14 are predominantly located in the smooth muscle layer of selected sphincter 16 at the depths ranging from 1 to 4 mm from the interior surface of sphincter wall 30 .
- lesions 14 can vary both in number and position within sphincter wall 30 . It may be desirable to produce a pattern of multiple lesions 14 within the sphincter smooth muscle tissue in order to obtain a selected degree of tightening of the LES or other sphincter 16 .
- 20 A-D include, but are not limited to, (i) a concentric circle of lesions 14 all at fixed depth in the smooth muscle layer evenly spaced along the radial axis of sphincter 16 , (ii) a wavy or folded circle of lesions 14 at varying depths in the smooth muscle layer evenly spaced along the radial axis of sphincter 16 , (iii) lesions 14 randomly distributed at varying depths in the smooth muscle, but evenly spaced in a radial direction and, (iv) an eccentric pattern of lesions 14 in one or more radial locations in the smooth muscle wall. Accordingly, the depth of RF and thermal energy penetration into sphincter 16 is controlled and selectable.
- the selective application of energy to sphincter 16 may be the even delivery of RF energy to the entire targeted treatment site 12 , a portion of it, or applying different amounts of RF energy to different sites depending on the condition of sphincter 16 . If desired, the area of cell injury can be substantially the same for every treatment event.
- a second diagnostic phase may be included after the treatment is completed. This provides an indication of LES tightening treatment success, and whether or not a second phase of treatment, to all or only a portion of the esophagus, now or at some later time, should be conducted.
- the second diagnostic phase is accomplished through one or more of the following methods: (i) visualization, (ii) measuring impedance, (iii) ultrasonography, (iv) temperature measurement, or (v) measurement of LES tension and contractile force via manometry.
- sensor 80 is coupled to an open or closed loop feedback control system 84 .
- an open or closed loop feedback system 84 couples sensor 80 , now described as sensor 346 , to an energy source 392 .
- an energy delivery device 314 is one or more RF electrodes 314 ; however, in various other embodiments, energy delivery device 314 may include others described herein.
- sensor 346 senses temperature, but in various other embodiments, sensor 346 may sense other physical properties described herein.
- the temperature of the tissue, or of RF electrode 314 is monitored, and the output power of energy source 392 adjusted accordingly.
- the physician can, if desired, override the closed or open loop system 84 .
- a microprocessor 394 can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power.
- the closed loop system 84 utilizes microprocessor 394 to serve as a controller, monitor the temperature, adjust the RF power, analyze the result, refeed the result, and then modulate the power.
- tissue adjacent to RF electrode 314 can be maintained at a desired temperature for a selected period of time without causing a shut down of the power circuit to electrode 314 due to the development of excessive electrical impedance at electrode 314 or adjacent tissue.
- Each RF electrode 314 is connected to resources which generate an independent output. The output maintains a selected energy at RF electrode 314 for a selected length of time.
- a control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value.
- the control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 314 .
- temperatures detected at sensor 346 provide feedback for maintaining a selected power. Temperature at sensor 346 is used as a safety means to interrupt the delivery of power when maximum pre-set temperatures are exceeded. The actual temperatures are measured at temperature measurement device 408 , and the temperatures are displayed at user interface and display 402 . A control signal is generated by controller 404 that is proportional to the difference between an actual measured temperature and a desired temperature. The control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired temperature delivered at the sensor 346 . A multiplexer can be included to measure current, voltage and temperature, at the sensor 346 , and energy can be delivered to RF electrode 314 in monopolar or bipolar fashion.
- Controller 404 can be a digital or analog controller, or a computer with software.
- controller 404 is a computer it can include a CPU coupled through a system bus.
- This system can include a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art.
- Also coupled to the bus is a program memory and a data memory.
- User interface and display 402 includes operator controls and a display.
- Controller 404 can be coupled to imaging systems including, but not limited to, ultrasound, CT scanners, X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
- the output of current sensor 396 and voltage sensor 398 are used by controller 404 to maintain a selected power level at RF electrode 314 .
- the amount of RF energy delivered controls the amount of power.
- a profile of the power delivered to electrode 314 can be incorporated in controller 404 and a preset amount of energy to be delivered may also be profiled.
- Circuitry, software and feedback to controller 404 result in process control, the maintenance of the selected power setting which is independent of changes in voltage or current, and is used to change the following process variables: (i) the selected power setting, (ii) the duty cycle (e.g., on-off time), (iii) bipolar or monopolar energy delivery; and, (iv) fluid delivery, including flow rate and pressure.
- process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensor 346 .
- Analog amplifier 410 can be a conventional differential amplifier circuit for use with sensor 346 .
- the output of analog amplifier 410 is sequentially connected by an analog multiplexer 412 to the input of A/D converter 414 .
- the output of analog amplifier 410 is a voltage which represents the respective sensed temperatures.
- Digitized amplifier output voltages are supplied by A/D converter 414 to microprocessor 394 .
- Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature.
- Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 394 corresponds to different temperatures and impedances.
- Calculated power and impedance values can be indicated on user interface and display 402 .
- calculated impedance and power values can be compared by microprocessor 394 to power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 402 , and additionally, the delivery of RF energy can be reduced, modified or interrupted.
- a control signal from microprocessor 394 can modify the power level supplied by energy source 392 .
- FIG. 23 illustrates a block diagram of a temperature and impedance feedback system that can be used to control the delivery of energy to tissue site 416 by energy source 392 and the delivery of a cooling medium to electrode 314 and/or tissue site 416 by flow regulator 418 .
- Energy is delivered to RF electrode 314 by energy source 392 , and applied to tissue site 416 .
- a monitor 420 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. However if the measured impedance exceeds the set value, a disabling signal 422 is transmitted to energy source 392 , ceasing further delivery of energy to RF electrode 314 .
- temperature measurement device 408 measures the temperature of tissue site 416 and/or RF electrode 314 .
- a comparator 424 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. If the measured temperature has not exceeded the desired temperature, comparator 424 sends a signal to flow regulator 418 to maintain the cooling solution flow rate at its existing level. However if the tissue temperature is too high, comparator 424 sends a signal to a flow regulator 418 (connected to an electronically controlled micropump, not shown) representing a need for an increased cooling solution flow rate.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A sphincter treatment apparatus has an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means of the plurality has a distal section means and a proximal section means. Each of distal sections means of the arm means are coupled and each of the proximal sections means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
Description
- This application is a divisional of co-pending application Ser. No. 09/971,085, filed Oct. 4, 2001, which is a continuation of application Ser. No. 09/032,092, filed Mar. 6, 1998, now abandoned.
- This invention relates generally to an apparatus to treat sphincters, and more particularly to an apparatus to treat esophageal sphincters.
- Gastroesophageal reflux disease (GERD) is a common gastroesophageal disorder in which the stomach contents are ejected into the lower esophagus due to a dysfunction of the lower esophageal sphincter (LES). These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity. The reported incidence of GERD in the U.S. is as high as 10% of the population (Castell DO; Johnston BT: Gastroesophageal Reflux Disease: Current Strategies For Patient Management. Arch Fam Med, 5(4):221-7; (1996 April)).
- Acute symptoms of GERD include heartburn, pulmonary disorders and chest pain. On a chronic basis, GERD subjects the esophagus to ulcer formation, or esophagitis and may result in more severe complications including esophageal obstruction, significant blood loss and perforation of the esophagus. Severe esophageal ulcerations occur in 20-30% of patients over age 65. Moreover, GERD causes adenocarcinoma, or cancer of the esophagus, which is increasing in incidence faster than any other cancer (Reynolds J C: Influence Of Pathophysiology, Severity, And Cost On The Medical Management Of Gastroesophageal Reflux Disease. Am J Health Syst Pharm, 53(22 Suppl 3):S5-12 (1996 Nov. 15)).
- Current drug therapy for GERD includes histamine receptor blockers which reduce stomach acid secretion and other drugs which may completely block stomach acid. However, while pharmacologic agents may provide short term relief, they do not address the underlying cause of LES dysfunction.
- Invasive procedures requiring percutaneous introduction of instrumentation into the abdomen exist for the surgical correction of GERD. One such procedure, Nissen fundoplication, involves constructing a new “valve” to support the LES by wrapping the gastric fundus around the lower esophagus. Although the operation has a high rate of success, it is an open abdominal procedure with the usual risks of abdominal surgery including: postoperative infection, herniation at the operative site, internal hemorrhage and perforation of the esophagus or of the cardia. In fact, a recent 10 year, 344 patient study reported the morbidity rate for this procedure to be 17% and
mortality 1% (Urschel, J D: Complications Of Antireflux Surgery, Am J Surg 166(1): 68-70; (1993 July)). This rate of complication drives up both the medical cost and convalescence period for the procedure and may exclude portions of certain patient populations (e.g., the elderly and immuno-compromised). - Efforts to perform Nissen fundoplication by less invasive techniques have resulted in the development of laparoscopic Nissen fundoplication. Laparoscopic Nissen fundoplication, reported by Dallemagne et al. Surgical Laparoscopy and Endoscopy, Vol. 1, No. 3, (1991), pp. 138-43 arid by Hindler et al. Surgical Laparoscopy and Endoscopy, Vol. 2, No. 3, (1992), pp. 265-272, involves essentially the same steps as Nissen fundoplication with the exception that surgical manipulation is performed through a plurality of surgical cannula introduced using trocars inserted at various positions in the abdomen.
- Another attempt to perform fundoplication by a less invasive technique is reported in U.S. Pat. No. 5,088,979. In this procedure, an invagination device containing a plurality of needles is inserted transorally into the esophagus with the needles in a retracted position. The needles are extended to engage the esophagus and fold the attached esophagus beyond the gastroesophageal junction. A remotely operated stapling device, introduced percutaneously through an operating channel in the stomach wall, is actuated to fasten the invaginated gastroesophageal junction to the surrounding involuted stomach wall.
- Yet another attempt to perform fundoplication by a less invasive technique is reported in U.S. Pat. No. 5,676,674. In this procedure, invagination is done by a jaw-like device and fastening of the invaginated gastroesophageal junction to the fundus of the stomach is done via a transoral approach using a remotely operated fastening device, eliminating the need for an abdominal incision. However, this procedure is still traumatic to the LES and presents the postoperative risks of gastroesophageal leaks, infection and foreign body reaction, the latter two sequela resulting when foreign materials such as surgical staples are implanted in the body.
- While the methods reported above are less invasive than an open Nissen fundoplication, some still involve making an incision into the abdomen and hence the increased morbidity and mortality risks and convalescence period associated with abdominal surgery. Others incur the increased risk of infection associated with placing foreign materials into the body. All involve trauma to LES and the risk of leaks developing at the newly created gastroesophageal junction.
- Besides the LES, there are other sphincters in the body which if not functionally properly can cause disease states or otherwise adversely affect the lifestyle of the patient. Reduced muscle tone or otherwise aberrant relaxation of sphincters can result in a laxity of tightness disease states including, but not limited to, urinary incontinence.
