US20070093809A1 - Apparatus to treat esophageal sphincters - Google Patents

Apparatus to treat esophageal sphincters Download PDF

Info

Publication number
US20070093809A1
US20070093809A1 US11638952 US63895206A US2007093809A1 US 20070093809 A1 US20070093809 A1 US 20070093809A1 US 11638952 US11638952 US 11638952 US 63895206 A US63895206 A US 63895206A US 2007093809 A1 US2007093809 A1 US 2007093809A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sphincter
energy
device
delivery
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11638952
Inventor
Stuart Edwards
David Utley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mederi Therapeutics Inc
Original Assignee
Curon Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B18/0218Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/345Cannulas for introduction into a natural body opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00553Sphincter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4233Evaluating particular parts, e.g. particular organs oesophagus

Abstract

A sphincter treatment apparatus has an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means of the plurality has a distal section means and a proximal section means. Each of distal sections means of the arm means are coupled and each of the proximal sections means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.

Description

    RELATED APPLICATIONS
  • [0001]
    This application is a divisional of application Ser. No. 10/838,292, which is a divisional of application Ser. No. 09/971,085, filed Oct. 4, 2001 (now U.S. Pat. No. 6,749,607), which is a continuation of application Ser. No. 09/036,092, filed Mar. 6, 1998, now abandoned.
  • FIELD OF THE INVENTION
  • [0002]
    This invention relates generally to an apparatus to treat sphincters, and more particularly to an apparatus to treat esophageal sphincters.
  • DESCRIPTION OF RELATED ART
  • [0003]
    Gastroesophageal reflux disease (GERD) is a common gastroesophageal disorder in which the stomach contents are ejected into the lower esophagus due to a dysfunction of the lower esophageal sphincter (LES). These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity. The reported incidence of GERD in the U.S. is as high as 10% of the population (Castell DO; Johnston BT: Gastroesophageal Reflux Disease: Current Strategies For Patient Management. Arch Fam Med, 5(4):221-7; (1996 April)).
  • [0004]
    Acute symptoms of GERD include heartburn, pulmonary disorders and chest pain. On a chronic basis, GERD subjects the esophagus to ulcer formation, or esophagitis and may result in more severe complications including esophageal obstruction, significant blood loss and perforation of the esophagus. Severe esophageal ulcerations occur in 20-30% of patients over age 65. Moreover, GERD causes adenocarcinoma, or cancer of the esophagus, which is increasing in incidence faster than any other cancer (Reynolds JC: Influence Of Pathophysiology, Severity, And Cost On The Medical Management Of Gastroesophageal Reflux Disease. Am J Health Syst Pharm, 53(22 Suppl 3):S5-12 (1996 Nov. 15)).
  • [0005]
    Current drug therapy for GERD includes histamine receptor blockers which reduce stomach acid secretion and other drugs which may completely block stomach acid. However, while pharmacologic agents may provide short term relief, they do not address the underlying cause of LES dysfunction.
  • [0006]
    Invasive procedures requiring percutaneous introduction of instrumentation into the abdomen exist for the surgical correction of GERD. One such procedure, Nissen fundoplication, involves constructing a new “valve” to support the LES by wrapping the gastric fundus around the-lower esophagus. Although the operation has a high rate of success, it is an open abdominal procedure with the usual risks of abdominal surgery including: postoperative infection, herniation at the operative site, internal hemorrhage and perforation of the esophagus or of the cardia. In fact, a recent 10 year, 344 patient study reported the morbidity rate for this procedure to be 17% and mortality 1% (Urschel, JD: Complications, Of Antireflux Surgery, Am J Surg 166(1): 68-70; (1993 July)). This rate of complication drives up both the medical cost and convalescence period for the procedure and may exclude portions of certain patient populations (e.g., the elderly and immuno-compromised).
  • [0007]
    Efforts to perform Nissen fundoplication by less invasive techniques have resulted in the development of laparoscopic Nissen fundoplication. Laparoscopic Nissen fundoplication, reported by Dallemagne et al. Surgical Laparoscopy and Endoscopy, Vol. 1, No. 3, (1991), pp. 138-43 arid by Hindler et al. Surgical Laparoscopy and Endoscopy, Vol. 2, No. 3, (1992), pp. 265-272, involves essentially the same steps as Nissen fundoplication with the exception that surgical manipulation is performed through a plurality of surgical cannula introduced using trocars inserted at various positions in the abdomen.
  • [0008]
    Another attempt to perform fundoplication by a less invasive technique is reported in U.S. Pat. No. 5,088,979. In this procedure, an invagination device containing a plurality of needles is inserted transorally into the esophagus with the needles in a retracted position. The needles are extended to engage the esophagus and fold the attached esophagus beyond the gastroesophageal junction. A remotely operated stapling device, introduced percutaneously through an operating channel in the stomach wall, is actuated to fasten the invaginated gastroesophageal junction to the surrounding involuted stomach wall.
  • [0009]
    Yet another attempt to perform fundoplication by a less invasive technique is reported in U.S. Pat. No. 5,676,674. In this procedure, invagination is done by a jaw-like device and fastening of the invaginated gastroesophageal junction to the fundus of the stomach is done via a transoral approach using a remotely operated fastening device, eliminating the need for an abdominal incision. However, this procedure is still traumatic to the LES and presents the postoperative risks of gastroesophageal leaks, infection and foreign body reaction, the latter two sequela resulting when foreign materials such as surgical staples are implanted in the body.
  • [0010]
    While the methods reported above are less invasive than an open Nissen fundoplication, some still involve making an incision into the abdomen and hence the increased morbidity and mortality risks and convalescence period associated with abdominal surgery. Others incur the increased risk of infection associated with placing foreign materials into the body. All involve trauma to LES and the risk of leaks developing at the newly created gastroesophageal junction.
  • [0011]
    Besides the LES, there are other sphincters in the body which if not functionally properly can cause disease states or otherwise adversely affect the lifestyle of the patient. Reduced muscle tone or otherwise aberrant relaxation of sphincters can result in a laxity of tightness disease states including, but not limited to, urinary incontinence.
  • [0012]
    There is a need to provide an apparatus to treat a sphincter and reduce a frequency of sphincter relaxation. Another need exists for an apparatus to create controlled cell necrosis in a sphincter tissue underlying a sphincter mucosal layer. Yet another need exists for an apparatus to create controlled cell necrosis in a sphincter and minimize injury to a mucosal layer of the sphincter. There is another need for an apparatus to controllably produce a lesion in a sphincter without creating a permanent impairment of the sphincter's ability to achieve a physiologically normal state of closure. Still a further need exists for an apparatus to create a tightening of a sphincter without permanently damaging anatomical structures near the sphincter. There is still another need for an apparatus to create controlled cell necrosis in a lower esophageal sphincter to reduce a frequency of reflux of stomach contents into an esophagus.
  • SUMMARY OF THE INVENTION
  • [0013]
    Accordingly, an object of the present invention is to provide an apparatus that reduces a frequency of sphincter relaxation.
  • [0014]
    Another object of the invention is to provide an apparatus to create controlled cell necrosis in a sphincter tissue underlying a sphincter mucosal layer. Yet another object of the invention is to provide an apparatus to create controlled cell necrosis in a sphincter and minimize injury to a mucosal layer of the sphincter.
  • [0015]
    A further object of the invention is to provide an apparatus to controllably produce a lesion in a sphincter without creating a permanent impairment of the sphincter's ability to achieve a physiologically normal state of closure.
  • [0016]
    Still another object of the invention is to provide an apparatus to create a tightening of a sphincter without permanently damaging anatomical structures near the sphincter.
  • [0017]
    Another object of the invention is to provide an apparatus to create controlled cell necrosis in a lower esophageal sphincter to reduce a frequency of reflux of stomach contents into an esophagus.
  • [0018]
    These and other objects of the invention are provided in a sphincter treatment apparatus within an introducer means including a distal portion means. An expandable device means includes a plurality of arm means. Each arm means has a distal section means and a proximal section means. Each of the distal section means of the arm means are coupled and each of the proximal section means of the arm means are coupled to the introducer means distal portion means. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is introduceable from the introducer means into a selected site of the sphincter. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter.
  • [0019]
    In another embodiment, an expandable device means is coupled to an introducer distal portion means. The expandable device means includes a first arm means with a proximal and distal section means and a second arm means with proximal and distal section means. The first and second arm distal portion means are coupled. The expandable device means is configured to at least partially dilate a sphincter in a deployed state. An energy delivery device means is coupled to the expandable device means. The energy delivery device means is configured to deliver sufficient energy to reduce a frequency of relaxation of the sphincter while minimizing cell necrosis of a mucosal layer of the sphincter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    FIG. 1 is an illustrated lateral view of the upper GI tract depicting the position of the sphincter treatment apparatus of the present invention in the lower esophageal sphincter.
  • [0021]
    FIG. 2 is a lateral view of the present invention illustrating the introducer, expansion device and energy delivery device.
  • [0022]
    FIG. 3 depicts a lateral view of an embodiment of the invention that illustrates the use of a sheath to introduce and deploy the expansion device.
  • [0023]
    FIG. 4 illustrates a lateral view of the basket assembly used in an embodiment of the invention.
  • [0024]
    FIG. 5 is a lateral view of the basket assembly illustrating the placement of struts on the basket assembly.
  • [0025]
    FIG. 6A is a lateral view of the junction between the basket arms and the introducer illustrating a lumen in the basket arm that can be used for the advancement of energy delivery devices.
  • [0026]
    FIG. 6B is a frontal view of a basket arm in an alternative embodiment of the invention illustrating a track in the arm used to advance the movable wire.
  • [0027]
    FIG. 7A is a cross-sectional view of a section of a basket arm and an energy delivery device illustrating stepped and tapered sections in the basket arm apertures and energy delivery device.
  • [0028]
    FIG. 8A is a lateral view of the basket assembly illustrating the use of the advancement member and introducer to position energy delivery devices into the sphincter wall.
  • [0029]
    FIG. 8B is a lateral view of the basket assembly illustrating the use of the advancement member and basket arms to position energy delivery devices into the sphincter wall.
  • [0030]
    FIG. 9 is a cross sectional view illustrating the use of a needle electrode in combination with an angled aperture segment to select and maintain a constant penetration angle into the sphincter wall.
  • [0031]
    FIG. 10 is a lateral view illustrating the placement of needle electrodes into the sphincter wall by expansion of the basket assembly.
  • [0032]
    FIG. 11 is a lateral view illustrating the use of an insulation layer on the needle electrode to protect an area of tissue from RF energy.
  • [0033]
    FIG. 12 depicts the fluid source and flow path to deliver fluid to treatment site using the introducer.
  • [0034]
    FIG. 13 is a cross sectional view illustrating a visualization device coupled to an embodiment of the invention.
  • [0035]
    FIG. 14 is an enlarged lateral view illustrating the placement of sensors on/adjacent the energy delivery device and the coupling of sensors to a feedback control system.
  • [0036]
    FIG. 15 is a flow chart illustrating a sphincter treatment method using the apparatus of the present invention.
  • [0037]
    FIG. 16 is a lateral view of sphincter smooth muscle tissue illustrating electrical foci and electrically conductive pathways for the origination and conduction of aberrant electrical signals in the smooth muscle of the lower esophageal sphincter or other tissue.
  • [0038]
    FIG. 17 is a lateral view of a sphincter wall illustrating the infiltration of tissue healing cells into a lesion in the smooth tissue of a sphincter following treatment with the sphincter treatment apparatus of the present invention.
  • [0039]
    FIG. 18 is a view similar to that of FIG. 17 illustrating shrinkage of the lesion site caused by cell infiltration.
  • [0040]
    FIG. 19 is a lateral view of the esophageal wall illustrating the preferred placement of lesions in the smooth muscle layer of a esophageal sphincter.
  • [0041]
    FIGS. 20A-D are lateral views of the sphincter wall illustrating various patterns of lesions created by the apparatus of the,present invention.
  • [0042]
    FIG. 21 depicts a block diagram of the feed back control system that can be used with an embodiment of the invention.
  • [0043]
    FIG. 22 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 21.
  • [0044]
    FIG. 23 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 21.
  • DETAILED DESCRIPTION
  • [0045]
    Referring to FIGS. 1 and 2, one embodiment of a sphincter treatment apparatus 10 delivers energy to a treatment site 12 to produce lesions 14 in a sphincter 16, such as the lower esophageal sphincter (LES). In this embodiment, sphincter treatment apparatus 10 comprises a flexible elongate shaft 18, also called introducer 18, coupled to an expansion device 20, in turn coupled with one or more energy delivery devices 22. Introducer 18 has a distal extremity also called introducer end 19. Energy delivery devices 22 are configured to be coupled to a power source.
  • [0046]
    Expansion device 20 comprises a plurality of arms 24, with proximal and distal arms ends 25 and 26. Proximal arm ends 25 are coupled to introducer end 19. Expansion device 20 has a central longitudinal axis 28 and is moveable between contracted and expanded/deployed states substantially there along. Expansion device 20 is configured to be positionable in a sphincter 16 (such as the LES) or adjacent anatomical structure (such as the cardia of the stomach) and is further configured to partially dilate sphincter 16 when in the deployed state. Energy delivery devices 22 are configured to be introduceable from introducer 18 and to contact and/or penetrate a targeted treatment site 12 in a sphincter wall 30 or adjoining anatomical structure. They are further configured to deliver energy to treatment site 12.
  • [0047]
    Referring now to FIG. 2, introducer 18 is configured to be coupled to expansion device 20 and has sufficient length to position expansion device 20 in the LES and/or stomach using a transoral approach. Typical lengths for introducer 18 include a range of 40-180 cm. Introducer 18 may be circular or oval in cross section. Also, introducer 18 may be flexible, articulated, coil-reinforced, or steerable, or any combination thereof. Suitable materials for introducer 18 include polyethylenes, polyurethanes, silicones and other biocompatible polymers known to those skilled in the art. Introducer 18 may also be coated with a lubricious coating as is well known to those skilled in the art.
  • [0048]
    Introducer 18 may have one or more lumens 32, that extend the full length of introducer 18, or only a portion thereof. Lumens 32 may be used as paths for the delivery of fluids and gases, as well as providing channels for cables, catheters, guide wires, pull wires, insulated wires, and optical fibers.
  • [0049]
    In another embodiment of the invention depicted in FIGS. 3A and 3B, an introduction member 34, also called a sheath 34, is used to introduce sphincter treatment apparatus 10 into the LES. Sheath 34 can also function as a sheath for expansion device 20 to keep it in a nondeployed or contracted state during introduction into the LES. To facilitate this function, sheath 34 contains a sheath lumen 36 of sufficient inner diameter to allow free movement of sphincter treatment apparatus 10 within sheath lumen 36. Sheath 34, sheath lumen 36 and sphincter treatment apparatus 10 are configured to allow expansion device 20 to go from a contracted state to an expanded state and vice versa by either i) the retraction or advancement of sheath 34, or ii) the advancement or withdrawal of sphincter treatment apparatus 10. Sheath 34 may be flexible, articulated, coil-reinforced or steerable, or any combination thereof Suitable materials for sheath 34 include polyethylenes, polyurethanes, silicones, polytetrafluoroethylenes and other biocompatible polymers known to those skilled in the art. Typical diameters for sheath lumen 36 include 0.1 to 2inches, while typical lengths include 40-180 cms.
  • [0050]
    Referring now to FIG. 4, in another embodiment of the present invention, expansion device 20 comprises one or more elongated arms 24 that are joined at their proximal ends 25 and distal ends 2.6 to form a basket assembly 38. Proximal arm end 25 is attached to a supporting structure, which can be distal end 19 of introducer 18 or a proximal cap 40. Likewise, distal arm end 26 is also attached to a supporting structure which can be a distal basket cap 42 or introducer 18. Arms 24 are of a sufficient number, two or more, to sufficiently open and efface the folds of sphincter 16 to allow treatment with sphincter treatment apparatus 10, while preventing herniation of sphincter wall 30 into the spaces 44 between arms 24.
  • [0051]
    Arms 24 may form a variety of geometric shapes including, curved, rectangular, trapezoidal, triangular, or any combination thereof Also, arms 24 can have an outwardly bowed shaped memory for expanding basket assembly 38 into engagement with sphincter wall 30. Arms 24 may be preshaped at time of manufacture or shaped by the physician. Arms 24 can have a variety of cross sectional geometries including, circular, rectangular and crescent-shaped. The circumferential spacing of arms 24 can be symmetrical or asymmetrical with respect to a circumference around longitudinal axis 28. Suitable materials for arms 24 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art. Arms 24 may also be color-coded to facilitate their identification via visual medical imaging methods and equipment, such as endoscopic methods, which are well known to those skilled in the art.
  • [0052]
    In another embodiment of the invention depicted in FIG. 5, a supporting member 46 is attached to two or more arms 24. Supporting member 46, also called strut 46, can be attached to arms 24 along a circumference of basket assembly 38. Strut 46 may also contain apertures 50, in one or more places that extend through strut 46 to arm 24 as will be discussed herein. The cross sectional geometry of strut 46 can be rectangular, circular or crescent-shaped. Suitable materials for strut 46 include spring steel, stainless steel, superelastic shape memory metals such as nitinol, or stiff shaft plastic tubing as is well known to those skilled in the art.
  • [0053]
    Referring now to FIG. 6A, arms 24 may be solid or hollow with a continuous arm lumen 48 that may be coupled with introducer lumens 32. Also arms 24 may have one or more apertures 50 that may coupled to arm lumen 48. Coupled lumens 32 and 48, and apertures 50 provide a path for the delivery of a fluid or energy delivery device 22 from introducer 18 to the surface or interior of sphincter wall 30. As shown in FIG. 6B, arms 24 may also have a partially open channel 52, also called a track 52, that functions as a guide track for the travel of an advancement member (discussed herein) and/or energy delivery device 22 that permit the controlled placement of-energy delivery devices 22 at or into sphincter wall 30. Referring now to FIG. 7, apertures 50 may have tapered sections 54 and/or stepped sections 56 in all or part of their length, that are used to control the penetration depth of energy delivery devices 22 into sphincter wall 30 as will be discussed herein. Energy delivery devices 22 may have similar tapered sections 54′ and/or stepped sections 56′.
  • [0054]
    Referring now to FIGS. 8A and 8B, in another embodiment of the invention, energy delivery devices 22 can be coupled to an energy device delivery member 57, also called an advancement member 57. Advancement member 57 can be an insulated wire, an insulated guide wire, a plastic-coated stainless steel hypotube with internal wiring or a plastic catheter with internal wiring as is well known to those skilled in the art. Advancement member 57 is configured to be able to introduce energy delivery device 22 into sphincter wall 30 via introducer 18 (see FIG. 8A) or basket assembly 38 as will be discussed herein (see FIG. 8B). Advancement member 57 is of sufficient length to position energy delivery device 22 in the LES and/or stomach using a transoral approach. Typical lengths for advancement member 57 include a range of 40-180 cms.
  • [0055]
    In another embodiment of the invention depicted in FIG. 9, energy delivery device 22 has a distal portion 58 that is configured to penetrate sphincter wall 30 with a minimum amount of tearing of the mucosal and submucosal layers 60 and 62 of sphincter 16. This is facilitated by maintaining a constant angle of penetration 64, also called penetration angle 64, of distal portion 58 into sphincter wall 30 during the time that energy delivery device 22 is advanced into sphincter wall 30. The typical range for penetration angle 64 lies between 1 and 90°. This can be accomplished through the use of a needle 58′ for distal energy delivery device portion 58, coupled with an angled aperture segment 50′ having a preselected penetration angle 64. Needle 58′ is of sufficient sharpness and length to penetrate into the smooth muscle of sphincter wall 30. In a further embodiment, needle 58′ can be a needle electrode 58. Distal portion 58, including needle 58′ and needle electrode 58 can also be stepped or tapered to enable control of energy delivery device (see FIG. 7). Suitable materials for needle 58′ and needle electrodes 58″ include 304 stainless steel and other metals known to those skilled in the art.
  • [0056]
    In another embodiment of the invention, energy delivery device 22 is coupled to arm 24. As shown in FIG. 10, this can be accomplished by attaching needle 58′ to arm 24. When sphincter treatment apparatus 10 is properly positioned at the treatment site 12, needles 58′ are deployed by expansion of basket assembly 38, resulting in the protrusion of needle 58′ into the smooth muscle tissue of sphincter wall 30 (see FIG. 10). Referring back to FIG. 9, coupling can also be accomplished by employing arm 24 to introduce energy delivery device 22 into sphincter wall 30 via use of arm lumen 48.
  • [0057]
    Turning now to a discussion of energy delivery, suitable power sources and energy delivery devices 22 that can be employed in one or more embodiments of the invention include or more of the following: (i) a radio-frequency (RF) source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with a closed channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source, (x) a microwave source providing energy from 915 MHz to 2.45 GHz and coupled to a microwave antenna, or (xi) an ultrasound power source coupled to an ultrasound emitter, wherein the ultrasound power source produces energy in the range of 300 KHZ to 3 GHz. For ease of discussion for the remainder of this application, the power source utilized is an RF source and energy delivery device 22 is one or more RF electrodes 66, also described as electrodes 66. However, all of the other herein mentioned power sources and energy delivery devices are equally applicable to sphincter treatment apparatus 10.
  • [0058]
    For the case of RF energy, RF electrode 66 may be operated in either bipolar or monopolar mode with a ground pad electrode. In a monopolar mode of delivering RF energy, a single electrode 66 is used in combination with an indifferent electrode patch that is applied to the body to form the other electrical contact and complete an electrical circuit. Bipolar operation is possible when two or more electrodes 66 are used. Multiple electrodes 66 may be used. These electrodes may be cooled as described herein. Electrodes 66 can be attached to advancement member 57 by the use of soldering methods which are well known to those skilled in the art.
  • [0059]
    Referring now to FIG. 11, RF electrodes 66 can have an insulating layer 68, covering an insulated segment 70 except for an exposed segment 72. For purposes of this disclosure, an insulator or insulation layer is a barrier to either thermal or electromagnetic energy flow including RF energy flow. Insulated segment 70 is of sufficient length to extend into sphincter wall 30 and minimize the transmission of RF energy to a protected site 74 near or adjacent to insulated segment 70. Typical lengths for insulated segment 70 include, but are not limited to, 1-4 mm. Suitable materials for insulating layer 68 include electrically insulating plastics and other materials well known to those skilled in the art.
  • [0060]
    In another embodiment of the invention, the depth of penetration of energy delivery device 22 into sphincter wall 30 is controllable. This can be accomplished by the selection and control of the dimensional relationships (e.g. the amount of clearance between inner and outer diameters) of energy delivery devices 22 and/or advancement member 57 to one or more of the following elements: arm lumen 48, apertures 50 and track 52. Control of penetration depth can also be accomplished through the use of tapered and/or stepped sections in one or more of the preceding elements as is discussed herein. In another embodiment, penetration depth control can be accomplished by the use of one or more of a variety of positional control means, known to those skilled in the art, that are coupled to sphincter treatment apparatus 10. Such positional control means include stepper motor systems, indexing mechanisms and micromanipulators.
  • [0061]
    Referring now to FIG. 12, in another embodiment of the invention, fluid can be delivered to treatment site 12 via introducer 18. This is accomplished by the coupling of introducer 18 to a fluid source 76 via introducer lumen 32.
  • [0062]
    Referring now to FIG. 13, another embodiment of sphincter treatment apparatus 10 includes a visualization device 78 coupled to introducer 18. Visualization device 78 can include a combination of one or more of the following: a viewing scope, an expanded eyepiece, fiber optics (both imaging and illuminating fibers), video imaging devices and the like.
  • [0063]
    As shown in FIG. 14, one or more sensors 80 may be positioned adjacent to or on electrode 66 for sensing the physical properties of sphincter tissue at treatment site 12. Sensors 80 permit accurate determination of the physical properties of sphincter wall 30 at an electrode-tissue interface 82. Such physical properties include temperature, electrical conductivity, electrical capacitance, thermal conductivity, density, thickness, strength, elasticity, moisture content, optical reflectance, optical transmittance, optical absorption acoustical impedance and acoustical absorption. Sensors 80 can be positioned at any position on expansion device 20, electrode 66 or basket assembly 38. Suitable sensors that may be used for sensor 80 include: thermocouples, fiber optics, photomultipliers, resistive wires, thermocouple IR detectors, thin film sensors, anemometric sensors and ultrasound sensors. Sensor 80 can be coupled to a feedback control system 84, described herein. The coupling of sensor 80 to feedback control system 84 can be used to regulate the delivery of energy, fluids and gases to one or more of the following locations: treatment site 12, sphincter wall 30, and electrode tissue interface 82.