- There is a need to provide an apparatus to treat a sphincter and reduce a frequency of sphincter relaxation. Another need exists for an apparatus to create controlled cell necrosis in a sphincter tissue underlying a sphincter mucosal layer. Yet another need exists for an apparatus to create controlled cell necrosis in a sphincter and minimize injury to a mucosal layer of the sphincter. There is another need for an apparatus to controllably produce a lesion in a sphincter without creating a permanent impairment of the sphincter's ability to achieve a physiologically normal state of closure. Still a further need exists for an apparatus to create a tightening of a sphincter without permanently damaging anatomical structures near the sphincter. There is still another need for an apparatus to create controlled cell necrosis in a lower esophageal sphincter to reduce a frequency of reflux of stomach contents into an esophagus.
- Accordingly, an object of the present invention is to provide an apparatus that reduces a frequency of sphincter relaxation.
- Another object of the invention is to provide an apparatus to create controlled cell necrosis in a sphincter tissue underlying a sphincter mucosal layer. Yet another object of the invention is to provide an apparatus to create controlled cell necrosis in a sphincter and minimize injury to a mucosal layer of the sphincter.
- A further object of the invention is to provide an apparatus to controllably produce a lesion in a sphincter without creating a permanent impairment of the sphincter's ability to achieve a physiologically normal state of closure.
- Still another object of the invention is to provide an apparatus to create a tightening of a sphincter without permanently damaging anatomical structures near the sphincter.
- Another object of the invention is to provide an apparatus to create controlled cell necrosis in a lower esophageal sphincter to reduce a frequency of reflux of stomach contents into an esophagus.
- These and other objects of the invention are provided in a sphincter treatment apparatus within an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means has a distal section means and a proximal section means. Each of the distal section means of the arm means are coupled and each of the proximal section means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
- In another embodiment, an expandable device means is coupled to an introducer distal portion means. The expandable device means includes a first arm means with a proximal and distal section means and a second arm means with proximal and distal section means. The first and second arm distal portion means are coupled. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is coupled to the expandable device means. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter while minimizing cell necrosis of a mucosal layer of the sphincter.
- FIG. 1 is an illustrated lateral view of the upper GI tract depicting the position of the sphincter treatment apparatus of the present invention in the lower esophageal sphincter.
- FIG. 2 is a lateral view of the present invention illustrating the introducer, expansion device and energy delivery device.
- FIG. 3 depicts a lateral view of an embodiment of the invention that illustrates the use of a sheath to introduce and deploy the expansion device.
- FIG. 4 illustrates a lateral view of the basket assembly used in an embodiment of the invention.
- FIG. 5 is a lateral view of the basket assembly illustrating the placement of struts on the basket assembly.
- FIG. 6A is a lateral view of the junction between the basket arms and the introducer illustrating a lumen in the basket arm that can be used for the advancement of energy delivery devices.
- FIG. 6B is a frontal view of a basket arm in an alternative embodiment of the invention illustrating a track in the arm used to advance the movable wire.
- FIG. 7A is a cross-sectional view of a section of a basket arm and an energy delivery device illustrating stepped and tapered sections in the basket arm apertures and energy delivery device.
- FIG. 8A is a lateral view of the basket assembly illustrating the use of the advancement member and introducer to position energy delivery devices into the sphincter wall.
- FIG. 8B is a lateral view of the basket assembly illustrating the use of the advancement member and basket arms to position energy delivery devices into the sphincter wall.
- FIG. 9 is a cross sectional view illustrating the use of a needle electrode in combination with an angled aperture segment to select and maintain a constant penetration angle into the sphincter wall.
- FIG. 10 is a lateral view illustrating the placement of needle electrodes into the sphincter wall by expansion of the basket assembly.
- FIG. 11 is a lateral view illustrating the use of an insulation layer on the needle electrode to protect an area of tissue from RF energy.
- FIG. 12 depicts the fluid source and flow path to deliver fluid to treatment site using the introducer.
- FIG. 13 is a cross sectional view illustrating a visualization device coupled to an embodiment of the invention.
- FIG. 14 is an enlarged lateral view illustrating the placement of sensors on/adjacent the energy delivery device and the coupling of sensors to a feedback control system.
- FIG. 15 is a flow chart illustrating a sphincter treatment method using the apparatus of the present invention.
- FIG. 16 is a lateral view of sphincter smooth muscle tissue illustrating electrical foci and electrically conductive pathways for the origination and conduction of aberrant electrical signals in the smooth muscle of the lower esophageal sphincter or other tissue.
- FIG. 17 is a lateral view of a sphincter wall illustrating the infiltration of tissue healing cells into a lesion in the smooth tissue of a sphincter following treatment with the sphincter treatment apparatus of the present invention.
- FIG. 18 is a view similar to that of FIG. 17 illustrating shrinkage of the lesion site caused by cell infiltration.
- FIG. 19 is a lateral view of the esophageal wall illustrating the preferred placement of lesions in the smooth muscle layer of a esophageal sphincter.
- FIGS.20A-D are lateral views of the sphincter wall illustrating various patterns of lesions created by the apparatus of the present invention.
- FIG. 21 depicts a block diagram of the feed back control system that can be used with an embodiment of the invention.
- FIG. 22 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 21.
- FIG. 23 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 21.
- Referring to FIGS. 1 and 2, one embodiment of a
sphincter treatment apparatus 10 delivers energy to atreatment site 12 to producelesions 14 in asphincter 16, such as the lower esophageal sphincter (LES). In this embodiment,sphincter treatment apparatus 10 comprises a flexibleelongate shaft 18, also calledintroducer 18, coupled to anexpansion device 20, in turn coupled with one or moreenergy delivery devices 22.Introducer 18 has a distal extremity also calledintroducer end 19.Energy delivery devices 22 are configured to be coupled to a power source. -
Expansion device 20 comprises a plurality ofarms 24, with proximal and distal arms ends 25 and 26. Proximal arm ends 25 are coupled tointroducer end 19.Expansion device 20 has a centrallongitudinal axis 28 and is moveable between contracted and expanded/deployed states substantially there along.Expansion device 20 is configured to be positionable in a sphincter 16 (such as the LES) or adjacent anatomical structure (such as the cardia of the stomach) and is further configured to partially dilatesphincter 16 when in the deployed state.Energy delivery devices 22 are configured to be introduceable fromintroducer 18 and to contact and/or penetrate a targetedtreatment site 12 in asphincter wall 30 or adjoining anatomical structure. They are further configured to deliver energy totreatment site 12. - Referring now to FIG. 2,
introducer 18 is configured to be coupled toexpansion device 20 and has sufficient length to positionexpansion device 20 in the LES and/or stomach using a transoral approach. Typical lengths forintroducer 18 include a range of 40-180 cm.Introducer 18 may be circular or oval in cross section. Also,introducer 18 may be flexible, articulated, coil-reinforced, or steerable, or any combination thereof. Suitable materials forintroducer 18 include polyethylenes, polyurethanes, silicones and other biocompatible polymers known to those skilled in the art.Introducer 18 may also be coated with a lubricious coating as is well known to those skilled in the art. -
Introducer 18 may have one ormore lumens 32, that extend the full length ofintroducer 18, or only a portion thereof.Lumens 32 may be used as paths for the delivery of fluids and gases, as well as providing channels for cables, catheters, guide wires, pull wires, insulated wires, and optical fibers. - In another embodiment of the invention depicted in FIG. 3, an
introduction member 34, also called asheath 34, is used to introducesphincter treatment apparatus 10 into the LES.Sheath 34 can also function as a sheath forexpansion device 20 to keep it in a nondeployed or contracted state during introduction into the LES. To facilitate this function,sheath 34 contains asheath lumen 36 of sufficient inner diameter to allow free movement ofsphincter treatment apparatus 10 withinsheath lumen 36.Sheath 34,sheath lumen 36 andsphincter treatment apparatus 10 are configured to allowexpansion device 20 to go from a contracted state to an expanded state and vice versa by either i) the retraction or advancement ofsheath 34, or ii) the advancement or withdrawal ofsphincter treatment apparatus 10.Sheath 34 may be flexible, articulated, coil-reinforced or steerable, or any combination thereof Suitable materials forsheath 34 include polyethylenes, polyurethanes, silicones, polytetrafluoroethylenes and other biocompatible polymers known to those skilled in the art. Typical diameters forsheath lumen 36 include 0.1 to 2 inches, while typical lengths include 40-180 cms. - Referring now to FIG. 4, in another embodiment of the present invention,
expansion device 20 comprises one or moreelongated arms 24 that are joined at their proximal ends 25 and distal ends 26 to form abasket assembly 38.Proximal arm end 25 is attached to a supporting structure, which can bedistal end 19 ofintroducer 18 or aproximal cap 40. Likewise,distal arm end 26 is also attached to a supporting structure which can be a distal basket-cap 42 orintroducer 18.Arms 24 are of a sufficient number, two or more, to sufficiently open and efface the folds ofsphincter 16 to allow treatment withsphincter treatment apparatus 10, while preventing herniation ofsphincter wall 30 into thespaces 44 betweenarms 24. -
Arms 24 may form a variety of geometric shapes including, curved, rectangular, trapezoidal, triangular, or any combination thereof Also,arms 24 can have an outwardly bowed shaped memory for expandingbasket assembly 38 into engagement withsphincter wall 30.Arms 24 may be preshaped at time of manufacture or shaped by the physician.Arms 24 can have a variety of cross sectional geometries including, circular, rectangular and crescent-shaped. The circumferential spacing ofarms 24 can be symmetrical or asymmetrical with respect to a circumference aroundlongitudinal axis 28. Suitable materials forarms 24 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art.Arms 24 may also be color-coded to facilitate their identification via visual medical imaging methods and equipment, such as endoscopic methods, which are well known to those skilled in the art. - In another embodiment of the invention depicted in FIG. 5, a supporting
member 46 is attached to two ormore arms 24. Supportingmember 46, also calledstrut 46, can be attached toarms 24 along a circumference ofbasket assembly 38.Strut 46 may also containapertures 50 in one or more places that extend throughstrut 46 toarm 24 as will be discussed herein. The cross sectional geometry ofstrut 46 can be rectangular, circular or crescent-shaped. Suitable materials forstrut 46 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art. - Referring now to FIG. 6A,
arms 24 may be solid or hollow with acontinuous arm lumen 48 that may be coupled withintroducer lumens 32. Alsoarms 24 may have one ormore apertures 50 that may coupled toarm lumen 48. Coupledlumens apertures 50 provide a path for the delivery of a fluid orenergy delivery device 22 fromintroducer 18 to the surface or interior ofsphincter wall 30. As shown in FIG. 6B,arms 24 may also have a partiallyopen channel 52, also called atrack 52, that functions as a guide track for the travel of an advancement member (discussed herein) and/orenergy delivery device 22 that permit the controlled placement ofenergy delivery devices 22 at or intosphincter wall 30. Referring now to FIG. 7,apertures 50 may have taperedsections 54 and/or steppedsections 56 in all or part of their length, that are used to control the penetration depth ofenergy delivery devices 22 intosphincter wall 30 as will be discussed herein.Energy delivery devices 22 may have similar taperedsections 54′ and/or steppedsections 56′. - Referring now to FIGS. 8A and 8B, in another embodiment of the invention,
energy delivery devices 22 can be coupled to an energydevice delivery member 57, also called anadvancement member 57.Advancement member 57 can be an insulated wire, an insulated guide wire, a plastic-coated stainless steel hypotube with internal wiring or a plastic catheter with internal wiring as is well known to those skilled in the art.Advancement member 57 is configured to be able to introduceenergy delivery device 22 intosphincter wall 30 via introducer 18 (see FIG. 8A) orbasket assembly 38 as will be discussed herein (see FIG. 8B).Advancement member 57 is of sufficient length to positionenergy delivery device 22 in the LES and/or stomach using a transoral approach. Typical lengths foradvancement member 57 include a range of 40-180 cms. - In another embodiment of the invention depicted in FIG. 9,