  • [0064]
    FIG. 15 is a flow chart illustrating a method for using sphincter treatment apparatus 10. First, sphincter treatment apparatus 10 is introduced into the esophagus under local anesthesia and positioned at treatment site 12. Sphincter treatment apparatus 10 can be introduced into the esophagus by itself or through a lumen in an endoscope (not shown), such as disclosed in U.S. Pat. Nos. 5,448,990 and 5,275,608, incorporated herein by reference, or a similar esophageal access device known to those skilled in the art. Basket assembly 38 is expanded as described herein. This serves to temporarily dilate the LES sufficiently to efface all or a portion of the folds of the LES. In an alternative embodiment, esophageal dilation and subsequent LES fold effacement can be accomplished by insufflation of the esophagus (a known technique) using gas introduced into the esophagus through introducer lumen 32, an endoscope, or others esophageal access devices known to those skilled in the art. Once treatment is completed, basket assembly 38 is returned to its predeployed or contracted state and sphincter treatment apparatus 10 is withdrawn from the esophagus. This results in the LES returning to approximately its pretreatment state and diameter. It will be appreciated that the above procedure is applicable in whole or part to the treatment of other sphincters in the body.
  • [0065]
    The diagnostic phase of the procedure then begins and can be performed using a variety of diagnostic methods known to those skilled in the art including the following: (i) visualization of the interior surface of the esophagus via an endoscope or other viewing apparatus inserted into the esophagus, (ii) visualization of the interior morphology of the esophageal wall using ultrasonography to establish a baseline for the tissue to be treated, (iii) impedance measurement to determine the electrical conductivity between esophageal mucosal and submucosal layers 60 and 62 and sphincter treatment apparatus 10, and (iv) measurement and surface mapping of electropotential signals of the LES and surrounding anatomical structures during varying time intervals which may include such events as depolarization, contraction and repolarization of gastroesophageal smooth muscle tissue. This latter technique is done to determine target treatment sites 12 in the LES or adjoining anatomical structures that are acting as electrical foci 107 or electrically conductive pathways 109 for abnormal or inappropriate polarization and relaxation of the smooth muscle of the LES (Refer to FIG. 16).
  • [0066]
    After diagnosis, the treatment phase of the procedure begins. In this phase of the procedure, the delivery of energy to treatment site 12 can be conducted under feedback control, manually or by a combination of both. Feedback control (described herein) enables sphincter treatment apparatus 10 to be positioned and retained in the esophagus during treatment with minimal attention by the physician. Electrodes 66 can be multiplexed in order to treat the entire targeted treatment site 12 or only a portion thereof. Feedback can be included and is achieved by the use of one or more of the following methods: (i) visualization, (ii) impedance measurement, (iii) ultrasonography, (iv) temperature measurement; and, (v) contractile force measurement via manometry. The feedback mechanism permits the selected on-off switching of different electrodes 66 in a desired pattern, which can be sequential from one electrode 66 to an adjacent electrode 66, or can jump around between non-adjacent electrodes 66. Individual electrodes 66 are multiplexed and volumetrically controlled by a controller.
  • [0067]
    The area and magnitude of cell injury in the LES or sphincter 16 can vary. However, it is desirable to deliver sufficient energy to the targeted treatment site 12 to be able to achieve tissue temperatures in the range of 55-95° C. and produce lesions 14 at depths ranging from 1-4 mms from the interior surface of the LES or sphincter wall 30. Typical energies delivered to the esophageal or stomach wall include, but are not limited to, a range between 100 and 50,000 joules per electrode 66. It is also desirable to deliver sufficient energy such that resulting lesions 14 have a sufficient magnitude and area of cell injury to cause an infiltration of lesion 14 by fibroblasts 110, myofibroblasts 112, macrophages 114 and other cells involved in the tissue healing process (refer to FIG. 17). As shown in FIG. 18, these cells cause a contraction of tissue around lesion 14, decreasing its volume and/or altering the biomechanical properties at lesion 14 so as to result in a tightening of the LES or sphincter 16. These changes are reflected in transformed lesion 14′. The diameter of lesions 14 can vary between 0.1 to 4 mm. It is preferable that lesions 14 are less than 4 mmns in less than 4 mms in diameter in order to reduce the risk of thermal damage to mucosal and submucosal layers 60 and 62. In one embodiment, a 2 mm diameter lesion 14 centered in the wall of the smooth muscle provides a 1 mm buffer zone on either side of lesion 14 to prevent damage to mucosal and submucosal layers 60 and 62 and the adventitia (not shown), while still allowing for cell infiltration and subsequent sphincter tightening on approximately 50% of the thickness of the wall of the smooth muscle (refer to FIG. 19).
  • [0068]
    It is desirable that lesions 14 are predominantly located in the smooth muscle layer of selected sphincter 16 at the depths ranging from 1 to 4 mm from the interior surface of sphincter wall 30. However, lesions 14 can vary both in number and position within sphincter wall 30. It may be desirable to produce a pattern of multiple lesions 14 within the sphincter smooth muscle tissue in order to obtain a selected degree of tightening of the LES or other sphincter 16. Typical lesion patterns shown in FIGS. 20 A-D include, but are not limited to, (i) a concentric circle of lesions 14 all at fixed depth in the smooth muscle layer evenly spaced along the radial axis of sphincter 16, (ii) a wavy or folded circle of lesions 14 at varying depths in the smooth muscle layer evenly spaced along the radial axis of sphincter 16, (iii) lesions 14 randomly distributed at varying depths in the smooth muscle, but evenly spaced in a radial direction and, (iv) an eccentric pattern of lesions 14 in one or more radial locations in the smooth muscle wall. Accordingly, the depth of RF and thermal energy penetration into sphincter 16 is controlled and selectable. The selective application of energy to sphincter 16 may be the even delivery of RF energy to the entire targeted treatment site 12, a portion of it, or applying different amounts of RF energy to different sites depending on the condition of sphincter 16. If desired, the area of cell injury can be substantially the same for every treatment event.
  • [0069]
    A second diagnostic phase may be included after the treatment is completed. This provides an indication of LES tightening treatment success, and whether or not a second phase of treatment, to all or only a portion of the esophagus, now or at some later time, should be conducted. The second diagnostic phase is accomplished through one or more of the following methods: (i) visualization, (ii) measuring impedance, (iii) ultrasonography, (iv) temperature measurement, or (v) measurement of LES tension and contractile force via manometry.
  • [0070]
    In one embodiment of the invention, sensor 80 is coupled to an open or closed loop feedback control system 84. Referring now to FIG. 21, an open or closed loop feedback system 84 couples sensor 80, now described as sensor 346, to an energy source 392. In this embodiment, an energy delivery device 314 is one or more RF electrodes 314; however, in various other embodiments, energy delivery device 314 may include others described herein. Similarly, in this embodiment, sensor 346 senses temperature, but in various other embodiments, sensor 346 may sense other physical properties described herein.
  • [0071]
    The temperature of the tissue, or of RF electrode 314, is monitored, and the output power of energy source 392 adjusted accordingly. The physician can, if desired, override the closed or open loop system 84. A microprocessor 394 can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power. The closed loop system 84 utilizes microprocessor 394 to serve as a controller, monitor the temperature, adjust the RF power, analyze the result, refeed the result, and then modulate the power.
  • [0072]
    With the use of sensor 346 and feedback control system 84, tissue adjacent to RF electrode 314 can be maintained at a desired temperature for a selected period of time without causing a shut down of the power circuit to electrode 314 due to the development of excessive electrical impedance at electrode 314 or adjacent tissue. Each RF electrode 314 is connected to resources which generate an independent output. The output maintains a selected energy at RF electrode 314 for a selected length of time.
  • [0073]
    Current delivered through RF electrode 314 is measured by current sensor 396. Voltage is measured by voltage sensor 398. Impedance and power are then calculated at power and impedance calculation device 400. These values can then be displayed at user interface and display 402. Signals representative of power and impedance values are received by a controller 404.
  • [0074]
    A control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value. The control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 314.
  • [0075]
    In a similar manner, temperatures detected at sensor 346 provide feedback for maintaining a selected power. Temperature at sensor 346 is used as a safety means to interrupt the delivery of power when maximum pre-set temperatures are exceeded. The actual temperatures are measured at temperature measurement device 408, and the temperatures are displayed at user interface and display 402. A control signal is generated by controller 404 that is proportional to the difference between an actual measured temperature and a desired temperature. The control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired temperature delivered at the sensor 346. A multiplexer can be included to measure current, voltage and temperature, at the sensor 346, and energy can be delivered to RF electrode 314 in monopolar or bipolar fashion.
  • [0076]
    Controller 404 can be a digital or analog controller, or a computer with software. When controller 404 is a computer it can include a CPU coupled through a system bus. This system can include a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
  • [0077]
    User interface and display 402 includes operator controls and a display. Controller 404 can be coupled to imaging systems including, but not limited to, ultrasound, CT scanners, X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
  • [0078]
    The output of current sensor 396 and voltage sensor 398 are used by controller 404 to maintain a selected power level at RF electrode 314. The amount of RF energy delivered controls the amount of power. A profile of the power delivered to electrode 314 can be incorporated in controller 404 and a preset amount of energy to be delivered may also be profiled.
  • [0079]
    Circuitry, software and feedback to controller 404 result in process control, the maintenance of the selected power setting which is independent of changes in voltage or current, and is used to change the following process variables: (i) the selected power setting, (ii) the duty cycle (e.g., on-off time), (iii) bipolar or monopolar energy delivery; and, (iv) fluid delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensor 346.
  • [0080]
    Referring now to FIG. 22, current sensor 396 and voltage sensor 398 are connected to the input of an analog amplifier 410. Analog amplifier 410 can be a conventional differential amplifier circuit for use with sensor 346. The output of analog amplifier 410 is sequentially connected by an analog multiplexer 412 to the input of A/D converter 414. The output of analog amplifier 410 is a voltage which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A/D converter 414 to microprocessor 394. Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature.
  • [0081]
    Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 394 corresponds to different temperatures and impedances.
  • [0082]
    Calculated power and impedance values can be indicated on user interface and display 402. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 394 to power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 402, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal from microprocessor 394 can modify the power level supplied by energy source 392.
  • [0083]
    FIG. 23 illustrates a block diagram of a temperature and impedance feedback system that can be used to control the delivery of energy to tissue site 416 by energy source 392 and the delivery of a cooling medium to electrode 314 and/or tissue site 416 by flow regulator 418. Energy is delivered to RF electrode 314 by energy source 392, and applied to tissue site 416. A monitor 420 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. However if the measured impedance exceeds the set value, a disabling signal 422 is transmitted to energy source 392, ceasing further delivery of energy to RF electrode 314.
  • [0084]
    The control of the delivery of cooling medium to electrode 314 and/or tissue site 416 is done in the following manner. During the application of energy, temperature measurement device 408 measures the temperature of tissue site 416 and/or RF electrode 314. A comparator 424 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. If the measured temperature has not exceeded the desired temperature, comparator 424 sends a signal to flow regulator 418 to maintain the cooling solution flow rate at its existing level. However if the tissue temperature is too high, comparator 424 sends a signal to a flow regulator 418 (connected to an electronically controlled micropump, not shown) representing a need for an increased cooling solution flow rate.
  • [0085]
    The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims (11)

  1. 1. A sphincter treatment apparatus comprising:
    an introducer having an introducer lumen,
    an expandable device coupled to the introducer, the expandable device including a first arm with a proximal section and a distal section and a second arm with a proximal section and a distal section, the first and second arm distal sections being coupled, at least one of the first and second arms including an arm lumen coupled in fluid communication with the introducer lumen for delivery of a fluid, the expandable device being configured to at least partially dilate a sphincter in a deployed state, and
    an energy delivery device coupled to the expandable device.
  2. 2. An apparatus as in claim 1
    wherein at least a portion of the energy delivery device is advanceable into the sphincter.
  3. 3. An apparatus as in claim 1
    wherein the at least one of the first and second arms includes an aperture coupled to the introducer lumen and adapted to provide a path for delivery of the fluid from the introducer.
  4. 4. An apparatus as in claim 3
    wherein the fluid is cooling fluid.
  5. 5. A method of treating a sphincter comprising:
    providing an introducer, the introducer carrying an expandable device,
    providing an energy delivery device coupled to the expandable device,
    deploying the introducer to a targeted tissue site at or near a sphincter,
    expanding the expandable device to at least partially dilate the sphincter,
    delivering energy from the energy delivery device to the targeted tissue site, and
    delivering a cooling fluid from the introducer.
  6. 6. A method as in claim 5
    wherein the expandable device includes a first arm with a proximal section and a distal section and a second arm with a proximal section and a distal section, the first and second arm distal sections being coupled.
  7. 7. A method as in claim 6
    wherein at least one of the first and second arms includes a lumen.
  8. 8. A method as in claim 5
    wherein the introducer includes a lumen.
  9. 9. A method as in claim 5
    wherein the cooling fluid is delivered at a sensed flow rate, further comprising,
    measuring the temperature of at least one of the tissue site and the energy delivery device, and
    comparing the measured temperature to a pre-set desired temperature.
  10. 10. A method as in claim 9, further comprising
    maintaining the flow rate if the measured temperature does not exceed the desired temperature.
  11. 11. A method as in claim 9, further comprising
    increasing the flow rate if the measured temperature exceeds the desired temperature.
US11638952 1998-03-06 2006-12-14 Apparatus to treat esophageal sphincters Abandoned US20070093809A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US3609298 true 1998-03-06 1998-03-06
US09971085 US6749607B2 (en) 1998-03-06 2001-10-04 Apparatus to treat esophageal sphincters
US10838292 US20040204708A1 (en) 1998-03-06 2004-05-04 Apparatus to treat esophageal sphincters
US11638952 US20070093809A1 (en) 1998-03-06 2006-12-14 Apparatus to treat esophageal sphincters