energy delivery device 22 has a distal portion 58 that is configured to penetratesphincter wall 30 with a minimum amount of tearing of the mucosal andsubmucosal layers sphincter 16. This is facilitated by maintaining a constant angle ofpenetration 64, also calledpenetration angle 64, of distal portion 58 intosphincter wall 30 during the time thatenergy delivery device 22 is advanced intosphincter wall 30. The typical range forpenetration angle 64 lies between 1 and 90°. This can be accomplished through the use of a needle 58′ for distal energy delivery device portion 58, coupled with anangled aperture segment 50′ having a preselectedpenetration angle 64. Needle 58′ is of sufficient sharpness and length to penetrate into the smooth muscle ofsphincter wall 30. In a further embodiment, needle 58′ can be a needle electrode 58. Distal portion 58, including needle 58′ and needle electrode 58 can also be stepped or tapered to enable control of energy delivery device (see FIG. 7). Suitable materials for needle 58′ and needle electrodes 58″ include 304 stainless steel and other metals known to those skilled in the art. - In another embodiment of the invention,
energy delivery device 22 is coupled toarm 24. As shown in FIG. 10, this can be accomplished by attaching needle 58′ toarm 24. Whensphincter treatment apparatus 10 is properly positioned at thetreatment site 12, needles 58′ are deployed by expansion ofbasket assembly 38, resulting in the protrusion of needle 58′ into the smooth muscle tissue of sphincter wall 30 (see FIG. 10). Referring back to FIG. 9, coupling can also be accomplished by employingarm 24 to introduceenergy delivery device 22 intosphincter wall 30 via use ofarm lumen 48. - Turning now to a discussion of energy delivery, suitable power sources and
energy delivery devices 22 that can be employed in one or more embodiments of the invention include or more of the following: (i) a radio-frequency (RF) source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with a closed channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source, (x) a microwave source providing energy from 915 MHz to 2.45 GHz and coupled to a microwave antenna, or (xi) an ultrasound power source coupled to an ultrasound emitter, wherein the ultrasound power source produces energy in the range of 300 KHZ to 3 GHz. For ease of discussion for the remainder of this application, the power source utilized is an RF source andenergy delivery device 22 is one ormore RF electrodes 66, also described aselectrodes 66. However, all of the other herein mentioned power sources and energy delivery devices are equally applicable tosphincter treatment apparatus 10. - For the case of RF energy,
RF electrode 66 may be operated in either bipolar or monopolar mode with a ground pad electrode. In a monopolar mode of delivering RF energy, asingle electrode 66 is used in combination with an indifferent electrode patch that is applied to the body to form the other electrical contact and complete an electrical circuit. Bipolar operation is possible when two ormore electrodes 66 are used.Multiple electrodes 66 may be used. These electrodes may be cooled as described herein.Electrodes 66 can be attached toadvancement member 57 by the use of soldering methods which are well known to those skilled in the art. - Referring now to FIG. 11,
RF electrodes 66 can have an insulatinglayer 68, covering aninsulated segment 70 except for an exposedsegment 72. For purposes of this disclosure, an insulator or insulation layer is a barrier to either thermal or electromagnetic energy flow including RF energy flow.Insulated segment 70 is of sufficient length to extend intosphincter wall 30 and minimize the transmission of RF energy to a protectedsite 74 near or adjacent toinsulated segment 70. Typical lengths forinsulated segment 70 include, but are not limited to, 1-4 mm. Suitable materials for insulatinglayer 68 include electrically insulating plastics and other materials well known to those skilled in the art. - In another embodiment of the invention, the depth of penetration of
energy delivery device 22 intosphincter wall 30 is controllable. This can be accomplished by the selection and control of the dimensional relationships (e.g. the amount of clearance between inner and outer diameters) ofenergy delivery devices 22 and/oradvancement member 57 to one or more of the following elements:arm lumen 48,apertures 50 andtrack 52. Control of penetration depth can also be accomplished through the use of tapered and/or stepped sections in one or more of the preceding elements as is discussed herein. In another embodiment, penetration depth control can be accomplished by the use of one or more of a variety of positional control means, known to those skilled in the art, that are coupled tosphincter treatment apparatus 10. Such positional control means include stepper motor systems, indexing mechanisms and micromanipulators. - Referring now to FIG. 12, in another embodiment of the invention, fluid can be delivered to
treatment site 12 viaintroducer 18. This is accomplished by the coupling ofintroducer 18 to afluid source 76 viaintroducer lumen 32. - Referring now to FIG. 13, another embodiment of
sphincter treatment apparatus 10 includes avisualization device 78 coupled tointroducer 18.Visualization device 78 can include a combination of one or more of the following: a viewing scope, an expanded eyepiece, fiber optics (both imaging and illuminating fibers), video imaging devices and the like. - As shown in FIG. 14, one or
more sensors 80 may be positioned adjacent to or onelectrode 66 for sensing the physical properties of sphincter tissue attreatment site 12.Sensors 80 permit accurate determination of the physical properties ofsphincter wall 30 at an electrode-tissue interface 82. Such physical properties include temperature, electrical conductivity, electrical capacitance, thermal conductivity, density, thickness, strength, elasticity, moisture content, optical reflectance, optical transmittance, optical absorption acoustical impedance and acoustical absorption.Sensors 80 can be positioned at any position onexpansion device 20,electrode 66 orbasket assembly 38. Suitable sensors that may be used forsensor 80 include: thermocouples, fiber optics, photomultipliers, resistive wires, thermocouple IR detectors, thin film sensors, anemometric sensors and ultrasound sensors.Sensor 80 can be coupled to afeedback control system 84, described herein. The coupling ofsensor 80 tofeedback control system 84 can be used to regulate the delivery of energy, fluids and gases to one or more of the following locations:treatment site 12,sphincter wall 30, andelectrode tissue interface 82. - FIG. 15 is a flow chart illustrating a method for using
sphincter treatment apparatus 10. First,sphincter treatment apparatus 10 is introduced into the esophagus under local anesthesia and positioned attreatment site 12.Sphincter treatment apparatus 10 can be introduced into the esophagus by itself or through a lumen in an endoscope (not shown), such as disclosed in U.S. Pat. Nos. 5,448,990 and 5,275,608, incorporated herein by reference, or a similar esophageal access device known to those skilled in the art.Basket assembly 38 is expanded as described herein. This serves to temporarily dilate the LES sufficiently to efface all or a portion of the folds of the LES. In an alternative embodiment, esophageal dilation and subsequent LES fold effacement can be accomplished by insufflation of the esophagus (a known technique) using gas introduced into the esophagus throughintroducer lumen 32, an endoscope, or others esophageal access devices known to those skilled in the art. Once treatment is completed,basket assembly 38 is returned to its predeployed or contracted state andsphincter treatment apparatus 10 is withdrawn from the esophagus. This results in the LES returning to approximately its pretreatment state and diameter. It will be appreciated that the above procedure is applicable in whole or part to the treatment of other sphincters in the body. - The diagnostic phase of the procedure then begins and can be performed using a variety of diagnostic methods known to those skilled in the art including the following: (i) visualization of the interior surface of the esophagus via an endoscope or other viewing apparatus inserted into the esophagus, (ii) visualization of the interior morphology of the esophageal wall using ultrasonography to establish a baseline for the tissue to be treated, (iii) impedance measurement to determine the electrical conductivity between esophageal mucosal and
submucosal layers sphincter treatment apparatus 10, and (iv) measurement and surface mapping of electropotential signals of the LES and surrounding anatomical structures during varying time intervals which may include such events as depolarization, contraction and repolarization of gastroesophageal smooth muscle tissue. This latter technique is done to determinetarget treatment sites 12 in the LES or adjoining anatomical structures that are acting aselectrical foci 107 or electricallyconductive pathways 109 for abnormal or inappropriate polarization and relaxation of the smooth muscle of the LES (Refer to FIG. 16). - After diagnosis, the treatment phase of the procedure begins. In this phase of the procedure, the delivery of energy to
treatment site 12 can be conducted under feedback control, manually or by a combination of both. Feedback control (described herein) enablessphincter treatment apparatus 10 to be positioned and retained in the esophagus during treatment with minimal attention by the physician.Electrodes 66 can be multiplexed in order to treat the entire targetedtreatment site 12 or only a portion thereof. Feedback can be included and is achieved by the use of one or more of the following methods: (i) visualization, (ii) impedance measurement, (iii) ultrasonography, (iv) temperature measurement; and, (v) contractile force measurement via manometry. The feedback mechanism permits the selected on-off switching ofdifferent electrodes 66 in a desired pattern, which can be sequential from oneelectrode 66 to anadjacent electrode 66, or can jump around betweennon-adjacent electrodes 66.Individual electrodes 66 are multiplexed and volumetrically controlled by a controller. - The area and magnitude of cell injury in the LES or
sphincter 16 can vary. However, it is desirable to deliver sufficient energy to the targetedtreatment site 12 to be able to achieve tissue temperatures in the range of 55-95° C. and producelesions 14 at depths ranging from 1-4 mms from the interior surface of the LES orsphincter wall 30. Typical energies delivered to the esophageal or stomach wall include, but are not limited to, a range between 100 and 50,000 joules perelectrode 66. It is also desirable to deliver sufficient energy such that resultinglesions 14 have a sufficient magnitude and area of cell injury to cause an infiltration oflesion 14 byfibroblasts 110,myofibroblasts 112,macrophages 114 and other cells involved in the tissue healing process (refer to FIG. 17). As shown in FIG. 18, these cells cause a contraction of tissue aroundlesion 14, decreasing its volume and/or altering the biomechanical properties atlesion 14 so as to result in a tightening of the LES orsphincter 16. These changes are reflected in transformed lesion 141. The diameter oflesions 14 can vary between 0.1 to 4 mm. It is preferable thatlesions 14 are less than 4 mmns in less than 4 mms in diameter in order to reduce the risk of thermal damage to mucosal andsubmucosal layers mm diameter lesion 14 centered in the wall of the smooth muscle provides a 1 mm buffer zone on either side oflesion 14 to prevent damage to mucosal andsubmucosal layers - It is desirable that
lesions 14 are predominantly located in the smooth muscle layer of selectedsphincter 16 at the depths ranging from 1 to 4 mm from the interior surface ofsphincter wall 30. However,lesions 14 can vary both in number and position withinsphincter wall 30. It may be desirable to produce a pattern ofmultiple lesions 14 within the sphincter smooth muscle tissue in order to obtain a selected degree of tightening of the LES orother sphincter 16. Typical lesion patterns shown in FIGS. 20 A-D include, but are not limited to, (i) a concentric circle oflesions 14 all at fixed depth in the smooth muscle layer evenly spaced along the radial axis ofsphincter 16, (ii) a wavy or folded circle oflesions 14 at varying depths in the smooth muscle layer evenly spaced along the radial axis ofsphincter 16, (iii)lesions 14 randomly distributed at varying depths in the smooth muscle, but evenly spaced in a radial direction and, (iv) an eccentric pattern oflesions 14 in one or more radial locations in the smooth muscle wall. Accordingly, the depth of RF and thermal energy penetration intosphincter 16 is controlled and selectable. The selective application of energy to sphincter 16 may be the even delivery of RF energy to the entire targetedtreatment site 12, a portion of it, or applying different amounts of RF energy to different sites depending on the condition ofsphincter 16. If desired, the area of cell injury can be substantially the same for every treatment event. - A second diagnostic phase may be included after the treatment is completed. This provides an indication of LES tightening treatment success, and whether or not a second phase of treatment, to all or only a portion of the esophagus, now or at some later time, should be conducted. The second diagnostic phase is accomplished through one or more of the following methods: (i) visualization, (ii) measuring impedance, (iii) ultrasonography, (iv) temperature measurement, or (v) measurement of LES tension and contractile force via manometry.