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11638952 US20070093809A1 (en) 1998-03-06 2006-12-14 Apparatus to treat esophageal sphincters
US12927354 US20110098702A1 (en) 1998-03-06 2010-11-12 Apparatus to treat esophageal sphincters
US13350411 US20120109178A1 (en) 1998-03-06 2012-01-13 Apparatus to treat esophageal sphincters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10838922 Division US20050251453A1 (en) 2004-05-04 2004-05-04 Online electronic media exchange system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12927354 Division US20110098702A1 (en) 1998-03-06 2010-11-12 Apparatus to treat esophageal sphincters

Publications (1)

Publication Number Publication Date
US20070093809A1 true true US20070093809A1 (en) 2007-04-26

Family

ID=21886570

Family Applications (5)

Application Number Title Priority Date Filing Date
US09971085 Expired - Lifetime US6749607B2 (en) 1998-03-06 2001-10-04 Apparatus to treat esophageal sphincters
US10838292 Abandoned US20040204708A1 (en) 1998-03-06 2004-05-04 Apparatus to treat esophageal sphincters
US11638952 Abandoned US20070093809A1 (en) 1998-03-06 2006-12-14 Apparatus to treat esophageal sphincters
US12927354 Abandoned US20110098702A1 (en) 1998-03-06 2010-11-12 Apparatus to treat esophageal sphincters
US13350411 Abandoned US20120109178A1 (en) 1998-03-06 2012-01-13 Apparatus to treat esophageal sphincters

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09971085 Expired - Lifetime US6749607B2 (en) 1998-03-06 2001-10-04 Apparatus to treat esophageal sphincters
US10838292 Abandoned US20040204708A1 (en) 1998-03-06 2004-05-04 Apparatus to treat esophageal sphincters

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12927354 Abandoned US20110098702A1 (en) 1998-03-06 2010-11-12 Apparatus to treat esophageal sphincters
US13350411 Abandoned US20120109178A1 (en) 1998-03-06 2012-01-13 Apparatus to treat esophageal sphincters

Country Status (5)