- In one embodiment of the invention,
sensor 80 is coupled to an open or closed loopfeedback control system 84. Referring now to FIG. 21, an open or closedloop feedback system 84couples sensor 80, now described assensor 346, to anenergy source 392. In this embodiment, anenergy delivery device 314 is one ormore RF electrodes 314; however, in various other embodiments,energy delivery device 314 may include others described herein. Similarly, in this embodiment,sensor 346 senses temperature, but in various other embodiments,sensor 346 may sense other physical properties described herein. - The temperature of the tissue, or of
RF electrode 314, is monitored, and the output power ofenergy source 392 adjusted accordingly. The physician can, if desired, override the closed oropen loop system 84. Amicroprocessor 394 can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power. Theclosed loop system 84 utilizesmicroprocessor 394 to serve as a controller, monitor the temperature, adjust the RF power, analyze the result, refeed the result, and then modulate the power. - With the use of
sensor 346 andfeedback control system 84, tissue adjacent toRF electrode 314 can be maintained at a desired temperature for a selected period of time without causing a shut down of the power circuit to electrode 314 due to the development of excessive electrical impedance atelectrode 314 or adjacent tissue. EachRF electrode 314 is connected to resources which generate an independent output. The output maintains a selected energy atRF electrode 314 for a selected length of time. - Current delivered through
RF electrode 314 is measured bycurrent sensor 396. Voltage is measured byvoltage sensor 398. Impedance and power are then calculated at power andimpedance calculation device 400. These values can then be displayed at user interface anddisplay 402. Signals representative of power and impedance values are received by acontroller 404. - A control signal is generated by
controller 404 that is proportional to the difference between an actual measured value, and a desired value. The control signal is used bypower circuits 406 to adjust the power output an appropriate amount in order to maintain the desired power delivered atrespective RF electrodes 314. - In a similar manner, temperatures detected at
sensor 346 provide feedback for maintaining a selected power. Temperature atsensor 346 is used as a safety means to interrupt the delivery of power when maximum pre-set temperatures are exceeded. The actual temperatures are measured attemperature measurement device 408, and the temperatures are displayed at user interface anddisplay 402. A control signal is generated bycontroller 404 that is proportional to the difference between an actual measured temperature and a desired temperature. The control signal is used bypower circuits 406 to adjust the power output an appropriate amount in order to maintain the desired temperature delivered at thesensor 346. A multiplexer can be included to measure current, voltage and temperature, at thesensor 346, and energy can be delivered toRF electrode 314 in monopolar or bipolar fashion. -
Controller 404 can be a digital or analog controller, or a computer with software. Whencontroller 404 is a computer it can include a CPU coupled through a system bus. This system can include a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory. - User interface and
display 402 includes operator controls and a display.Controller 404 can be coupled to imaging systems including, but not limited to, ultrasound, CT scanners, X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized. - The output of
current sensor 396 andvoltage sensor 398 are used bycontroller 404 to maintain a selected power level atRF electrode 314. The amount of RF energy delivered controls the amount of power. A profile of the power delivered toelectrode 314 can be incorporated incontroller 404 and a preset amount of energy to be delivered may also be profiled. - Circuitry, software and feedback to
controller 404 result in process control, the maintenance of the selected power setting which is independent of changes in voltage or current, and is used to change the following process variables: (i) the selected power setting, (ii) the duty cycle (e.g., on-off time), (iii) bipolar or monopolar energy delivery; and, (iv) fluid delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored atsensor 346. - Referring now to FIG. 22,
current sensor 396 andvoltage sensor 398 are connected to the input of ananalog amplifier 410.Analog amplifier 410 can be a conventional differential amplifier circuit for use withsensor 346. The output ofanalog amplifier 410 is sequentially connected by ananalog multiplexer 412 to the input of A/D converter 414. The output ofanalog amplifier 410 is a voltage which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A/D converter 414 tomicroprocessor 394.Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature. -
Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received bymicroprocessor 394 corresponds to different temperatures and impedances. - Calculated power and impedance values can be indicated on user interface and
display 402. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared bymicroprocessor 394 to power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface anddisplay 402, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal frommicroprocessor 394 can modify the power level supplied byenergy source 392. - FIG. 23 illustrates a block diagram of a temperature and impedance feedback system that can be used to control the delivery of energy to
tissue site 416 byenergy source 392 and the delivery of a cooling medium toelectrode 314 and/ortissue site 416 byflow regulator 418. Energy is delivered toRF electrode 314 byenergy source 392, and applied totissue site 416. Amonitor 420 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. However if the measured impedance exceeds the set value, a disablingsignal 422 is transmitted toenergy source 392, ceasing further delivery of energy toRF electrode 314. - The control of the delivery of cooling medium to
electrode 314 and/ortissue site 416 is done in the following manner. During the application of energy,temperature measurement device 408 measures the temperature oftissue site 416 and/orRF electrode 314. Acomparator 424 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. If the measured temperature has not exceeded the desired temperature,comparator 424 sends a signal to flowregulator 418 to maintain the cooling solution flow rate at its existing level. However if the tissue temperature is too high,comparator 424 sends a signal to a flow regulator 418 (connected to an electronically controlled micropump, not shown) representing a need for an increased cooling solution flow rate. - The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Claims (11)
1. A sphincter treatment apparatus comprising:
an introducer having an introducer lumen,
an expandable device coupled to the introducer, the expandable device including a first arm with a proximal section and a distal section and a second arm with a proximal section and a distal section, the first and second arm distal sections being coupled, at least one of the first and second arms including an arm lumen coupled in fluid communication with the introducer lumen for delivery of a fluid, the expandable device being configured to at least partially dilate a sphincter in a deployed state, and
an energy delivery device coupled to the expandable device.
2. An apparatus as in claim 1
wherein at least a portion of the energy delivery device is advanceable into the sphincter.
3. An apparatus as in claim 1
wherein the at least one of the first and second arms includes an aperture coupled to the introducer lumen and adapted to provide a path for delivery of the fluid from the introducer.
4. An apparatus as in claim 3
wherein the fluid is cooling fluid.
5. A method of treating a sphincter comprising:
providing an introducer, the introducer carrying an expandable device,
providing an energy delivery device coupled to the expandable device,
deploying the introducer to a targeted tissue site at or near a sphincter,
expanding the expandable device to at least partially dilate the sphincter,
delivering energy from the energy delivery device to the targeted tissue site, and
delivering a cooling fluid from the introducer.
6. A method as in claim 5
wherein the expandable device includes a first arm with a proximal section and a distal section and a second arm with a proximal section and a distal section, the first and second arm distal sections being coupled.
7. A method as in claim 6
wherein at least one of the first and second arms includes a lumen.
8. A method as in claim 5
wherein the introducer includes a lumen.
9. A method as in claim 5
wherein the cooling fluid is delivered at a sensed flow rate, further comprising,
measuring the temperature of at least one of the tissue site and the energy delivery device, and
comparing the measured temperature to a pre-set desired temperature.
10. A method as in claim 9 , further comprising
maintaining the flow rate if the measured temperature does not exceed the desired temperature.
11. A method as in claim 9 , further comprising
increasing the flow rate if the measured temperature exceeds the desired temperature.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/838,292 US20040204708A1 (en) | 1998-03-06 | 2004-05-04 | Apparatus to treat esophageal sphincters |
US11/638,952 US20070093809A1 (en) | 1998-03-06 | 2006-12-14 | Apparatus to treat esophageal sphincters |
US12/927,354 US20110098702A1 (en) | 1998-03-06 | 2010-11-12 | Apparatus to treat esophageal sphincters |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3609298A | 1998-03-06 | 1998-03-06 | |
US09/971,085 US6749607B2 (en) | 1998-03-06 | 2001-10-04 | Apparatus to treat esophageal sphincters |
US10/838,292 US20040204708A1 (en) | 1998-03-06 | 2004-05-04 | Apparatus to treat esophageal sphincters |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/971,085 Division US6749607B2 (en) | 1998-03-06 | 2001-10-04 | Apparatus to treat esophageal sphincters |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/638,952 Division US20070093809A1 (en) | 1998-03-06 | 2006-12-14 | Apparatus to treat esophageal sphincters |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040204708A1 true US20040204708A1 (en) | 2004-10-14 |
Family
ID=21886570
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/971,085 Expired - Lifetime US6749607B2 (en) | 1998-03-06 | 2001-10-04 | Apparatus to treat esophageal sphincters |
US10/838,292 Abandoned US20040204708A1 (en) | 1998-03-06 | 2004-05-04 | Apparatus to treat esophageal sphincters |
US11/638,952 Abandoned US20070093809A1 (en) | 1998-03-06 | 2006-12-14 | Apparatus to treat esophageal sphincters |
US12/927,354 Abandoned US20110098702A1 (en) | 1998-03-06 | 2010-11-12 | Apparatus to treat esophageal sphincters |
US13/350,411 Abandoned US20120109178A1 (en) | 1998-03-06 | 2012-01-13 | Apparatus to treat esophageal sphincters |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/971,085 Expired - Lifetime US6749607B2 (en) | 1998-03-06 | 2001-10-04 | Apparatus to treat esophageal sphincters |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/638,952 Abandoned US20070093809A1 (en) | 1998-03-06 | 2006-12-14 | Apparatus to treat esophageal sphincters |
US12/927,354 Abandoned US20110098702A1 (en) | 1998-03-06 | 2010-11-12 | Apparatus to treat esophageal sphincters |
US13/350,411 Abandoned US20120109178A1 (en) | 1998-03-06 | 2012-01-13 | Apparatus to treat esophageal sphincters |
Country Status (6)
Country | Link |
---|---|
US (5) | US6749607B2 (en) |
EP (1) | EP1059887A1 (en) |
JP (1) | JP2002505138A (en) |
AU (1) | AU753618B2 (en) |
CA (1) | CA2320109A1 (en) |
WO (1) | WO1999044522A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7737109B2 (en) | 2000-08-11 | 2010-06-15 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US7959627B2 (en) | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US7993336B2 (en) | 1999-11-16 | 2011-08-09 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8012149B2 (en) | 1999-11-16 | 2011-09-06 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8088132B2 (en) | 2004-12-21 | 2012-01-03 | Davol, Inc. (a C.R. Bard Company) | Anastomotic outlet revision |
US8192426B2 (en) | 2004-01-09 | 2012-06-05 | Tyco Healthcare Group Lp | Devices and methods for treatment of luminal tissue |
US8251992B2 (en) | 2007-07-06 | 2012-08-28 | Tyco Healthcare Group Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation |
US8273012B2 (en) | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US8388632B2 (en) | 2000-05-19 | 2013-03-05 | C.R. Bard, Inc. | Tissue capturing and suturing device and method |
US8398631B2 (en) | 1999-11-16 | 2013-03-19 | Covidien Lp | System and method of treating abnormal tissue in the human esophagus |
US8439908B2 (en) | 2007-07-06 | 2013-05-14 | Covidien Lp | Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding |
US8641711B2 (en) | 2007-05-04 | 2014-02-04 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8646460B2 (en) | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US8702694B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US8784338B2 (en) | 2007-06-22 | 2014-07-22 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US10278774B2 (en) | 2011-03-18 | 2019-05-07 | Covidien Lp | Selectively expandable operative element support structure and methods of use |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9023031B2 (en) | 1997-08-13 | 2015-05-05 | Verathon Inc. | Noninvasive devices, methods, and systems for modifying tissues |
DE69923291T2 (en) * | 1998-02-19 | 2005-06-09 | Curon Medical Inc., Sunnyvale | ELECTRO-SURGERY DEVICE FOR THE TREATMENT OF CLOSURE MUSCLES |
WO1999055245A1 (en) | 1998-04-30 | 1999-11-04 | Edwards Stuart D | Electrosurgical sphincter treatment apparatus |
US6740082B2 (en) * | 1998-12-29 | 2004-05-25 | John H. Shadduck | Surgical instruments for treating gastro-esophageal reflux |
US7399304B2 (en) * | 2000-03-03 | 2008-07-15 | C.R. Bard, Inc. | Endoscopic tissue apposition device with multiple suction ports |
EP1157668A1 (en) * | 2000-05-20 | 2001-11-28 | Curative AG Innovations to cure | Electrosurgical device for resticting a sphincter muscle |
US20020022864A1 (en) * | 2000-06-07 | 2002-02-21 | Mahvi David M. | Multipolar electrode system for radiofrequency ablation |
US6470219B1 (en) * | 2000-10-02 | 2002-10-22 | Novasys Medical, Inc. | Apparatus and method for treating female urinary incontinence |
US7306591B2 (en) | 2000-10-02 | 2007-12-11 | Novasys Medical, Inc. | Apparatus and methods for treating female urinary incontinence |
US7077841B2 (en) | 2001-03-26 | 2006-07-18 | Curon Medical, Inc. | Systems and methods employing a guidewire for positioning and stabilizing external instruments deployed within the body |
US7160270B2 (en) | 2001-03-26 | 2007-01-09 | Curon Medical, Inc. | Systems and methods employing a bite block insert for positioning and stabilizing external instruments deployed within the body |
US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
CA2938411C (en) | 2003-09-12 | 2019-03-05 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US8100822B2 (en) | 2004-03-16 | 2012-01-24 | Macroplata Systems, Llc | Anoscope for treating hemorrhoids without the trauma of cutting or the use of an endoscope |
US8172857B2 (en) | 2004-08-27 | 2012-05-08 | Davol, Inc. | Endoscopic tissue apposition device and method of use |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
WO2006052940A2 (en) | 2004-11-05 | 2006-05-18 | Asthmatx, Inc. | Medical device with procedure improvement features |
EP1814624B1 (en) * | 2004-11-12 | 2015-06-03 | Asthmatx, Inc. | Improved energy delivery devices and methods |
US20070093802A1 (en) * | 2005-10-21 | 2007-04-26 | Danek Christopher J | Energy delivery devices and methods |
US20060184076A1 (en) * | 2004-12-01 | 2006-08-17 | Gill Robert P | Ultrasonic device and method for treating stones within the body |
WO2006060658A2 (en) * | 2004-12-01 | 2006-06-08 | Ethicon Endo-Surgery, Inc. | Apparatus and method for stone capture and removal |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
CN101511292B (en) | 2005-03-28 | 2011-04-06 | 明诺医学有限公司 | Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues |
US20070142699A1 (en) * | 2005-12-16 | 2007-06-21 | Acoustx Corporation | Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease |
US20070142884A1 (en) * | 2005-12-16 | 2007-06-21 | Acoustx Corporation | Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US9020597B2 (en) | 2008-11-12 | 2015-04-28 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9345879B2 (en) | 2006-10-09 | 2016-05-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US11577077B2 (en) | 2006-10-09 | 2023-02-14 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US9724510B2 (en) | 2006-10-09 | 2017-08-08 | Endostim, Inc. | System and methods for electrical stimulation of biological systems |
US20150224310A1 (en) | 2006-10-09 | 2015-08-13 | Endostim, Inc. | Device and Implantation System for Electrical Stimulation of Biological Systems |
US8543210B2 (en) | 2008-01-25 | 2013-09-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8142426B2 (en) * | 2006-10-16 | 2012-03-27 | Syneron Medical Ltd. | Methods and devices for treating tissue |
US8007493B2 (en) | 2006-10-16 | 2011-08-30 | Syneron Medical Ltd. | Methods and devices for treating tissue |
US8273080B2 (en) | 2006-10-16 | 2012-09-25 | Syneron Medical Ltd. | Methods and devices for treating tissue |
US20080281389A1 (en) * | 2006-10-16 | 2008-11-13 | Primaeva Medical Inc. | Methods and devices for treating tissue |
US8133216B2 (en) * | 2006-10-16 | 2012-03-13 | Syneron Medical Ltd. | Methods and devices for treating tissue |
AU2007310986B2 (en) | 2006-10-18 | 2013-07-04 | Boston Scientific Scimed, Inc. | Inducing desirable temperature effects on body tissue |
EP2455034B1 (en) | 2006-10-18 | 2017-07-19 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
US7931647B2 (en) | 2006-10-20 | 2011-04-26 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers |
US20080200969A1 (en) * | 2007-02-16 | 2008-08-21 | Thermage, Inc. | Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
JP5118389B2 (en) * | 2007-05-26 | 2013-01-16 | 中村製作所株式会社 | Method for forming recess in workpiece |
US8845630B2 (en) * | 2007-06-15 | 2014-09-30 | Syneron Medical Ltd | Devices and methods for percutaneous energy delivery |
US8235983B2 (en) | 2007-07-12 | 2012-08-07 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
US20090112205A1 (en) * | 2007-10-31 | 2009-04-30 | Primaeva Medical, Inc. | Cartridge electrode device |
US20090156958A1 (en) * | 2007-12-12 | 2009-06-18 | Mehta Bankim H | Devices and methods for percutaneous energy delivery |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
AU2009244058B2 (en) | 2008-05-09 | 2015-07-02 | Nuvaira, Inc | Systems, assemblies, and methods for treating a bronchial tree |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
WO2010042686A1 (en) | 2008-10-09 | 2010-04-15 | Sharma Virender K | Method and apparatus for stimulating the vascular system |
CN102271603A (en) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | Selective accumulation of energy with or without knowledge of tissue topography |
EP2355717B1 (en) * | 2008-12-01 | 2014-02-19 | Percutaneous Systems, Inc. | Systems for capturing and removing urinary stones from body cavities |
US20100217254A1 (en) * | 2009-02-25 | 2010-08-26 | Primaeva Medical, Inc. | Methods for applying energy to tissue using isolated energy sources |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
WO2011056684A2 (en) | 2009-10-27 | 2011-05-12 | Innovative Pulmonary Solutions, Inc. | Delivery devices with coolable energy emitting assemblies |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US9149328B2 (en) | 2009-11-11 | 2015-10-06 | Holaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US10966701B2 (en) | 2009-12-16 | 2021-04-06 | Boston Scientific Scimed, Inc. | Tissue retractor for minimally invasive surgery |
US10595711B2 (en) * | 2009-12-16 | 2020-03-24 | Boston Scientific Scimed, Inc. | System for a minimally-invasive, operative gastrointestinal treatment |
USRE48850E1 (en) | 2009-12-16 | 2021-12-14 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US9186131B2 (en) | 2009-12-16 | 2015-11-17 | Macroplata, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US11344285B2 (en) * | 2009-12-16 | 2022-05-31 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
EP3656437B1 (en) | 2009-12-16 | 2023-03-15 | Boston Scientific Scimed Inc. | Endoscopic system |
US10531869B2 (en) | 2009-12-16 | 2020-01-14 | Boston Scientific Scimed, Inc. | Tissue retractor for minimally invasive surgery |