Country Link
US (5) US6749607B2 (en)
EP (1) EP1059887A1 (en)
JP (1) JP2002505138A (en)
CA (1) CA2320109A1 (en)
WO (1) WO1999044522A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69923291D1 (en) * 1998-02-19 2005-02-24 Curon Medical Inc An electrosurgical apparatus for the treatment of sphincters
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
WO1999055245A1 (en) 1998-04-30 1999-11-04 Edwards Stuart D Electrosurgical sphincter treatment apparatus
US6740082B2 (en) * 1998-12-29 2004-05-25 John H. Shadduck Surgical instruments for treating gastro-esophageal reflux
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
EP1229849A1 (en) 1999-11-16 2002-08-14 Robert A. Ganz System and method of treating abnormal tissue in the human esophagus
US7399304B2 (en) * 2000-03-03 2008-07-15 C.R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method for capturing and suture tissue
EP1157668A1 (en) * 2000-05-20 2001-11-28 Curative AG Innovations to cure Electrosurgical device for resticting a sphincter muscle
US20020022864A1 (en) * 2000-06-07 2002-02-21 Mahvi David M. Multipolar electrode system for radiofrequency ablation
US7737109B2 (en) 2000-08-11 2010-06-15 Temple University Of The Commonwealth System Of Higher Education Obesity controlling method
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6470219B1 (en) * 2000-10-02 2002-10-22 Novasys Medical, Inc. Apparatus and method for treating female urinary incontinence
US7077841B2 (en) 2001-03-26 2006-07-18 Curon Medical, Inc. Systems and methods employing a guidewire for positioning and stabilizing external instruments deployed within the body
US7160270B2 (en) 2001-03-26 2007-01-09 Curon Medical, Inc. Systems and methods employing a bite block insert for positioning and stabilizing external instruments deployed within the body
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
DE202004021944U1 (en) 2003-09-12 2013-07-16 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7150745B2 (en) * 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US8100822B2 (en) 2004-03-16 2012-01-24 Macroplata Systems, Llc Anoscope for treating hemorrhoids without the trauma of cutting or the use of an endoscope
US8172857B2 (en) 2004-08-27 2012-05-08 Davol, Inc. Endoscopic tissue apposition device and method of use
US7949407B2 (en) 2004-11-05 2011-05-24 Asthmatx, Inc. Energy delivery devices and methods
WO2006052940A3 (en) * 2004-11-05 2006-09-28 Asthmatx Inc Medical device with procedure improvement features
JP2008519669A (en) * 2004-11-12 2008-06-12 アスマティックス,インコーポレイテッド Apparatus and method for improved energy delivered
US20060116693A1 (en) * 2004-12-01 2006-06-01 Weisenburgh William B Ii Apparatus and method for stone capture and removal
US20060184076A1 (en) * 2004-12-01 2006-08-17 Gill Robert P Ultrasonic device and method for treating stones within the body
WO2006068970A3 (en) 2004-12-21 2007-01-18 Mitchell Roslin Anastomotic outlet revision
ES2565342T3 (en) 2005-03-28 2016-04-04 Vessix Vascular, Inc. electrical characterization and tissue intraluminal RF energy for controlled selective treatment of atheroma, and other target tissues
US20070093802A1 (en) * 2005-10-21 2007-04-26 Danek Christopher J Energy delivery devices and methods
US7959627B2 (en) 2005-11-23 2011-06-14 Barrx Medical, Inc. Precision ablating device
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US20070142884A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US20070142699A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9020597B2 (en) 2008-11-12 2015-04-28 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9345879B2 (en) 2006-10-09 2016-05-24 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9724510B2 (en) 2006-10-09 2017-08-08 Endostim, Inc. System and methods for electrical stimulation of biological systems
US8133216B2 (en) 2006-10-16 2012-03-13 Syneron Medical Ltd. Methods and devices for treating tissue
US8142426B2 (en) 2006-10-16 2012-03-27 Syneron Medical Ltd. Methods and devices for treating tissue
US20080281389A1 (en) * 2006-10-16 2008-11-13 Primaeva Medical Inc. Methods and devices for treating tissue
US8007493B2 (en) * 2006-10-16 2011-08-30 Syneron Medical Ltd. Methods and devices for treating tissue
US8273080B2 (en) 2006-10-16 2012-09-25 Syneron Medical Ltd. Methods and devices for treating tissue
WO2008049084A3 (en) 2006-10-18 2008-08-07 Minnow Medical Inc Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
JP5559539B2 (en) 2006-10-18 2014-07-23 べシックス・バスキュラー・インコーポレイテッド System to induce the temperature desired effect on the body tissue
US7931647B2 (en) 2006-10-20 2011-04-26 Asthmatx, Inc. Method of delivering energy to a lung airway using markers
WO2008101171A3 (en) * 2007-02-16 2008-10-09 Thermage Inc Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
WO2008137757A1 (en) * 2007-05-04 2008-11-13 Barrx Medical, Inc. Method and apparatus for gastrointestinal tract ablation for treatment of obesity
JP5118389B2 (en) * 2007-05-26 2013-01-16 中村製作所株式会社 Recess forming method to the work
US20100217254A1 (en) * 2009-02-25 2010-08-26 Primaeva Medical, Inc. Methods for applying energy to tissue using isolated energy sources
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
US8251992B2 (en) 2007-07-06 2012-08-28 Tyco Healthcare Group Lp Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
US8439908B2 (en) 2007-07-06 2013-05-14 Covidien Lp Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding
US8235983B2 (en) 2007-07-12 2012-08-07 Asthmatx, Inc. Systems and methods for delivering energy to passageways in a patient
US8273012B2 (en) 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
US8646460B2 (en) * 2007-07-30 2014-02-11 Covidien Lp Cleaning device and methods
US20090112205A1 (en) * 2007-10-31 2009-04-30 Primaeva Medical, Inc. Cartridge electrode device
US20090156958A1 (en) * 2007-12-12 2009-06-18 Mehta Bankim H Devices and methods for percutaneous energy delivery
WO2009094609A1 (en) 2008-01-25 2009-07-30 Sharma Virender K Device and implantation system for electrical stimulation of biological systems
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
EP2355737A4 (en) 2008-11-17 2013-01-16 Vessix Vascular Inc Selective accumulation of energy with or without knowledge of tissue topography
US8986291B2 (en) * 2008-12-01 2015-03-24 Percutaneous Systems, Inc. Methods and systems for capturing and removing urinary stones from body cavities
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
KR20150048706A (en) * 2012-06-22 2015-05-07 매크로프라타, 아이엔씨. Multi-lumen-catheter retractor system for a mininally-invasive, operative gastrointestinal treatment
US9186131B2 (en) * 2009-12-16 2015-11-17 Macroplata, Inc. Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
JP2016526397A (en) * 2013-06-09 2016-09-05 マクロプラタ、インコーポレイテッドMacroplata,Inc. Multilumen catheter retractor system for gastrointestinal treatment by minimally invasive surgery
US8506479B2 (en) 2009-12-16 2013-08-13 Macroplata, Inc. Substantially rigid and stable endoluminal surgical suite for treating a gastrointestinal lesion
US9565998B2 (en) 2009-12-16 2017-02-14 Boston Scientific Scimed, Inc. Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
DE212011100038U1 (en) 2010-03-05 2012-07-17 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
KR20130108067A (en) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
WO2012142539A1 (en) * 2011-04-14 2012-10-18 Endostim, Inc. Systems and methods for treating gastroesophageal reflux disease
EP2734259B1 (en) 2011-07-20 2016-11-23 Boston Scientific Scimed, Inc. Percutaneous device to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9925367B2 (en) 2011-09-02 2018-03-27 Endostim, Inc. Laparoscopic lead implantation method
US9037245B2 (en) 2011-09-02 2015-05-19 Endostim, Inc. Endoscopic lead implantation method
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013070724A1 (en) 2011-11-08 2013-05-16 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
CN104135958B (en) 2011-12-28 2017-05-03 波士顿科学西美德公司 There are new methods and apparatus with an ablation catheter ablation element becomes transferred polymer nerve
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9782583B2 (en) 2012-02-21 2017-10-10 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat urinary dysfunction
US8706234B2 (en) 2012-02-21 2014-04-22 Virender K. Sharma System and method for electrical stimulation of anorectal structures to treat anal dysfunction
US8403927B1 (en) 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
US8932211B2 (en) 2012-06-22 2015-01-13 Macroplata, Inc. Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
US9623238B2 (en) 2012-08-23 2017-04-18 Endostim, Inc. Device and implantation system for electrical stimulation of biological systems
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9498619B2 (en) 2013-02-26 2016-11-22 Endostim, Inc. Implantable electrical stimulation leads
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
EP2967734A1 (en) 2013-03-15 2016-01-20 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9814618B2 (en) 2013-06-06 2017-11-14 Boston Scientific Scimed, Inc. Devices for delivering energy and related methods of use
CN105473091A (en) 2013-06-21 2016-04-06 波士顿科学国际有限公司 Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
CN105358084A (en) 2013-07-01 2016-02-24 波士顿科学国际有限公司 Medical devices for renal nerve ablation
EP3049007A1 (en) 2013-07-19 2016-08-03 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9827425B2 (en) 2013-09-03 2017-11-28 Endostim, Inc. Methods and systems of electrode polarity switching in electrical stimulation therapy
EP3041425A1 (en) 2013-09-04 2016-07-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
CN105592778A (en) 2013-10-14 2016-05-18 波士顿科学医学有限公司 High resolution cardiac mapping electrode array catheter
CN105636537A (en) 2013-10-15 2016-06-01 波士顿科学国际有限公司 Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
WO2015119890A1 (en) 2014-02-04 2015-08-13 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9579149B2 (en) 2014-03-13 2017-02-28 Medtronic Ardian Luxembourg S.A.R.L. Low profile catheter assemblies and associated systems and methods
US9682234B2 (en) 2014-11-17 2017-06-20 Endostim, Inc. Implantable electro-medical device programmable for improved operational life
US20160346520A1 (en) * 2015-05-28 2016-12-01 Dan B. French Medical Instrument for Injecting an Agent
KR101724321B1 (en) 2015-06-05 2017-04-07 김명회 Customer identification system, customer information managing apparatus, customer indentification method, and recording media using the identification information and the access time of mobile device
US20170259037A1 (en) * 2016-03-14 2017-09-14 Covidien Lp Compound curve navigation catheter