US9565998B2 (en) | 2009-12-16 | 2017-02-14 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US8932211B2 (en) | 2012-06-22 | 2015-01-13 | Macroplata, Inc. | Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US10758116B2 (en) | 2009-12-16 | 2020-09-01 | Boston Scientific Scimed, Inc. | System for a minimally-invasive, operative gastrointestinal treatment |
US11717681B2 (en) | 2010-03-05 | 2023-08-08 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
WO2011109739A1 (en) | 2010-03-05 | 2011-09-09 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
KR20130108067A (en) | 2010-04-09 | 2013-10-02 | 베식스 바스큘라 인코포레이티드 | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
EP3308830A1 (en) | 2011-04-14 | 2018-04-18 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
WO2013013156A2 (en) | 2011-07-20 | 2013-01-24 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
JP6106669B2 (en) | 2011-07-22 | 2017-04-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | A neuromodulation system having a neuromodulation element that can be placed in a helical guide |
US9037245B2 (en) | 2011-09-02 | 2015-05-19 | Endostim, Inc. | Endoscopic lead implantation method |
US9925367B2 (en) | 2011-09-02 | 2018-03-27 | Endostim, Inc. | Laparoscopic lead implantation method |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
WO2013058962A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
CN108095821B (en) | 2011-11-08 | 2021-05-25 | 波士顿科学西美德公司 | Orifice renal nerve ablation |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
CA2859989C (en) | 2011-12-23 | 2020-03-24 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
CN104135958B (en) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9782583B2 (en) | 2012-02-21 | 2017-10-10 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat urinary dysfunction |
US8706234B2 (en) | 2012-02-21 | 2014-04-22 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat anal dysfunction |
US10576278B2 (en) | 2012-02-21 | 2020-03-03 | Virender K. Sharma | System and method for electrical stimulation of anorectal structures to treat urinary dysfunction |
US8403927B1 (en) | 2012-04-05 | 2013-03-26 | William Bruce Shingleton | Vasectomy devices and methods |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
CN104470414B (en) * | 2012-06-22 | 2018-07-03 | 波士顿科学希梅德公司 | For the multi-cavity catheter formula retractor systems of minimally invasive gastrointestinal surgery treatment |
EP2888000A4 (en) | 2012-08-23 | 2016-07-06 | Endostim Inc | Device and implantation system for electrical stimulation of biological systems |
WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
CN104780859B (en) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | Self-positioning electrode system and method for renal regulation |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
JP6074051B2 (en) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Intravascular neuromodulation system and medical device |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US9498619B2 (en) | 2013-02-26 | 2016-11-22 | Endostim, Inc. | Implantable electrical stimulation leads |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
EP2967734B1 (en) | 2013-03-15 | 2019-05-15 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9814618B2 (en) | 2013-06-06 | 2017-11-14 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
CN109938787A (en) * | 2013-06-09 | 2019-06-28 | 波士顿科学希梅德公司 | Multicarity catheter type retractor systems for Minimally Invasive Surgery gastro-intestinal therapeutic |
CN105473091B (en) | 2013-06-21 | 2020-01-21 | 波士顿科学国际有限公司 | Renal denervation balloon catheter with co-movable electrode supports |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
WO2015006573A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
EP3024405A1 (en) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
JP2016527959A (en) | 2013-07-22 | 2016-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Renal nerve ablation medical device |
WO2015027096A1 (en) | 2013-08-22 | 2015-02-26 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
CN105848708A (en) | 2013-09-03 | 2016-08-10 | 恩多斯蒂姆股份有限公司 | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
AU2014334574B2 (en) | 2013-10-15 | 2017-07-06 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
CN105636538B (en) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | Foley's tube with flexible wire and its correlation technique for using and manufacturing |
JP2016534842A (en) | 2013-10-25 | 2016-11-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Embedded thermocouples in denervation flex circuits |
JP6382989B2 (en) | 2014-01-06 | 2018-08-29 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device with tear resistant flexible circuit assembly |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US9579149B2 (en) | 2014-03-13 | 2017-02-28 | Medtronic Ardian Luxembourg S.A.R.L. | Low profile catheter assemblies and associated systems and methods |
WO2016081468A2 (en) | 2014-11-17 | 2016-05-26 | Endostim, Inc. | Implantable electro-medical device programmable for improved operational life |
US20160346520A1 (en) * | 2015-05-28 | 2016-12-01 | Dan B. French | Medical Instrument for Injecting an Agent |
KR101724321B1 (en) | 2015-06-05 | 2017-04-07 | 김명회 | Customer identification system, customer information managing apparatus, customer indentification method, and recording media using the identification information and the access time of mobile device |
BR112018002939A2 (en) | 2015-08-12 | 2019-03-19 | Innoventions Ltd | system for treating a weak or leaking sphincter and system for inducing muscle tissue formation in an organ of the body |
US10583270B2 (en) | 2016-03-14 | 2020-03-10 | Covidien Lp | Compound curve navigation catheter |
US11819683B2 (en) | 2016-11-17 | 2023-11-21 | Endostim, Inc. | Modular stimulation system for the treatment of gastrointestinal disorders |
CN110087526B (en) | 2016-12-30 | 2022-01-14 | 波士顿科学国际有限公司 | System for minimally invasive treatment inside body cavity |
CN116327271A (en) | 2017-03-18 | 2023-06-27 | 波士顿科学国际有限公司 | System for minimally invasive treatment within a body cavity |
US11896823B2 (en) | 2017-04-04 | 2024-02-13 | Btl Healthcare Technologies A.S. | Method and device for pelvic floor tissue treatment |
US12053626B2 (en) | 2017-04-06 | 2024-08-06 | Endostim, Inc. | Surface electrodes |
KR101994935B1 (en) * | 2017-06-07 | 2019-07-01 | (의)삼성의료재단 | PH measuring apparatus and PH monitoring system comprising the same |
WO2019113051A1 (en) * | 2017-12-05 | 2019-06-13 | Boston Scientific Scimed, Inc. | Tissue retraction system for performing minimally invasive procedures |
DE102018221355B4 (en) * | 2018-12-10 | 2022-08-18 | Heraeus Deutschland GmbH & Co. KG | Contacting method and system |
US11832789B2 (en) * | 2019-12-13 | 2023-12-05 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for minimally invasive surgery in a body lumen |
Citations (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1798902A (en) * | 1928-11-05 | 1931-03-31 | Edwin M Raney | Surgical instrument |
US3517128A (en) * | 1968-02-08 | 1970-06-23 | James R Hines | Surgical expanding arm dilator |
US3901241A (en) * | 1973-05-31 | 1975-08-26 | Al Corp Du | Disposable cryosurgical instrument |
US4011872A (en) * | 1974-04-01 | 1977-03-15 | Olympus Optical Co., Ltd. | Electrical apparatus for treating affected part in a coeloma |
US4196724A (en) * | 1978-01-31 | 1980-04-08 | Frecker William H | Tongue locking device |
US4411266A (en) * | 1980-09-24 | 1983-10-25 | Cosman Eric R | Thermocouple radio frequency lesion electrode |
US4423812A (en) * | 1980-09-18 | 1984-01-03 | Olympus Optical Company Limited | Cassette receptacle device |
US4532924A (en) * | 1980-05-13 | 1985-08-06 | American Hospital Supply Corporation | Multipolar electrosurgical device and method |
US4565200A (en) * | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US4901737A (en) * | 1987-04-13 | 1990-02-20 | Toone Kent J | Method and therapeutic apparatus for reducing snoring |
US4906203A (en) * | 1988-10-24 | 1990-03-06 | General Motors Corporation | Electrical connector with shorting clip |
US4907589A (en) * | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US4943290A (en) * | 1987-06-23 | 1990-07-24 | Concept Inc. | Electrolyte purging electrode tip |
US4947842A (en) * | 1988-09-22 | 1990-08-14 | Medical Engineering And Development Institute, Inc. | Method and apparatus for treating tissue with first and second modalities |
US4966597A (en) * | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US5046512A (en) * | 1989-03-10 | 1991-09-10 | Murchie John A | Method and apparatus for treatment of snoring |
US5078717A (en) * | 1989-04-13 | 1992-01-07 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5083565A (en) * | 1990-08-03 | 1992-01-28 | Everest Medical Corporation | Electrosurgical instrument for ablating endocardial tissue |
US5088979A (en) * | 1990-10-11 | 1992-02-18 | Wilson-Cook Medical Inc. | Method for esophageal invagination and devices useful therein |
US5094233A (en) * | 1991-01-11 | 1992-03-10 | Brennan Louis G | Turbinate sheath device |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5122137A (en) * | 1990-04-27 | 1992-06-16 | Boston Scientific Corporation | Temperature controlled rf coagulation |
US5125982A (en) * | 1990-08-15 | 1992-06-30 | Senju Pharmaceutical Co., Ltd. | Method of cleaning hard contact lenses |
US5190963A (en) * | 1991-02-05 | 1993-03-02 | Basf Aktiengesellschaft | Cyclopropane(thio)carboxamides, the preparation thereof and intermediates therefor, and the use thereof for controlling pests |
US5197964A (en) * | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5205287A (en) * | 1990-04-26 | 1993-04-27 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5215103A (en) * | 1986-11-14 | 1993-06-01 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US5275608A (en) * | 1991-10-16 | 1994-01-04 | Implemed, Inc. | Generic endoscopic instrument |
US5275162A (en) * | 1991-11-08 | 1994-01-04 | Ep Technologies, Inc. | Valve mapping catheter |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5281216A (en) * | 1992-03-31 | 1994-01-25 | Valleylab, Inc. | Electrosurgical bipolar treating apparatus |
US5281217A (en) * | 1992-04-13 | 1994-01-25 | Ep Technologies, Inc. | Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
US5281218A (en) * | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5293869A (en) * | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
US5309910A (en) * | 1992-09-25 | 1994-05-10 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5314466A (en) * | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5313943A (en) * | 1992-09-25 | 1994-05-24 | Ep Technologies, Inc. | Catheters and methods for performing cardiac diagnosis and treatment |
US5316020A (en) * | 1990-10-03 | 1994-05-31 | Ernest Truffer | Snoring prevention device |
US5328467A (en) * | 1991-11-08 | 1994-07-12 | Ep Technologies, Inc. | Catheter having a torque transmitting sleeve |
US5334196A (en) * | 1992-10-05 | 1994-08-02 | United States Surgical Corporation | Endoscopic fastener remover |
US5345936A (en) * | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
US5348554A (en) * | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5383917A (en) * | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5383876A (en) * | 1992-11-13 | 1995-01-24 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe for cutting and cauterizing tissue |
US5385544A (en) * | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5397339A (en) * | 1986-11-14 | 1995-03-14 | Desai; Jawahar M. | Catheter for mapping and ablation and method therefor |
US5398683A (en) * | 1991-05-24 | 1995-03-21 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
US5401272A (en) * | 1992-09-25 | 1995-03-28 | Envision Surgical Systems, Inc. | Multimodality probe with extendable bipolar electrodes |