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798902A (en) * 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US3517128A (en) * 1968-02-08 1970-06-23 James R Hines Surgical expanding arm dilator
US3901241A (en) * 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4196724A (en) * 1978-01-31 1980-04-08 Frecker William H Tongue locking device
US4411266A (en) * 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4423812A (en) * 1980-09-18 1984-01-03 Olympus Optical Company Limited Cassette receptacle device
US4532924A (en) * 1980-05-13 1985-08-06 American Hospital Supply Corporation Multipolar electrosurgical device and method
US4565200A (en) * 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US4901737A (en) * 1987-04-13 1990-02-20 Toone Kent J Method and therapeutic apparatus for reducing snoring
US4906203A (en) * 1988-10-24 1990-03-06 General Motors Corporation Electrical connector with shorting clip
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4943290A (en) * 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4947842A (en) * 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US4966597A (en) * 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US5035696A (en) * 1990-02-02 1991-07-30 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy
US5046512A (en) * 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5057107A (en) * 1989-04-13 1991-10-15 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5078717A (en) * 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5083565A (en) * 1990-08-03 1992-01-28 Everest Medical Corporation Electrosurgical instrument for ablating endocardial tissue
US5094233A (en) * 1991-01-11 1992-03-10 Brennan Louis G Turbinate sheath device
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5122137A (en) * 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5125928A (en) * 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5190541A (en) * 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5197963A (en) * 1991-12-02 1993-03-30 Everest Medical Corporation Electrosurgical instrument with extendable sheath for irrigation and aspiration
US5197964A (en) * 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5215103A (en) * 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US5223811A (en) * 1990-11-09 1993-06-29 Siemens Aktiengesellschaft Electromagnetic relay having a sealed housing
US5275162A (en) * 1991-11-08 1994-01-04 Ep Technologies, Inc. Valve mapping catheter
US5277201A (en) * 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5281217A (en) * 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
US5281218A (en) * 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5293869A (en) * 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5309910A (en) * 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5313020A (en) * 1992-05-29 1994-05-17 Western Atlas International, Inc. Electrical cable
US5313943A (en) * 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5314466A (en) * 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5328467A (en) * 1991-11-08 1994-07-12 Ep Technologies, Inc. Catheter having a torque transmitting sleeve
US5334196A (en) * 1992-10-05 1994-08-02 United States Surgical Corporation Endoscopic fastener remover
US5345936A (en) * 1991-02-15 1994-09-13 Cardiac Pathways Corporation Apparatus with basket assembly for endocardial mapping
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5383917A (en) * 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5383876A (en) * 1992-11-13 1995-01-24 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe for cutting and cauterizing tissue
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5397339A (en) * 1986-11-14 1995-03-14 Desai; Jawahar M. Catheter for mapping and ablation and method therefor
US5398683A (en) * 1991-05-24 1995-03-21 Ep Technologies, Inc. Combination monophasic action potential/ablation catheter and high-performance filter system
US5401272A (en) * 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5403311A (en) * 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5411025A (en) * 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5423812A (en) * 1994-01-31 1995-06-13 Ellman; Alan G. Electrosurgical stripping electrode for palatopharynx tissue
US5423808A (en) * 1991-11-08 1995-06-13 Ep Technologies, Inc. Systems and methods for radiofrequency ablation with phase sensitive power detection
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5441499A (en) * 1993-07-14 1995-08-15 Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh Bipolar radio-frequency surgical instrument
US5484400A (en) * 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5486161A (en) * 1993-02-02 1996-01-23 Zomed International Medical probe device and method
US5490984A (en) * 1992-02-28 1996-02-13 Jsf Consulants Ltd. Use of injectable biomaterials for the repair and augmentation of the anal sphincters
US5505730A (en) * 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5507743A (en) * 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5520684A (en) * 1993-06-10 1996-05-28 Imran; Mir A. Transurethral radio frequency apparatus for ablation of the prostate gland and method
US5531676A (en) * 1992-08-12 1996-07-02 Vidamed, Inc. Medical probe device and method
US5536267A (en) * 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5542915A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5545434A (en) * 1994-04-01 1996-08-13 Huarng; Hermes Method of making irregularly porous cloth
US5545171A (en) * 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5545161A (en) * 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5549644A (en) * 1992-08-12 1996-08-27 Vidamed, Inc. Transurethral needle ablation device with cystoscope and method for treatment of the prostate
US5549108A (en) * 1992-09-25 1996-08-27 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5556377A (en) * 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5558673A (en) * 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5599345A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5609151A (en) * 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5624439A (en) * 1995-08-18 1997-04-29 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US6044846A (en) * 1994-06-24 2000-04-04 Edwards; Stuart D. Method to treat esophageal sphincters
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6063082A (en) * 1997-11-04 2000-05-16 Scimed Life Systems, Inc. Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device
US6073052A (en) * 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease
US6440128B1 (en) * 1998-01-14 2002-08-27 Curon Medical, Inc. Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6589238B2 (en) * 1998-01-14 2003-07-08 Curon Medical, Inc. Sphincter treatment device
US6613047B2 (en) * 1994-06-24 2003-09-02 Curon Medical, Inc. Apparatus to treat esophageal sphincters
US6748255B2 (en) * 2001-12-14 2004-06-08 Biosense Webster, Inc. Basket catheter with multiple location sensors

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601296A (en) 1983-10-07 1986-07-22 Yeda Research And Development Co., Ltd. Hyperthermia apparatus
US4705041A (en) * 1984-07-06 1987-11-10 Kim Il G Dilator for Sphincter of Oddi
US5365926A (en) 1986-11-14 1994-11-22 Desai Jawahar M Catheter for mapping and ablation and method therefor
DE3838840C2 (en) 1988-11-17 1997-02-20 Leibinger Gmbh Hochfrequenzkoagulationsvorrichtung for surgical purposes
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
WO1991001773A1 (en) * 1989-08-01 1991-02-21 Enrico Mangieri Percutaneous mechanical dilating catheter for cardiac valves and blood vessels
US5205287A (en) 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
CA2049149A1 (en) * 1990-08-15 1992-02-16 Kazumi Ogata Method of cleaning hard contact lenses
WO1992005752A1 (en) 1990-10-03 1992-04-16 Ernest Truffer Snoring prevention device
US5256138A (en) 1990-10-04 1993-10-26 The Birtcher Corporation Electrosurgical handpiece incorporating blade and conductive gas functionality
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5368557A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having multiple ultrasound transmission members
DE4103382A1 (en) * 1991-02-05 1992-08-06 Basf Ag Cyclopropane thioamides, process and intermediates for their production and their use for pest control
US5370901A (en) 1991-02-15 1994-12-06 Bracco International B.V. Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients
US5156151A (en) * 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5465717A (en) * 1991-02-15 1995-11-14 Cardiac Pathways Corporation Apparatus and Method for ventricular mapping and ablation
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
US5363861A (en) 1991-11-08 1994-11-15 Ep Technologies, Inc. Electrode tip assembly with variable resistance to bending
US5257451A (en) 1991-11-08 1993-11-02 Ep Technologies, Inc. Method of making durable sleeve for enclosing a bendable electrode tip assembly
ES2201051T3 (en) 1991-11-08 2004-03-16 Boston Scientific Limited Ablation electrode comprising temperature detectors isolated.
US5263493A (en) * 1992-02-24 1993-11-23 Boaz Avitall Deflectable loop electrode array mapping and ablation catheter for cardiac chambers
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5324284A (en) * 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5254126A (en) 1992-06-24 1993-10-19 Ethicon, Inc. Endoscopic suture punch
US5470308A (en) 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5456662A (en) 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5471982A (en) 1992-09-29 1995-12-05 Ep Technologies, Inc. Cardiac mapping and ablation systems
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combined instrument for cutting and coagulating for minimally invasive surgery
US5365945A (en) 1993-04-13 1994-11-22 Halstrom Leonard W Adjustable dental applicance for treatment of snoring and obstructive sleep apnea
US5582609A (en) * 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
WO1995010322A1 (en) * 1993-10-15 1995-04-20 Ep Technologies, Inc. Creating complex lesion patterns in body tissue
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5683384A (en) * 1993-11-08 1997-11-04 Zomed Multiple antenna ablation apparatus
US5448990A (en) 1994-02-15 1995-09-12 Very Inventive Physicians, Inc. Endoscope viewing cannula and surgical techniques
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US5681308A (en) 1994-06-24 1997-10-28 Stuart D. Edwards Ablation apparatus for cardiac chambers
US6006755A (en) * 1994-06-24 1999-12-28 Edwards; Stuart D. Method to detect and treat aberrant myoelectric activity
US5454782A (en) 1994-08-11 1995-10-03 Perkins; Rodney C. Translumenal circumferential energy delivery device
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5702438A (en) * 1995-06-08 1997-12-30 Avitall; Boaz Expandable recording and ablation catheter system

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798902A (en) * 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US3517128A (en) * 1968-02-08 1970-06-23 James R Hines Surgical expanding arm dilator
US3901241A (en) * 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
US4011872A (en) * 1974-04-01 1977-03-15 Olympus Optical Co., Ltd. Electrical apparatus for treating affected part in a coeloma
US4196724A (en) * 1978-01-31 1980-04-08 Frecker William H Tongue locking device
US4532924A (en) * 1980-05-13 1985-08-06 American Hospital Supply Corporation Multipolar electrosurgical device and method
US4423812A (en) * 1980-09-18 1984-01-03 Olympus Optical Company Limited Cassette receptacle device
US4411266A (en) * 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4565200A (en) * 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US5397339A (en) * 1986-11-14 1995-03-14 Desai; Jawahar M. Catheter for mapping and ablation and method therefor
US5215103A (en) * 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4901737A (en) * 1987-04-13 1990-02-20 Toone Kent J Method and therapeutic apparatus for reducing snoring
US4943290A (en) * 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4947842A (en) * 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US4906203A (en) * 1988-10-24 1990-03-06 General Motors Corporation Electrical connector with shorting clip
US4966597A (en) * 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US5046512A (en) * 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5057107A (en) * 1989-04-13 1991-10-15 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5078717A (en) * 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5125928A (en) * 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5035696A (en) * 1990-02-02 1991-07-30 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy
US5122137A (en) * 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5083565A (en) * 1990-08-03 1992-01-28 Everest Medical Corporation Electrosurgical instrument for ablating endocardial tissue
US5100423A (en) * 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5190541A (en) * 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5223811A (en) * 1990-11-09 1993-06-29 Siemens Aktiengesellschaft Electromagnetic relay having a sealed housing
US5094233A (en) * 1991-01-11 1992-03-10 Brennan Louis G Turbinate sheath device
US5345936A (en) * 1991-02-15 1994-09-13 Cardiac Pathways Corporation Apparatus with basket assembly for endocardial mapping
US5398683A (en) * 1991-05-24 1995-03-21 Ep Technologies, Inc. Combination monophasic action potential/ablation catheter and high-performance filter system
US5383917A (en) * 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5275162A (en) * 1991-11-08 1994-01-04 Ep Technologies, Inc. Valve mapping catheter
US5328467A (en) * 1991-11-08 1994-07-12 Ep Technologies, Inc. Catheter having a torque transmitting sleeve
US5423808A (en) * 1991-11-08 1995-06-13 Ep Technologies, Inc. Systems and methods for radiofrequency ablation with phase sensitive power detection
US5290286A (en) * 1991-11-12 1994-03-01 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5197964A (en) * 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5197963A (en) * 1991-12-02 1993-03-30 Everest Medical Corporation Electrosurgical instrument with extendable sheath for irrigation and aspiration
US5490984A (en) * 1992-02-28 1996-02-13 Jsf Consulants Ltd. Use of injectable biomaterials for the repair and augmentation of the anal sphincters
US5281216A (en) * 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5314466A (en) * 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
US5281217A (en) * 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
US5277201A (en) * 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5313020A (en) * 1992-05-29 1994-05-17 Western Atlas International, Inc. Electrical cable
US5281218A (en) * 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5411025A (en) * 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5484400A (en) * 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5385544A (en) * 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5540655A (en) * 1992-08-12 1996-07-30 Vidamed, Inc. PBH ablation method and apparatus
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5549644A (en) * 1992-08-12 1996-08-27 Vidamed, Inc. Transurethral needle ablation device with cystoscope and method for treatment of the prostate
US5435805A (en) * 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5536240A (en) * 1992-08-12 1996-07-16 Vidamed, Inc. Medical probe device and method
US5421819A (en) * 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5542915A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5556377A (en) * 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5554110A (en) * 1992-08-12 1996-09-10 Vidamed, Inc. Medical ablation apparatus
US5531677A (en) * 1992-08-12 1996-07-02 Vidamed, Inc. Steerable medical probe with stylets
US5531676A (en) * 1992-08-12 1996-07-02 Vidamed, Inc. Medical probe device and method
US5549108A (en) * 1992-09-25 1996-08-27 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5293869A (en) * 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5401272A (en) * 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5313943A (en) * 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5509419A (en) * 1992-09-25 1996-04-23 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5309910A (en) * 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5334196A (en) * 1992-10-05 1994-08-02 United States Surgical Corporation Endoscopic fastener remover
US5383876A (en) * 1992-11-13 1995-01-24 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe for cutting and cauterizing tissue
US5545161A (en) * 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5486161A (en) * 1993-02-02 1996-01-23 Zomed International Medical probe device and method
US5403311A (en) * 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5520684A (en) * 1993-06-10 1996-05-28 Imran; Mir A. Transurethral radio frequency apparatus for ablation of the prostate gland and method
US5441499A (en) * 1993-07-14 1995-08-15 Dekna Elektro-U. Medizinische Apparatebau Gesellschaft Mbh Bipolar radio-frequency surgical instrument
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5536267A (en) * 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5599345A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5507743A (en) * 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5505728A (en) * 1994-01-31 1996-04-09 Ellman; Alan G. Electrosurgical stripping electrode for palatopharynx tissue
US5423812A (en) * 1994-01-31 1995-06-13 Ellman; Alan G. Electrosurgical stripping electrode for palatopharynx tissue
US5545434A (en) * 1994-04-01 1996-08-13 Huarng; Hermes Method of making irregularly porous cloth
US6254598B1 (en) * 1994-06-24 2001-07-03 Curon Medical, Inc. Sphincter treatment apparatus
US5505730A (en) * 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US6613047B2 (en) * 1994-06-24 2003-09-02 Curon Medical, Inc. Apparatus to treat esophageal sphincters
US6044846A (en) * 1994-06-24 2000-04-04 Edwards; Stuart D. Method to treat esophageal sphincters
US5558672A (en) * 1994-06-24 1996-09-24 Vidacare, Inc. Thin layer ablation apparatus
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US5609151A (en) * 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5545171A (en) * 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5558673A (en) * 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5624439A (en) * 1995-08-18 1997-04-29 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US6073052A (en) * 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease
US6063082A (en) * 1997-11-04 2000-05-16 Scimed Life Systems, Inc. Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device
US6440128B1 (en) * 1998-01-14 2002-08-27 Curon Medical, Inc. Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6589238B2 (en) * 1998-01-14 2003-07-08 Curon Medical, Inc. Sphincter treatment device
US6748255B2 (en) * 2001-12-14 2004-06-08 Biosense Webster, Inc. Basket catheter with multiple location sensors

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US9339618B2 (en) 2003-05-13 2016-05-17 Holaira, Inc. Method and apparatus for controlling narrowing of at least one airway
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8489192B1 (en) 2008-02-15 2013-07-16 Holaira, Inc. System and method for bronchial dilation
US8731672B2 (en) 2008-02-15 2014-05-20 Holaira, Inc. System and method for bronchial dilation
US9125643B2 (en) 2008-02-15 2015-09-08 Holaira, Inc. System and method for bronchial dilation
US8961508B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8226638B2 (en) 2008-05-09 2012-07-24 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9668809B2 (en) 2008-05-09 2017-06-06 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8808280B2 (en) 2008-05-09 2014-08-19 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8821489B2 (en) 2008-05-09 2014-09-02 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961507B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8932289B2 (en) 2009-10-27 2015-01-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9017324B2 (en) 2009-10-27 2015-04-28 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9675412B2 (en) 2009-10-27 2017-06-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8777943B2 (en) 2009-10-27 2014-07-15 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9931162B2 (en) 2009-10-27 2018-04-03 Nuvaira, Inc. Delivery devices with coolable energy emitting assemblies
US9649154B2 (en) 2009-11-11 2017-05-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation

Also Published As

Publication number Publication date Type
US20110098702A1 (en) 2011-04-28 application
EP1059887A1 (en) 2000-12-20 application
JP2002505138A (en) 2002-02-19 application
US20120109178A1 (en) 2012-05-03 application
US20040204708A1 (en) 2004-10-14 application
WO1999044522A1 (en) 1999-09-10 application
US6749607B2 (en) 2004-06-15 grant
CA2320109A1 (en) 1999-09-10 application
US20020123748A1 (en) 2002-09-05 application

Similar Documents

Publication Publication Date Title
US5997534A (en) Medical ablation device and methods thereof
US7854734B2 (en) Control system and process for application of energy to airway walls and other mediums
US6813520B2 (en) Method for ablating and/or coagulating tissue using moisture transport
US6517535B2 (en) Apparatus for ablating turbinates
US7167758B2 (en) Medical instruments and techniques for treatment of gastro-esophageal reflux disease
US6112123A (en) Device and method for ablation of tissue
US6962587B2 (en) Method for detecting and treating tumors using localized impedance measurement
US6802841B2 (en) Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction
EP1335677B1 (en) System of treating abnormal tissue in the human esophagus
US7399300B2 (en) Cardiac ablation devices and methods
US6752806B2 (en) Unrollable tip for a catheter
US6152143A (en) Method for treatment of air way obstructions
US20090112203A1 (en) Modification of airways by application of microwave energy
US20090012512A1 (en) Method and Apparatus for Gastrointestinal Tract Ablation to Achieve Loss of Persistent and/or Recurrent Excess Body Weight Following a Weight-Loss Operation
US7625371B2 (en) Tissue surface treatment apparatus and method
US6066139A (en) Apparatus and method for sterilization and embolization
US7422587B2 (en) Systems and methods for treating tissue regions of the body
US5730719A (en) Method and apparatus for cosmetically remodeling a body structure
US5836906A (en) Method and apparatus for treatment of air way obstructions
US5879349A (en) Apparatus for treatment of air way obstructions
US5728094A (en) Method and apparatus for treatment of air way obstructions
US7993336B2 (en) Methods and systems for determining physiologic characteristics for treatment of the esophagus
US5738114A (en) Method and apparatus for treatment of air way obstructions
US6091995A (en) Devices, methods, and systems for shrinking tissues
US7783358B2 (en) Methods and apparatus for treatment of obesity with an ultrasound device movable in two or three axes

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESPIRATORY DIAGNOSTIC, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CURON MEDICAL, INC. BY JOHN T. KENDALL, TRUSTEE;REEL/FRAME:022034/0702

Effective date: 20070413

Owner name: RESPIRATORY DIAGNOSTIC, INC.,WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CURON MEDICAL, INC. BY JOHN T. KENDALL, TRUSTEE;REEL/FRAME:022034/0702

Effective date: 20070413

AS Assignment

Owner name: MEDERI THERAPEUTICS, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESPIRATORY DIAGNOSTIC, INC.;REEL/FRAME:022047/0503

Effective date: 20080912

Owner name: MEDERI THERAPEUTICS, INC.,CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESPIRATORY DIAGNOSTIC, INC.;REEL/FRAME:022047/0503

Effective date: 20080912