US5403311A (en) * | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5411025A (en) * | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5421819A (en) * | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5423812A (en) * | 1994-01-31 | 1995-06-13 | Ellman; Alan G. | Electrosurgical stripping electrode for palatopharynx tissue |
US5423808A (en) * | 1991-11-08 | 1995-06-13 | Ep Technologies, Inc. | Systems and methods for radiofrequency ablation with phase sensitive power detection |
US5433739A (en) * | 1993-11-02 | 1995-07-18 | Sluijter; Menno E. | Method and apparatus for heating an intervertebral disc for relief of back pain |
US5435805A (en) * | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5441499A (en) * | 1993-07-14 | 1995-08-15 | Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh | Bipolar radio-frequency surgical instrument |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5486161A (en) * | 1993-02-02 | 1996-01-23 | Zomed International | Medical probe device and method |
US5490984A (en) * | 1992-02-28 | 1996-02-13 | Jsf Consulants Ltd. | Use of injectable biomaterials for the repair and augmentation of the anal sphincters |
US5505730A (en) * | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
US5507743A (en) * | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5514131A (en) * | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5514130A (en) * | 1994-10-11 | 1996-05-07 | Dorsal Med International | RF apparatus for controlled depth ablation of soft tissue |
US5520684A (en) * | 1993-06-10 | 1996-05-28 | Imran; Mir A. | Transurethral radio frequency apparatus for ablation of the prostate gland and method |
US5531676A (en) * | 1992-08-12 | 1996-07-02 | Vidamed, Inc. | Medical probe device and method |
US5536267A (en) * | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5542915A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US5542916A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5545434A (en) * | 1994-04-01 | 1996-08-13 | Huarng; Hermes | Method of making irregularly porous cloth |
US5545161A (en) * | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
US5545193A (en) * | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5545171A (en) * | 1994-09-22 | 1996-08-13 | Vidamed, Inc. | Anastomosis catheter |
US5549644A (en) * | 1992-08-12 | 1996-08-27 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5549108A (en) * | 1992-09-25 | 1996-08-27 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5556377A (en) * | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US5558673A (en) * | 1994-09-30 | 1996-09-24 | Vidamed, Inc. | Medical probe device and method having a flexible resilient tape stylet |
US5599345A (en) * | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US5609151A (en) * | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US5624439A (en) * | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US6056744A (en) * | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6063082A (en) * | 1997-11-04 | 2000-05-16 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device |
US6073052A (en) * | 1996-11-15 | 2000-06-06 | Zelickson; Brian D. | Device and method for treatment of gastroesophageal reflux disease |
US6440128B1 (en) * | 1998-01-14 | 2002-08-27 | Curon Medical, Inc. | Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6589238B2 (en) * | 1998-01-14 | 2003-07-08 | Curon Medical, Inc. | Sphincter treatment device |
US6613047B2 (en) * | 1994-06-24 | 2003-09-02 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US6748255B2 (en) * | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4601296A (en) | 1983-10-07 | 1986-07-22 | Yeda Research And Development Co., Ltd. | Hyperthermia apparatus |
US4705041A (en) * | 1984-07-06 | 1987-11-10 | Kim Il G | Dilator for Sphincter of Oddi |
US5365926A (en) | 1986-11-14 | 1994-11-22 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
DE3838840C2 (en) | 1988-11-17 | 1997-02-20 | Leibinger Gmbh | High frequency coagulation device for surgical purposes |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5125928A (en) | 1989-04-13 | 1992-06-30 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5057107A (en) | 1989-04-13 | 1991-10-15 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
WO1991001773A1 (en) * | 1989-08-01 | 1991-02-21 | Enrico Mangieri | Percutaneous mechanical dilating catheter for cardiac valves and blood vessels |
US5035696A (en) | 1990-02-02 | 1991-07-30 | Everest Medical Corporation | Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy |
US5256138A (en) | 1990-10-04 | 1993-10-26 | The Birtcher Corporation | Electrosurgical handpiece incorporating blade and conductive gas functionality |
US5190541A (en) | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
ATE117830T1 (en) * | 1990-11-09 | 1995-02-15 | Siemens Ag | ELECTROMAGNETIC RELAY WITH SEALED HOUSING. |
US5368557A (en) | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5156151A (en) * | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5370901A (en) | 1991-02-15 | 1994-12-06 | Bracco International B.V. | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5465717A (en) * | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5363861A (en) | 1991-11-08 | 1994-11-15 | Ep Technologies, Inc. | Electrode tip assembly with variable resistance to bending |
AU3067292A (en) | 1991-11-08 | 1993-06-07 | Ep Technologies Inc | Ablation electrode with insulated temperature sensing elements |
US5257451A (en) | 1991-11-08 | 1993-11-02 | Ep Technologies, Inc. | Method of making durable sleeve for enclosing a bendable electrode tip assembly |
US5197963A (en) | 1991-12-02 | 1993-03-30 | Everest Medical Corporation | Electrosurgical instrument with extendable sheath for irrigation and aspiration |
US5263493A (en) * | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
WO1993020768A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation |
WO1993020886A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated systems for cardiac ablation |
US5313020A (en) * | 1992-05-29 | 1994-05-17 | Western Atlas International, Inc. | Electrical cable |
US5324284A (en) * | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5254126A (en) | 1992-06-24 | 1993-10-19 | Ethicon, Inc. | Endoscopic suture punch |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5456662A (en) | 1993-02-02 | 1995-10-10 | Edwards; Stuart D. | Method for reducing snoring by RF ablation of the uvula |
US5471982A (en) | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
DE4303882C2 (en) | 1993-02-10 | 1995-02-09 | Kernforschungsz Karlsruhe | Combination instrument for separation and coagulation for minimally invasive surgery |
US5365945A (en) | 1993-04-13 | 1994-11-22 | Halstrom Leonard W | Adjustable dental applicance for treatment of snoring and obstructive sleep apnea |
US5582609A (en) * | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
WO1995010322A1 (en) * | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Creating complex lesion patterns in body tissue |
US5458597A (en) | 1993-11-08 | 1995-10-17 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5472441A (en) | 1993-11-08 | 1995-12-05 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US5683384A (en) * | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5448990A (en) | 1994-02-15 | 1995-09-12 | Very Inventive Physicians, Inc. | Endoscope viewing cannula and surgical techniques |
US5458596A (en) | 1994-05-06 | 1995-10-17 | Dorsal Orthopedic Corporation | Method and apparatus for controlled contraction of soft tissue |
US5681308A (en) | 1994-06-24 | 1997-10-28 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
US6006755A (en) * | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US5454782A (en) | 1994-08-11 | 1995-10-03 | Perkins; Rodney C. | Translumenal circumferential energy delivery device |
US5571116A (en) | 1994-10-02 | 1996-11-05 | United States Surgical Corporation | Non-invasive treatment of gastroesophageal reflux disease |
US5702438A (en) * | 1995-06-08 | 1997-12-30 | Avitall; Boaz | Expandable recording and ablation catheter system |
US6464697B1 (en) * | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
-
1999
- 1999-03-05 EP EP99911160A patent/EP1059887A1/en not_active Withdrawn
- 1999-03-05 WO PCT/US1999/004930 patent/WO1999044522A1/en not_active Application Discontinuation
- 1999-03-05 JP JP2000534131A patent/JP2002505138A/en not_active Withdrawn
- 1999-03-05 AU AU29868/99A patent/AU753618B2/en not_active Ceased
- 1999-03-05 CA CA002320109A patent/CA2320109A1/en not_active Abandoned
-
2001
- 2001-10-04 US US09/971,085 patent/US6749607B2/en not_active Expired - Lifetime
-
2004
- 2004-05-04 US US10/838,292 patent/US20040204708A1/en not_active Abandoned
-
2006
- 2006-12-14 US US11/638,952 patent/US20070093809A1/en not_active Abandoned
-
2010
- 2010-11-12 US US12/927,354 patent/US20110098702A1/en not_active Abandoned
-
2012
- 2012-01-13 US US13/350,411 patent/US20120109178A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1798902A (en) * | 1928-11-05 | 1931-03-31 | Edwin M Raney | Surgical instrument |
US3517128A (en) * | 1968-02-08 | 1970-06-23 | James R Hines | Surgical expanding arm dilator |
US3901241A (en) * | 1973-05-31 | 1975-08-26 | Al Corp Du | Disposable cryosurgical instrument |
US4011872A (en) * | 1974-04-01 | 1977-03-15 | Olympus Optical Co., Ltd. | Electrical apparatus for treating affected part in a coeloma |
US4196724A (en) * | 1978-01-31 | 1980-04-08 | Frecker William H | Tongue locking device |
US4532924A (en) * | 1980-05-13 | 1985-08-06 | American Hospital Supply Corporation | Multipolar electrosurgical device and method |
US4423812A (en) * | 1980-09-18 | 1984-01-03 | Olympus Optical Company Limited | Cassette receptacle device |
US4411266A (en) * | 1980-09-24 | 1983-10-25 | Cosman Eric R | Thermocouple radio frequency lesion electrode |
US4565200A (en) * | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US5397339A (en) * | 1986-11-14 | 1995-03-14 | Desai; Jawahar M. | Catheter for mapping and ablation and method therefor |
US5215103A (en) * | 1986-11-14 | 1993-06-01 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4901737A (en) * | 1987-04-13 | 1990-02-20 | Toone Kent J | Method and therapeutic apparatus for reducing snoring |
US4943290A (en) * | 1987-06-23 | 1990-07-24 | Concept Inc. | Electrolyte purging electrode tip |
US4907589A (en) * | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
US4947842A (en) * | 1988-09-22 | 1990-08-14 | Medical Engineering And Development Institute, Inc. | Method and apparatus for treating tissue with first and second modalities |
US4906203A (en) * | 1988-10-24 | 1990-03-06 | General Motors Corporation | Electrical connector with shorting clip |
US4966597A (en) * | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US5046512A (en) * | 1989-03-10 | 1991-09-10 | Murchie John A | Method and apparatus for treatment of snoring |
US5078717A (en) * | 1989-04-13 | 1992-01-07 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5205287A (en) * | 1990-04-26 | 1993-04-27 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5122137A (en) * | 1990-04-27 | 1992-06-16 | Boston Scientific Corporation | Temperature controlled rf coagulation |
US5083565A (en) * | 1990-08-03 | 1992-01-28 | Everest Medical Corporation | Electrosurgical instrument for ablating endocardial tissue |
US5125982A (en) * | 1990-08-15 | 1992-06-30 | Senju Pharmaceutical Co., Ltd. | Method of cleaning hard contact lenses |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5316020A (en) * | 1990-10-03 | 1994-05-31 | Ernest Truffer | Snoring prevention device |
US5088979A (en) * | 1990-10-11 | 1992-02-18 | Wilson-Cook Medical Inc. | Method for esophageal invagination and devices useful therein |
US5094233A (en) * | 1991-01-11 | 1992-03-10 | Brennan Louis G | Turbinate sheath device |
US5190963A (en) * | 1991-02-05 | 1993-03-02 | Basf Aktiengesellschaft | Cyclopropane(thio)carboxamides, the preparation thereof and intermediates therefor, and the use thereof for controlling pests |
US5345936A (en) * | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
US5398683A (en) * | 1991-05-24 | 1995-03-21 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
US5383917A (en) * | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5275608A (en) * | 1991-10-16 | 1994-01-04 | Implemed, Inc. | Generic endoscopic instrument |
US5275162A (en) * | 1991-11-08 | 1994-01-04 | Ep Technologies, Inc. | Valve mapping catheter |
US5423808A (en) * | 1991-11-08 | 1995-06-13 | Ep Technologies, Inc. | Systems and methods for radiofrequency ablation with phase sensitive power detection |
US5328467A (en) * | 1991-11-08 | 1994-07-12 | Ep Technologies, Inc. | Catheter having a torque transmitting sleeve |
US5290286A (en) * | 1991-11-12 | 1994-03-01 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5197964A (en) * | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5490984A (en) * | 1992-02-28 | 1996-02-13 | Jsf Consulants Ltd. | Use of injectable biomaterials for the repair and augmentation of the anal sphincters |
US5281216A (en) * | 1992-03-31 | 1994-01-25 | Valleylab, Inc. | Electrosurgical bipolar treating apparatus |
US5314466A (en) * | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5281217A (en) * | 1992-04-13 | 1994-01-25 | Ep Technologies, Inc. | Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5281218A (en) * | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
US5411025A (en) * | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5540655A (en) * | 1992-08-12 | 1996-07-30 | Vidamed, Inc. | PBH ablation method and apparatus |
US5536240A (en) * | 1992-08-12 | 1996-07-16 | Vidamed, Inc. | Medical probe device and method |
US5556377A (en) * | 1992-08-12 | 1996-09-17 | Vidamed, Inc. | Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe |
US5554110A (en) * | 1992-08-12 | 1996-09-10 | Vidamed, Inc. | Medical ablation apparatus |
US5549644A (en) * | 1992-08-12 | 1996-08-27 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5542916A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5409453A (en) * | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5542915A (en) * | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US5421819A (en) * | 1992-08-12 | 1995-06-06 | Vidamed, Inc. | Medical probe device |
US5385544A (en) * | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US5531676A (en) * | 1992-08-12 | 1996-07-02 | Vidamed, Inc. | Medical probe device and method |
US5531677A (en) * | 1992-08-12 | 1996-07-02 | Vidamed, Inc. | Steerable medical probe with stylets |
US5514131A (en) * | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5435805A (en) * | 1992-08-12 | 1995-07-25 | Vidamed, Inc. | Medical probe device with optical viewing capability |
US5484400A (en) * | 1992-08-12 | 1996-01-16 | Vidamed, Inc. | Dual channel RF delivery system |
US5401272A (en) * | 1992-09-25 | 1995-03-28 | Envision Surgical Systems, Inc. | Multimodality probe with extendable bipolar electrodes |
US5549108A (en) * | 1992-09-25 | 1996-08-27 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5293869A (en) * | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
US5309910A (en) * | 1992-09-25 | 1994-05-10 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5313943A (en) * | 1992-09-25 | 1994-05-24 | Ep Technologies, Inc. | Catheters and methods for performing cardiac diagnosis and treatment |
US5509419A (en) * | 1992-09-25 | 1996-04-23 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5334196A (en) * | 1992-10-05 | 1994-08-02 | United States Surgical Corporation | Endoscopic fastener remover |
US5383876A (en) * | 1992-11-13 | 1995-01-24 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe for cutting and cauterizing tissue |
US5545161A (en) * | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
US5348554A (en) * | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5423811A (en) * | 1992-12-01 | 1995-06-13 | Cardiac Pathways Corporation | Method for RF ablation using cooled electrode |
US5486161A (en) * | 1993-02-02 | 1996-01-23 | Zomed International | Medical probe device and method |
US5403311A (en) * | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
US5520684A (en) * | 1993-06-10 | 1996-05-28 | Imran; Mir A. | Transurethral radio frequency apparatus for ablation of the prostate gland and method |
US5441499A (en) * | 1993-07-14 | 1995-08-15 | Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh | Bipolar radio-frequency surgical instrument |
US5545193A (en) * | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5433739A (en) * | 1993-11-02 | 1995-07-18 | Sluijter; Menno E. | Method and apparatus for heating an intervertebral disc for relief of back pain |
US5507743A (en) * | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5536267A (en) * | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5599345A (en) * | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
US5423812A (en) * | 1994-01-31 | 1995-06-13 | Ellman; Alan G. | Electrosurgical stripping electrode for palatopharynx tissue |
US5505728A (en) * | 1994-01-31 | 1996-04-09 | Ellman; Alan G. | Electrosurgical stripping electrode for palatopharynx tissue |
US5545434A (en) * | 1994-04-01 | 1996-08-13 | Huarng; Hermes | Method of making irregularly porous cloth |
US6056744A (en) * | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6044846A (en) * | 1994-06-24 | 2000-04-04 | Edwards; Stuart D. | Method to treat esophageal sphincters |
US5505730A (en) * | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
US6613047B2 (en) * | 1994-06-24 | 2003-09-02 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US5558672A (en) * | 1994-06-24 | 1996-09-24 | Vidacare, Inc. | Thin layer ablation apparatus |
US6254598B1 (en) * | 1994-06-24 | 2001-07-03 | Curon Medical, Inc. | Sphincter treatment apparatus |
US5609151A (en) * | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US5545171A (en) * | 1994-09-22 | 1996-08-13 | Vidamed, Inc. | Anastomosis catheter |
US5558673A (en) * | 1994-09-30 | 1996-09-24 | Vidamed, Inc. | Medical probe device and method having a flexible resilient tape stylet |
US5514130A (en) * | 1994-10-11 | 1996-05-07 | Dorsal Med International | RF apparatus for controlled depth ablation of soft tissue |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5624439A (en) * | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
US6073052A (en) * | 1996-11-15 | 2000-06-06 | Zelickson; Brian D. | Device and method for treatment of gastroesophageal reflux disease |
US6063082A (en) * | 1997-11-04 | 2000-05-16 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device |
US6440128B1 (en) * | 1998-01-14 | 2002-08-27 | Curon Medical, Inc. | Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
US6589238B2 (en) * | 1998-01-14 | 2003-07-08 | Curon Medical, Inc. | Sphincter treatment device |
US6748255B2 (en) * | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9597147B2 (en) | 1999-11-16 | 2017-03-21 | Covidien Lp | Methods and systems for treatment of tissue in a body lumen |
US8398631B2 (en) | 1999-11-16 | 2013-03-19 | Covidien Lp | System and method of treating abnormal tissue in the human esophagus |
US9555222B2 (en) | 1999-11-16 | 2017-01-31 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8012149B2 (en) | 1999-11-16 | 2011-09-06 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US9039699B2 (en) | 1999-11-16 | 2015-05-26 | Covidien Lp | Methods and systems for treatment of tissue in a body lumen |
US8876818B2 (en) | 1999-11-16 | 2014-11-04 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US7993336B2 (en) | 1999-11-16 | 2011-08-09 | Barrx Medical, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8377055B2 (en) | 1999-11-16 | 2013-02-19 | Covidien Lp | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
US8551120B2 (en) | 2000-05-19 | 2013-10-08 | C.R. Bard, Inc. | Tissue capturing and suturing device and method |
US8388632B2 (en) | 2000-05-19 | 2013-03-05 | C.R. Bard, Inc. | Tissue capturing and suturing device and method |
US7737109B2 (en) | 2000-08-11 | 2010-06-15 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US9393069B2 (en) | 2004-01-09 | 2016-07-19 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US8192426B2 (en) | 2004-01-09 | 2012-06-05 | Tyco Healthcare Group Lp | Devices and methods for treatment of luminal tissue |
US10856939B2 (en) | 2004-01-09 | 2020-12-08 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US10278776B2 (en) | 2004-01-09 | 2019-05-07 | Covidien Lp | Devices and methods for treatment of luminal tissue |
US8088132B2 (en) | 2004-12-21 | 2012-01-03 | Davol, Inc. (a C.R. Bard Company) | Anastomotic outlet revision |
US9918793B2 (en) | 2005-11-23 | 2018-03-20 | Covidien Lp | Auto-aligning ablating device and method of use |
US9918794B2 (en) | 2005-11-23 | 2018-03-20 | Covidien Lp | Auto-aligning ablating device and method of use |
US7959627B2 (en) | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8702694B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US9179970B2 (en) | 2005-11-23 | 2015-11-10 | Covidien Lp | Precision ablating method |
US8702695B2 (en) | 2005-11-23 | 2014-04-22 | Covidien Lp | Auto-aligning ablating device and method of use |
US9993281B2 (en) | 2007-05-04 | 2018-06-12 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US8641711B2 (en) | 2007-05-04 | 2014-02-04 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
US10575902B2 (en) | 2007-06-22 | 2020-03-03 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US8784338B2 (en) | 2007-06-22 | 2014-07-22 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US9198713B2 (en) | 2007-06-22 | 2015-12-01 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
US8251992B2 (en) | 2007-07-06 | 2012-08-28 | Tyco Healthcare Group Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation |
US8439908B2 (en) | 2007-07-06 | 2013-05-14 | Covidien Lp | Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding |
US9839466B2 (en) | 2007-07-06 | 2017-12-12 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight loss operation |
US9364283B2 (en) | 2007-07-06 | 2016-06-14 | Covidien Lp | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight loss operation |
US9314289B2 (en) | 2007-07-30 | 2016-04-19 | Covidien Lp | Cleaning device and methods |
US8646460B2 (en) | 2007-07-30 | 2014-02-11 | Covidien Lp | Cleaning device and methods |
US8273012B2 (en) | 2007-07-30 | 2012-09-25 | Tyco Healthcare Group, Lp | Cleaning device and methods |
US10278774B2 (en) | 2011-03-18 | 2019-05-07 | Covidien Lp | Selectively expandable operative element support structure and methods of use |
Also Published As
Publication number | Publication date |
---|---|
CA2320109A1 (en) | 1999-09-10 |
AU753618B2 (en) | 2002-10-24 |
WO1999044522A1 (en) | 1999-09-10 |
US20020123748A1 (en) | 2002-09-05 |
US20070093809A1 (en) | 2007-04-26 |
EP1059887A1 (en) | 2000-12-20 |
AU2986899A (en) | 1999-09-20 |
US6749607B2 (en) | 2004-06-15 |
US20120109178A1 (en) | 2012-05-03 |
US20110098702A1 (en) | 2011-04-28 |
JP2002505138A (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6749607B2 (en) | Apparatus to treat esophageal sphincters | |
US6092528A (en) | Method to treat esophageal sphincters | |
US9351787B2 (en) | Sphincter treatment apparatus | |
US6712814B2 (en) | Method for treating a sphincter | |
EP1056403B1 (en) | Electrosurgical sphincter treatment apparatus | |
US6056744A (en) | Sphincter treatment apparatus | |
US8790339B2 (en) | Apparatus to detect and treat aberrant myoelectric activity | |
US6006755A (en) | Method to detect and treat aberrant myoelectric activity | |
AU753884B2 (en) | Apparatus to detect and electrosurgically treat aberrant myoelectric activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |