US20040185081A1 - Prosthesis with multiple drugs applied separately by fluid jet application in discrete unmixed droplets - Google Patents
Prosthesis with multiple drugs applied separately by fluid jet application in discrete unmixed droplets Download PDFInfo
- Publication number
- US20040185081A1 US20040185081A1 US10/703,891 US70389103A US2004185081A1 US 20040185081 A1 US20040185081 A1 US 20040185081A1 US 70389103 A US70389103 A US 70389103A US 2004185081 A1 US2004185081 A1 US 2004185081A1
- Authority
- US
- United States
- Prior art keywords
- beneficial agent
- prosthesis
- interventional device
- loaded
- beneficial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims description 32
- 239000003814 drug Substances 0.000 title description 53
- 229940079593 drug Drugs 0.000 title description 51
- 230000009286 beneficial effect Effects 0.000 claims abstract description 511
- 239000003795 chemical substances by application Substances 0.000 claims description 543
- 238000011068 loading method Methods 0.000 claims description 56
- 229920000642 polymer Polymers 0.000 claims description 47
- 239000002904 solvent Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 38
- -1 antifibrins Substances 0.000 claims description 32
- 239000011230 binding agent Substances 0.000 claims description 28
- 239000003112 inhibitor Substances 0.000 claims description 16
- QFJCIRLUMZQUOT-XRDCAIOLSA-N rapamycin Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CCC2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-XRDCAIOLSA-N 0.000 claims description 14
- 230000021164 cell adhesion Effects 0.000 claims description 13
- 229950004354 phosphorylcholine Drugs 0.000 claims description 12
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical class C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 12
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 10
- 239000002318 adhesion promoter Substances 0.000 claims description 10
- 229960005309 estradiol Drugs 0.000 claims description 10
- 229930182833 estradiol Natural products 0.000 claims description 10
- 230000001028 anti-proliverative effect Effects 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 8
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 8
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 8
- 229940127218 antiplatelet drug Drugs 0.000 claims description 8
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 8
- 239000000106 platelet aggregation inhibitor Substances 0.000 claims description 8
- 229930012538 Paclitaxel Natural products 0.000 claims description 7
- 229960003957 dexamethasone Drugs 0.000 claims description 7
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 7
- 229960001592 paclitaxel Drugs 0.000 claims description 7
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- 229960002930 sirolimus Drugs 0.000 claims description 6
- 230000033115 angiogenesis Effects 0.000 claims description 5
- 239000003963 antioxidant agent Substances 0.000 claims description 5
- 210000002460 smooth muscle Anatomy 0.000 claims description 5
- 229960000103 thrombolytic agent Drugs 0.000 claims description 5
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims description 4
- 229960001138 acetylsalicylic acid Drugs 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 230000002927 anti-mitotic effect Effects 0.000 claims description 4
- 230000000118 anti-neoplastic effect Effects 0.000 claims description 4
- 230000002785 anti-thrombosis Effects 0.000 claims description 4
- 229940088710 antibiotic agent Drugs 0.000 claims description 4
- 239000003146 anticoagulant agent Substances 0.000 claims description 4
- 229940127219 anticoagulant drug Drugs 0.000 claims description 4
- 239000003080 antimitotic agent Substances 0.000 claims description 4
- 229940034982 antineoplastic agent Drugs 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 4
- 229960004676 antithrombotic agent Drugs 0.000 claims description 4
- 210000002889 endothelial cell Anatomy 0.000 claims description 4
- 230000003511 endothelial effect Effects 0.000 claims description 4
- 238000013508 migration Methods 0.000 claims description 4
- 230000005012 migration Effects 0.000 claims description 4
- 230000002537 thrombolytic effect Effects 0.000 claims description 4
- 230000003266 anti-allergic effect Effects 0.000 claims description 3
- 230000000692 anti-sense effect Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims description 3
- 239000003623 enhancer Substances 0.000 claims description 3
- 239000003102 growth factor Substances 0.000 claims description 3
- 206010020718 hyperplasia Diseases 0.000 claims description 3
- 239000013603 viral vector Substances 0.000 claims description 3
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 claims description 2
- 229960005167 everolimus Drugs 0.000 claims description 2
- 230000035876 healing Effects 0.000 claims description 2
- 229920000669 heparin Polymers 0.000 claims description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims 1
- 108090000695 Cytokines Proteins 0.000 claims 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims 1
- 230000002095 anti-migrative effect Effects 0.000 claims 1
- 229960002897 heparin Drugs 0.000 claims 1
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical group C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 87
- 230000033001 locomotion Effects 0.000 description 35
- 239000011248 coating agent Substances 0.000 description 27
- 238000000576 coating method Methods 0.000 description 27
- 239000010410 layer Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 19
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical group CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 18
- 230000008569 process Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- PYJNAPOPMIJKJZ-UHFFFAOYSA-N phosphorylcholine chloride Chemical group [Cl-].C[N+](C)(C)CCOP(O)(O)=O PYJNAPOPMIJKJZ-UHFFFAOYSA-N 0.000 description 11
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 11
- 229950009819 zotarolimus Drugs 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 239000004848 polyfunctional curative Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 229910001000 nickel titanium Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920002959 polymer blend Polymers 0.000 description 5
- 229960001124 trientine Drugs 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 3
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 3
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 3
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 208000037803 restenosis Diseases 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- JIFUZFGUNQQDSE-UHFFFAOYSA-N 11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-1(35),6,8,16,18,21,23,25,27,29,31,33-dodecaene-2,3,10,14,20-pentone Chemical compound C1=CC=CC=CC=CC=CC(=O)C=CC=CCC(=O)CCOC(=O)C2=CC=CCN2C(=O)C(=O)C(O2)=CC=CC2=C1 JIFUZFGUNQQDSE-UHFFFAOYSA-N 0.000 description 2
- NJNWCIAPVGRBHO-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-[(oxo-$l^{5}-phosphanylidyne)methyl]azanium Chemical group OCC[N+](C)(C)C#P=O NJNWCIAPVGRBHO-UHFFFAOYSA-N 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- 108010007859 Lisinopril Proteins 0.000 description 2
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 2
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- MOTJMGVDPWRKOC-QPVYNBJUSA-N atrasentan Chemical compound C1([C@H]2[C@@H]([C@H](CN2CC(=O)N(CCCC)CCCC)C=2C=C3OCOC3=CC=2)C(O)=O)=CC=C(OC)C=C1 MOTJMGVDPWRKOC-QPVYNBJUSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- 238000009513 drug distribution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- IVPPTWCRAFCOFJ-RTBURBONSA-N n-[(1s)-1-[(4s)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-[4-[4-(trifluoromethoxy)phenoxy]phenyl]sulfonylethyl]-n-hydroxyformamide Chemical compound O1C(C)(C)OC[C@@H]1[C@H](N(O)C=O)CS(=O)(=O)C(C=C1)=CC=C1OC1=CC=C(OC(F)(F)F)C=C1 IVPPTWCRAFCOFJ-RTBURBONSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229960005356 urokinase Drugs 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- KWPACVJPAFGBEQ-IKGGRYGDSA-N (2s)-1-[(2r)-2-amino-3-phenylpropanoyl]-n-[(3s)-1-chloro-6-(diaminomethylideneamino)-2-oxohexan-3-yl]pyrrolidine-2-carboxamide Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)CCl)C1=CC=CC=C1 KWPACVJPAFGBEQ-IKGGRYGDSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- CHUBIDOXSOIFBV-UHFFFAOYSA-N 1-methyl-n-(3,4,5-trimethoxyphenyl)indole-5-sulfonamide Chemical compound COC1=C(OC)C(OC)=CC(NS(=O)(=O)C=2C=C3C=CN(C)C3=CC=2)=C1 CHUBIDOXSOIFBV-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- FDSYTWVNUJTPMA-UHFFFAOYSA-N 2-[3,9-bis(carboxymethyl)-3,6,9,15-tetrazabicyclo[9.3.1]pentadeca-1(15),11,13-trien-6-yl]acetic acid Chemical compound C1N(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC2=CC=CC1=N2 FDSYTWVNUJTPMA-UHFFFAOYSA-N 0.000 description 1
- SFIUYASDNWEYDB-HHQFNNIRSA-N 6-chloro-1,1-dioxo-3,4-dihydro-2h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide;(2s)-1-[(2s)-2-methyl-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O.C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O SFIUYASDNWEYDB-HHQFNNIRSA-N 0.000 description 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 1
- KJEBULYHNRNJTE-DHZHZOJOSA-N Cinalong Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC\C=C\C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 KJEBULYHNRNJTE-DHZHZOJOSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229940118365 Endothelin receptor antagonist Drugs 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 229940123256 Fibroblast growth factor antagonist Drugs 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 229920001499 Heparinoid Polymers 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000023984 PPAR alpha Human genes 0.000 description 1
- 229910000566 Platinum-iridium alloy Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108010051181 TNK-tissue plasminogen activator Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 108010039185 Tenecteplase Proteins 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000004019 antithrombin Substances 0.000 description 1
- 229960003856 argatroban Drugs 0.000 description 1
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- QZVNQOLPLYWLHQ-ZEQKJWHPSA-N benidipine Chemical compound C1([C@H]2C(=C(C)NC(C)=C2C(=O)OC)C(=O)O[C@H]2CN(CC=3C=CC=CC=3)CCC2)=CC=CC([N+]([O-])=O)=C1 QZVNQOLPLYWLHQ-ZEQKJWHPSA-N 0.000 description 1
- 229960004916 benidipine Drugs 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229940097633 capoten Drugs 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229940082638 cardiac stimulant phosphodiesterase inhibitors Drugs 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000002894 chemical waste Substances 0.000 description 1
- HHHKFGXWKKUNCY-FHWLQOOXSA-N cilazapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N2[C@@H](CCCN2CCC1)C(O)=O)=O)CC1=CC=CC=C1 HHHKFGXWKKUNCY-FHWLQOOXSA-N 0.000 description 1
- 229960005025 cilazapril Drugs 0.000 description 1
- 229960003020 cilnidipine Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002308 endothelin receptor antagonist Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- 229960002297 fenofibrate Drugs 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 239000002554 heparinoid Substances 0.000 description 1
- 229940025770 heparinoids Drugs 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- 229960002437 lanreotide Drugs 0.000 description 1
- 108010021336 lanreotide Proteins 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- ZDXUKAKRHYTAKV-UHFFFAOYSA-N lercanidipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)(C)CN(C)CCC(C=2C=CC=CC=2)C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZDXUKAKRHYTAKV-UHFFFAOYSA-N 0.000 description 1
- 229960004294 lercanidipine Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 229940127215 low-molecular weight heparin Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003771 matrix metalloproteinase inhibitor Substances 0.000 description 1
- 229940121386 matrix metalloproteinase inhibitor Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 229940099246 mevacor Drugs 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 229960002460 nitroprusside Drugs 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002571 phosphodiesterase inhibitor Substances 0.000 description 1
- KASDHRXLYQOAKZ-ZPSXYTITSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-ZPSXYTITSA-N 0.000 description 1
- 229960005330 pimecrolimus Drugs 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical class [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006211 poly(glycolic acid-co-trimethylene carbonate) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920001849 poly(hydroxybutyrate-co-valerate) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001692 polycarbonate urethane Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- NMMVKSMGBDRONO-UHFFFAOYSA-N potassium;9-methyl-3-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)pyrido[1,2-a]pyrimidin-4-one Chemical compound [K+].CC1=CC=CN(C2=O)C1=NC=C2C1=NN=N[N-]1 NMMVKSMGBDRONO-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 229940088953 prinivil Drugs 0.000 description 1
- 229940117265 prinzide Drugs 0.000 description 1
- 239000002089 prostaglandin antagonist Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 108010073863 saruplase Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229960000216 tenecteplase Drugs 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YWBFPKPWMSWWEA-UHFFFAOYSA-O triazolopyrimidine Chemical compound BrC1=CC=CC(C=2N=C3N=CN[N+]3=C(NCC=3C=CN=CC=3)C=2)=C1 YWBFPKPWMSWWEA-UHFFFAOYSA-O 0.000 description 1
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical group CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C13/00—Means for manipulating or holding work, e.g. for separate articles
- B05C13/02—Means for manipulating or holding work, e.g. for separate articles for particular articles
- B05C13/025—Means for manipulating or holding work, e.g. for separate articles for particular articles relatively small cylindrical objects, e.g. cans, bottles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
- B05C5/0208—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
- B05C5/0212—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
- B05C5/0216—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/825—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/826—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91566—Adjacent bands being connected to each other connected trough to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91575—Adjacent bands being connected to each other connected peak to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
- A61F2250/0068—Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
Definitions
- the present invention relates to an interventional device including a prosthesis loaded with a plurality of discrete droplets of a first beneficial and of a second beneficial agent.
- the invention also relates to an interventional device having a first surface that is loaded with a first beneficial agent, and a second surface loaded with a second beneficial agent.
- the invention also relates to a method of loading multiple beneficial agents onto first and second surfaces of a prosthesis, and to a method of manufacturing an interventional device for the delivery of a first beneficial agent and a second beneficial agent from separate surfaces.
- Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease. This procedure generally entails introducing a catheter assembly into the cardiovascular system of a patient via the brachial or femoral artery, and advancing the catheter assembly through the coronary vasculature until a balloon portion thereon is positioned across an occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the vessel wall. Subsequently, the balloon is deflated to allow the catheter assembly to be withdrawn from the vasculature.
- PTCA Percutaneous transluminal coronary angioplasty
- PCTA While PCTA is widely used, it suffers from two unique problems.
- the blood vessel may suffer acute occlusion immediately after or within the initial hours after the dilation procedure. Such occlusion is referred to as “abrupt closure.”
- Abrupt closure occurs in approximately five percent of cases in which PTCA is employed.
- the primary mechanisms of abrupt closures are believed to be elastic recoil, arterial dissection and/or thrombosis.
- the second problem associated with this procedure is the re-narrowing of an artery after an initially successful angioplasty. This re-narrowing is referred to as “restenosis,” which among other things, typically occurs within the first six months after angioplasty. Restenosis is believed to be due to the proliferation and migration of cellular components from the arterial wall, as well as through geometric changes in the arterial wall referred to as “remodeling.”
- an expandable interventional device or prosthesis is implanted in the lumen to maintain the vascular patency. Additionally, to better effectuate the treatment of such vascular disease, it is preferable to load an intraluminal device or prosthesis with one or more beneficial agents, such as antiproliferatives, for delivery to a lumen.
- beneficial agents such as antiproliferatives
- One commonly applied technique for the local delivery of a drug is through the use of a polymeric carrier coated onto the surface of a stent, as disclosed in Berg et al., U.S. Pat. No. 5,464,650, the disclosure of which is incorporated herein by reference.
- the invention includes an interventional device for the delivery of multiple beneficial agents wherein the device comprises a prosthesis to be deployed in a lumen, the prosthesis having a surface; a plurality of discrete droplets of a first beneficial agent loaded on the surface of the prosthesis; and a plurality of discrete droplets of a second beneficial agent loaded on the surface of the prosthesis.
- the first beneficial agent and the second beneficial agent can be incompatible with each other or detrimental to each other.
- the first beneficial agent can be dissolved in a first solvent and the second beneficial agent can be dissolved in a second solvent, wherein the first solvent and the second solvent are immiscible.
- the first beneficial agent can react with the second beneficial agent. It is possible for the first beneficial agent to be more hydrophobic than the second beneficial agent.
- the discrete droplets of the first beneficial agent can be loaded along a first controlled trajectory and the discrete droplets of the second beneficial agent can be loaded along a second controlled trajectory, wherein the first controlled trajectory and the second controlled trajectory are aligned to allow the first beneficial agent and the second beneficial agent to mix prior to being loaded onto the surface of the prosthesis.
- the discrete droplets of the first beneficial agent and of the second beneficial agent can mix on the surface of the prosthesis.
- the first beneficial agent can be dissolved in a solvent wherein the second beneficial agent causes the first beneficial agent to precipitate out of the solvent.
- the first beneficial agent can be mixed with a binder, wherein the second beneficial agent cures the binder.
- the first beneficial agent and the second beneficial agent also can be loaded on the prosthesis in unmixed droplets to provide an interspersed pattern of the first beneficial agent and the second beneficial agent.
- the invention also contemplates an interventional device wherein the first beneficial agent and the second beneficial agent are loaded on the prosthesis in unmixed droplets to provide an overlapping pattern of the first beneficial agent and the second beneficial agent.
- an interventional device wherein at least one of the first beneficial agent and the second beneficial agent is mixed with a binder prior to being loaded on the prosthesis.
- the second beneficial agent cures the binder on the prosthesis with the first beneficial agent mixed therein.
- an interventional device wherein the first beneficial agent is mixed with a binder having a first release rate for delivery of the first beneficial agent.
- the second beneficial agent can be mixed with a binder having a second release rate for delivery of the second beneficial agent; the first release rate being different than the second release rate.
- the first beneficial agent can be different than the second beneficial agent.
- an interventional device wherein the first beneficial agent has a first local areal density and the second beneficial agent has a second local areal density. At least one of the first local areal density and the second local areal density can be uniform across a selected portion of the prosthesis. Also, at least one of the first local areal density of beneficial agent and the second local areal density can be varied across a selected portion of the prosthesis. The first local areal density of the first beneficial agent can be different than the second local areal density of the second beneficial agent.
- the interventional device can further include a third beneficial agent loaded on at least one of the first surface and second surface of the prosthesis.
- an interventional device wherein the prosthesis further includes a layer of base material on a selected portion thereof, and the first beneficial agent and the second beneficial agent are loaded to the base material layer in unmixed droplets.
- the base material layer defines a pattern for loading the first beneficial agent and the second beneficial agent.
- the prosthesis includes at least one cavity defined therein.
- the cavity can be filled with multiple beneficial agents.
- the at least one cavity is at least partially loaded with a base material, and the first beneficial agent and the second beneficial agent are loaded to the base material.
- the invention also provides a method of loading multiple beneficial agents onto a prosthesis for delivery within a lumen wherein the method comprises the steps of providing a prosthesis to be deployed within a lumen; providing a first beneficial agent to be loaded on the prosthesis; providing a second beneficial agent to be loaded on the prosthesis; dispensing the first beneficial agent and the second beneficial agent in discrete droplets onto the prosthesis; each droplet having a controlled trajectory.
- the first beneficial agent provided by the first beneficial agent providing step is incompatible with the second beneficial agent provided by the second beneficial agent providing step.
- the first beneficial agent provided by the first beneficial agent providing step can be dissolved in a first solvent and the second beneficial agent provided by the second beneficial agent providing step can be dissolved in a second solvent.
- the first solvent and the second solvent can be immiscible.
- the first beneficial agent provided by the first beneficial agent providing step also can be reactive with the second beneficial agent provided by the second beneficial agent providing step.
- the first beneficial agent provided by the first beneficial agent providing step can react with the second beneficial agent provided by the second beneficial agent providing step to form a third beneficial agent onto the prosthesis.
- the dispensing steps can be performed to define an interspersed pattern of the first beneficial agent droplets and the second beneficial agent droplets on the prosthesis, if desired.
- the dispensing steps are performed simultaneously.
- the dispensing steps also can be performed to define an overlapping pattern of the first beneficial agent and the second beneficial agent.
- the method can further include the step of mixing the first beneficial agent with a binder prior to the first beneficial agent dispensing step.
- the second beneficial agent provided by the second beneficial agent providing step cures the binder on the prosthesis with the first beneficial agent mixed therein.
- the method can further include the step of mixing the first beneficial agent with a first binder having a first release rate for delivery of the first beneficial agent and the second beneficial agent with a second binder having a second release rate for delivery of the second beneficial agent.
- the first release rate can be different than the second release rate, and first beneficial agent can be different than the second beneficial agent.
- a method is provided wherein the first beneficial agent dispensing step is performed to provide the first beneficial agent with a first local areal density and the second beneficial agent dispensing step is performed to provide the second beneficial agent with a second local areal density, wherein at least one of the first local areal density and the second local areal density is varied across a selected portion of the prosthesis.
- a method can be provided further including the step of applying a layer of base material on a selected portion of the prosthesis, and the dispensing steps are performed to introduce the first beneficial agent and the second beneficial agent to the base material layer in unmixed droplets.
- the base material layer can be applied to define a pattern for loading the first beneficial agent and the second beneficial agent.
- the loading steps can include introducing at least one of the first beneficial agent and the second beneficial agent to the base material layer.
- the base material layer applied by the applying step can define a pattern for loading at least one of the first beneficial agent and second beneficial agent.
- the invention also includes an interventional device for delivery of beneficial agent, where the beneficial agent can be selected from a group consisting of antithrombotics, anticoagulants, antiplatelet agents, anti-lipid agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, smooth muscle cell inhibitors, antibiotics, growth factor inhibitors, cell adhesion inhibitors, cell adhesion promoters, antimitotics, antifibrins, antioxidants, antineoplastics, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors, antisense compounds, oligionucleotides, cell permeation enhancers, angiogenesis agents, and combinations thereof.
- beneficial agent can be selected from a group consisting of antithrombotics, anticoagulants, antiplatelet agents, anti-lipid agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, smooth muscle cell inhibitors, antibiotics, growth
- the prosthesis can be a stent, graft, stent-graft, filter, or other intravascular device.
- the interventional device can include an overcoat applied to at least one of the inner surface or the outer surface of the prosthesis.
- the fluid-dispenser can be a drop-on-demand fluid type printer or a charge-and-deflect type print head.
- the beneficial agent can be mixed with a binder and also can be loaded onto the prosthesis with a polymer.
- the polymer is preferably biodegradable.
- the polymer can be a macromolecule containing pendant phosphorylcholine groups such as poly(MPC w :LMA x :HPMA y :TSMA z ), where MPC is 2 methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate.
- MPC is 2 methacryoyloxyethylphosphorylcholine
- LMA is lauryl methacrylate
- HPMA is hydroxypropyl methacrylate
- TSMA trimethoxysilylpropyl methacrylate.
- the beneficial agents can be applied to the interventional device using a fluid jet dispenser capable of dispensing discrete droplets along a controlled trajectory, such as drop-on-demand fluid type printer or a charge-and-deflect type printer.
- the beneficial agent can be mixed with a binder.
- the beneficial agent preferably is loaded onto the prosthesis with a polymer.
- the polymer is a phosphorylcholine material.
- the prosthesis has a tubular body when deployed, wherein the tubular body defines a longitudinal axis.
- the first surface of the prosthesis is defined as an inner surface of the tubular body, and the second surface of the prosthesis is defined as an outer surface of the tubular body.
- the first surface is loaded with beneficial agent selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial healing, agents that promote migration and estradiol.
- beneficial agent selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial healing, agents that promote migration and estradiol.
- the second beneficial agent can be selected from a group consisting of anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog, ABT-578, i.e.,3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]- 1 -methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4
- an interventional device wherein the first surface of the prosthesis is defined by a plurality of interconnecting structural members and prosthesis includes a first selected set of the structural members and the second surface of the prosthesis includes a second selected set of the structural members. At least one of the first selected set of structural members and the second selected set of structural members can define at least one ring-shaped element extending around a circumference of the tubular body.
- an interventional device wherein the first beneficial agent has a first local areal density and the second beneficial agent has a second local areal density. At least one of the first local areal density and the second local areal density can be uniform across at least one of the first surface and second surface of the prosthesis. Also, at least one of the first local areal density of beneficial agent and the second local areal density can be varied across at least one of the first surface and second surface of the prosthesis. The first local areal density of the first beneficial agent can be different than the second local areal density of the second beneficial agent.
- the interventional device can further include an additional beneficial agent loaded on at least one of the first surface and second surface of the prosthesis.
- an interventional device wherein the prosthesis further includes a layer of a base material on at least a portion of at least one of the first surface and the second surface of the prosthesis.
- the beneficial agent can be loaded to the base material layer.
- the base material layer preferably defines a pattern on the prosthesis for loading the beneficial agent.
- the invention also provides a method of manufacturing an interventional device for the delivery of beneficial agent wherein the method comprises the steps of providing a prosthesis to be deployed in a lumen, the prosthesis having a first surface and a second surface; providing a first beneficial agent to be delivered from the prosthesis; providing a second beneficial agent to be delivered from the prosthesis; loading the first beneficial agent to at least a portion of the first surface; and loading the second beneficial agent to at least a portion of the second surface. At least one of the first beneficial agent and the second beneficial agent can be loaded by a fluid-dispenser.
- the prosthesis provided by the prosthesis providing step has a tubular body when deployed, and the first surface of the prosthesis can be defined as an inner surface of the tubular body and the second surface of the prosthesis is defined as an outer surface of the tubular body.
- the first beneficial agent can be applied to the inner surface of the tubular body by a fluid-dispenser.
- the first beneficial agent preferably is selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial recovery, agents that promote cell migration agents, angiogenesis agents, and estradiol.
- the second beneficial agent can be selected from a group consisting of anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog, ABT-578, i.e., 3S,6R,7E,9R,10R, 12R,14S,15E,17E, 19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]o
- a method wherein the first beneficial agent is loaded with a first local areal density by the first beneficial agent loading step, and the second beneficial agent is loaded with a second local areal density by the second beneficial agent loading step. At least one of the first local areal density and the second local areal density can be varied across a selected portion of the prosthesis.
- the method also can include the steps of providing a third beneficial agent and loading the third beneficial agent on at least one of the first surface and the second surface of the prosthesis. Additionally, the method can further include the step of applying a layer of base material on a selected portion of at least one of the first surface and the second surface.
- FIGS. 1 a - 1 c are schematic representations of a prosthesis loaded with beneficial agent having a first portion and a second portion having different local areal densities of beneficial agent in accordance with the present invention, and graphs depicting corresponding areal density.
- FIG. 2 is a schematic representation of a first prosthesis and a second prosthesis configured to define a nested interventional device, each at least partially loaded with beneficial agent in accordance with the present invention.
- FIG. 3 is a schematic representation of the first prosthesis and second prosthesis of FIG. 2, deployed in overlapping relationship to provide a controlled local areal density across the length of the interventional device.
- FIG. 4 is a schematic representation of a first prosthesis and second prosthesis configured to define a bifurcated interventional device, each at least partially loaded with beneficial agent in accordance with the present invention.
- FIG. 5 is a schematic representation of the first prosthesis and second prosthesis of FIG. 4, deployed in an overlapping relationship to provide a bifurcated interventional device having a controlled local areal density across a length of the interventional device.
- FIG. 6 is a schematic representation of an interventional device
- FIG. 6 a is a detail schematic depicting a raster format for loading beneficial agent thereon.
- FIG. 7 is a schematic representation of an embodiment of the system of the present invention.
- FIGS. 8 a - 8 d are schematic representations of an “off-axis” dispensing method at various cross-sections of the device of FIG. 6.
- FIG. 9 is a schematic representation of another embodiment of the system of the present invention.
- FIG. 10 is a schematic representation of discrete droplets loaded in an overlapping manner.
- FIG. 11 is a schematic representation of a method of loading beneficial agent on an inner surface of an interventional device.
- FIG. 12 is a schematic representation of the cross-section of the structural element of a prosthesis having a cavity therein.
- FIG. 13 is a schematic representation of the holding tool assembly of the system of the invention
- FIG. 13 a is a detail schematic depicting the holding tool assembly including the spindle.
- an interventional device for delivery of beneficial agent within a lumen.
- the present invention is suited for providing an interventional device having a controlled areal density of beneficial agent for the treatment and prevention of vascular or other intraluminal diseases.
- controlled areal density is understood to mean a known or predetermined amount of beneficial agent, either by weight or volume, over a unit surface area of the interventional device.
- interventional device refers broadly to any device suitable for intraluminal delivery or implantation.
- interventional devices include stents, grafts, stent-grafts, filters, and the like.
- such devices may comprise one or more prostheses, each having a first cross-sectional dimension or profile for the purpose of delivery and a second cross-sectional dimension or profile after deployment.
- Each prosthesis may be deployed by known mechanical techniques such as balloon expansion deployment techniques, or by electrical or thermal actuation, or self-expansion deployment techniques, as well known in the art. Examples of such for purpose of illustration include U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat.
- the interventional device generally includes a prosthesis 10 loaded with beneficial agent to provide a local areal density of beneficial agent across a length of the interventional device.
- the prosthesis may be a stent, a graft, a stent-graft, a filter, or the like, as previously noted, for intravascular or coronary delivery and/or implantation.
- the prosthesis may be any type of intraluminal member capable of being loaded with beneficial agent.
- the prosthesis can be in an expanded or unexpanded state during the loading of beneficial agent.
- the underlying structure of the prosthesis can be virtually any structural design and the prosthesis can be composed any suitable material such as, but not limited to, stainless steel, “MP35N,” “MP20N,” elastinite (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, polymer, ceramic, tissue, or combinations thereof.
- MP35N and “MP20N” are understood to be trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa.
- “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium and 10% molybdenum.
- the prosthesis can be made from bioabsorbable or biostable polymers.
- the surface of the prosthesis can include one or more reservoirs or cavities formed therein, as described further below.
- the prosthesis can be fabricated utilizing any number of methods known in the art.
- the prosthesis can be fabricated from a hollow or formed tube that is machined using lasers, electric discharge milling, chemical etching or other known techniques.
- the prosthesis can be fabricated from a sheet that is rolled into a tubular member, or formed of a wire or filament construction as known in the art.
- the prosthesis is at least partially loaded with beneficial agent ( 10 a, 10 b, 10 c ).
- beneficial agent refers to any compound, mixture of compounds, or composition of matter consisting of a compound, which produces a beneficial or useful result.
- the beneficial agent can be a polymer, a marker, such as a radiopaque dye or particles, or can be a drug, including pharmaceutical and therapeutic agents, or an agent including inorganic or organic drugs without limitation.
- the agent or drug can be in various forms such as uncharged molecules, components of molecular complexes, pharmacologically-acceptable salts such as hydrochloride, hydrobromide, sulfate, laurate, palmitate, phosphate, nitrate, borate, acetate, maleate, tartrate, oleate, and salicylate.
- pharmacologically-acceptable salts such as hydrochloride, hydrobromide, sulfate, laurate, palmitate, phosphate, nitrate, borate, acetate, maleate, tartrate, oleate, and salicylate.
- An agent or drug that is water insoluble can be used in a form that is a water-soluble derivative thereof to effectively serve as a solute, and on its release from the device, is converted by enzymes, hydrolyzed by body pH, or metabolic processes to a biologically active form.
- the agents or drug formulations can have various known forms such as solutions, dispersions, pastes, particles, granules, emulsions, suspensions and powders.
- the drug or agent may or may not be mixed with polymer or a solvent as desired.
- the drug or agent can include antithrombotics, anticoagulants, antiplatelet agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, inhibitors of smooth muscle proliferation, antibiotics, growth factor inhibitors, or cell adhesion inhibitors.
- Other drugs or agents include but are not limited to antineoplastics, antimitotics, antifibrins, antioxidants, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors, antisense compounds, oligionucleotides, cell permeation enhancers, angiogenesis agents, and combinations thereof.
- antithrombotics examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapriprost, prostacyclin and prostacylin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa (platelet membrane receptor antagonist antibody), recombinant hirudin, and thrombin inhibitors such as AngiomaxTM, from Biogen, Inc., Cambridge, Mass; and thrombolytic agents, such as urokinase, e.g., AbbokinaseTM from Abbott Laboratories Inc., North Chicago, Ill., recombinant urokinase and pro-urokinase from Abbott Laboratories Inc., tissue plasminogen activator (A)
- cytostatic or antiproliferative agents include rapamycin and its analogs such as everolimus, ABT-578, i.e., 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(
- topoisomerase inhibitors such as etoposide and topotecan, as well as antiestrogens such as tamoxifen may be used.
- anti-inflammatories include colchicine and glucocorticoids such as betamethasone, cortisone, dexamethasone, budesonide, prednisolone, methylprednisolone and hydrocortisone.
- Non-steroidal anti-inflammatory agents include flurbiprofen, ibuprofen, ketoprofen, fenoprofen, naproxen, diclofenac, diflunisal, acetominophen, indomethacin, sulindac, etodolac, diclofenac, ketorolac, meclofenamic acid, piroxicam and phenylbutazone.
- antineoplastics examples include alkylating agents such as altretamine, bendamucine, carboplatin, carmustine, cisplatin, cyclophosphamide, fotemustine, ifosfamide, lomustine, nimustine, prednimustine, and treosulfin, antimitotics such as vincristine, vinblastine, paclitaxel, e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn., docetaxel, e.g., Taxotere® from Aventis S.A., Frankfort, Germany, antimetabolites such as methotrexate, mercaptopurine, pentostatin, trimetrexate, gemcitabine, azathioprine, and fluorouracil, and antibiotics such as doxorubicin hydrochloride, e.g., Adriamycin® from Pharmacia & Upjohn,
- Additional drugs which may be utilized in this application include dexamethasone; fenofibrate; inhibitors of tyrosine kinase such as RPR-101511A; PPAR-alpha agonists such as TricorTM formulation from Abbott Laboratories Inc., North Chicago, Ill.; endothelin receptor antagonists such as ABT-627 having general formula C 29 H 38 N 2 O 6 .ClH, and the following structural formula
- matrix metalloproteinase inhibitors such as ABT-518 ⁇ [S-(R*,R*)]-N-[1-(2,2-dimethyl-1,3-dioxol-4-yl)-2-[[4-[4-(trifluoro-methoxy)-phenoxy]phenyl]sulfonyl]ethyl]-N-hydroxyformamide ⁇ , having general formula C 21 H 22 F 3 NO 8 S and having the following structural formula
- ABT 620 ⁇ 1-Methyl-N-(3,4,5-trimethoxyphenyl)-1H-indole-5-sulfonamide ⁇ , which is disclosed in U.S. Pat. No. 6,521,658, the disclosure of which is incorporated herein by reference; antiallergic agents such as permirolast potassium nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine, and nitric oxide.
- antiallergic agents such as permirolast potassium nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine, and nitric oxide.
- beneficial agents are known for their preventive and treatment properties, the substances or agents are provided by way of example and are not meant to be limiting. Further, other beneficial agents that are currently available or may be developed are equally applicable for use with the present invention.
- the beneficial agent can include a binder to carry, load, or allow sustained release of an agent, such as but not limited to a suitable polymer or similar carrier.
- a suitable polymer or similar carrier such as but not limited to a suitable polymer or similar carrier.
- the term “polymer” is intended to include a product of a polymerization reaction inclusive of homopolymers, copolymers, terpolymers, etc., whether natural or synthetic, including random, alternating, block, graft, branched, cross-linked, blends, compositions of blends and variations thereof.
- the polymer may be in true solution, saturated, or suspended as particles or supersaturated in the beneficial agent.
- the polymer can be biocompatible, or biodegradable.
- the polymeric material include phosphorylcholine linked macromolecules, such as a macromolecule containing pendant phosphorylcholine groups such as poly(MPC w :LMA x :HPMA y :TSMA z ), where MPC is 2-methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate, polycaprolactone, poly-D,L-lactic acid, poly-L-lactic acid, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids),
- Non-limiting examples of other suitable polymers include thermoplastic elastomers in general, polyolefin elastomers, EPDM rubbers and polyamide elastomers, and biostable plastic material such as acrylic polymers, and its derivatives, nylon, polyesters and expoxies.
- the polymer contains pendant phosphoryl groups as disclosed in U.S. Pat. Nos. 5,705,583 and 6,090,901 to Bowers et al. and U.S. Pat. No. 6,083,257 to Taylor et al., which are all incorporated herein by reference.
- the beneficial agent can include a solvent.
- the solvent can be any single solvent or a combination of solvents.
- suitable solvents include water, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ketones, dimethyl sulfoxide, tetrahydrofuran, dihydrofuran, dimethylacetamide, acetates, and combinations thereof.
- the solvent is ethanol. More preferably, the solvent is isobutanol.
- multiple beneficial agents are dissolved or dispersed in the same solvent. For purpose of illustration and not for limitation, dexamethasone, estradiol, and paclitaxel are dissolved in isobutanol.
- dexamethasone, estradiol, and paclitaxel are dissolved in ethanol.
- dexamethasone, estradiol, and ABT-578 i.e., the rapamycin analog, 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23-S,26R,27R,34aS)9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,
- the beneficial agent includes any of the aforementioned drugs, agents, polymers, and solvents either alone or in combination.
- the prosthesis can be constructed to include pores or reservoirs which are impregnated or filled with beneficial agent or multiple beneficial agents.
- the pores can be sized or spaced apart to correspond to or limit the amount of beneficial agent contained therein in accordance with the desired local areal density pattern along the length of the interventional device, wherein larger pores or more dense spacing would be provided in such portions intended to have a greater local areal density.
- uniform pores sizes can be provided but the amount of beneficial agent loaded therein is limited accordingly.
- a membrane of biocompatible material can then be applied over the pores or reservoirs for sustained or controlled release of the beneficial agent from the pores or reservoirs.
- the beneficial agent can be loaded directly onto the prosthesis or alternatively, the beneficial agent is loaded onto a base material layer that is applied to a surface of the prosthesis.
- a base coating such as a binder or suitable polymer, is applied to a selected surface of the prosthesis such that a desired pattern is formed on the prosthesis surface.
- Beneficial agent is then applied directly to the pattern of the base material.
- the desired pattern corresponds to the desired controlled local areal density.
- a greater amount of base material layer is applied to portions of the interventional device intended to have a greater local areal density of beneficial agent, and a lesser amount of base material is applied to portions of the interventional device intended to have a lower local areal density of beneficial agent.
- a suitable base coating capable of retaining beneficial agent therein can be applied uniformly over the surface of the prosthesis, and then selected portions of the base coating can be loaded with the beneficial agent in accordance with the invention.
- a greater amount of beneficial agent would be loaded over a unit surface area of the base coating intended to have a greater local areal density and a lower amount of beneficial agent would be loaded over a unit surface area intended to have a lower local areal density.
- the beneficial agent can be applied directly to the surface of the prosthesis.
- a binder or similar component can be required to ensure sufficient adhesion.
- this coating technique can include admixing the beneficial agent with a suitable binder or polymer to form a coating mixture, which is then coated onto the surface of the prosthesis.
- the coating mixture is prepared in higher or lower concentrations of beneficial agent as desired, and then applied to selected portions of the prosthesis appropriately.
- a porous or biodegradable membrane or layer made of biocompatible material can be coated over the beneficial agent for sustained release thereof, if desired.
- Conventional coating techniques can be utilized to coat the beneficial agent onto the surface of the prosthesis such as spraying, dipping or sputtering and still provide the desired effect if performed appropriately. With such techniques, it may be desirable or necessary to use known masking or extraction techniques to control the location and amount in which beneficial agent is loaded. Prior to coating the prosthesis with beneficial agent, optical machine vision inspection of the prosthesis preferably is utilized to ensure that no mechanical defects exist. Defective prostheses thus can be rejected before wasting beneficial agent, some of which may be very costly.
- the beneficial agent is “printed” onto the surface of the prosthesis by a fluid-dispenser having a dispensing element capable of dispensing beneficial agent in discrete droplets, wherein each droplet has a controlled trajectory. If desired, printing can be combined with conventional coating techniques such as spraying or dipping.
- Fluid-dispenser refers broadly to any device having a dispensing element capable of dispensing fluid in discrete droplets wherein each droplet has a controlled trajectory.
- examples of such fluid-dispensers include fluid-jetting and similar fluid dispensing technology devices such as a drop-on-demand fluid printer and a charge-and-deflect fluid printer.
- other fluid-dispensers capable of forming a fluid jet or capable of dispensing discrete droplets having a controlled trajectory are within the scope of the present invention.
- the fluid-dispenser is a fluid-jet print head. Such equipment is available from MicroFab Technologies of Plano, Tex.
- Fluid-jetting and similar technology provides numerous advantages not available with conventional loading techniques.
- fluid jetting technology can be used to deposit materials, such as chemical reagents, in controlled volumes onto a substrate at a controlled location, as disclosed in U.S. Pat. No. 4,877,745 to Hayes et al., incorporated herein by reference.
- Fluid jetting can also be used to deposit materials in a reproducible way. Fluid-jet based deposition of materials is data driven, non-contact, and requires no tooling. The “printing” information can be created directly from Calif.D information and stored digitally in software or hardware. Thus, no masks or screens are required. As an additive process with no chemical waste, fluid-jetting is environmentally friendly. Other advantages include the efficiency of fluid jet printing technology. For example, fluid-jetting can dispense spheres of fluid with diameters of 15-200 um at rates of 1-25,000 per second for single droplets on demand, and up to 1 MHz for continuous droplets. See Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems,” Proc. SPIE Conf. on Microfluidics, (October 2001), incorporated herein by reference.
- a method of loading beneficial agent onto a prosthesis for delivery within a lumen comprises the steps of providing a prosthesis, beneficial agent to be delivered from the prosthesis, and a fluid-dispenser having a dispensing element capable of dispensing the beneficial agent in discrete droplets, wherein each droplet has a controlled trajectory.
- the method further includes creating relative movement between the dispensing element and the prosthesis to define a dispensing path and selectively dispensing the beneficial agent in a raster format to a predetermined portion of the prosthesis along the dispensing path.
- the beneficial agent is selectively dispensed from the dispensing element to a predetermined portion of the prosthesis in a raster format along a dispensing path.
- raster format refers to a continuous or non-continuous dispensing pattern of droplets of beneficial agent dispensed at specific intervals.
- a traversal or a pass 154 is completed when the relative motion reverses direction. That is, relative motion continues past the prosthesis, and then decelerates, stops, reverses direction and accelerates to a constant velocity.
- the position of the dispensing element 150 or prosthesis 10 relative to the dispensing element preferably is changed or incremented such that additional droplets do not impact in the same location during the subsequent pass, although a certain degree of overlap may be permitted.
- a fluid dispensing width “w” is defined as the dispensing element dispenses the beneficial agent along the prosthesis.
- the dispensing path defined by the relative movement between the dispensing element and the prosthesis can include a series of parallel passes wherein each parallel pass has a path width no greater than the fluid dispensing width defined by the dispensing element, although a greater path width can be defined if desired.
- the dispensing path created by the relative motion of the dispensing element 150 and the prosthesis 10 can include a single continuous helix that wraps continuously around the prosthesis tubular body and along the length of the prosthesis.
- FIG. 10 schematically depicts such a helical path.
- selectively fluid dispensing in a raster format similar to that of the linear paths previously described can be performed using a helical path if desired.
- the direction of travel of relative motion consists of continuously rotating, for example, the prosthesis 10 to be loaded and then incrementally advancing the dispensing element axially along the prosthesis.
- Both axial and radial motion preferably begin before the prosthesis 10 is aligned with the dispensing element 150 to receive droplets, so as to enable acceleration of both axes to a constant velocity, and continues beyond the prosthesis where both movements may decelerate, and stop.
- the position of the dispensing element 150 or of the prosthesis 10 relative to the dispensing element is moved or incremented axially such that additional droplets of beneficial agent preferably do not impact in the same location. Any degree of overlap may be permitted to achieve the desired areal density of beneficial agent.
- the prosthesis 10 includes a plurality of interconnected structural members 12 defining openings 14 therebetween and the beneficial agent 15 is dispensed only when the dispensing element 150 and the structural members 12 within a predetermined portion of the prosthesis 10 are aligned with each other. Accordingly, in this preferred embodiment, dispensing beneficial agent 15 ceases when the dispensing element 150 and the structural members 12 of the prosthesis are not in alignment.
- the method can include a detecting step to determine when the dispensing element 150 is aligned with the structural members 12 of a prosthesis 10 .
- the detecting step can be achieved by a sensor 160 such as an optical detector, e.g., linear array detector or infrared detector, ultrasound probe, temperature probe, camera, capacitance meter, electrometer, hall-effect probe, and the like.
- a sensor 160 such as an optical detector, e.g., linear array detector or infrared detector, ultrasound probe, temperature probe, camera, capacitance meter, electrometer, hall-effect probe, and the like.
- a controller 170 may be provided that is programmed with the structural member locations of a predetermined portion of the prosthesis to be loaded with beneficial agent. In this manner, the dispensing step is performed by the dispensing element as operated by the programmed controller.
- dispensing element 150 can be aligned such that the controlled trajectory of each droplet is directed normal to the surface of the prosthesis, or at an angle thereto.
- the trajectory path can be aligned to cross the central axis of the prosthesis, or be aligned off-axis thereto.
- the method of loading beneficial agent onto the prosthesis includes providing a prosthesis including a tubular member having a central axis defined along a length of the tubular member. This method further includes dispensing beneficial agent from a dispensing element capable of dispensing beneficial agent in discrete droplets and in a controlled trajectory to a surface of the prosthesis, wherein the controlled trajectory of beneficial agent is aligned so as not to intersect the central axis of the tubular member.
- FIGS. 8 a - 8 d depict various cross-sections of the interventional device 10 of FIG. 6.
- the trajectory path 152 of the discrete droplets 155 is aligned “off-axis” so as not to pass through the central axis 11 of the tubular member.
- the trajectory path 152 of the discrete droplets 155 is aligned tangentially between an inner surface and an outer surface of the tubular wall of the prosthesis 10 . In this manner, likelihood of impact of a discrete droplet 155 of beneficial agent 15 with a surface of the prosthesis 10 is enhanced.
- alternative off-axis trajectory path alignment can be used in accordance with the invention.
- the prosthesis provided by the prosthesis providing step includes a tubular member having a plurality of interconnected structural members 12 defining openings 14 therebetween, and further wherein the controlled trajectory 152 of each droplet is substantially tangential to a wall or surface of the structural members 12 within the predetermined portion of the prosthesis.
- the controlled trajectory 152 of beneficial agent 15 dispensed from the dispensing element 150 is aligned such that it does not intersect the central axis of the prosthesis. This process allows for greater coverage of the structural elements, without requiring selective operation of the dispensing element, if desired.
- the dispensing element is at least controlled to terminate dispensing when the trajectory path is not aligned with the solid profile of the predetermined area to be loaded, e.g. axially beyond either end 13 of the prosthesis 10 , shown in FIG. 6.
- the dispensing element is turned “on” only when the trajectory path of beneficial agent will intersect the solid area swept out by 360 degrees rotation of the prosthesis.
- the dispensing element is turned off when the trajectory path of beneficial agent would not intersect or will miss the solid area and volume swept out by 360 degrees rotation of the prosthesis.
- the “off-axis” method is performed using the raster technique previously described. That is, with the trajectory path 152 aligned off-axis from the central axis of the prosthesis 10 , such as shown in FIG. 8 a - 8 d, discrete droplets can be selectively dispensed from the dispensing element 150 only when aligned with a structural member 12 of the prosthesis 10 .
- the relative motion of the dispensing element 150 and the prosthesis 10 define a dispensing path which includes a sequential series of linear parallel passes that traverse back and forth along one axis of the prosthesis.
- the relative motion alternates between forward and backward, right to left, left to right, or upward and downward, depending on the frame of reference.
- a traversal or pass is completed when the relative motion changes direction. That is, relative motion continues past the prosthesis and then decelerates, stops, reversed direction and accelerates to a constant velocity.
- the position of the dispensing element 150 is changed or incremented such that additional drops of beneficial agent do not impact the same location as the previously dispensed droplets during the subsequent pass. Any degree of overlap may be permitted to achieve a desired areal density of beneficial agent.
- the relative motion of the dispensing element and the prosthesis define a dispensing path which includes a single continuous helix that wraps around the prosthesis and along its length.
- the relative motion consists of continuously rotating, for example, the prosthesis and then incrementally advancing the dispensing element 150 axially along the prosthesis.
- Both axial and radial motion preferably begin before the item is aligned with the dispensing element to receive droplets of beneficial agent, so as to enable acceleration of both axes to a constant velocity, and continues beyond the prosthesis where both movements may decelerate, and stop.
- the position of the dispensing element or prosthesis relative to the dispensing element is moved or incremented axially such that additional droplets preferably do not impact in the same location.
- any degree of overlap may be permitted to achieve a desired areal density of beneficial agent.
- the linear velocity during dispensing of droplets of beneficial agent can be constant or can be varied in a controlled way. Further, the preferable position of the droplet trajectory is such that the droplets interact with the structural surfaces of the prosthesis at or near the tangent to its curved solid surface.
- the dispensing path 154 includes a series of parallel passes along a surface of the prosthesis.
- the prosthesis provided can have a tubular body prior to its deployment in a lumen, and each parallel pass of the dispensing path 154 is parallel to the longitudinal axis 11 of the prosthesis 10 as shown in FIG. 6 a. After each pass, the position of the dispensing element 150 or prosthesis 10 is changed or incremented so that the discrete droplets 155 of beneficial agent 15 are dispensed onto a surface of the prosthesis 10 that has not already been loaded.
- the parallel passes can define a helical pattern around the longitudinal axis of the stent, wherein each pass is a complete turn of the helical pattern.
- the relative motion of the dispensing element and the prosthesis can include continuously rotating the prosthesis and incrementally advancing the dispensing element axially along the length of the prosthesis.
- the position of the dispensing element is incrementally changed axially such that additional droplets of beneficial agent that are dispensed from the dispensing element load a surface of the prosthesis not already loaded by a prior pass.
- the prosthesis can have a planar body prior loading, such that no rotation of the planar member is required for loading of beneficial agent thereon.
- the step of dispensing the beneficial agent onto the prosthesis along the dispensing path can be repeated to provide multiple passes along a predetermined portion of the prosthesis.
- the beneficial agent is selectively dispensed from the dispensing element along the dispensing path in a raster format.
- the raster format can be achieved by turning the dispensing element on and off at predetermined intervals in response to a detector.
- the beneficial agent can be selectively dispensed in a raster format by programming a controller device that communicates with the dispensing element to dispense the beneficial agent according to the programmed data.
- a variety of fluid dispensers are available and suitable for providing discrete droplets along a controlled trajectory. For example, a suitable drop-on-demand jetting system can be used, as shown in FIGS. 9 and 11, wherein discrete droplets are selectively dispensed from a jetting head.
- the jet stream of discrete droplets can be turned on and off on demand, and the flow rate of discrete droplets can be increased or decreased as desired.
- a charge-and-deflect device is used, then a continuous stream of droplets will be generated, and selected droplets will be deflected as is known in the art, such as shown in FIG. 7, as described further below.
- the prosthesis is a stent, and as mentioned above, the fluid-dispenser is a fluid-jetting device.
- a driver 120 continually advances the stent longitudinally along its axis at a constant rate, to define a series of generally parallel passes 154 along the longitudinal axis 11 of the stent 10 .
- the stent is the incrementally rotated about its axis at the end of each pass.
- the stent is rotated at about 1° to about 20° about its longitudinal axis, increments, and preferably is rotated at about 5° increments.
- the fluid-jetting head is turned on to provide droplets of beneficial agent whenever a stent strut or structural member is detected immediately in front of the jetting head, or based on a predetermined programmed pattern that corresponds to the stent design, as mentioned above.
- the beneficial agent can be provided in a rastered format to confer the stent with a known quantity of beneficial agent. If desired, the known quantity of beneficial agent is dispensed to provide a uniform local areal density based on changes in surface area.
- local areal density refers to the amount of beneficial agent per unit surface area of the stent or prosthesis.
- a unit length of two different struts having different strut widths could each be loaded with an equal amount of beneficial agent by adjusting flow rate accordingly.
- the flow rate of the jetting head can be controlled along the progression of the stent to provide a first portion 10 b of the prosthesis 10 with a greater local areal density and a second portion 10 a of the prosthesis with a lower local areal density, such as shown in FIG. 1.
- the rate of relative movement between the jetting head and the prosthesis can be varied to control local areal density accordingly.
- the dispensing path 154 is defined by the relative movement between the dispensing element and the prosthesis.
- the relative movement between the dispensing element and the prosthesis may be performed at a substantially constant velocity, or alternatively at a varied velocity to alter local areal density of beneficial agent, or intermittently.
- the linear travel speed of the prosthesis under the fluid dispenser is performed 50% faster during loading of beneficial agent on the proximal and distal portions 10 a and 10 c of the prosthesis body to decrease local areal density accordingly.
- the linear travel speed of the prosthesis under the fluid dispenser may be 50% slower during loading of beneficial agent on the mid region of the prosthesis body to increase local areal density thereat.
- a vector technique can be used wherein a first portion of the stent strut at one end of the stent is positioned in front of the jetting head and the jetting head is turned on. The jetting head is then left on to dispense droplets of beneficial agent at a constant predetermined frequency to provide a predetermined dispensing rate of agent.
- the two-axis control system described further below, is directed to continuously move the stent, coordinating both axes simultaneously so that the predetermined shape of the stent struts are advanced in front of the jetting head.
- This movement continuously places the beneficial agent on the struts of the first portion until the desiried surface of the stent has been positioned to receive beneficial agent over the known surface area, and a predetermined quantity of beneficial agent has been dispensed.
- the beneficial agent is provided on the stent struts and the jetting head thereby does not disperse beneficial agent in areas wherein metal has been removed from the stent.
- This process may be repeated for subsequent portions of the interventional device, such that known quantities of beneficial agent are provided over each corresponding portion of the interventional device.
- flow rate or rate of relative movement can be controlled to adjust local areal density of beneficial agent as desired.
- the two-axis positioning system is coupled to a charge-and-deflect jetting head.
- a charge-and-deflect jetting head is capable of producing a rastered pattern of droplets over a predetermined width of the stent. That is, it is also in accordance with the invention to apply a surface charge to selected droplets of beneficial agent dispensed from the dispensing element.
- an antioxidant can be included in the beneficial agent. In this manner, the antioxidant can help to prevent the oxidation of a beneficial agent that might otherwise oxidize when positively charged. Additionally, or alternatively, other known techniques can be used to prevent or inhibit oxidation of beneficial agent.
- the trajectory of charged droplets of beneficial agent can be altered by a deflection field.
- an electrode 144 may be used to deflect the trajectory of beneficial agent, which is charged by a charger 142 , towards a predetermined portion of the prosthesis as shown in FIG. 7.
- a charge opposite that induced on the droplets of beneficial agent can be applied to a predetermined portion of the prosthesis to provide an electrostatic attraction between the droplets of beneficial agent and the prosthesis for greater accuracy and efficiency.
- the motor 122 that controls rotation of the prosthesis about its longitudinal axis can be turned on to produce a constant angular velocity.
- a second motor 124 is then controlled to advance the prosthesis or stent in front of the dispensing element 150 at a predetermined rate to generally describe a spiral or helix across the longitudinal axis of the stent, where the pitch width, from rotation to rotation, is the same as the raster width of the dispensing element 150 .
- the surface of the prosthesis 10 or stent can be exposed to the dispensing element 150 in a more rapid manner than for the single drop wide raster pattern that is possible with the drop-on-demand mode system.
- a bit-mapped pattern that has been previously stored in memory 170 to describe the shape of the struts is rastered out by providing appropriate charges on selected droplets.
- a linear array detector 160 with resolution similar to the number of droplets in each raster line can detect, by reflected or transmitted light, the presence of a stent strut that is about to revolve in front of the jetted fluid window.
- the data from this type of detector can then be transferred to a shift register which produces the necessary raster data by shifting the bit pattern out a bit at a time.
- a shift register which produces the necessary raster data by shifting the bit pattern out a bit at a time.
- a system for loading beneficial agent onto a prosthesis for delivery within a lumen includes a holder 110 for supporting a prosthesis and a fluid-dispenser having a dispensing element 150 capable of dispensing beneficial agent 15 in discrete droplets 155 , each droplet having a controlled trajectory.
- the holder includes a mandrel or spindle 112 made of any suitable material known in the art.
- the spindle 112 comprises a superelastic material, such as nitinol, or any other material that has shape memory properties.
- a superelastic material such as nitinol
- manipulation of a stent holder made of stainless steel can result in bending and deformation of the spindle. Such deformation causes poor rotational accuracy and high run-out, e.g., 0.25-2.5 mm, from one end of the spindle to the other end of the spindle.
- nitinol provides a more resilient spindle capable of undergoing repeated manual stent mounting without the plastic deformation that occurs with a stainless steel spindle design.
- a nitinol spindle 112 may be made using a centerless grinding technique to obtain high concentric accuracy.
- the centerline of the small diameter part of the spindle e.g., 0.5 mm diameter
- the centerline of the intermediate diameter section e.g., 2 mm diameter. This variance can be removed by heating the spindle near the junction of the small and intermediate diameter section and bending it to remove most of the residual run out.
- the spindle, shown in FIG. 13 assembly retains its new position. The final run out on an exemplary spindle after using these techniques was about 0.051 mm.
- the system also includes a driver such as a driver assembly 120 to create relative movement between the holder 110 and the dispensing element 150 , and a controller 170 in communication with the driver 120 to define a dispensing path of relative movement between the dispensing element 150 and the holder 110 .
- the controller also communicates with the dispensing element 150 for selectively dispensing beneficial agent in a selected format along the dispensing path onto a selected portion of the prosthesis 10 supported by the holder 110 .
- the holder 110 supporting the prosthesis 10 is moveable while the dispensing element 150 remains stationary during dispensing of beneficial agent 15 .
- the holder 110 supporting the prosthesis 10 remains stationary while the dispensing element 150 moves along the dispensing path.
- both the holder 110 and dispensing element 150 are moveable.
- the system includes a detector 160 to detect when the dispensing element 150 is aligned with the predetermined portion of the prosthesis 10 .
- Various known components can be used in combination for construction of the system of the present invention. For example, jetLab System II from MicroFab Technologies of Plano, Tex., as modified to include the desired features of the invention can be used.
- a determination of the quantity of beneficial agent dispensed over a given or known surface area can be established.
- a predetermined ratio of an identifiable marker is added to the beneficial agent and both the beneficial agent and the marker are loaded onto the prosthesis.
- the amount of identifiable marker loaded onto the prosthesis is detected to determine the amount of corresponding beneficial agent loaded onto the prosthesis.
- the identifiable marker includes radiopaque material. After loading the radiopaque material with the beneficial agent onto the prosthesis, the prosthesis is imaged and an intensity value is measured to determine the amount of beneficial agent loaded thereon and thus local areal density.
- the identifiable marker in this aspect can also include a fluorescent dye, e.g., coumarin dye.
- the identifiable marker includes charged particles, for example and not limitation, protons or electrons.
- the detecting step includes measuring a charge build-up on or current flow from the prosthesis resulting from the charged particles. The charge build-up or current flow therefore generally corresponds to the amount of beneficial agent loaded onto the prosthesis.
- the quantity of beneficial agent dispensed can be determined by counting the droplets that have been jetted or dispersed.
- the amount of beneficial agent loaded can be measured more generally by weighing the stent before the jetting operation and then after the jetting operation. The weight difference corresponds to the drug loaded with the concentration being a function of the jet flow rate along the length of the stent.
- Yet another method is to integrate the charge build-up on the prosthesis when a charge-and-deflect system is used. Since each droplet in a charge-and-deflect jetting system has had a surface charge injected onto it to enable the droplet to be deflected in an electrostatic field, either the loss of charge at the charging electrode or the accumulation of charge on the prosthesis can be integrated over time to determine the total volume of fluid that has accumulated on the surface of the device.
- an on-board spectrometer may be utilized for monitoring the beneficial agent concentration on the jetter reservoirs as a function of time. It is desirable to load beneficial agent such as a drug at a constant concentration. However, due to the evaporation of solvent during the loading process, the concentration of drug will increase.
- a spectrometer can be configured with a pump to add solvent to the drug such that a constant absorbance on the spectrometer is maintained. The constant absorbance level of the spectrometer is pre-set to monitor an appropriate wavelength. The maintenance of a constant absorbance reading on the spectrometer by the addition of solvent translates to the maintenance of a pre-set drug concentration.
- this same drug quantification concept can be utilized by adding a constant voltage charging electrode adjacent to the nozzle of the dispenser so as to add a polar charge to each droplet.
- the coating on the stent if an insulator, will act as a capacitor to the charge.
- This detection technique will be able to detect charge build up if a small leakage path is provided or if a second reference surface is provided against which to compare charge build up.
- Other alternative techniques can be used. For example, if a metal mandrel is present inside the stent it may be used to monitor any lost droplet or splash. The charge that directly transfers to this “electrode” will create an opposite polarity current to the charge presented to the insulated coated surface of the stent.
- an appropriate detector can be incorporated in the system of FIG. 7, preferably in communication with controller 170 .
- a second beneficial agent or multiple beneficial agents can be loaded onto the prosthesis as described above. Therefore, further in accordance with the invention, an interventional device comprising a prosthesis loaded with a plurality of discrete droplets of a first beneficial agent and a plurality of discrete droplets of a second beneficial agent is provided, such as by using the system and method shown in FIG. 9.
- the method described in detail above for one beneficial agent can be modified to allow for loading multiple beneficial agents onto a prosthesis, which might ordinarily lead to undesirable results when using conventional loading techniques.
- the first beneficial agent and the second beneficial agent may have different physical and/or chemical characteristics preventing the beneficial agents from being capable of dissolving in the same solvent, or at the same pH or temperature.
- the first beneficial agent can be dissolved in a solvent that is immiscible with the solvent in which the second beneficial agent is dissolved.
- the first beneficial agent and the second beneficial agent may be incompatible with each other.
- the first beneficial agent and the second beneficial agent can be undesirably chemically reactive or may have undesirably different release rates (or contrarily, undesirably similar release rates).
- the first and second beneficial agents can simply be detrimental to each other, e.g., one of the beneficial agents may degrade the efficacy of the other beneficial agent.
- loading the particular multiple beneficial agents onto the same surface of a prosthesis can be desired it often may be problematic due to some incompatibility when using a conventional loading technique.
- a method of loading such beneficial agents and an interventional device for the delivery of such beneficial agents is provided.
- the beneficial agents are loaded in a plurality of discrete droplets on the surface of the prosthesis.
- the discrete droplets of multiple beneficial agents are preferably loaded onto the prosthesis as unmixed droplets to provide an interspersed pattern or alternatively, the unmixed droplets of beneficial agent can be loaded onto the prosthesis to provide an overlapping pattern of the first beneficial agent and the second beneficial agent.
- the edges of the droplets overlap or alternatively, a larger surface of the droplet overlaps other droplets to provide a layering effect, as depicted in FIG. 10.
- each beneficial agent to be loaded onto the prosthesis is dispensed from a distinct dispensing device.
- a first dispenser 150 is provided with a first beneficial agent 15 ′ dissolved in a solvent that is compatible for that particular first beneficial agent.
- a second fluid-dispenser 150 ′′ is provided with a second beneficial agent 15 ′′ that is different from the first beneficial agent 15 ′, and requiring a different solvent for compatibility.
- the first beneficial agent could be a water-soluble agent
- the second beneficial agent could be a water-insoluble agent, each requiring a different solvent. Accordingly, both beneficial agents are loaded onto the same surface of the prosthesis without problems arising from their immiscibility.
- the trajectories of discrete droplets corresponding to each of the first beneficial agent and the second beneficial agent can be aligned such that the droplets from each beneficial agent combine and mix prior to their being loaded on the prosthesis.
- the first and second beneficial agent can form a third beneficial agent which is loaded onto the prosthesis.
- the first beneficial agent may be bisphenol-A-diglycidyl ether and the second beneficial agent can be triethylenetetramine.
- a cross linked coating is formed to provide a third beneficial agent.
- the first beneficial agent can be bisphenol-A-diglycidyl ether and paclitaxel and the second beneficial agent can be triethylenetetramine.
- a third beneficial agent is formed, a cross-linked coating entrapping paclitaxel, which is loaded on the prosthesis.
- the discrete droplets of the first and second beneficial agent can be aligned along trajectories to mix on the surface of the prosthesis.
- the beneficial agent can include a drug and polymer mixture.
- the first and second beneficial agents can correspond to drug-polymer mixtures having different concentrations of polymer to effect different release rates of the particular drug in each beneficial agent.
- the drug-polymer mixture having a higher concentration of polymer would have a slower release of the drug within the lumen than a drug-polymer mixture having a lower concentration.
- multiple beneficial agents can be released at rates appropriate for their activities, such that the prosthesis of the invention has multiple beneficial agents which elute off the prosthesis at desired rates.
- a cationic phosphorylcholine-linked polymer which has a higher affinity for anionic therapeutic agents can be blended and dispersed as a first beneficial agent and lipophilic phosphorylcholine-linked polymer can be blended with lipophilic drugs as the second beneficial agent to effect different release rates respectively.
- one of the first and second beneficial agents loaded onto the prosthesis can be more hydrophobic or less water-soluble than the other.
- a prosthesis including first and second beneficial agents wherein one of the beneficial agents is more hydrophobic or less water soluble than the other.
- the more hydrophobic beneficial agent acts as a water barrier or hydration inhibitor for the less hydrophobic beneficial agent, thereby reducing the release rate of the less hydrophobic beneficial agent as disclosed in U.S. Provisional Patent Application 60/453,555 and PCT/US03/07383, each of which was filed on Mar. 10, 2003, and each of which is incorporated herein by reference thereto.
- the first beneficial agent can be dissolved in solvent wherein the second beneficial agent causes the first beneficial agent to precipitate out of the solvent.
- the first beneficial agent may be rapamycin dissolved in ethanol, and the second beneficial agent may be water.
- the rapamycin will precipitate within the droplet and be deposited on the prosthesis as a microprecipitate.
- At least one of the first and second beneficial agents can be mixed with a binder prior to being loaded onto the prosthesis.
- one of the beneficial agents can be a curative agent for curing the binder on the prosthesis with the beneficial agent mixed therein. For example, see Example 4 below.
- one of the beneficial agents can be a solvent for the other beneficial agent.
- the first beneficial agent e.g., a drug, polymer, or a combination thereof
- the second beneficial agent i.e., a solvent
- the prosthesis can include at least one reservoir or cavity or trough therein.
- computer controlled profiles of a laser cut stent can be utilized to precisely deposit beneficial agent into the laser cuts on the stent struts.
- a longitudinal trough can be laser cut, etched, or otherwise formed into the strut, such as in the curve or bend of the strut for instance.
- the cavity or trough is provided with a contoured cross-sectional profile for retention and elution of beneficial agent therein. Particularly, and as depicted schematically in FIG.
- the cross-sectional profile of the cavity or trough 16 includes a smaller dimension at the interface with the strut surface, so as to define a mouth 17 of the trough 16 , and a larger internal cross-dimension of the trough to define a reservoir 18 .
- FIG. 12 shows one such embodiment, wherein mouth 17 is defined for reservoir 18 of trough 16 .
- Use of the fluid jet system and method of the present invention thus allows for beneficial agent to be loaded into the mouth 17 of trough 16 , without the entrapment of air within the reservoir 18 .
- An appropriate volume of beneficial agent is deposited in the laser cut profile to at least partially fill the reservoir 18 .
- beneficial agent that is deposited in the longitudinal trough can include a combination of drugs or a combination of polymers or a combination of drugs and polymers in different layers.
- different layers of polymer and/or drug having different concentrations, or different drug elution rates can be loaded therein.
- an interim polymer and/or final polymer overcoat can be applied over the beneficial agent.
- Such a deposition configuration in combination with cavities is particularly beneficial for minimizing delamination of the polymer-drug layers, and also provides versatility in controlling drug elution and the generation of various combinations of drug release patterns.
- a computer profiling approach is also useful to coat drug and polymer layers on the distal and proximal edges of the stent.
- one or more of the reservoirs or cavities or troughs is loaded with a more hydrophilic first beneficial agent and then a second more hydrophobic beneficial agent is loaded onto the first beneficial agent within the cavity or reservoir in a manner as described above.
- a first beneficial agent loaded onto the prosthesis can have a first local areal density and a second beneficial agent loaded onto the prosthesis can have a second local areal density.
- area density refers to the amount of beneficial agent per unit surface area of a selected portion of the prosthesis.
- Local areal density refers to the dosage of beneficial agent per local surface area of the prosthesis.
- the local areal density of the first beneficial agent and the local areal density of the second beneficial agent can be uniform across each respective portion to define stepped changes in local area density as depicted in FIG.
- an interventional device having a prosthesis that is at least partially loaded with beneficial agent having a local areal density that is varied along a selected portion of the body of the prosthesis.
- the prosthesis has a tubular body when deployed in a lumen.
- the tubular body includes a first and second portion at least partially loaded with beneficial agent such that the first portion has a first local areal density and the second portion has a second local areal density.
- Each portion may be defined as a preselected length of the prosthesis.
- the first portion can be defined by a selected set of interconnected structural members and the second portion can be defined as a second set of interconnected members e.g., connectors elements or ring-elements.
- at least one of the first and second set of selected interconnected elements can define at least one ring-shaped element extending around the circumference of the prosthesis.
- the local areal density is varied as a continuous gradient along a selected portion of the prosthesis as shown in FIG. 1 c.
- the local areal density of beneficial agent is varied such as to provide a prosthesis having a local areal density of beneficial agent at the ends of the prosthesis that is different than the local areal density of beneficial agent at an intermediate section of the prosthesis.
- the local areal density of beneficial agent at the intermediate section of the prosthesis can be greater than that at the proximal and distal ends of the prosthesis as shown in FIG. 1 c.
- the proximal and distal ends of the prosthesis can have a greater local areal density of beneficial agent than that on the intermediate section of the prosthesis.
- the varied local areal density of beneficial agent corresponds to the location of a lesion when the prosthesis is deployed within a lumen.
- the prosthesis can be loaded to have a greater local areal density of beneficial agent along a preselected portion of the prosthesis that corresponds to the location of the lesion when the prosthesis is deployed in a lumen.
- targeted therapy may be achieved with the interventional device of the present invention.
- the local areal density can be varied by varying the relative rate in which beneficial agent is loaded to a selected location along the prosthesis.
- the frequency in which the droplets of beneficial agent are applied along a unit length of the dispensing path to the prosthesis is varied.
- the relative rate of loading beneficial agent can be varied by varying the relative movement between the dispensing element and the prosthesis.
- Another alternative for varying the relative rate of loading beneficial agent is to vary the amount of beneficial agent per droplet dispensed from the dispensing element.
- Other alternatives for varying the local areal density of beneficial agent loaded onto the prosthesis include mixing the beneficial agent with a binder and varying the ratio of beneficial agent to binder.
- the amount of the mixture of beneficial agent and binder that is applied to the prosthesis can be varied to achieve a varied local areal density of beneficial agent.
- Other methods of varying the local areal density of beneficial agent known in the art may be used.
- the beneficial agent is at least partially loaded onto a surface of the prosthesis.
- the prosthesis includes a first surface and a second surface that are at least partially loaded with beneficial agent.
- the first surface and the second surface each correspond to one of the inner surface and the outer surface of the prosthesis.
- beneficial agent as defined above, is loaded onto the inner or luminal surface of a prosthesis as well as the outer surface of the prosthesis.
- the method described above can be used for this aspect of the invention, wherein the beneficial agent is loaded on the inner surface of the prosthesis by inserting a fluid dispensing element within the inner diameter of the prosthesis, or by dispensing beneficial agent 15 diametrically across the prosthesis 10 between structural members 12 to impact the inner surface on the opposite side of the prosthesis 10 as shown in FIG. 11.
- the dispensing element 150 ′′ is aligned so that the controlled trajectory 152 ′′ of discrete droplets 155 ′′ of beneficial agent optimally intersect with the inner surfaces of the structural features of the prosthesis 10 and not intersect with the structural features of the outer surface of the prosthesis.
- the preferred alignment of the dispensing element is orthogonal to the central axis of the prosthesis and in a plane that intersects the central axis of the prosthesis.
- the preferred alignment of the dispensing element to the prosthesis is orthogonal to the central axis of the prosthesis, but in a plane that does not intersect the central axis of the prosthesis.
- the preferred alignment of the dispensing element can be determined by assessing the shadow cast by the foreground or outer structural elements on the background or inner structural elements.
- the preferred plane to align the dispensing element can be determined by assessing the plane in which the maximum amount of unobstructed inner surface is presented upon rotation of the tubular member.
- the relative motion of the dispensing element and the prosthesis can be coordinated to enable a preprogrammed “raster” image of the position or locations of the structural elements of the inner surface.
- the vector pattern of the structural elements may be preprogrammed, as previously described.
- the beneficial agent is dispensed from the dispensing element along a controlled trajectory that is substantially tangential to or near the outer surface of the prosthesis and is loaded on the inner surface of the structural elements of the prosthesis.
- the interventional device can be designed to provide combination therapy of beneficial agents to targeted locations.
- the particular beneficial agent loaded to the luminal or inner surface of the prosthesis can be intended for systemic release, whereas the particular beneficial agent loaded onto the outer surface of the prosthesis is intended for release into the wall of the lumen.
- the beneficial agents loaded onto the luminal side or inner surface of the prosthesis include, without limitation, antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial recovery, agents that promote migration, and estradiol.
- the beneficial agents loaded onto the outer surface of the prosthesis include without limitation, anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog ABT-578, i.e., 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]
- the first surface of the prosthesis is defined by a plurality of interconnecting structural members.
- the first surface can include a first selected set of structural members, e.g., a connector member, and the second surface can include a second selected set of the structural members, e.g., a ring-shaped element extending around the circumference of the prosthesis.
- the beneficial agent is loaded onto the prosthesis to provide a controlled local areal density across a length of the interventional device. That is, it may be desirable to provide a greater concentration of beneficial agent at one portion of a prosthesis and a lower concentration, or perhaps no beneficial agent, at another portion of the prosthesis.
- a greater local areal density can be provided at a first portion, e.g., intermediate portion 10 b, of a stent 10 , as shown in FIG. 1 a, while providing a lower local areal density of beneficial agent to a second portion, e.g., one or both end portions ( 10 a, 10 c ), of the stent 10 .
- each of the first and second portions of the prosthesis may be defined by any of a variety of patterns or selected portions of the prosthesis.
- the first portion of the prosthesis can be defined by longitudinal connectors whereas the second portion of the stent is defined by annular rings, or vice versa, as illustrated in FIG. 6.
- the interventional device includes a first prosthesis and a second prosthesis in combination to define an overlapping portion and at least one non-overlapping portion.
- FIGS. 2 or 3 present a schematic representation of a nested interventional device including a first prosthesis 20 and a second prosthesis 30 configured to be deployed in an overlapping relationship.
- the interventional device can optionally include more than two prostheses in combination, if desired.
- Such interventional devices 50 include but are not limited to nested stents and modular bifurcated stents. For purpose of illustration and not limitation, FIG.
- the beneficial agent distribution profile includes a first local areal density of beneficial agent on one of the first and second portions of one or both of the first prosthesis and the second prosthesis.
- the first portion 20 a of the first prosthesis 20 has half the local areal density of beneficial agent as compared to the second portion 20 b of the first prosthesis 20 .
- the first portion 30 a of the second prosthesis 30 likewise, has half the local areal density of beneficial agent compared to the second portion 30 b of the second prosthesis 30 .
- the local areal density of beneficial agent along the interventional device 50 is controlled so as to be uniform. If desired, alternative concentrations can be provided on each portion so as to provide the desired effect in combination.
- a controlled local areal density of beneficial agent is thus provided across a length of the interventional device 50 upon combination of the first prosthesis having first portion 20 a and second portion 20 b with the second prosthesis having first portion 30 a and second portion 30 b, as shown in FIG. 2.
- the overlapping segment 25 of first prosthesis 20 and the second prosthesis 30 has an equal local areal density of beneficial agent as compared to non-overlapping segments 20 b and 30 b.
- the beneficial agent distribution profile for the interventional device may be controlled to include any of a variety of desired patterns.
- the interventional device can have a decreased local areal density of beneficial agent on the distal and proximal ends of each prosthesis body, as noted above. This profile is highly desirable in preventing adverse dosing of beneficial agent if multiple prostheses are placed in combination with each other but still provides for decreased dosage of the extreme ends of the interventional device as a whole.
- the beneficial agent distribution profile can provide a controlled local areal density that is uniform along the length of first prosthesis and second prosthesis in combination, or multiple prostheses in combination.
- the beneficial agent distribution profile provides a controlled local areal density that is varied along the length of the first prosthesis and the second prosthesis in combination, or multiple prostheses in combination.
- overlapping or nested prostheses can have beneficial agent distribution profiles such that the controlled local areal density of beneficial agent of a non-overlapping segment is in fact greater than the controlled local areal density of beneficial agent of a overlapping segment.
- the alternative can also be true; that a overlapping segment is controlled to have a greater or different local areal density of beneficial agent than a non-overlapping segment.
- this feature also enables selective dosing of beneficial agent to a targeted area when using multiple prostheses in combination, as well as a single prosthesis alone.
- Selective dosing of beneficial agent to a targeted area means that the beneficial agent can be applied to the prosthesis or prostheses in combination such that the desired beneficial agent is loaded onto the prosthesis in a selective pattern so that the beneficial agent or beneficial agents are released from the prosthesis in close proximity to a targeted location.
- Fluid jetting as previously described is particularly preferred for selective dosing.
- a bifurcated interventional device which includes a first prosthesis 20 ′ and a second prosthesis 30 ′ in combination to define an overlapping portion 50 ′ and non overlapping portions 20 b ′, 30 b ′.
- FIG. 4 shows a first prosthesis 20 ′ having a first portion 20 a ′ and a second portion 20 b ′, and a second prosthesis 30 ′ having a first portion 30 a ′ and a second portion 30 b ′.
- the beneficial agent distribution profile includes a first local areal density of beneficial agent on one of the first and second portions of one or both of the first prosthesis 20 ′ and the second prosthesis 30 ′.
- the first portion 20 a ′ of the first prosthesis 20 ′ has half the local areal density of beneficial agent as compared to the second portion 20 b ′ of the first prosthesis.
- the first portion 30 a ′ of the second prosthesis 30 ′ has half the local areal density of the second portion 30 b ′ of the second prosthesis 30 ′.
- a controlled local areal density of beneficial agent is thus provided across a length of the bifurcated interventional device 50 upon combination of the first prosthesis having first portion 20 a ′ and second portion 20 b ′ with the second prosthesis having first portion 30 a ′ and second portion 30 b ′, as shown in FIG. 4.
- Another feature of the present invention includes applying a layer of base material on a selected portion of the prosthesis described above.
- the beneficial agent is loaded onto the base material layer according to the methods described above.
- the base material layer preferably defines a pattern for loading the beneficial agent onto the prosthesis.
- the present invention also encompasses, for any of the embodiments disclosed, the application of a rate-controlling topcoat over the beneficial agent loaded prosthesis for further controlling or sustaining the release of beneficial agent.
- the rate-controlling topcoat may be added by applying a coating layer posited over the beneficial agent loaded prosthesis.
- the thickness of the layer is selected to provide such control.
- the overcoat is applied by fluid-jet technology.
- fluid jetting an overcoat such as a polymer overcoat allows a thinner and more uniform layers.
- other conventional methods can be used such as other fluid-dispensers, vapor deposition, plasma deposition, spraying, or dipping, or any other coating technique known in the art.
- the present invention also provides a method for manufacturing an interventional device for delivery of beneficial agent
- This method comprises the steps of providing a first prosthesis to be deployed within a lumen; providing a second prosthesis configured to be deployed in an overlapping relationship with the first prosthesis, the first prosthesis and the second prosthesis in combination defining at least one non-overlapping segment and an overlapping segment; and loading the first prosthesis and the second prosthesis with beneficial agent to provide a controlled local areal density along a length of the first prosthesis and the second prosthesis in combination.
- the method described in detail above is preferred for such loading step.
- the present invention also provides a method of delivering beneficial agent.
- the method comprising the steps of providing a first prosthesis having a tubular body when deployed in a lumen; providing a second prosthesis having a tubular body when deployed in a lumen; loading at least one of the first prosthesis and the second prosthesis with beneficial agent; deploying the first prosthesis into a lumen; deploying the second prosthesis into the lumen to define in combination with the first prosthesis at least one non-overlapping segment and an overlapping segment; wherein the beneficial agent is loaded onto at least one of the first prosthesis and the second prosthesis to provide a controlled local areal density of beneficial agent across a length of the first prosthesis and the second prosthesis when deployed.
- the method described in detail above is preferred for such loading step.
- the components of a commercial two-part epoxy formulation are mixed by the jetting process and applied to a surface to form a coating.
- a formulation manufactured by Buehler, Lake Bluff Ill. one part is a liquid “epoxide resin” that contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether.
- the second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine.
- one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener
- the jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours.
- the volume of a droplet emanating from jet A is 5 times larger than the volume of a droplet emanating from Jet B and the total number of droplets dispensed from each jet are approximately equal.
- a commercial two-part epoxy formulation is mixed by the jetting process and applied to a surface to form a coating.
- one part is a liquid “epoxide resin” which contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether.
- the second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine.
- one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener.
- the jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours.
- the volume of a droplet emanating from jet A is 4 times larger than the volume of a droplet emanating from Jet B and the total number of droplets dispensed from each jet are approximately equal. This coating cures at a faster rate than the coating described in example 1.
- the components of a commercial two-part epoxy formulation are mixed by the jetting process and applied to a surface to form a coating.
- a two part commercial formulation manufactured by Buehler, Lake Bluff Ill. one part is a liquid “epoxide resin” which contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether.
- the second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine.
- one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener.
- the jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours.
- the volume of a droplet emanating from jet A is approximately equal to the volume of a droplet emanating from Jet B, but the total number of droplets dispensed from jet A is 4 times more than from jet B.
- One reagent jet system (A) is loaded with a liquid epoxide resin and a solubilized formulation of the drug, paclitaxel, 20% by weight with respect to the epoxide resin.
- a second jetting system (B) is loaded with hardener similar to that described in example 1 combined with an equal weight or less of a biocompatible polymer.
- MPC 2-methacryoyloxyethylphosphorylcholine
- LMA lauryl methacrylate
- HPMA hydroxypropyl methacrylate
- TSMA trimethoxysilylpropyl methacrylate.
- This polymer is dissolved in a solvent such as chloroform.
- the jets are aligned such that the droplets from each jet combine in midair and travel to the target device to form a crosslinked coating entrapping the drug and polymer.
- the volume of a droplet emanating from jet A is 5 times larger than the volume of a droplet emanating from jet B and the total number of droplets dispensed from each jet are approximately equal.
- the coating is heated for 4 hours at 70 degrees C. to cause crosslinking of the phosphorylcholine-linked polymer predominantly with itself by means of the trimethoxysilane groups, and simultaneously accelerating the curing of the epoxide resin with the hardener.
- One reagent jet system (A) is loaded with rapamycin dissolved in ethanol.
- a second jetting system is loaded with water.
- the droplet volume of one drop emanating from jet A is 50 picoliters and the droplet volume of one drop emanating from Jet B is 150 picoliters.
- the jets are aligned such that the droplets from each jet combine in midair and travel to the target device. During the droplet combination the rapamycin will precipitate within the droplet and be deposited on the target surface as a microprecipitate.
- a stock jetting solution of 20 mg/ml ABT-578+4 mg/ml phosphorylcholine-linked methacrylate polymer (PC) in isobutanol was prepared.
- a fluid jetting system manufactured by MicroFab Technologies of Plano, Tex. was programmed to jet 75 micrograms of drug evenly over a 1.4 ⁇ 11 mm OC BiodivYsio stent to obtain an areal density of 5 micrograms per linear mm. Jetting of 21,888 drops into a vial containing 10 ml of isobutanol gave 77 micrograms of ABT-578 as determined spectrophotometrically at 278 nm.
- the stent contained a base coating of phosphorylcholine-linked methacrylate polymer (PC). It was mounted on a fixture that included a mandrel that provided for controlled rotation ( ⁇ ) about a central axis coaxial with the stent and a stage that provided for lateral movement (X) along the axis of the stent. The motion control was set up to rotate the stent a total of 720 degrees.
- PC phosphorylcholine-linked methacrylate polymer
- a view orthogonal to the axis of the rotating stent showed two possible tangential off-axis positions, approximately 50 microns inside a point tangent to the outer surface of the stent, one on each side of the rotation centerline, that provided relatively few instances where a jet trajectory would not impinge on at least one stent structural element.
- One of these off-axis positions was first selected to start the drug loading.
- a mandrel mounted stent was positioned so that the trajectory of jetted droplets would impinge on the stent struts at this “off-axis” location.
- the motion controller was set up to move the stent axially in the X direction and began its motion at a position where the jet trajectory was off the end of the stent.
- the motion controller ramped up to a predetermined velocity and turned on the fluid jetting head as soon as motion along the X axis reached constant velocity and the end of the stent struts were in a position directly under the jet head. Every time the stent passed completely under the jet head along this off-axis path in the X direction, the motion controller would then ramp down the velocity, stop and rotate the stent 5 degrees. The linear direction was reversed and the next pass was made. After 360 degrees was reached, (72 passes) the table was translated approximately a distance equal to the internal diameter of the stent (1 ID) to the other off-axis position and 72 more passes were made for an additional rotation of 360 degrees. Each stent was thus jetted twice to obtain its drug loading.
- the average loading obtained was 65 micrograms.
- the calculated capture efficiency was 84% based on the number of counted droplets of drug dispensed.
- the jetter dispensed 211 micrograms of drug per stent, having a capture efficiency of 86%.
- PC phosphorylcholine-linked methacrylate polymer
- a 10 mg/ml solution of phosphorylcholine-linked methacrylate polymer (PC) is made in isobutanol.
- the linear travel speed of the stent under the jet head is programmed to be 50% slower during the beginning 25% of the stent length and the ending 25% of length.
- the jetting rate is not varied over the length of the stent.
- a total of 288 passes along the axial dimension of the stent and over 1440 degrees of rotation are made. Under these conditions, the stent obtains an increased amount of PC on both ends of the stent compared to the middle regions.
- a stock jetting solution of 20 mg/ml ABT-578+4 mg/ml phosphorylcholine-linked methacrylate polymer (PC) in isobutanol is prepared.
- the linear travel speed of the stent under the jet head is programmed to be 50% faster during the beginning 25% of the stent length and the ending 25% of length.
- the jetting rate is not varied over the length of the stent.
- a total of 144 passes along the axial dimension of the stent and over 720 degrees of rotation are made. Under these conditions, the stent obtains a decreased amount of ABT-578 on both ends of the stent compared to the middle regions.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Pulmonology (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Hematology (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
An interventional device for delivery of multiple beneficial agents. The device includes a prosthesis having a surface loaded with a plurality of discrete droplets of first and second beneficial agents. The discrete droplets of beneficial agent are loaded along a first controlled trajectory and the second beneficial agent is loaded along a second controlled trajectory. The first controlled trajectory and the second controlled trajectory can be aligned to allow mixing of the first and second beneficial agents prior to being loaded onto the surface of the prosthesis.
Description
- This application claims the benefit of U.S. Provisional Patent Applications serial Nos. 60/424,574; 60/424,575; 60/424,576; 60/424,577; and 60/424,607, each of which was filed on Nov. 7, 2002, and each of which is incorporated herein by reference thereto.
- 1. Field of the Invention
- The present invention relates to an interventional device including a prosthesis loaded with a plurality of discrete droplets of a first beneficial and of a second beneficial agent. The invention also relates to an interventional device having a first surface that is loaded with a first beneficial agent, and a second surface loaded with a second beneficial agent. The invention also relates to a method of loading multiple beneficial agents onto first and second surfaces of a prosthesis, and to a method of manufacturing an interventional device for the delivery of a first beneficial agent and a second beneficial agent from separate surfaces.
- 2. Description of Related Art
- Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. This procedure generally entails introducing a catheter assembly into the cardiovascular system of a patient via the brachial or femoral artery, and advancing the catheter assembly through the coronary vasculature until a balloon portion thereon is positioned across an occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the vessel wall. Subsequently, the balloon is deflated to allow the catheter assembly to be withdrawn from the vasculature.
- While PCTA is widely used, it suffers from two unique problems. First, the blood vessel may suffer acute occlusion immediately after or within the initial hours after the dilation procedure. Such occlusion is referred to as “abrupt closure.” Abrupt closure occurs in approximately five percent of cases in which PTCA is employed. The primary mechanisms of abrupt closures are believed to be elastic recoil, arterial dissection and/or thrombosis. The second problem associated with this procedure is the re-narrowing of an artery after an initially successful angioplasty. This re-narrowing is referred to as “restenosis,” which among other things, typically occurs within the first six months after angioplasty. Restenosis is believed to be due to the proliferation and migration of cellular components from the arterial wall, as well as through geometric changes in the arterial wall referred to as “remodeling.”
- To reduce occlusion of the artery, and the development of thrombosis and/or restenosis, an expandable interventional device or prosthesis, one example of which includes a stent, is implanted in the lumen to maintain the vascular patency. Additionally, to better effectuate the treatment of such vascular disease, it is preferable to load an intraluminal device or prosthesis with one or more beneficial agents, such as antiproliferatives, for delivery to a lumen. One commonly applied technique for the local delivery of a drug is through the use of a polymeric carrier coated onto the surface of a stent, as disclosed in Berg et al., U.S. Pat. No. 5,464,650, the disclosure of which is incorporated herein by reference. Such conventional methods and products generally have been considered satisfactory for their intended purpose. However, some problems associated with such drug eluting interventional devices is the variability in drug loading across an interventional device, as well as the variability in drug concentration from device to device. Other disadvantages include the inability to tightly control and maintain drug concentration, the inability to verify drug distribution or drug loading on any given device, the inability to vary drug distribution in a controlled and predetermined manner to effect a more desirable drug loading profile, the inability to load different, and in particular incompatible or reactive drugs onto the same surface of a device, and the difficulty in controlling the local areal density of beneficial agent that is delivered to the lumen, particularly if the interventional device is an overlapping or bifurcated device coated with beneficial agent.
- As evident from the related art, conventional methods of loading interventional devices with beneficial agents, such as drugs, often requires coating the entire prosthesis with a polymer capable of releasing therapeutic drugs, as disclosed in Campbell, U.S. Pat. No. 5,649,977 and Dinh et al., U.S. Pat. No. 5,591,227, the disclosures of which are incorporated by reference. Because certain interventional devices may have a varied surface area along its length, such conventional loading techniques results in unintentional or undesirable dosage variations. Additionally, if it is desired to superimpose two or more conventionally-loaded prostheses, such as with nested stents or bifurcated stents, the total dosage of beneficial agent to the lumen will exceed the nominal or desired dosage. Another drawback of the conventional methods of loading interventional devices with beneficial agents is the lack of selective dosing, such as providing various beneficial agents or various concentrations of the same beneficial agent at different locations on a prosthesis to effect a therapy at specific targeted sites.
- Thus, there remains a need for efficient and economic methods for controlling the loading of beneficial agent onto a prosthesis so as to provide an interventional device having a varied distribution profile of beneficial agent to effect therapy at targeted locations of the lumen. Additionally, there is a need for an interventional device capable of providing combination therapy of two or more beneficial agents loaded on different surfaces of a prosthesis to effectuate systemic release as well as release to the wall of the lumen. Further, a need exists for the loading of incompatible beneficial agents onto the same surface of a prosthesis. The advantages of the present invention satisfy the aforementioned needs.
- The purpose and advantages of the present invention will be set forth in and will become apparent from the description that follows, as well as will be learned by practice of the invention.
- Additional advantages of the invention will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
- To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described, the invention includes an interventional device for the delivery of multiple beneficial agents wherein the device comprises a prosthesis to be deployed in a lumen, the prosthesis having a surface; a plurality of discrete droplets of a first beneficial agent loaded on the surface of the prosthesis; and a plurality of discrete droplets of a second beneficial agent loaded on the surface of the prosthesis.
- In a further aspect of the invention, the first beneficial agent and the second beneficial agent can be incompatible with each other or detrimental to each other. The first beneficial agent can be dissolved in a first solvent and the second beneficial agent can be dissolved in a second solvent, wherein the first solvent and the second solvent are immiscible. Similarly, the first beneficial agent can react with the second beneficial agent. It is possible for the first beneficial agent to be more hydrophobic than the second beneficial agent. Also, the discrete droplets of the first beneficial agent can be loaded along a first controlled trajectory and the discrete droplets of the second beneficial agent can be loaded along a second controlled trajectory, wherein the first controlled trajectory and the second controlled trajectory are aligned to allow the first beneficial agent and the second beneficial agent to mix prior to being loaded onto the surface of the prosthesis.
- In a still further aspect of the invention, the discrete droplets of the first beneficial agent and of the second beneficial agent can mix on the surface of the prosthesis. The first beneficial agent can be dissolved in a solvent wherein the second beneficial agent causes the first beneficial agent to precipitate out of the solvent. Also, the first beneficial agent can be mixed with a binder, wherein the second beneficial agent cures the binder. The first beneficial agent and the second beneficial agent also can be loaded on the prosthesis in unmixed droplets to provide an interspersed pattern of the first beneficial agent and the second beneficial agent. The invention also contemplates an interventional device wherein the first beneficial agent and the second beneficial agent are loaded on the prosthesis in unmixed droplets to provide an overlapping pattern of the first beneficial agent and the second beneficial agent.
- In a further aspect of the invention, an interventional device is provided wherein at least one of the first beneficial agent and the second beneficial agent is mixed with a binder prior to being loaded on the prosthesis. Preferably, the second beneficial agent cures the binder on the prosthesis with the first beneficial agent mixed therein.
- In accordance with another aspect of the invention, an interventional device is provided wherein the first beneficial agent is mixed with a binder having a first release rate for delivery of the first beneficial agent. The second beneficial agent can be mixed with a binder having a second release rate for delivery of the second beneficial agent; the first release rate being different than the second release rate. The first beneficial agent can be different than the second beneficial agent.
- In accordance with another aspect of the invention, an interventional device is provided wherein the first beneficial agent has a first local areal density and the second beneficial agent has a second local areal density. At least one of the first local areal density and the second local areal density can be uniform across a selected portion of the prosthesis. Also, at least one of the first local areal density of beneficial agent and the second local areal density can be varied across a selected portion of the prosthesis. The first local areal density of the first beneficial agent can be different than the second local areal density of the second beneficial agent. The interventional device can further include a third beneficial agent loaded on at least one of the first surface and second surface of the prosthesis.
- In accordance with still another aspect of the invention, an interventional device is provided wherein the prosthesis further includes a layer of base material on a selected portion thereof, and the first beneficial agent and the second beneficial agent are loaded to the base material layer in unmixed droplets. The base material layer defines a pattern for loading the first beneficial agent and the second beneficial agent.
- In accordance with a further aspect of the invention, the prosthesis includes at least one cavity defined therein. The cavity can be filled with multiple beneficial agents. Preferably, the at least one cavity is at least partially loaded with a base material, and the first beneficial agent and the second beneficial agent are loaded to the base material.
- The invention also provides a method of loading multiple beneficial agents onto a prosthesis for delivery within a lumen wherein the method comprises the steps of providing a prosthesis to be deployed within a lumen; providing a first beneficial agent to be loaded on the prosthesis; providing a second beneficial agent to be loaded on the prosthesis; dispensing the first beneficial agent and the second beneficial agent in discrete droplets onto the prosthesis; each droplet having a controlled trajectory.
- In accordance with a further aspect of the invention, the first beneficial agent provided by the first beneficial agent providing step is incompatible with the second beneficial agent provided by the second beneficial agent providing step. The first beneficial agent provided by the first beneficial agent providing step can be dissolved in a first solvent and the second beneficial agent provided by the second beneficial agent providing step can be dissolved in a second solvent. The first solvent and the second solvent can be immiscible. The first beneficial agent provided by the first beneficial agent providing step also can be reactive with the second beneficial agent provided by the second beneficial agent providing step. The first beneficial agent provided by the first beneficial agent providing step can react with the second beneficial agent provided by the second beneficial agent providing step to form a third beneficial agent onto the prosthesis. Furthermore, the dispensing steps can be performed to define an interspersed pattern of the first beneficial agent droplets and the second beneficial agent droplets on the prosthesis, if desired. The dispensing steps are performed simultaneously. The dispensing steps also can be performed to define an overlapping pattern of the first beneficial agent and the second beneficial agent.
- In accordance with another aspect of the invention, the method can further include the step of mixing the first beneficial agent with a binder prior to the first beneficial agent dispensing step. The second beneficial agent provided by the second beneficial agent providing step cures the binder on the prosthesis with the first beneficial agent mixed therein.
- In accordance with a still further aspect of the invention, the method can further include the step of mixing the first beneficial agent with a first binder having a first release rate for delivery of the first beneficial agent and the second beneficial agent with a second binder having a second release rate for delivery of the second beneficial agent. The first release rate can be different than the second release rate, and first beneficial agent can be different than the second beneficial agent.
- In accordance with another aspect of the invention, a method is provided wherein the first beneficial agent dispensing step is performed to provide the first beneficial agent with a first local areal density and the second beneficial agent dispensing step is performed to provide the second beneficial agent with a second local areal density, wherein at least one of the first local areal density and the second local areal density is varied across a selected portion of the prosthesis.
- In accordance with still another aspect of the invention, a method can be provided further including the step of applying a layer of base material on a selected portion of the prosthesis, and the dispensing steps are performed to introduce the first beneficial agent and the second beneficial agent to the base material layer in unmixed droplets. The base material layer can be applied to define a pattern for loading the first beneficial agent and the second beneficial agent.
- In accordance with another aspect of the invention, a method is provided wherein the loading steps can include introducing at least one of the first beneficial agent and the second beneficial agent to the base material layer. The base material layer applied by the applying step can define a pattern for loading at least one of the first beneficial agent and second beneficial agent.
- The invention also includes an interventional device for delivery of beneficial agent, where the beneficial agent can be selected from a group consisting of antithrombotics, anticoagulants, antiplatelet agents, anti-lipid agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, smooth muscle cell inhibitors, antibiotics, growth factor inhibitors, cell adhesion inhibitors, cell adhesion promoters, antimitotics, antifibrins, antioxidants, antineoplastics, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors, antisense compounds, oligionucleotides, cell permeation enhancers, angiogenesis agents, and combinations thereof. The prosthesis can be a stent, graft, stent-graft, filter, or other intravascular device. The interventional device can include an overcoat applied to at least one of the inner surface or the outer surface of the prosthesis. The fluid-dispenser can be a drop-on-demand fluid type printer or a charge-and-deflect type print head. Furthermore, the beneficial agent can be mixed with a binder and also can be loaded onto the prosthesis with a polymer. The polymer is preferably biodegradable. For example, the polymer can be a macromolecule containing pendant phosphorylcholine groups such as poly(MPCw:LMAx:HPMAy:TSMAz), where MPC is 2 methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate.
- In accordance with another aspect of the invention, the beneficial agents can be applied to the interventional device using a fluid jet dispenser capable of dispensing discrete droplets along a controlled trajectory, such as drop-on-demand fluid type printer or a charge-and-deflect type printer. In accordance with a further aspect of the invention, the beneficial agent can be mixed with a binder. The beneficial agent preferably is loaded onto the prosthesis with a polymer. Preferably, the polymer is a phosphorylcholine material.
- In yet another aspect of the invention, the prosthesis has a tubular body when deployed, wherein the tubular body defines a longitudinal axis. The first surface of the prosthesis is defined as an inner surface of the tubular body, and the second surface of the prosthesis is defined as an outer surface of the tubular body.
- In further accordance with the invention, the first surface is loaded with beneficial agent selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial healing, agents that promote migration and estradiol. The second beneficial agent can be selected from a group consisting of anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog, ABT-578, i.e.,3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]- 1 -methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone;23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone.
- In accordance with another aspect of the invention, an interventional device is provided wherein the first surface of the prosthesis is defined by a plurality of interconnecting structural members and prosthesis includes a first selected set of the structural members and the second surface of the prosthesis includes a second selected set of the structural members. At least one of the first selected set of structural members and the second selected set of structural members can define at least one ring-shaped element extending around a circumference of the tubular body.
- In accordance with another aspect of the invention, an interventional device is provided wherein the first beneficial agent has a first local areal density and the second beneficial agent has a second local areal density. At least one of the first local areal density and the second local areal density can be uniform across at least one of the first surface and second surface of the prosthesis. Also, at least one of the first local areal density of beneficial agent and the second local areal density can be varied across at least one of the first surface and second surface of the prosthesis. The first local areal density of the first beneficial agent can be different than the second local areal density of the second beneficial agent. The interventional device can further include an additional beneficial agent loaded on at least one of the first surface and second surface of the prosthesis.
- In accordance with another aspect of the invention, an interventional device is provided wherein the prosthesis further includes a layer of a base material on at least a portion of at least one of the first surface and the second surface of the prosthesis. The beneficial agent can be loaded to the base material layer. The base material layer preferably defines a pattern on the prosthesis for loading the beneficial agent.
- The invention also provides a method of manufacturing an interventional device for the delivery of beneficial agent wherein the method comprises the steps of providing a prosthesis to be deployed in a lumen, the prosthesis having a first surface and a second surface; providing a first beneficial agent to be delivered from the prosthesis; providing a second beneficial agent to be delivered from the prosthesis; loading the first beneficial agent to at least a portion of the first surface; and loading the second beneficial agent to at least a portion of the second surface. At least one of the first beneficial agent and the second beneficial agent can be loaded by a fluid-dispenser. Preferably, the prosthesis provided by the prosthesis providing step has a tubular body when deployed, and the first surface of the prosthesis can be defined as an inner surface of the tubular body and the second surface of the prosthesis is defined as an outer surface of the tubular body. The first beneficial agent can be applied to the inner surface of the tubular body by a fluid-dispenser. The first beneficial agent preferably is selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial recovery, agents that promote cell migration agents, angiogenesis agents, and estradiol. The second beneficial agent can be selected from a group consisting of anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog, ABT-578, i.e., 3S,6R,7E,9R,10R, 12R,14S,15E,17E, 19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; 23,27-Epoxy-3H-pyrido[2,1-c][1 ,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone.
- In accordance with another aspect of the invention, a method is provided wherein the first beneficial agent is loaded with a first local areal density by the first beneficial agent loading step, and the second beneficial agent is loaded with a second local areal density by the second beneficial agent loading step. At least one of the first local areal density and the second local areal density can be varied across a selected portion of the prosthesis. The method also can include the steps of providing a third beneficial agent and loading the third beneficial agent on at least one of the first surface and the second surface of the prosthesis. Additionally, the method can further include the step of applying a layer of base material on a selected portion of at least one of the first surface and the second surface.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the invention claimed.
- The accompanying Figures, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the method and system of the invention. Together with the description, the Figures serve to explain the principles of the invention.
- FIGS. 1a-1 c are schematic representations of a prosthesis loaded with beneficial agent having a first portion and a second portion having different local areal densities of beneficial agent in accordance with the present invention, and graphs depicting corresponding areal density.
- FIG. 2 is a schematic representation of a first prosthesis and a second prosthesis configured to define a nested interventional device, each at least partially loaded with beneficial agent in accordance with the present invention.
- FIG. 3 is a schematic representation of the first prosthesis and second prosthesis of FIG. 2, deployed in overlapping relationship to provide a controlled local areal density across the length of the interventional device.
- FIG. 4 is a schematic representation of a first prosthesis and second prosthesis configured to define a bifurcated interventional device, each at least partially loaded with beneficial agent in accordance with the present invention.
- FIG. 5 is a schematic representation of the first prosthesis and second prosthesis of FIG. 4, deployed in an overlapping relationship to provide a bifurcated interventional device having a controlled local areal density across a length of the interventional device.
- FIG. 6 is a schematic representation of an interventional device, and FIG. 6a is a detail schematic depicting a raster format for loading beneficial agent thereon.
- FIG. 7 is a schematic representation of an embodiment of the system of the present invention.
- FIGS. 8a-8 d are schematic representations of an “off-axis” dispensing method at various cross-sections of the device of FIG. 6.
- FIG. 9 is a schematic representation of another embodiment of the system of the present invention.
- FIG. 10 is a schematic representation of discrete droplets loaded in an overlapping manner.
- FIG. 11 is a schematic representation of a method of loading beneficial agent on an inner surface of an interventional device.
- FIG. 12 is a schematic representation of the cross-section of the structural element of a prosthesis having a cavity therein.
- FIG. 13 is a schematic representation of the holding tool assembly of the system of the invention, FIG. 13a is a detail schematic depicting the holding tool assembly including the spindle.
- Reference will now be made in detail to the present preferred embodiments of the method and system for loading beneficial agent onto a prosthesis, and the interventional devices loaded with beneficial agent. Wherever possible, the same reference characters will be used throughout the drawings to refer to the same or like parts.
- In accordance with the present invention, an interventional device is provided for delivery of beneficial agent within a lumen. Particularly, the present invention is suited for providing an interventional device having a controlled areal density of beneficial agent for the treatment and prevention of vascular or other intraluminal diseases. Generally, “controlled areal density” is understood to mean a known or predetermined amount of beneficial agent, either by weight or volume, over a unit surface area of the interventional device.
- As used herein “interventional device” refers broadly to any device suitable for intraluminal delivery or implantation. For purposes of illustration and not limitation, examples of such interventional devices include stents, grafts, stent-grafts, filters, and the like. As is known in the art, such devices may comprise one or more prostheses, each having a first cross-sectional dimension or profile for the purpose of delivery and a second cross-sectional dimension or profile after deployment. Each prosthesis may be deployed by known mechanical techniques such as balloon expansion deployment techniques, or by electrical or thermal actuation, or self-expansion deployment techniques, as well known in the art. Examples of such for purpose of illustration include U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat. No. 6,106,548 to Roubin et al.; U.S. Pat. No. 4,580,568 to Gianturco; U.S. Pat. No. 5,755,771 to Penn et al.; and U.S. Pat. No. 6,033,434 to Borghi, all of which are incorporated herein by reference.
- For purposes of explanation and illustration, and not limitation, an exemplary embodiment of the interventional device in accordance with the invention is shown schematically in FIG. 1a. In accordance with one aspect of the invention, as shown schematically in FIG. 1, the interventional device generally includes a
prosthesis 10 loaded with beneficial agent to provide a local areal density of beneficial agent across a length of the interventional device. Particularly, as embodied herein the prosthesis may be a stent, a graft, a stent-graft, a filter, or the like, as previously noted, for intravascular or coronary delivery and/or implantation. However, the prosthesis may be any type of intraluminal member capable of being loaded with beneficial agent. - The prosthesis can be in an expanded or unexpanded state during the loading of beneficial agent. The underlying structure of the prosthesis can be virtually any structural design and the prosthesis can be composed any suitable material such as, but not limited to, stainless steel, “MP35N,” “MP20N,” elastinite (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, polymer, ceramic, tissue, or combinations thereof. “MP35N” and “MP20N” are understood to be trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium and 10% molybdenum. The prosthesis can be made from bioabsorbable or biostable polymers. In some embodiments, the surface of the prosthesis can include one or more reservoirs or cavities formed therein, as described further below.
- The prosthesis can be fabricated utilizing any number of methods known in the art. For example, the prosthesis can be fabricated from a hollow or formed tube that is machined using lasers, electric discharge milling, chemical etching or other known techniques. Alternatively, the prosthesis can be fabricated from a sheet that is rolled into a tubular member, or formed of a wire or filament construction as known in the art.
- As noted above, the prosthesis is at least partially loaded with beneficial agent (10 a, 10 b, 10 c). “Beneficial agent” as used herein, refers to any compound, mixture of compounds, or composition of matter consisting of a compound, which produces a beneficial or useful result. The beneficial agent can be a polymer, a marker, such as a radiopaque dye or particles, or can be a drug, including pharmaceutical and therapeutic agents, or an agent including inorganic or organic drugs without limitation. The agent or drug can be in various forms such as uncharged molecules, components of molecular complexes, pharmacologically-acceptable salts such as hydrochloride, hydrobromide, sulfate, laurate, palmitate, phosphate, nitrate, borate, acetate, maleate, tartrate, oleate, and salicylate.
- An agent or drug that is water insoluble can be used in a form that is a water-soluble derivative thereof to effectively serve as a solute, and on its release from the device, is converted by enzymes, hydrolyzed by body pH, or metabolic processes to a biologically active form. Additionally, the agents or drug formulations can have various known forms such as solutions, dispersions, pastes, particles, granules, emulsions, suspensions and powders. The drug or agent may or may not be mixed with polymer or a solvent as desired.
- For purposes of illustration and not limitation, the drug or agent can include antithrombotics, anticoagulants, antiplatelet agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, inhibitors of smooth muscle proliferation, antibiotics, growth factor inhibitors, or cell adhesion inhibitors. Other drugs or agents include but are not limited to antineoplastics, antimitotics, antifibrins, antioxidants, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors, antisense compounds, oligionucleotides, cell permeation enhancers, angiogenesis agents, and combinations thereof.
- Examples of such antithrombotics, anticoagulants, antiplatelet agents, and thrombolytics include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapriprost, prostacyclin and prostacylin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa (platelet membrane receptor antagonist antibody), recombinant hirudin, and thrombin inhibitors such as Angiomax™, from Biogen, Inc., Cambridge, Mass; and thrombolytic agents, such as urokinase, e.g., Abbokinase™ from Abbott Laboratories Inc., North Chicago, Ill., recombinant urokinase and pro-urokinase from Abbott Laboratories Inc., tissue plasminogen activator (Alteplase™ from Genentech, South San Francisco, Calif. and tenecteplase (TNK-tPA).
- Examples of such cytostatic or antiproliferative agents include rapamycin and its analogs such as everolimus, ABT-578, i.e., 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone;23,27-Epoxy-3H pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone, which is disclosed in U.S. Pat. No. 6,015,815, U.S. Pat. No. 6,329,386, U.S. Publication 2003/129215, filed on Sep. 6, 2002, and U.S. Publication 2002/123505, filed Sep. 10, 2001, the disclosures of which are each incorporated herein by reference thereto, tacrolimus and pimecrolimus, angiopeptin, angiotensin converting enzyme inhibitors such as captopril, e.g, Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn., cilazapril or lisinopril, e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.; calcium channel blockers such as nifedipine, amlodipine, cilnidipine, lercanidipine, benidipine, trifluperazine, diltiazem and verapamil, fibroblast growth factor antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin, e.g. Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J. In addition, topoisomerase inhibitors such as etoposide and topotecan, as well as antiestrogens such as tamoxifen may be used.
- Examples of such anti-inflammatories include colchicine and glucocorticoids such as betamethasone, cortisone, dexamethasone, budesonide, prednisolone, methylprednisolone and hydrocortisone. Non-steroidal anti-inflammatory agents include flurbiprofen, ibuprofen, ketoprofen, fenoprofen, naproxen, diclofenac, diflunisal, acetominophen, indomethacin, sulindac, etodolac, diclofenac, ketorolac, meclofenamic acid, piroxicam and phenylbutazone.
- Examples of such antineoplastics include alkylating agents such as altretamine, bendamucine, carboplatin, carmustine, cisplatin, cyclophosphamide, fotemustine, ifosfamide, lomustine, nimustine, prednimustine, and treosulfin, antimitotics such as vincristine, vinblastine, paclitaxel, e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn., docetaxel, e.g., Taxotere® from Aventis S.A., Frankfort, Germany, antimetabolites such as methotrexate, mercaptopurine, pentostatin, trimetrexate, gemcitabine, azathioprine, and fluorouracil, and antibiotics such as doxorubicin hydrochloride, e.g., Adriamycin® from Pharmacia & Upjohn, Peapack, N.J., and mitomycin, e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn, agents that promote endothelial cell recovery such as Estradiol.
- Additional drugs which may be utilized in this application include dexamethasone; fenofibrate; inhibitors of tyrosine kinase such as RPR-101511A; PPAR-alpha agonists such as Tricor™ formulation from Abbott Laboratories Inc., North Chicago, Ill.; endothelin receptor antagonists such as ABT-627 having general formula C29H38N2O6.ClH, and the following structural formula
- from Abbott Laboratories Inc., North Chicago, Ill., as disclosed in U.S. Pat. No. 5,767,144, the disclosure of which is incorporated herein by reference; matrix metalloproteinase inhibitors such as ABT-518 {[S-(R*,R*)]-N-[1-(2,2-dimethyl-1,3-dioxol-4-yl)-2-[[4-[4-(trifluoro-methoxy)-phenoxy]phenyl]sulfonyl]ethyl]-N-hydroxyformamide }, having general formula C21H22F3NO8S and having the following structural formula
- from Abbott Laboratories Inc., North Chicago, Ill., which is disclosed in U.S. Pat. No. 6,235,786, the disclosure of which is incorporated herein by reference; ABT 620 {1-Methyl-N-(3,4,5-trimethoxyphenyl)-1H-indole-5-sulfonamide}, which is disclosed in U.S. Pat. No. 6,521,658, the disclosure of which is incorporated herein by reference; antiallergic agents such as permirolast potassium nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine, and nitric oxide.
- While the foregoing beneficial agents are known for their preventive and treatment properties, the substances or agents are provided by way of example and are not meant to be limiting. Further, other beneficial agents that are currently available or may be developed are equally applicable for use with the present invention.
- If desired or necessary, the beneficial agent can include a binder to carry, load, or allow sustained release of an agent, such as but not limited to a suitable polymer or similar carrier. The term “polymer” is intended to include a product of a polymerization reaction inclusive of homopolymers, copolymers, terpolymers, etc., whether natural or synthetic, including random, alternating, block, graft, branched, cross-linked, blends, compositions of blends and variations thereof. The polymer may be in true solution, saturated, or suspended as particles or supersaturated in the beneficial agent. The polymer can be biocompatible, or biodegradable.
- For purpose of illustration and not limitation, the polymeric material include phosphorylcholine linked macromolecules, such as a macromolecule containing pendant phosphorylcholine groups such as poly(MPCw:LMAx:HPMAy:TSMAz), where MPC is 2-methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate, polycaprolactone, poly-D,L-lactic acid, poly-L-lactic acid, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyphosphazenes, polyiminocarbonates, and aliphatic polycarbonates, fibrin, fibrinogen, cellulose, starch, collagen, Parylene®, Parylast®, polyurethane including polycarbonate urethanes, polyethylene, polyethylene terapthalate, ethylene vinyl acetate, ethylene vinyl alcohol, silicone including polysiloxanes and substituted polysiloxanes, polyethylene oxide, polybutylene terepthalate-co-PEG, PCL-co-PEG, PLA-co-PEG, polyacrylates, polyvinyl pyrrolidone, polyacrylamide, and combinations thereof. Non-limiting examples of other suitable polymers include thermoplastic elastomers in general, polyolefin elastomers, EPDM rubbers and polyamide elastomers, and biostable plastic material such as acrylic polymers, and its derivatives, nylon, polyesters and expoxies. Preferably, the polymer contains pendant phosphoryl groups as disclosed in U.S. Pat. Nos. 5,705,583 and 6,090,901 to Bowers et al. and U.S. Pat. No. 6,083,257 to Taylor et al., which are all incorporated herein by reference.
- The beneficial agent can include a solvent. The solvent can be any single solvent or a combination of solvents. For purpose of illustration and not limitation, examples of suitable solvents include water, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ketones, dimethyl sulfoxide, tetrahydrofuran, dihydrofuran, dimethylacetamide, acetates, and combinations thereof. Preferably, the solvent is ethanol. More preferably, the solvent is isobutanol. Additionally, in another aspect of the invention, multiple beneficial agents are dissolved or dispersed in the same solvent. For purpose of illustration and not for limitation, dexamethasone, estradiol, and paclitaxel are dissolved in isobutanol. Alternatively, dexamethasone, estradiol, and paclitaxel are dissolved in ethanol. In yet another example, dexamethasone, estradiol, and ABT-578, i.e., the rapamycin analog, 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23-S,26R,27R,34aS)9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; 23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone, are dissolved together in one solvent. Preferably, the solvent is ethanol. More preferably, the solvent is isobutanol.
- Additionally, the beneficial agent includes any of the aforementioned drugs, agents, polymers, and solvents either alone or in combination.
- A number of methods can be used to load the beneficial agent onto the surface of the prosthesis to provide for a controlled local areal density of beneficial agent if performed appropriately. For example, the prosthesis can be constructed to include pores or reservoirs which are impregnated or filled with beneficial agent or multiple beneficial agents. The pores can be sized or spaced apart to correspond to or limit the amount of beneficial agent contained therein in accordance with the desired local areal density pattern along the length of the interventional device, wherein larger pores or more dense spacing would be provided in such portions intended to have a greater local areal density. Alternatively, uniform pores sizes can be provided but the amount of beneficial agent loaded therein is limited accordingly. Additionally, if desired, a membrane of biocompatible material can then be applied over the pores or reservoirs for sustained or controlled release of the beneficial agent from the pores or reservoirs.
- According to some of the embodiments, the beneficial agent can be loaded directly onto the prosthesis or alternatively, the beneficial agent is loaded onto a base material layer that is applied to a surface of the prosthesis. For example and not limitation, a base coating, such as a binder or suitable polymer, is applied to a selected surface of the prosthesis such that a desired pattern is formed on the prosthesis surface. Beneficial agent is then applied directly to the pattern of the base material.
- In one aspect of the invention, the desired pattern corresponds to the desired controlled local areal density. For example, a greater amount of base material layer is applied to portions of the interventional device intended to have a greater local areal density of beneficial agent, and a lesser amount of base material is applied to portions of the interventional device intended to have a lower local areal density of beneficial agent.
- Alternatively, a suitable base coating capable of retaining beneficial agent therein can be applied uniformly over the surface of the prosthesis, and then selected portions of the base coating can be loaded with the beneficial agent in accordance with the invention. A greater amount of beneficial agent would be loaded over a unit surface area of the base coating intended to have a greater local areal density and a lower amount of beneficial agent would be loaded over a unit surface area intended to have a lower local areal density.
- In yet another embodiment of the present invention, the beneficial agent can be applied directly to the surface of the prosthesis. Generally a binder or similar component can be required to ensure sufficient adhesion. For example, this coating technique can include admixing the beneficial agent with a suitable binder or polymer to form a coating mixture, which is then coated onto the surface of the prosthesis. The coating mixture is prepared in higher or lower concentrations of beneficial agent as desired, and then applied to selected portions of the prosthesis appropriately.
- In any of the embodiments disclosed herein, a porous or biodegradable membrane or layer made of biocompatible material can be coated over the beneficial agent for sustained release thereof, if desired.
- Conventional coating techniques can be utilized to coat the beneficial agent onto the surface of the prosthesis such as spraying, dipping or sputtering and still provide the desired effect if performed appropriately. With such techniques, it may be desirable or necessary to use known masking or extraction techniques to control the location and amount in which beneficial agent is loaded. Prior to coating the prosthesis with beneficial agent, optical machine vision inspection of the prosthesis preferably is utilized to ensure that no mechanical defects exist. Defective prostheses thus can be rejected before wasting beneficial agent, some of which may be very costly.
- In accordance with one aspect of the invention, however, the beneficial agent is “printed” onto the surface of the prosthesis by a fluid-dispenser having a dispensing element capable of dispensing beneficial agent in discrete droplets, wherein each droplet has a controlled trajectory. If desired, printing can be combined with conventional coating techniques such as spraying or dipping.
- “Fluid-dispenser,” as used herein, refers broadly to any device having a dispensing element capable of dispensing fluid in discrete droplets wherein each droplet has a controlled trajectory. For purposes of illustration and not limitation, examples of such fluid-dispensers include fluid-jetting and similar fluid dispensing technology devices such as a drop-on-demand fluid printer and a charge-and-deflect fluid printer. However, other fluid-dispensers capable of forming a fluid jet or capable of dispensing discrete droplets having a controlled trajectory are within the scope of the present invention. In a preferred embodiment, the fluid-dispenser is a fluid-jet print head. Such equipment is available from MicroFab Technologies of Plano, Tex.
- Fluid-jetting and similar technology provides numerous advantages not available with conventional loading techniques. For example, fluid jetting technology can be used to deposit materials, such as chemical reagents, in controlled volumes onto a substrate at a controlled location, as disclosed in U.S. Pat. No. 4,877,745 to Hayes et al., incorporated herein by reference.
- Fluid jetting can also be used to deposit materials in a reproducible way. Fluid-jet based deposition of materials is data driven, non-contact, and requires no tooling. The “printing” information can be created directly from Calif.D information and stored digitally in software or hardware. Thus, no masks or screens are required. As an additive process with no chemical waste, fluid-jetting is environmentally friendly. Other advantages include the efficiency of fluid jet printing technology. For example, fluid-jetting can dispense spheres of fluid with diameters of 15-200 um at rates of 1-25,000 per second for single droplets on demand, and up to 1 MHz for continuous droplets. See Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems,”Proc. SPIE Conf. on Microfluidics, (October 2001), incorporated herein by reference.
- In accordance with one aspect of the invention, a method of loading beneficial agent onto a prosthesis for delivery within a lumen is disclosed. The method comprises the steps of providing a prosthesis, beneficial agent to be delivered from the prosthesis, and a fluid-dispenser having a dispensing element capable of dispensing the beneficial agent in discrete droplets, wherein each droplet has a controlled trajectory. The method further includes creating relative movement between the dispensing element and the prosthesis to define a dispensing path and selectively dispensing the beneficial agent in a raster format to a predetermined portion of the prosthesis along the dispensing path. In particular, the beneficial agent is selectively dispensed from the dispensing element to a predetermined portion of the prosthesis in a raster format along a dispensing path. As used herein “raster format” refers to a continuous or non-continuous dispensing pattern of droplets of beneficial agent dispensed at specific intervals. The relative motion of the dispensing element and the prosthesis to be loaded with beneficial agent creates a dispensing path which includes, for example and as shown in FIG. 6a, a sequential series of linear parallel passes 154 that traverse back and forth along one axis of the prosthesis. The relative motion is continued in a linear manner between forward and backward or right to left and left to right or upward and downward, depending on the frame of reference. A traversal or a
pass 154 is completed when the relative motion reverses direction. That is, relative motion continues past the prosthesis, and then decelerates, stops, reverses direction and accelerates to a constant velocity. After each pass, the position of the dispensingelement 150 orprosthesis 10 relative to the dispensing element preferably is changed or incremented such that additional droplets do not impact in the same location during the subsequent pass, although a certain degree of overlap may be permitted. For example, as the dispensing element dispenses the beneficial agent along the prosthesis, a fluid dispensing width “w” is defined. The dispensing path defined by the relative movement between the dispensing element and the prosthesis can include a series of parallel passes wherein each parallel pass has a path width no greater than the fluid dispensing width defined by the dispensing element, although a greater path width can be defined if desired. - Alternatively, the dispensing path created by the relative motion of the dispensing
element 150 and theprosthesis 10 can include a single continuous helix that wraps continuously around the prosthesis tubular body and along the length of the prosthesis. FIG. 10 schematically depicts such a helical path. In this manner, selectively fluid dispensing in a raster format similar to that of the linear paths previously described can be performed using a helical path if desired. In a preferred embodiment, the direction of travel of relative motion consists of continuously rotating, for example, theprosthesis 10 to be loaded and then incrementally advancing the dispensing element axially along the prosthesis. Both axial and radial motion preferably begin before theprosthesis 10 is aligned with the dispensingelement 150 to receive droplets, so as to enable acceleration of both axes to a constant velocity, and continues beyond the prosthesis where both movements may decelerate, and stop. After each rotation, the position of the dispensingelement 150 or of theprosthesis 10 relative to the dispensing element is moved or incremented axially such that additional droplets of beneficial agent preferably do not impact in the same location. Any degree of overlap may be permitted to achieve the desired areal density of beneficial agent. - For purpose of illustration of this method, and as shown in FIGS. 6 and 7, the
prosthesis 10 includes a plurality of interconnectedstructural members 12 definingopenings 14 therebetween and thebeneficial agent 15 is dispensed only when the dispensingelement 150 and thestructural members 12 within a predetermined portion of theprosthesis 10 are aligned with each other. Accordingly, in this preferred embodiment, dispensingbeneficial agent 15 ceases when the dispensingelement 150 and thestructural members 12 of the prosthesis are not in alignment. To this end, the method can include a detecting step to determine when the dispensingelement 150 is aligned with thestructural members 12 of aprosthesis 10. The detecting step can be achieved by asensor 160 such as an optical detector, e.g., linear array detector or infrared detector, ultrasound probe, temperature probe, camera, capacitance meter, electrometer, hall-effect probe, and the like. However, anysensor 160 known in the art for detection is within the scope of the invention. Alternatively, acontroller 170 may be provided that is programmed with the structural member locations of a predetermined portion of the prosthesis to be loaded with beneficial agent. In this manner, the dispensing step is performed by the dispensing element as operated by the programmed controller. These aspects of the invention reduce or eliminate webbing and bridging of beneficial agent across openings or gaps within the structure of the prosthesis and minimizes waste. Furthermore, the dispensingelement 150 can be aligned such that the controlled trajectory of each droplet is directed normal to the surface of the prosthesis, or at an angle thereto. Similarly, the trajectory path can be aligned to cross the central axis of the prosthesis, or be aligned off-axis thereto. - According to another aspect of the invention, the method of loading beneficial agent onto the prosthesis includes providing a prosthesis including a tubular member having a central axis defined along a length of the tubular member. This method further includes dispensing beneficial agent from a dispensing element capable of dispensing beneficial agent in discrete droplets and in a controlled trajectory to a surface of the prosthesis, wherein the controlled trajectory of beneficial agent is aligned so as not to intersect the central axis of the tubular member.
- For example, and for purpose of illustration and not limitation, FIGS. 8a-8 d depict various cross-sections of the
interventional device 10 of FIG. 6. In each cross-sectional view, thetrajectory path 152 of thediscrete droplets 155 is aligned “off-axis” so as not to pass through the central axis 11 of the tubular member. Particularly, and as depicted in FIGS. 8a through 8 d for purpose of illustration and not limitation, thetrajectory path 152 of thediscrete droplets 155 is aligned tangentially between an inner surface and an outer surface of the tubular wall of theprosthesis 10. In this manner, likelihood of impact of adiscrete droplet 155 ofbeneficial agent 15 with a surface of theprosthesis 10 is enhanced. If desired, however, alternative off-axis trajectory path alignment can be used in accordance with the invention. - With reference to FIGS. 8a -8 d, the prosthesis provided by the prosthesis providing step includes a tubular member having a plurality of interconnected
structural members 12 definingopenings 14 therebetween, and further wherein the controlledtrajectory 152 of each droplet is substantially tangential to a wall or surface of thestructural members 12 within the predetermined portion of the prosthesis. In this regard, the controlledtrajectory 152 ofbeneficial agent 15 dispensed from the dispensingelement 150 is aligned such that it does not intersect the central axis of the prosthesis. This process allows for greater coverage of the structural elements, without requiring selective operation of the dispensing element, if desired. That is, use of the “off-axis” approach allows for enhanced loading of beneficial agent on the prosthesis without selective or with only limited control of the dispensing element if desired. In a preferred embodiment, however, the dispensing element is at least controlled to terminate dispensing when the trajectory path is not aligned with the solid profile of the predetermined area to be loaded, e.g. axially beyond either end 13 of theprosthesis 10, shown in FIG. 6. In particular, the dispensing element is turned “on” only when the trajectory path of beneficial agent will intersect the solid area swept out by 360 degrees rotation of the prosthesis. The dispensing element is turned off when the trajectory path of beneficial agent would not intersect or will miss the solid area and volume swept out by 360 degrees rotation of the prosthesis. - Alternatively, and in accordance with a preferred embodiment of the invention, the “off-axis” method is performed using the raster technique previously described. That is, with the
trajectory path 152 aligned off-axis from the central axis of theprosthesis 10, such as shown in FIG. 8a -8 d, discrete droplets can be selectively dispensed from the dispensingelement 150 only when aligned with astructural member 12 of theprosthesis 10. In this embodiment, the relative motion of the dispensingelement 150 and theprosthesis 10 define a dispensing path which includes a sequential series of linear parallel passes that traverse back and forth along one axis of the prosthesis. The relative motion alternates between forward and backward, right to left, left to right, or upward and downward, depending on the frame of reference. A traversal or pass is completed when the relative motion changes direction. That is, relative motion continues past the prosthesis and then decelerates, stops, reversed direction and accelerates to a constant velocity. After each pass, the position of the dispensingelement 150 is changed or incremented such that additional drops of beneficial agent do not impact the same location as the previously dispensed droplets during the subsequent pass. Any degree of overlap may be permitted to achieve a desired areal density of beneficial agent. - Alternatively, the relative motion of the dispensing element and the prosthesis define a dispensing path which includes a single continuous helix that wraps around the prosthesis and along its length. The relative motion consists of continuously rotating, for example, the prosthesis and then incrementally advancing the dispensing
element 150 axially along the prosthesis. Both axial and radial motion preferably begin before the item is aligned with the dispensing element to receive droplets of beneficial agent, so as to enable acceleration of both axes to a constant velocity, and continues beyond the prosthesis where both movements may decelerate, and stop. After each rotation, the position of the dispensing element or prosthesis relative to the dispensing element is moved or incremented axially such that additional droplets preferably do not impact in the same location. However, any degree of overlap may be permitted to achieve a desired areal density of beneficial agent. - The linear velocity during dispensing of droplets of beneficial agent can be constant or can be varied in a controlled way. Further, the preferable position of the droplet trajectory is such that the droplets interact with the structural surfaces of the prosthesis at or near the tangent to its curved solid surface.
- In a preferred embodiment the dispensing
path 154 includes a series of parallel passes along a surface of the prosthesis. For example and not limitation, the prosthesis provided can have a tubular body prior to its deployment in a lumen, and each parallel pass of the dispensingpath 154 is parallel to the longitudinal axis 11 of theprosthesis 10 as shown in FIG. 6a. After each pass, the position of the dispensingelement 150 orprosthesis 10 is changed or incremented so that thediscrete droplets 155 ofbeneficial agent 15 are dispensed onto a surface of theprosthesis 10 that has not already been loaded. Alternatively, and as previously noted, the parallel passes can define a helical pattern around the longitudinal axis of the stent, wherein each pass is a complete turn of the helical pattern. For purposes of illustration and not limitation, the relative motion of the dispensing element and the prosthesis can include continuously rotating the prosthesis and incrementally advancing the dispensing element axially along the length of the prosthesis. Preferably, after each rotation of the prosthesis, the position of the dispensing element is incrementally changed axially such that additional droplets of beneficial agent that are dispensed from the dispensing element load a surface of the prosthesis not already loaded by a prior pass. In an alternative aspect of the invention, the prosthesis can have a planar body prior loading, such that no rotation of the planar member is required for loading of beneficial agent thereon. The step of dispensing the beneficial agent onto the prosthesis along the dispensing path can be repeated to provide multiple passes along a predetermined portion of the prosthesis. - As noted above, the beneficial agent is selectively dispensed from the dispensing element along the dispensing path in a raster format. In this manner, the raster format can be achieved by turning the dispensing element on and off at predetermined intervals in response to a detector. Alternatively, the beneficial agent can be selectively dispensed in a raster format by programming a controller device that communicates with the dispensing element to dispense the beneficial agent according to the programmed data. A variety of fluid dispensers are available and suitable for providing discrete droplets along a controlled trajectory. For example, a suitable drop-on-demand jetting system can be used, as shown in FIGS. 9 and 11, wherein discrete droplets are selectively dispensed from a jetting head. In this manner, the jet stream of discrete droplets can be turned on and off on demand, and the flow rate of discrete droplets can be increased or decreased as desired. Alternatively, if a charge-and-deflect device is used, then a continuous stream of droplets will be generated, and selected droplets will be deflected as is known in the art, such as shown in FIG. 7, as described further below.
- In one preferred embodiment of the invention the prosthesis is a stent, and as mentioned above, the fluid-dispenser is a fluid-jetting device. In accordance with the preferred embodiment, a
driver 120 continually advances the stent longitudinally along its axis at a constant rate, to define a series of generallyparallel passes 154 along the longitudinal axis 11 of thestent 10. The stent is the incrementally rotated about its axis at the end of each pass. The stent is rotated at about 1° to about 20° about its longitudinal axis, increments, and preferably is rotated at about 5° increments. - The fluid-jetting head is turned on to provide droplets of beneficial agent whenever a stent strut or structural member is detected immediately in front of the jetting head, or based on a predetermined programmed pattern that corresponds to the stent design, as mentioned above. By further providing controlled flow rate dispensed from the jetting head, the beneficial agent can be provided in a rastered format to confer the stent with a known quantity of beneficial agent. If desired, the known quantity of beneficial agent is dispensed to provide a uniform local areal density based on changes in surface area. As used herein “local areal density” refers to the amount of beneficial agent per unit surface area of the stent or prosthesis.
- For example and not limitation, a unit length of two different struts having different strut widths could each be loaded with an equal amount of beneficial agent by adjusting flow rate accordingly. Contrastly, the flow rate of the jetting head can be controlled along the progression of the stent to provide a
first portion 10 b of theprosthesis 10 with a greater local areal density and asecond portion 10 a of the prosthesis with a lower local areal density, such as shown in FIG. 1. Similarly, the rate of relative movement between the jetting head and the prosthesis can be varied to control local areal density accordingly. - As noted above, the dispensing
path 154 is defined by the relative movement between the dispensing element and the prosthesis. The relative movement between the dispensing element and the prosthesis may be performed at a substantially constant velocity, or alternatively at a varied velocity to alter local areal density of beneficial agent, or intermittently. For an example of varied velocity, and with reference to the embodiment of FIG. 1a for purpose of illustration and not limitation, the linear travel speed of the prosthesis under the fluid dispenser is performed 50% faster during loading of beneficial agent on the proximal anddistal portions - Alternatively, rather than using a raster format, a vector technique can be used wherein a first portion of the stent strut at one end of the stent is positioned in front of the jetting head and the jetting head is turned on. The jetting head is then left on to dispense droplets of beneficial agent at a constant predetermined frequency to provide a predetermined dispensing rate of agent. The two-axis control system, described further below, is directed to continuously move the stent, coordinating both axes simultaneously so that the predetermined shape of the stent struts are advanced in front of the jetting head. This movement continuously places the beneficial agent on the struts of the first portion until the desiried surface of the stent has been positioned to receive beneficial agent over the known surface area, and a predetermined quantity of beneficial agent has been dispensed. The beneficial agent is provided on the stent struts and the jetting head thereby does not disperse beneficial agent in areas wherein metal has been removed from the stent. This process may be repeated for subsequent portions of the interventional device, such that known quantities of beneficial agent are provided over each corresponding portion of the interventional device. As with the raster format, flow rate or rate of relative movement can be controlled to adjust local areal density of beneficial agent as desired.
- In yet another embodiment, the two-axis positioning system is coupled to a charge-and-deflect jetting head. A charge-and-deflect jetting head is capable of producing a rastered pattern of droplets over a predetermined width of the stent. That is, it is also in accordance with the invention to apply a surface charge to selected droplets of beneficial agent dispensed from the dispensing element. Preferably, if a positive surface charge is applied to the beneficial agent, an antioxidant can be included in the beneficial agent. In this manner, the antioxidant can help to prevent the oxidation of a beneficial agent that might otherwise oxidize when positively charged. Additionally, or alternatively, other known techniques can be used to prevent or inhibit oxidation of beneficial agent. The trajectory of charged droplets of beneficial agent can be altered by a deflection field. For example, an
electrode 144 may be used to deflect the trajectory of beneficial agent, which is charged by acharger 142, towards a predetermined portion of the prosthesis as shown in FIG. 7. If desired, a charge opposite that induced on the droplets of beneficial agent can be applied to a predetermined portion of the prosthesis to provide an electrostatic attraction between the droplets of beneficial agent and the prosthesis for greater accuracy and efficiency. - To effect predetermined loading of beneficial agent, or coating thickness, several methods of controlling the two-axis positioning system in coordination with control of the fluid dispensing are possible so as to result in a precise deposition of beneficial agent on the outer surface of the stent or
prosthesis 10. First, themotor 122 that controls rotation of the prosthesis about its longitudinal axis can be turned on to produce a constant angular velocity. Asecond motor 124 is then controlled to advance the prosthesis or stent in front of the dispensingelement 150 at a predetermined rate to generally describe a spiral or helix across the longitudinal axis of the stent, where the pitch width, from rotation to rotation, is the same as the raster width of the dispensingelement 150. When a charge-and-deflect dispensing element is used, the surface of theprosthesis 10 or stent can be exposed to the dispensingelement 150 in a more rapid manner than for the single drop wide raster pattern that is possible with the drop-on-demand mode system. When the first stent strut is detected to be present in front of thejet head 150, a bit-mapped pattern that has been previously stored inmemory 170 to describe the shape of the struts is rastered out by providing appropriate charges on selected droplets. Second, alinear array detector 160 with resolution similar to the number of droplets in each raster line can detect, by reflected or transmitted light, the presence of a stent strut that is about to revolve in front of the jetted fluid window. The data from this type of detector can then be transferred to a shift register which produces the necessary raster data by shifting the bit pattern out a bit at a time. With this method, no predetermined bit-map is necessary, and any slight variations in speed, edge detection or position may be automatically compensated. This process may be repeated for subsequent portions of the interventional device, such that known quantities of beneficial agent are provided over each corresponding portion of the interventional device. - Further in accordance with the invention, a system for loading beneficial agent onto a prosthesis for delivery within a lumen is provided. As shown in FIG. 7 and FIG. 13, the system includes a
holder 110 for supporting a prosthesis and a fluid-dispenser having a dispensingelement 150 capable of dispensingbeneficial agent 15 indiscrete droplets 155, each droplet having a controlled trajectory. - The holder includes a mandrel or
spindle 112 made of any suitable material known in the art. Preferably, however, thespindle 112 comprises a superelastic material, such as nitinol, or any other material that has shape memory properties. Particularly, manipulation of a stent holder made of stainless steel can result in bending and deformation of the spindle. Such deformation causes poor rotational accuracy and high run-out, e.g., 0.25-2.5 mm, from one end of the spindle to the other end of the spindle. This can cause a lower efficiency of loading beneficial agent onto a prosthesis, and lower efficiency of droplet interaction with the prosthesis because the position of the stent under the jetting head varies as the run out varies. Superelastic materials generally have properties that are able to absorb and recover from up to 8% strain force. Thus, advantageously, nitinol provides a more resilient spindle capable of undergoing repeated manual stent mounting without the plastic deformation that occurs with a stainless steel spindle design. - For purpose of illustration and not limitation, and as shown in FIG. 13, a
nitinol spindle 112 may be made using a centerless grinding technique to obtain high concentric accuracy. Despite this grinding process, the centerline of the small diameter part of the spindle (e.g., 0.5 mm diameter) can vary a few degrees from the centerline of the intermediate diameter section (e.g., 2 mm diameter). This variance can be removed by heating the spindle near the junction of the small and intermediate diameter section and bending it to remove most of the residual run out. Upon cooling, the spindle, shown in FIG. 13, assembly retains its new position. The final run out on an exemplary spindle after using these techniques was about 0.051 mm. - The system also includes a driver such as a
driver assembly 120 to create relative movement between theholder 110 and the dispensingelement 150, and acontroller 170 in communication with thedriver 120 to define a dispensing path of relative movement between the dispensingelement 150 and theholder 110. The controller also communicates with the dispensingelement 150 for selectively dispensing beneficial agent in a selected format along the dispensing path onto a selected portion of theprosthesis 10 supported by theholder 110. In one aspect of the invention theholder 110 supporting theprosthesis 10 is moveable while the dispensingelement 150 remains stationary during dispensing ofbeneficial agent 15. However, in another aspect of the invention theholder 110 supporting theprosthesis 10 remains stationary while the dispensingelement 150 moves along the dispensing path. Alternatively, both theholder 110 and dispensingelement 150 are moveable. In another aspect of the embodiment, as previously described, the system includes adetector 160 to detect when the dispensingelement 150 is aligned with the predetermined portion of theprosthesis 10. Various known components can be used in combination for construction of the system of the present invention. For example, jetLab System II from MicroFab Technologies of Plano, Tex., as modified to include the desired features of the invention can be used. - In yet another embodiment of the invention, a determination of the quantity of beneficial agent dispensed over a given or known surface area can be established. According to one aspect, a predetermined ratio of an identifiable marker is added to the beneficial agent and both the beneficial agent and the marker are loaded onto the prosthesis. Subsequently, the amount of identifiable marker loaded onto the prosthesis is detected to determine the amount of corresponding beneficial agent loaded onto the prosthesis. In one aspect of the invention, the identifiable marker includes radiopaque material. After loading the radiopaque material with the beneficial agent onto the prosthesis, the prosthesis is imaged and an intensity value is measured to determine the amount of beneficial agent loaded thereon and thus local areal density. The identifiable marker in this aspect can also include a fluorescent dye, e.g., coumarin dye. In another aspect of the invention, the identifiable marker includes charged particles, for example and not limitation, protons or electrons. After loading the marker and beneficial agent onto the prosthesis the detecting step includes measuring a charge build-up on or current flow from the prosthesis resulting from the charged particles. The charge build-up or current flow therefore generally corresponds to the amount of beneficial agent loaded onto the prosthesis. Alternatively, because the fluid jetting technology of the present invention is inherently digital, the quantity of beneficial agent dispensed can be determined by counting the droplets that have been jetted or dispersed.
- In yet another alternative, the amount of beneficial agent loaded can be measured more generally by weighing the stent before the jetting operation and then after the jetting operation. The weight difference corresponds to the drug loaded with the concentration being a function of the jet flow rate along the length of the stent. Yet another method is to integrate the charge build-up on the prosthesis when a charge-and-deflect system is used. Since each droplet in a charge-and-deflect jetting system has had a surface charge injected onto it to enable the droplet to be deflected in an electrostatic field, either the loss of charge at the charging electrode or the accumulation of charge on the prosthesis can be integrated over time to determine the total volume of fluid that has accumulated on the surface of the device.
- Also in accordance with the invention, an on-board spectrometer may be utilized for monitoring the beneficial agent concentration on the jetter reservoirs as a function of time. It is desirable to load beneficial agent such as a drug at a constant concentration. However, due to the evaporation of solvent during the loading process, the concentration of drug will increase. Advantageously, a spectrometer can be configured with a pump to add solvent to the drug such that a constant absorbance on the spectrometer is maintained. The constant absorbance level of the spectrometer is pre-set to monitor an appropriate wavelength. The maintenance of a constant absorbance reading on the spectrometer by the addition of solvent translates to the maintenance of a pre-set drug concentration.
- For drop-on-demand jetting systems, this same drug quantification concept can be utilized by adding a constant voltage charging electrode adjacent to the nozzle of the dispenser so as to add a polar charge to each droplet. The coating on the stent, if an insulator, will act as a capacitor to the charge. This detection technique will be able to detect charge build up if a small leakage path is provided or if a second reference surface is provided against which to compare charge build up. Other alternative techniques can be used. For example, if a metal mandrel is present inside the stent it may be used to monitor any lost droplet or splash. The charge that directly transfers to this “electrode” will create an opposite polarity current to the charge presented to the insulated coated surface of the stent.
- For each of these detection techniques described above, an appropriate detector can be incorporated in the system of FIG. 7, preferably in communication with
controller 170. - In accordance with another aspect of the invention, a second beneficial agent or multiple beneficial agents can be loaded onto the prosthesis as described above. Therefore, further in accordance with the invention, an interventional device comprising a prosthesis loaded with a plurality of discrete droplets of a first beneficial agent and a plurality of discrete droplets of a second beneficial agent is provided, such as by using the system and method shown in FIG. 9.
- Particularly, the method described in detail above for one beneficial agent can be modified to allow for loading multiple beneficial agents onto a prosthesis, which might ordinarily lead to undesirable results when using conventional loading techniques. For example and not limitation, the first beneficial agent and the second beneficial agent may have different physical and/or chemical characteristics preventing the beneficial agents from being capable of dissolving in the same solvent, or at the same pH or temperature. In particular, the first beneficial agent can be dissolved in a solvent that is immiscible with the solvent in which the second beneficial agent is dissolved. Alternatively, the first beneficial agent and the second beneficial agent may be incompatible with each other. In particular, the first beneficial agent and the second beneficial agent can be undesirably chemically reactive or may have undesirably different release rates (or contrarily, undesirably similar release rates). Additionally, the first and second beneficial agents can simply be detrimental to each other, e.g., one of the beneficial agents may degrade the efficacy of the other beneficial agent. Thus, although loading the particular multiple beneficial agents onto the same surface of a prosthesis can be desired it often may be problematic due to some incompatibility when using a conventional loading technique. In accordance with the present invention, a method of loading such beneficial agents and an interventional device for the delivery of such beneficial agents is provided.
- As noted above, the beneficial agents are loaded in a plurality of discrete droplets on the surface of the prosthesis. The discrete droplets of multiple beneficial agents are preferably loaded onto the prosthesis as unmixed droplets to provide an interspersed pattern or alternatively, the unmixed droplets of beneficial agent can be loaded onto the prosthesis to provide an overlapping pattern of the first beneficial agent and the second beneficial agent. In this manner, the edges of the droplets overlap or alternatively, a larger surface of the droplet overlaps other droplets to provide a layering effect, as depicted in FIG. 10.
- Multiple fluid-dispensers preferably are in accordance with the invention, wherein each beneficial agent to be loaded onto the prosthesis is dispensed from a distinct dispensing device. For purpose of illustration and not limitation as shown in FIG. 9, a
first dispenser 150 is provided with a firstbeneficial agent 15′ dissolved in a solvent that is compatible for that particular first beneficial agent. Further, a second fluid-dispenser 150″ is provided with a secondbeneficial agent 15″ that is different from the firstbeneficial agent 15′, and requiring a different solvent for compatibility. For example, the first beneficial agent could be a water-soluble agent, whereas the second beneficial agent could be a water-insoluble agent, each requiring a different solvent. Accordingly, both beneficial agents are loaded onto the same surface of the prosthesis without problems arising from their immiscibility. - Where two fluid-dispensers are used to load the multiple beneficial agents onto the prosthesis, the trajectories of discrete droplets corresponding to each of the first beneficial agent and the second beneficial agent can be aligned such that the droplets from each beneficial agent combine and mix prior to their being loaded on the prosthesis. In this manner, the first and second beneficial agent can form a third beneficial agent which is loaded onto the prosthesis. For purpose of illustration and not limitation, the first beneficial agent may be bisphenol-A-diglycidyl ether and the second beneficial agent can be triethylenetetramine. Upon combination of the first beneficial agent and the second beneficial agent, a cross linked coating is formed to provide a third beneficial agent. In yet another illustrative example, the first beneficial agent can be bisphenol-A-diglycidyl ether and paclitaxel and the second beneficial agent can be triethylenetetramine. Upon the combination of the two controlled trajectories of beneficial agents, a third beneficial agent is formed, a cross-linked coating entrapping paclitaxel, which is loaded on the prosthesis. Alternatively, the discrete droplets of the first and second beneficial agent can be aligned along trajectories to mix on the surface of the prosthesis.
- As noted above, the beneficial agent can include a drug and polymer mixture. In accordance with the method of the invention, the first and second beneficial agents can correspond to drug-polymer mixtures having different concentrations of polymer to effect different release rates of the particular drug in each beneficial agent. For example, the drug-polymer mixture having a higher concentration of polymer would have a slower release of the drug within the lumen than a drug-polymer mixture having a lower concentration. Alternatively, rather than providing drug-polymer mixtures having different polymer concentrations to provide different release rates, it is also possible to dispense beneficial agents using different polymers or other binders, wherein the specific polymer or binder has different diffusivity or affinity to assure delivery of the beneficial agents at different rates. Thus, in accordance with the invention, multiple beneficial agents can be released at rates appropriate for their activities, such that the prosthesis of the invention has multiple beneficial agents which elute off the prosthesis at desired rates.
- For example, a cationic phosphorylcholine-linked polymer which has a higher affinity for anionic therapeutic agents can be blended and dispersed as a first beneficial agent and lipophilic phosphorylcholine-linked polymer can be blended with lipophilic drugs as the second beneficial agent to effect different release rates respectively.
- In yet another embodiment of the invention, one of the first and second beneficial agents loaded onto the prosthesis can be more hydrophobic or less water-soluble than the other. Thus, in accordance with the invention is provided a prosthesis including first and second beneficial agents wherein one of the beneficial agents is more hydrophobic or less water soluble than the other. In this manner, the more hydrophobic beneficial agent acts as a water barrier or hydration inhibitor for the less hydrophobic beneficial agent, thereby reducing the release rate of the less hydrophobic beneficial agent as disclosed in U.S. Provisional Patent Application 60/453,555 and PCT/US03/07383, each of which was filed on Mar. 10, 2003, and each of which is incorporated herein by reference thereto.
- In addition to providing a prosthesis having multiple beneficial agents which are delivered at unique or desired rates, according to another aspect of the invention, the first beneficial agent can be dissolved in solvent wherein the second beneficial agent causes the first beneficial agent to precipitate out of the solvent. For example and not limitation, the first beneficial agent may be rapamycin dissolved in ethanol, and the second beneficial agent may be water. Upon droplet combination using the method and system of the invention, the rapamycin will precipitate within the droplet and be deposited on the prosthesis as a microprecipitate.
- In yet another aspect of the invention, at least one of the first and second beneficial agents can be mixed with a binder prior to being loaded onto the prosthesis. Further in accordance with this aspect one of the beneficial agents can be a curative agent for curing the binder on the prosthesis with the beneficial agent mixed therein. For example, see Example 4 below.
- As noted above, one of the beneficial agents can be a solvent for the other beneficial agent. Thus, in accordance with the invention, the first beneficial agent, e.g., a drug, polymer, or a combination thereof, can be loaded onto the prosthesis, and subsequently the second beneficial agent, i.e., a solvent, can be loaded onto the prosthesis so as to redistribute the first beneficial agent more uniformly along the prosthesis.
- As also noted above, the prosthesis can include at least one reservoir or cavity or trough therein. For purpose of illustration and not limitation, computer controlled profiles of a laser cut stent can be utilized to precisely deposit beneficial agent into the laser cuts on the stent struts. For example, a longitudinal trough can be laser cut, etched, or otherwise formed into the strut, such as in the curve or bend of the strut for instance. In accordance with a preferred aspect of the invention, the cavity or trough is provided with a contoured cross-sectional profile for retention and elution of beneficial agent therein. Particularly, and as depicted schematically in FIG. 12, the cross-sectional profile of the cavity or
trough 16 includes a smaller dimension at the interface with the strut surface, so as to define amouth 17 of thetrough 16, and a larger internal cross-dimension of the trough to define areservoir 18. FIG. 12 shows one such embodiment, whereinmouth 17 is defined forreservoir 18 oftrough 16. Use of the fluid jet system and method of the present invention thus allows for beneficial agent to be loaded into themouth 17 oftrough 16, without the entrapment of air within thereservoir 18. An appropriate volume of beneficial agent is deposited in the laser cut profile to at least partially fill thereservoir 18. In this respect, beneficial agent that is deposited in the longitudinal trough can include a combination of drugs or a combination of polymers or a combination of drugs and polymers in different layers. Furthermore, different layers of polymer and/or drug having different concentrations, or different drug elution rates can be loaded therein. Additionally, an interim polymer and/or final polymer overcoat can be applied over the beneficial agent. Such a deposition configuration in combination with cavities is particularly beneficial for minimizing delamination of the polymer-drug layers, and also provides versatility in controlling drug elution and the generation of various combinations of drug release patterns. A computer profiling approach is also useful to coat drug and polymer layers on the distal and proximal edges of the stent. - In accordance with another aspect of the invention, one or more of the reservoirs or cavities or troughs is loaded with a more hydrophilic first beneficial agent and then a second more hydrophobic beneficial agent is loaded onto the first beneficial agent within the cavity or reservoir in a manner as described above.
- Further in accordance with the invention, using the method and systems described above, a first beneficial agent loaded onto the prosthesis can have a first local areal density and a second beneficial agent loaded onto the prosthesis can have a second local areal density. As used herein, “areal density” refers to the amount of beneficial agent per unit surface area of a selected portion of the prosthesis. “Local areal density” refers to the dosage of beneficial agent per local surface area of the prosthesis. The local areal density of the first beneficial agent and the local areal density of the second beneficial agent can be uniform across each respective portion to define stepped changes in local area density as depicted in FIG. 1b or can be varied across a selected portion of the prosthesis to define gradients of local area density, as depicted in FIG. 1c. Accordingly, an interventional device is provided having a prosthesis that is at least partially loaded with beneficial agent having a local areal density that is varied along a selected portion of the body of the prosthesis.
- In accordance with a preferred embodiment, the prosthesis has a tubular body when deployed in a lumen. Preferably, the tubular body includes a first and second portion at least partially loaded with beneficial agent such that the first portion has a first local areal density and the second portion has a second local areal density. Each portion may be defined as a preselected length of the prosthesis. Alternatively, as shown in FIG. 1b, the first portion can be defined by a selected set of interconnected structural members and the second portion can be defined as a second set of interconnected members e.g., connectors elements or ring-elements. For example and not limitation, at least one of the first and second set of selected interconnected elements can define at least one ring-shaped element extending around the circumference of the prosthesis.
- In another embodiment of the invention, the local areal density is varied as a continuous gradient along a selected portion of the prosthesis as shown in FIG. 1c. Accordingly, in one aspect of the invention the local areal density of beneficial agent is varied such as to provide a prosthesis having a local areal density of beneficial agent at the ends of the prosthesis that is different than the local areal density of beneficial agent at an intermediate section of the prosthesis. For purpose of illustration and not limitation, the local areal density of beneficial agent at the intermediate section of the prosthesis can be greater than that at the proximal and distal ends of the prosthesis as shown in FIG. 1c. Alternatively, the proximal and distal ends of the prosthesis can have a greater local areal density of beneficial agent than that on the intermediate section of the prosthesis. In a preferred embodiment of the invention, the varied local areal density of beneficial agent corresponds to the location of a lesion when the prosthesis is deployed within a lumen. For example, the prosthesis can be loaded to have a greater local areal density of beneficial agent along a preselected portion of the prosthesis that corresponds to the location of the lesion when the prosthesis is deployed in a lumen. Thus, targeted therapy may be achieved with the interventional device of the present invention.
- In accordance with the invention, the local areal density can be varied by varying the relative rate in which beneficial agent is loaded to a selected location along the prosthesis. To this end, the frequency in which the droplets of beneficial agent are applied along a unit length of the dispensing path to the prosthesis is varied. Alternatively, the relative rate of loading beneficial agent can be varied by varying the relative movement between the dispensing element and the prosthesis. Another alternative for varying the relative rate of loading beneficial agent is to vary the amount of beneficial agent per droplet dispensed from the dispensing element. Other alternatives for varying the local areal density of beneficial agent loaded onto the prosthesis include mixing the beneficial agent with a binder and varying the ratio of beneficial agent to binder. Alternatively, the amount of the mixture of beneficial agent and binder that is applied to the prosthesis can be varied to achieve a varied local areal density of beneficial agent. Other methods of varying the local areal density of beneficial agent known in the art may be used.
- As noted above, the beneficial agent is at least partially loaded onto a surface of the prosthesis. Further in accordance with the invention the prosthesis includes a first surface and a second surface that are at least partially loaded with beneficial agent. In one embodiment of the invention, the first surface and the second surface each correspond to one of the inner surface and the outer surface of the prosthesis. Thus, according to this particular embodiment, beneficial agent, as defined above, is loaded onto the inner or luminal surface of a prosthesis as well as the outer surface of the prosthesis. The method described above can be used for this aspect of the invention, wherein the beneficial agent is loaded on the inner surface of the prosthesis by inserting a fluid dispensing element within the inner diameter of the prosthesis, or by dispensing
beneficial agent 15 diametrically across theprosthesis 10 betweenstructural members 12 to impact the inner surface on the opposite side of theprosthesis 10 as shown in FIG. 11. In this regard, the dispensingelement 150″ is aligned so that the controlledtrajectory 152″ ofdiscrete droplets 155″ of beneficial agent optimally intersect with the inner surfaces of the structural features of theprosthesis 10 and not intersect with the structural features of the outer surface of the prosthesis. For purposes of illustration and not limitation, for a prosthesis comprising an odd number of radial repeats in the pattern of structural features, the preferred alignment of the dispensing element is orthogonal to the central axis of the prosthesis and in a plane that intersects the central axis of the prosthesis. However, for a prosthesis comprising an even number of radial repeats in the pattern of structural features, the preferred alignment of the dispensing element to the prosthesis is orthogonal to the central axis of the prosthesis, but in a plane that does not intersect the central axis of the prosthesis. As another example, for a prosthesis including a tubular member comprising multiple radially and axially repeating structural elements, the preferred alignment of the dispensing element can be determined by assessing the shadow cast by the foreground or outer structural elements on the background or inner structural elements. The preferred plane to align the dispensing element can be determined by assessing the plane in which the maximum amount of unobstructed inner surface is presented upon rotation of the tubular member. - In accordance with this aspect of the invention, the relative motion of the dispensing element and the prosthesis can be coordinated to enable a preprogrammed “raster” image of the position or locations of the structural elements of the inner surface. Alternatively, the vector pattern of the structural elements may be preprogrammed, as previously described. Also, in accordance with the invention, the beneficial agent is dispensed from the dispensing element along a controlled trajectory that is substantially tangential to or near the outer surface of the prosthesis and is loaded on the inner surface of the structural elements of the prosthesis.
- In this aspect of the invention, the interventional device can be designed to provide combination therapy of beneficial agents to targeted locations. For example and not limitation, the particular beneficial agent loaded to the luminal or inner surface of the prosthesis can be intended for systemic release, whereas the particular beneficial agent loaded onto the outer surface of the prosthesis is intended for release into the wall of the lumen. In accordance with one aspect of the invention, the beneficial agents loaded onto the luminal side or inner surface of the prosthesis include, without limitation, antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial recovery, agents that promote migration, and estradiol. The beneficial agents loaded onto the outer surface of the prosthesis include without limitation, anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and the rapamycin analog ABT-578, i.e., 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; 23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone.
- In accordance with another embodiment of the invention, the first surface of the prosthesis is defined by a plurality of interconnecting structural members. Accordingly, the first surface can include a first selected set of structural members, e.g., a connector member, and the second surface can include a second selected set of the structural members, e.g., a ring-shaped element extending around the circumference of the prosthesis.
- As noted above, the beneficial agent is loaded onto the prosthesis to provide a controlled local areal density across a length of the interventional device. That is, it may be desirable to provide a greater concentration of beneficial agent at one portion of a prosthesis and a lower concentration, or perhaps no beneficial agent, at another portion of the prosthesis. For example, in one preferred embodiment, a greater local areal density can be provided at a first portion, e.g.,
intermediate portion 10 b, of astent 10, as shown in FIG. 1a, while providing a lower local areal density of beneficial agent to a second portion, e.g., one or both end portions (10 a, 10 c), of thestent 10. In accordance with the present invention, each of the first and second portions of the prosthesis may be defined by any of a variety of patterns or selected portions of the prosthesis. For example, the first portion of the prosthesis can be defined by longitudinal connectors whereas the second portion of the stent is defined by annular rings, or vice versa, as illustrated in FIG. 6. - In accordance with another aspect of the present invention, the interventional device includes a first prosthesis and a second prosthesis in combination to define an overlapping portion and at least one non-overlapping portion. For example, and as embodied herein, FIGS.2 or 3 present a schematic representation of a nested interventional device including a
first prosthesis 20 and asecond prosthesis 30 configured to be deployed in an overlapping relationship. The interventional device, however, can optionally include more than two prostheses in combination, if desired. Suchinterventional devices 50 include but are not limited to nested stents and modular bifurcated stents. For purpose of illustration and not limitation, FIG. 2 shows afirst prosthesis 20 having afirst portion 20 a and asecond portion 20 b and asecond prosthesis 30 having afirst portion 30 a and asecond portion 30 b. As shown schematically, the beneficial agent distribution profile includes a first local areal density of beneficial agent on one of the first and second portions of one or both of the first prosthesis and the second prosthesis. For example and not by limitation, thefirst portion 20 a of thefirst prosthesis 20 has half the local areal density of beneficial agent as compared to thesecond portion 20 b of thefirst prosthesis 20. Thefirst portion 30 a of thesecond prosthesis 30, likewise, has half the local areal density of beneficial agent compared to thesecond portion 30 b of thesecond prosthesis 30. In this manner, when the ends of two stents are superimposed or deployed in an overlappingrelationship 25 during a procedure, the local areal density of beneficial agent along theinterventional device 50 is controlled so as to be uniform. If desired, alternative concentrations can be provided on each portion so as to provide the desired effect in combination. - In accordance with the present invention, as shown in FIG. 3, a controlled local areal density of beneficial agent is thus provided across a length of the
interventional device 50 upon combination of the first prosthesis havingfirst portion 20 a andsecond portion 20 b with the second prosthesis havingfirst portion 30 a andsecond portion 30 b, as shown in FIG. 2. In particular, as shown in FIG. 3, the overlappingsegment 25 offirst prosthesis 20 and thesecond prosthesis 30 has an equal local areal density of beneficial agent as compared tonon-overlapping segments - Alternatively, the beneficial agent distribution profile for the interventional device may be controlled to include any of a variety of desired patterns. For example, the interventional device can have a decreased local areal density of beneficial agent on the distal and proximal ends of each prosthesis body, as noted above. This profile is highly desirable in preventing adverse dosing of beneficial agent if multiple prostheses are placed in combination with each other but still provides for decreased dosage of the extreme ends of the interventional device as a whole. Alternatively, as embodied herein, the beneficial agent distribution profile can provide a controlled local areal density that is uniform along the length of first prosthesis and second prosthesis in combination, or multiple prostheses in combination. Alternatively, in accordance with the invention, the beneficial agent distribution profile provides a controlled local areal density that is varied along the length of the first prosthesis and the second prosthesis in combination, or multiple prostheses in combination.
- For illustration purposes, overlapping or nested prostheses, as shown in FIG. 3, can have beneficial agent distribution profiles such that the controlled local areal density of beneficial agent of a non-overlapping segment is in fact greater than the controlled local areal density of beneficial agent of a overlapping segment. Similarly, the alternative can also be true; that a overlapping segment is controlled to have a greater or different local areal density of beneficial agent than a non-overlapping segment. Advantageously, this feature also enables selective dosing of beneficial agent to a targeted area when using multiple prostheses in combination, as well as a single prosthesis alone. Selective dosing of beneficial agent to a targeted area means that the beneficial agent can be applied to the prosthesis or prostheses in combination such that the desired beneficial agent is loaded onto the prosthesis in a selective pattern so that the beneficial agent or beneficial agents are released from the prosthesis in close proximity to a targeted location. Fluid jetting as previously described is particularly preferred for selective dosing.
- In accordance with the present invention, and as embodied schematically in FIG. 5, a bifurcated interventional device also can be provided, which includes a
first prosthesis 20′ and asecond prosthesis 30′ in combination to define an overlappingportion 50′ and non overlappingportions 20 b′, 30 b′. For purposes of illustration and not limitation, FIG. 4 shows afirst prosthesis 20′ having afirst portion 20 a′ and asecond portion 20 b′, and asecond prosthesis 30′ having afirst portion 30 a′ and asecond portion 30 b′. As shown for purpose of illustration and not limitation, the beneficial agent distribution profile includes a first local areal density of beneficial agent on one of the first and second portions of one or both of thefirst prosthesis 20′ and thesecond prosthesis 30′. For example, and not by limitation, thefirst portion 20 a′ of thefirst prosthesis 20′ has half the local areal density of beneficial agent as compared to thesecond portion 20 b′ of the first prosthesis. Thefirst portion 30 a′ of thesecond prosthesis 30′ has half the local areal density of thesecond portion 30 b′ of thesecond prosthesis 30′. In accordance with the present invention, as shown in FIG. 5, a controlled local areal density of beneficial agent is thus provided across a length of the bifurcatedinterventional device 50 upon combination of the first prosthesis havingfirst portion 20 a′ andsecond portion 20 b′ with the second prosthesis havingfirst portion 30 a′ andsecond portion 30 b′, as shown in FIG. 4. - Another feature of the present invention includes applying a layer of base material on a selected portion of the prosthesis described above. The beneficial agent is loaded onto the base material layer according to the methods described above. The base material layer preferably defines a pattern for loading the beneficial agent onto the prosthesis.
- The present invention also encompasses, for any of the embodiments disclosed, the application of a rate-controlling topcoat over the beneficial agent loaded prosthesis for further controlling or sustaining the release of beneficial agent. The rate-controlling topcoat may be added by applying a coating layer posited over the beneficial agent loaded prosthesis. The thickness of the layer is selected to provide such control. Preferably, the overcoat is applied by fluid-jet technology. Advantageously, fluid jetting an overcoat such as a polymer overcoat allows a thinner and more uniform layers. However other conventional methods can be used such as other fluid-dispensers, vapor deposition, plasma deposition, spraying, or dipping, or any other coating technique known in the art.
- The present invention also provides a method for manufacturing an interventional device for delivery of beneficial agent This method comprises the steps of providing a first prosthesis to be deployed within a lumen; providing a second prosthesis configured to be deployed in an overlapping relationship with the first prosthesis, the first prosthesis and the second prosthesis in combination defining at least one non-overlapping segment and an overlapping segment; and loading the first prosthesis and the second prosthesis with beneficial agent to provide a controlled local areal density along a length of the first prosthesis and the second prosthesis in combination. The method described in detail above is preferred for such loading step.
- The present invention also provides a method of delivering beneficial agent. In accordance with this method, as described in detail in conjunction with the description of the interventional device of the present invention above, the method comprising the steps of providing a first prosthesis having a tubular body when deployed in a lumen; providing a second prosthesis having a tubular body when deployed in a lumen; loading at least one of the first prosthesis and the second prosthesis with beneficial agent; deploying the first prosthesis into a lumen; deploying the second prosthesis into the lumen to define in combination with the first prosthesis at least one non-overlapping segment and an overlapping segment; wherein the beneficial agent is loaded onto at least one of the first prosthesis and the second prosthesis to provide a controlled local areal density of beneficial agent across a length of the first prosthesis and the second prosthesis when deployed. The method described in detail above is preferred for such loading step.
- The present invention will be further understood by the examples set forth below, which are provided for purpose of illustration and not limitation.
- The components of a commercial two-part epoxy formulation are mixed by the jetting process and applied to a surface to form a coating. In a formulation manufactured by Buehler, Lake Bluff Ill., one part is a liquid “epoxide resin” that contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether. The second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine. In the jetting process, one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener The jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours. The volume of a droplet emanating from jet A is 5 times larger than the volume of a droplet emanating from Jet B and the total number of droplets dispensed from each jet are approximately equal.
- The components of a commercial two-part epoxy formulation are mixed by the jetting process and applied to a surface to form a coating. In a two part commercial formulation manufactured by Buehler, Lake Bluff Ill., one part is a liquid “epoxide resin” which contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether. The second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine. In the jetting process, one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener. The jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours. The volume of a droplet emanating from jet A is 4 times larger than the volume of a droplet emanating from Jet B and the total number of droplets dispensed from each jet are approximately equal. This coating cures at a faster rate than the coating described in example 1.
- The components of a commercial two-part epoxy formulation are mixed by the jetting process and applied to a surface to form a coating. In a two part commercial formulation manufactured by Buehler, Lake Bluff Ill., one part is a liquid “epoxide resin” which contains 4,4′ isopropylidenediphenol epichlorohydrin resin and butyl glycidyl ether. The second part is a liquid “hardener” that contains diethylene triamine, triethylene tetramine, and polyoxypropylenediamine. In the jetting process, one reagent jet system (A) is loaded with epoxide resin and a second jetting system (B) is loaded with hardener. The jets are aligned such that the droplets emanating from each jet combine in midair and travel to the target device to form a crosslinked coating, after a curing time of 2-8 hours. The volume of a droplet emanating from jet A is approximately equal to the volume of a droplet emanating from Jet B, but the total number of droplets dispensed from jet A is 4 times more than from jet B.
- One reagent jet system (A) is loaded with a liquid epoxide resin and a solubilized formulation of the drug, paclitaxel, 20% by weight with respect to the epoxide resin. A second jetting system (B) is loaded with hardener similar to that described in example 1 combined with an equal weight or less of a biocompatible polymer. One example of such a species is a phosphorylcholine linked polymer of the general formula poly(MPCw:LMAx:HPMAy:TSMAz), where MPC is 2-methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate. This polymer is dissolved in a solvent such as chloroform. The jets are aligned such that the droplets from each jet combine in midair and travel to the target device to form a crosslinked coating entrapping the drug and polymer. The volume of a droplet emanating from jet A is 5 times larger than the volume of a droplet emanating from jet B and the total number of droplets dispensed from each jet are approximately equal. The coating is heated for 4 hours at 70 degrees C. to cause crosslinking of the phosphorylcholine-linked polymer predominantly with itself by means of the trimethoxysilane groups, and simultaneously accelerating the curing of the epoxide resin with the hardener.
- One reagent jet system (A) is loaded with rapamycin dissolved in ethanol. A second jetting system is loaded with water. The droplet volume of one drop emanating from jet A is 50 picoliters and the droplet volume of one drop emanating from Jet B is 150 picoliters. The jets are aligned such that the droplets from each jet combine in midair and travel to the target device. During the droplet combination the rapamycin will precipitate within the droplet and be deposited on the target surface as a microprecipitate.
- In a demonstration of feasibility, a stock jetting solution of 20 mg/ml ABT-578+4 mg/ml phosphorylcholine-linked methacrylate polymer (PC) in isobutanol was prepared. A fluid jetting system manufactured by MicroFab Technologies of Plano, Tex. was programmed to jet 75 micrograms of drug evenly over a 1.4×11 mm OC BiodivYsio stent to obtain an areal density of 5 micrograms per linear mm. Jetting of 21,888 drops into a vial containing 10 ml of isobutanol gave 77 micrograms of ABT-578 as determined spectrophotometrically at 278 nm. Under these conditions, 1 drop was 170-180 picoliters and had a diameter between 67 and 70 microns. The stent contained a base coating of phosphorylcholine-linked methacrylate polymer (PC). It was mounted on a fixture that included a mandrel that provided for controlled rotation (θ) about a central axis coaxial with the stent and a stage that provided for lateral movement (X) along the axis of the stent. The motion control was set up to rotate the stent a total of 720 degrees. A view orthogonal to the axis of the rotating stent showed two possible tangential off-axis positions, approximately 50 microns inside a point tangent to the outer surface of the stent, one on each side of the rotation centerline, that provided relatively few instances where a jet trajectory would not impinge on at least one stent structural element. One of these off-axis positions was first selected to start the drug loading. A mandrel mounted stent was positioned so that the trajectory of jetted droplets would impinge on the stent struts at this “off-axis” location. The motion controller was set up to move the stent axially in the X direction and began its motion at a position where the jet trajectory was off the end of the stent. The motion controller ramped up to a predetermined velocity and turned on the fluid jetting head as soon as motion along the X axis reached constant velocity and the end of the stent struts were in a position directly under the jet head. Every time the stent passed completely under the jet head along this off-axis path in the X direction, the motion controller would then ramp down the velocity, stop and rotate the stent 5 degrees. The linear direction was reversed and the next pass was made. After 360 degrees was reached, (72 passes) the table was translated approximately a distance equal to the internal diameter of the stent (1 ID) to the other off-axis position and 72 more passes were made for an additional rotation of 360 degrees. Each stent was thus jetted twice to obtain its drug loading.
- Seven (7) stents were loaded with drug . Observation of drug-loaded stents under a stereomicroscope indicated that no webbing occurred between stent struts and the surfaces were cosmetically smooth. The stents were subsequently extracted into isobutanol for measurement of the drug obtained and the results are shown below.
ABT-578 Stent (micrograms) 1 70 2 72 3 69 4 69 5 53 6 61 7 60 - The average loading obtained was 65 micrograms. The calculated capture efficiency was 84% based on the number of counted droplets of drug dispensed.
- In a similar feasibility demonstration experiment, a fluid jetting system manufactured by MicroFab Technologies of Plano, Tex. was programmed to dispense 59,904 drops, approximately 3× that used for the 11 mm OC stent. These peripheral vascular stents (SFA) were 5×30 mm and were mounted on a larger sized rotation fixture. The stent matrix was much more open than seen on the OC coronary stent; however, good capture efficiency was obtained.
ABT-578 stent (micrograms) 1 187 2 176 3 185 average 183 Avg. - The jetter dispensed 211 micrograms of drug per stent, having a capture efficiency of 86%.
- A 10 mg/ml solution of phosphorylcholine-linked methacrylate polymer (PC) was made in isobutanol. A total of 288 passes along the axial dimension of the stent and over 1440 degrees of rotation under the conditions used in previous examples, produced an overcoat at 5 micrograms per linear mm.
- A 10 mg/ml solution of phosphorylcholine-linked methacrylate polymer (PC) is made in isobutanol. The linear travel speed of the stent under the jet head is programmed to be 50% slower during the beginning 25% of the stent length and the ending 25% of length. The jetting rate is not varied over the length of the stent. A total of 288 passes along the axial dimension of the stent and over 1440 degrees of rotation are made. Under these conditions, the stent obtains an increased amount of PC on both ends of the stent compared to the middle regions.
- A stock jetting solution of 20 mg/ml ABT-578+4 mg/ml phosphorylcholine-linked methacrylate polymer (PC) in isobutanol is prepared. The linear travel speed of the stent under the jet head is programmed to be 50% faster during the beginning 25% of the stent length and the ending 25% of length. The jetting rate is not varied over the length of the stent. A total of 144 passes along the axial dimension of the stent and over 720 degrees of rotation are made. Under these conditions, the stent obtains a decreased amount of ABT-578 on both ends of the stent compared to the middle regions.
- It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. For example, a charge-and-deflect dispenser can be replaced with a drop-on-demand fluid jetter, or vice versa. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and or methods of use of the invention, can be made without departing from the spirit and scope thereof.
Claims (31)
1. An interventional device for the delivery of multiple beneficial agents, the device comprising:
a prosthesis to be deployed in a lumen, the prosthesis having a surface;
a plurality of discrete droplets of a first beneficial agent loaded on the surface of the prosthesis; and
a plurality of discrete droplets of a second beneficial agent loaded on the surface of the prosthesis.
2. The interventional device of claim 1 , wherein the first beneficial agent and the second beneficial agent are incompatible.
3. The interventional device of claim 1 , wherein the first beneficial agent is dissolved in a first solvent and the second beneficial agent is dissolved in a second solvent, and further wherein the first solvent and the second solvent are immiscible.
4. The interventional device of claim 1 , wherein the discrete droplets of the first beneficial agent are loaded along a first controlled trajectory and the discrete droplets of the second beneficial agent are loaded along a second controlled trajectory; the first controlled trajectory and the second controlled trajectory being aligned to allow the first beneficial agent and the second beneficial agent to mix prior to being loaded onto the surface of the prosthesis.
5. The interventional device of claim 1 , wherein the discrete droplets of the first beneficial agent and the discrete droplets of the second beneficial agent mix on the surface of the prosthesis.
6. The interventional device of claim 1 , wherein the first beneficial agent is dissolved in a solvent and the second beneficial agent causes the first beneficial agent to precipitate out of the solvent.
7. The interventional device of claim 1 , wherein the first beneficial agent and the second beneficial agent are loaded on the prosthesis in unmixed droplets to provide a selected pattern.
8. The interventional device of claim 1 , wherein at least one of the first beneficial agent and the second beneficial agent is mixed with a binder prior to being loaded on the prosthesis.
9. The interventional device of claim 8 , wherein the binder is a phosphorylcholine-linked polymer.
10. The interventional device of claim 8 , wherein the second beneficial agent cures the binder on the prosthesis with the first beneficial agent mixed therein.
11. The interventional device of claim 8 , wherein the first beneficial agent is mixed with a binder having a first release rate for delivery of the first beneficial agent.
12. The interventional device of claim 11 , wherein the second beneficial agent is mixed with a binder having a second release rate for delivery of the second beneficial agent; the first release rate being different than the second release rate.
13. The interventional device of claim 1 , wherein the prosthesis includes at least one cavity defined therein, the at least one cavity being at least partially loaded with a base material; and further wherein the first beneficial agent and the second beneficial agent are loaded to the base material.
14. The interventional device of claim 1 , wherein the prosthesis includes at least one cavity, the at least one cavity defining a mouth having a first cross-dimension and a reservoir having a second cross-dimension, the second cross-dimension being greater than the first cross-dimension.
15. The interventional device of claim 1 , further including a plurality of discrete droplets of a third beneficial agent loaded on the surface of the prosthesis.
16. The interventional device of claim 15 , wherein the first beneficial agent is dexamethasone, the second beneficial agent is estradiol, and the third beneficial agent is the rapamycin analog 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido [2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone;23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone.
17. The interventional device of claim 15 , wherein the first beneficial agent, the second beneficial agent and the third beneficial agent are each dissolved in a first solvent.
18. The interventional device of claim 1 , wherein at least one of the first beneficial agent and the second beneficial agent is selected from a group consisting of antithrombotics, anticoagulants, antiplatelet agents, anti-lipid agents, thrombolytics, antiproliferatives, anti-inflammatories, agents that inhibit hyperplasia, smooth muscle cell inhibitors, antibiotics, growth factor inhibitors, cell adhesion inhibitors, cell adhesion promoters, antimitotics, antifibrins, antioxidants, antineoplastics, agents that promote endothelial cell recovery, antiallergic substances, radiopaque agents, viral vectors, antisense compounds, oligionucleotides, cell permeation enhancers, angiogenesis agents, paclitaxel, rapamycin, Everolimus, heparin, estradiol, dexamethasone, analogs thereof, rapamycin analog is 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; 23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone, and combinations thereof.
19. The interventional device of claim 1 , further including an overcoat applied over at least a portion of the surface.
20. The interventional device of claim 1 , wherein beneficial agent is applied to the prosthesis using a fluid jet dispenser having a dispensing element capable of dispensing beneficial agent in discrete droplets, each droplet having a controlled trajectory.
21. An interventional device for delivery of beneficial agent, the device comprising: a prosthesis to be deployed in a lumen, the prosthesis having a first surface and a second surface; the first surface of the prosthesis at least partially loaded with a first beneficial agent; and the second surface at least partially loaded with a second beneficial agent; at least one of the first beneficial agent and the second beneficial agent being loaded by a fluid-dispenser having a dispensing element capable of dispensing beneficial agent in discrete droplets, each droplet having a controlled trajectory.
22. The interventional device of claim 21 , wherein the prosthesis has a tubular body when deployed, the tubular body defining a longitudinal axis; and further wherein the first surface of the prosthesis is defined as an inner surface of the tubular body and the second surface of the prosthesis is defined as an outer surface of the tubular body.
23. The interventional device of claim 21 , wherein at least one of the first beneficial and second beneficial agent is selected from a group consisting of antiplatelet agents, aspirin, cell adhesion promoters, agents that promote endothelial healing, agents that promote migration, angiogenesis promoters, cytokines, anti migrative agents, antifibrins, estradiol, anti-inflammatories, anti-proliferatives, smooth muscle inhibitors, cell adhesion promoters, and 3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-tetrazol-1-yl)cyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone; 23,27-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone, and combinations thereof.
24. The interventional device of claim 21 , wherein the prosthesis is defined by a plurality of interconnecting structural members; the first surface of the prosthesis including a first selected set of the structural members and the second surface of the prosthesis including a second selected set of the structural members.
25. The interventional device of claim 24 , wherein at least one of the first selected set of structural members and the second selected set of structural members defines at least one ring-shaped element extending around a circumference of the tubular body.
26. The interventional device of claim 21 , wherein the first beneficial agent has a first local areal density and the second beneficial agent has a second local areal density.
27. The interventional device of claim 26 , wherein at least one of the first local areal density and the second local areal density is uniform across a selected portion of the prosthesis.
28. The interventional device of claim 21 , wherein at least one of the first local areal density of beneficial agent and the second local areal density is varied across a selected portion of the prosthesis.
29. The interventional device of claim 21 , further including a third beneficial agent loaded on at least one of the first surface and second surface of the prosthesis.
30. The interventional device of claim 21 , the prosthesis further includes a base material layer, the base material layer defining a pattern on the prosthesis for loading the beneficial agent.
31. The interventional device of claim 21 , further including an overcoat applied to at least one of the inner surface or the outer surface of the prosthesis.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/703,891 US20040185081A1 (en) | 2002-11-07 | 2003-11-07 | Prosthesis with multiple drugs applied separately by fluid jet application in discrete unmixed droplets |
US11/563,283 US8221495B2 (en) | 2002-11-07 | 2006-11-27 | Integration of therapeutic agent into a bioerodible medical device |
US11/563,285 US8524148B2 (en) | 2002-11-07 | 2006-11-27 | Method of integrating therapeutic agent into a bioerodible medical device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42457702P | 2002-11-07 | 2002-11-07 | |
US42457402P | 2002-11-07 | 2002-11-07 | |
US42457502P | 2002-11-07 | 2002-11-07 | |
US42460702P | 2002-11-07 | 2002-11-07 | |
US42457602P | 2002-11-07 | 2002-11-07 | |
US10/703,891 US20040185081A1 (en) | 2002-11-07 | 2003-11-07 | Prosthesis with multiple drugs applied separately by fluid jet application in discrete unmixed droplets |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/704,114 Continuation-In-Part US9296011B2 (en) | 2002-11-07 | 2003-11-07 | Prosthesis having varied concentration of beneficial agent |
US11/563,285 Continuation-In-Part US8524148B2 (en) | 2002-11-07 | 2006-11-27 | Method of integrating therapeutic agent into a bioerodible medical device |
US11/563,283 Continuation-In-Part US8221495B2 (en) | 2002-11-07 | 2006-11-27 | Integration of therapeutic agent into a bioerodible medical device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040185081A1 true US20040185081A1 (en) | 2004-09-23 |
Family
ID=32315003
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/703,820 Expired - Fee Related US7208190B2 (en) | 2002-11-07 | 2003-11-07 | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US10/704,114 Expired - Fee Related US9296011B2 (en) | 2002-11-07 | 2003-11-07 | Prosthesis having varied concentration of beneficial agent |
US10/703,891 Abandoned US20040185081A1 (en) | 2002-11-07 | 2003-11-07 | Prosthesis with multiple drugs applied separately by fluid jet application in discrete unmixed droplets |
US11/465,396 Expired - Fee Related US7597764B2 (en) | 2002-11-07 | 2006-08-17 | System of loading beneficial agent to a prosthesis by fluid-jet |
US11/738,839 Expired - Fee Related US7645476B2 (en) | 2002-11-07 | 2007-04-23 | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US12/551,413 Expired - Fee Related US8001926B2 (en) | 2002-11-07 | 2009-08-31 | System and method of loading and detecting beneficial agent on a prosthesis |
US13/176,319 Abandoned US20110262621A1 (en) | 2002-11-07 | 2011-07-05 | Method of loading beneficial agent on a prosthesis |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/703,820 Expired - Fee Related US7208190B2 (en) | 2002-11-07 | 2003-11-07 | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US10/704,114 Expired - Fee Related US9296011B2 (en) | 2002-11-07 | 2003-11-07 | Prosthesis having varied concentration of beneficial agent |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/465,396 Expired - Fee Related US7597764B2 (en) | 2002-11-07 | 2006-08-17 | System of loading beneficial agent to a prosthesis by fluid-jet |
US11/738,839 Expired - Fee Related US7645476B2 (en) | 2002-11-07 | 2007-04-23 | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US12/551,413 Expired - Fee Related US8001926B2 (en) | 2002-11-07 | 2009-08-31 | System and method of loading and detecting beneficial agent on a prosthesis |
US13/176,319 Abandoned US20110262621A1 (en) | 2002-11-07 | 2011-07-05 | Method of loading beneficial agent on a prosthesis |
Country Status (12)
Country | Link |
---|---|
US (7) | US7208190B2 (en) |
EP (4) | EP2198976A3 (en) |
JP (3) | JP4917753B2 (en) |
KR (3) | KR20050086430A (en) |
AT (2) | ATE471126T1 (en) |
AU (3) | AU2003290675A1 (en) |
BR (3) | BR0316106A (en) |
CA (3) | CA2504723C (en) |
DE (2) | DE60331854D1 (en) |
MX (3) | MXPA05004926A (en) |
PL (3) | PL376752A1 (en) |
WO (3) | WO2004043298A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254634A1 (en) * | 2002-11-07 | 2004-12-16 | Donald Verlee | Prosthesis having varied concentration of beneficial agent |
US20050175667A1 (en) * | 2004-02-10 | 2005-08-11 | Wenda Carlyle | Use of endothelin antagonists to prevent restenosis |
US20050203612A1 (en) * | 2000-12-22 | 2005-09-15 | Avantec Vascular Corporation | Devices delivering therapeutic agents and methods regarding the same |
US20070026034A1 (en) * | 1997-09-26 | 2007-02-01 | Burke Sandra E | Compositions, systems, kits, and methods of administering rapamycin analogs with paclitaxel using medical devices |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
US20080213278A1 (en) * | 1997-09-26 | 2008-09-04 | Abbott Laboratories | Method Of Treating Disorders Using Compositions Comprising Zotarolimus And Paclitaxel |
US20080292778A1 (en) * | 2007-05-25 | 2008-11-27 | Tarcha Peter J | One-step Phosphorylcholine-linked polymer coating and drug loading of stent |
US20090053392A1 (en) * | 2007-06-05 | 2009-02-26 | Abbott Cardiovascular Systems Inc. | Implantable medical devices for local and regional treatment |
US20090232964A1 (en) * | 2005-04-26 | 2009-09-17 | Advanced Cardiovascular Systems, Inc. | Compositions for Medical Devices Containing Agent Combinations in Controlled Volumes |
US7775178B2 (en) | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
US20100262230A1 (en) * | 2007-11-14 | 2010-10-14 | Biosensors International Group, Ltd. | Automated Coating Apparatus and Method |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
US7989018B2 (en) | 2001-09-17 | 2011-08-02 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US8118864B1 (en) * | 2004-05-25 | 2012-02-21 | Endovascular Technologies, Inc. | Drug delivery endovascular graft |
US8293318B1 (en) | 2006-08-29 | 2012-10-23 | Abbott Cardiovascular Systems Inc. | Methods for modulating the release rate of a drug-coated stent |
US8377107B2 (en) | 2006-02-28 | 2013-02-19 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
US8389041B2 (en) | 2010-06-17 | 2013-03-05 | Abbott Cardiovascular Systems, Inc. | Systems and methods for rotating and coating an implantable device |
US20170035555A1 (en) * | 2014-04-17 | 2017-02-09 | Seoul National University R&Db Foundation | Prosthesis for in vivo insertion, coated with cross- linked polyphosphorylcholine |
US9668890B2 (en) | 2013-11-22 | 2017-06-06 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US10226366B2 (en) | 2013-03-15 | 2019-03-12 | Covidien Lp | Anti-thrombogenic medical devices |
Families Citing this family (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7713297B2 (en) | 1998-04-11 | 2010-05-11 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
CA2400319C (en) * | 2000-03-15 | 2008-09-16 | Orbus Medical Technologies Inc. | Coating that promotes endothelial cell adherence |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
EP1258230A3 (en) | 2001-03-29 | 2003-12-10 | CardioSafe Ltd | Balloon catheter device |
US6682771B2 (en) * | 2001-07-02 | 2004-01-27 | Scimed Life Systems, Inc. | Coating dispensing system and method using a solenoid head for coating medical devices |
US6669980B2 (en) * | 2001-09-18 | 2003-12-30 | Scimed Life Systems, Inc. | Method for spray-coating medical devices |
US7182779B2 (en) | 2001-12-03 | 2007-02-27 | Xtent, Inc. | Apparatus and methods for positioning prostheses for deployment from a catheter |
US7892273B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Custom length stent apparatus |
US7137993B2 (en) | 2001-12-03 | 2006-11-21 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7147656B2 (en) | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US20040186551A1 (en) | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
ATE485847T1 (en) * | 2003-02-21 | 2010-11-15 | Sorin Biomedica Cardio Srl | METHOD FOR PRODUCING A STENT AND CORRESPONDING STENT |
US20090093875A1 (en) | 2007-05-01 | 2009-04-09 | Abbott Laboratories | Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations |
DE10329260A1 (en) * | 2003-06-23 | 2005-01-13 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Stent with a coating system |
US20050137677A1 (en) * | 2003-12-17 | 2005-06-23 | Rush Scott L. | Endovascular graft with differentiable porosity along its length |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US20050287287A1 (en) * | 2004-06-24 | 2005-12-29 | Parker Theodore L | Methods and systems for loading an implantable medical device with beneficial agent |
US20050288766A1 (en) | 2004-06-28 | 2005-12-29 | Xtent, Inc. | Devices and methods for controlling expandable prostheses during deployment |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US20060127443A1 (en) * | 2004-12-09 | 2006-06-15 | Helmus Michael N | Medical devices having vapor deposited nanoporous coatings for controlled therapeutic agent delivery |
KR100511618B1 (en) * | 2005-01-17 | 2005-08-31 | 이경범 | Multi-layer coating of drug release controllable coronary stent and method for manufacturing the same |
FR2880796B1 (en) * | 2005-01-18 | 2008-02-22 | Novatech Sa Sa | ENDOPROTHESIS FOR ANOTOMIC CHANNEL |
US20060216431A1 (en) * | 2005-03-28 | 2006-09-28 | Kerrigan Cameron K | Electrostatic abluminal coating of a stent crimped on a balloon catheter |
JP2008538089A (en) * | 2005-03-31 | 2008-10-09 | コナー・ミッドシステムズ・インコーポレイテッド | Method for loading a beneficial substance into a medical device |
US7320702B2 (en) | 2005-06-08 | 2008-01-22 | Xtent, Inc. | Apparatus and methods for deployment of multiple custom-length prostheses (III) |
US20070032865A1 (en) * | 2005-08-05 | 2007-02-08 | Otis David R | Prosthesis having a coating and systems and methods of making the same |
US8439964B2 (en) * | 2005-08-23 | 2013-05-14 | Boston Scientific Scimed, Inc. | Stent with web-inducing nodes for increased surface area |
JP2009505727A (en) * | 2005-08-25 | 2009-02-12 | メドトロニック ヴァスキュラー インコーポレイテッド | Nitric oxide releasing biodegradable polymers useful as medical devices and their coatings |
US20070213813A1 (en) * | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
BRPI0600275A (en) * | 2006-01-03 | 2007-10-02 | Brz Biotecnologia Ltda | Coronary prosthesis releasing drug composition for prevention and treatment of restenosis and manufacturing process |
US20080280025A1 (en) * | 2006-02-24 | 2008-11-13 | Ingo Werner Scheer | Multi-purpose holding device |
EP1998716A4 (en) | 2006-03-20 | 2010-01-20 | Xtent Inc | Apparatus and methods for deployment of linked prosthetic segments |
US20070224235A1 (en) | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
CA2662808A1 (en) | 2006-09-14 | 2008-03-20 | Boston Scientific Limited | Medical devices with drug-eluting coating |
US8733274B2 (en) * | 2006-10-20 | 2014-05-27 | Hewlett-Packard Development Company, L.P. | Tube mounted inkjet printhead die |
US20080294236A1 (en) * | 2007-05-23 | 2008-11-27 | Boston Scientific Scimed, Inc. | Endoprosthesis with Select Ceramic and Polymer Coatings |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
KR100830528B1 (en) * | 2006-12-13 | 2008-05-21 | 영남대학교 산학협력단 | Carrier for human body delivery of bone marrow stem cell and growth hormone |
US8000774B2 (en) * | 2007-01-03 | 2011-08-16 | Infraredx, Inc. | Method and system for intra luminal thrombus detection |
US7824270B2 (en) * | 2007-01-23 | 2010-11-02 | C-Flex Bearing Co., Inc. | Flexible coupling |
US20080199510A1 (en) | 2007-02-20 | 2008-08-21 | Xtent, Inc. | Thermo-mechanically controlled implants and methods of use |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
KR100847432B1 (en) * | 2007-03-14 | 2008-07-21 | 주식회사 에스앤지바이오텍 | Stent for expending intra luminal |
US8486132B2 (en) | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US20080243241A1 (en) * | 2007-03-28 | 2008-10-02 | Zhao Jonathon Z | Short term sustained drug-delivery system for implantable medical devices and method of making the same |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7812941B2 (en) * | 2007-06-15 | 2010-10-12 | Abbott Cardiovascular Systems Inc. | Systems and methods for the inspection of cylinders |
US8003157B2 (en) | 2007-06-15 | 2011-08-23 | Abbott Cardiovascular Systems Inc. | System and method for coating a stent |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
WO2009018340A2 (en) | 2007-07-31 | 2009-02-05 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
JP2010535541A (en) | 2007-08-03 | 2010-11-25 | ボストン サイエンティフィック リミテッド | Coating for medical devices with large surface area |
WO2009036152A1 (en) * | 2007-09-14 | 2009-03-19 | Boston Scientific Scimed, Inc | Microdrop ablumenal coating system and method |
US20090081272A1 (en) * | 2007-09-24 | 2009-03-26 | John Clarke | Medical devices having a metal particulate composition for controlled diffusion |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US20090118818A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Endoprosthesis with coating |
US20090118821A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Endoprosthesis with porous reservoir and non-polymer diffusion layer |
US20090118812A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US7833266B2 (en) | 2007-11-28 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment |
WO2009077805A1 (en) * | 2007-12-19 | 2009-06-25 | Invatec Technology Center Gmbh | Modular stent assembly |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
US20090232863A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers |
EP2271380B1 (en) | 2008-04-22 | 2013-03-20 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
WO2009132176A2 (en) | 2008-04-24 | 2009-10-29 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
EP2303350A2 (en) | 2008-06-18 | 2011-04-06 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7951193B2 (en) | 2008-07-23 | 2011-05-31 | Boston Scientific Scimed, Inc. | Drug-eluting stent |
US9295820B2 (en) | 2008-08-14 | 2016-03-29 | Surmodics, Inc. | Method and apparatus for coating balloon catheters |
WO2010036982A1 (en) | 2008-09-25 | 2010-04-01 | Henry Bourang | Partially crimped stent |
US12076258B2 (en) | 2008-09-25 | 2024-09-03 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US8226603B2 (en) | 2008-09-25 | 2012-07-24 | Abbott Cardiovascular Systems Inc. | Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery |
US11298252B2 (en) | 2008-09-25 | 2022-04-12 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US8076529B2 (en) | 2008-09-26 | 2011-12-13 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix for intraluminal drug delivery |
US8049061B2 (en) | 2008-09-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery |
US8769796B2 (en) | 2008-09-25 | 2014-07-08 | Advanced Bifurcation Systems, Inc. | Selective stent crimping |
US8821562B2 (en) | 2008-09-25 | 2014-09-02 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US8092822B2 (en) * | 2008-09-29 | 2012-01-10 | Abbott Cardiovascular Systems Inc. | Coatings including dexamethasone derivatives and analogs and olimus drugs |
US20100106255A1 (en) * | 2008-10-24 | 2010-04-29 | Dubin Marc G | Self-expanding frontal sinus stent and insertion tool |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US20100227697A1 (en) * | 2009-03-04 | 2010-09-09 | C-Flex Bearing Co., Inc. | Flexible coupling |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
EP3929644A1 (en) * | 2010-03-02 | 2021-12-29 | Commscope Technologies LLC | Fiber optic cable assembly |
WO2011119536A1 (en) | 2010-03-22 | 2011-09-29 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
AU2011232360B2 (en) | 2010-03-24 | 2015-10-08 | Advanced Bifurcation Systems Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
EP2549951B1 (en) | 2010-03-24 | 2017-05-10 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
CN109363807B (en) | 2010-03-24 | 2021-04-02 | 高级分支系统股份有限公司 | System and method for treating a bifurcation |
US8551159B2 (en) | 2010-04-01 | 2013-10-08 | Abbott Cardiovascular Systems Inc. | Implantable prosthesis having through-holes |
US8562670B2 (en) | 2010-04-01 | 2013-10-22 | Abbott Cardiovascular Systems Inc. | Implantable prosthesis with depot retention feature |
EP2672925B1 (en) | 2011-02-08 | 2017-05-03 | Advanced Bifurcation Systems, Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations |
EP3449879B1 (en) | 2011-02-08 | 2020-09-23 | Advanced Bifurcation Systems Inc. | System for treating a bifurcation with a fully crimped stent |
US10413395B2 (en) | 2013-03-28 | 2019-09-17 | Indiana University Research And Technology Corporation | Modular stent grafting methods and apparatus |
US11114918B2 (en) * | 2013-06-26 | 2021-09-07 | Corindus, Inc. | Differential drive |
EP2960059B1 (en) | 2014-06-25 | 2018-10-24 | Universal Display Corporation | Systems and methods of modulating flow during vapor jet deposition of organic materials |
US11220737B2 (en) | 2014-06-25 | 2022-01-11 | Universal Display Corporation | Systems and methods of modulating flow during vapor jet deposition of organic materials |
US11267012B2 (en) | 2014-06-25 | 2022-03-08 | Universal Display Corporation | Spatial control of vapor condensation using convection |
US9821090B2 (en) * | 2014-09-30 | 2017-11-21 | The Spectranetics Corporation | Electrodeposition coating for medical devices |
US9381103B2 (en) | 2014-10-06 | 2016-07-05 | Abbott Cardiovascular Systems Inc. | Stent with elongating struts |
US10566534B2 (en) | 2015-10-12 | 2020-02-18 | Universal Display Corporation | Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP) |
KR102231249B1 (en) * | 2018-08-03 | 2021-03-23 | 오스템카디오텍 주식회사 | Stent preparing method of the same for suppressing webbing event |
CN109453947A (en) * | 2018-11-30 | 2019-03-12 | 江门市博大新能源材料有限公司 | A kind of double-station glue-injection machine |
US11819590B2 (en) * | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
Citations (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US570583A (en) * | 1896-11-03 | Fountain marking-brush | ||
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US5464650A (en) * | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5605696A (en) * | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US5649977A (en) * | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5667840A (en) * | 1996-02-27 | 1997-09-16 | Becton Dickinson And Company | Lubricant soluble fluorescent agent and method for its use in a system for detection of lubricant coatings |
US5705583A (en) * | 1991-07-05 | 1998-01-06 | Biocompatibles Limited | Polymeric surface coatings |
US5741429A (en) * | 1991-09-05 | 1998-04-21 | Cardia Catheter Company | Flexible tubular device for use in medical applications |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US5820918A (en) * | 1996-07-11 | 1998-10-13 | Hercules Incorporated | Medical devices containing in-situ generated medical compounds |
US5820917A (en) * | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
US5824048A (en) * | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US5824049A (en) * | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
US5833891A (en) * | 1996-10-09 | 1998-11-10 | The University Of Kansas | Methods for a particle precipitation and coating using near-critical and supercritical antisolvents |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US5906682A (en) * | 1995-10-13 | 1999-05-25 | Nordson Corporation | Flip chip underfill system and method |
US5951586A (en) * | 1996-05-15 | 1999-09-14 | Medtronic, Inc. | Intraluminal stent |
US5980972A (en) * | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US6015815A (en) * | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6027863A (en) * | 1991-09-05 | 2000-02-22 | Intratherapeutics, Inc. | Method for manufacturing a tubular medical device |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US6083257A (en) * | 1995-11-01 | 2000-07-04 | Biocompatibles Limited | Braided stent |
US6086942A (en) * | 1998-05-27 | 2000-07-11 | International Brachytherapy S.A. | Fluid-jet deposition of radioactive material for brachytherapy devices |
US6090901A (en) * | 1991-07-05 | 2000-07-18 | Biocompatibles Limited | Polymeric surface coatings |
US6096070A (en) * | 1995-06-07 | 2000-08-01 | Med Institute Inc. | Coated implantable medical device |
US6099562A (en) * | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
US6107004A (en) * | 1991-09-05 | 2000-08-22 | Intra Therapeutics, Inc. | Method for making a tubular stent for use in medical applications |
US6106548A (en) * | 1997-02-07 | 2000-08-22 | Endosystems Llc | Non-foreshortening intraluminal prosthesis |
US6121027A (en) * | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6153252A (en) * | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
US6187322B1 (en) * | 1994-01-13 | 2001-02-13 | Lts Lohmann Therapie-Systeme Gmbh | Process and a device for the production of a flat administration form comprising a preparation which contains pharmaceutical active substances |
US6209621B1 (en) * | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
US6231600B1 (en) * | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
US6251136B1 (en) * | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US6258371B1 (en) * | 1998-04-03 | 2001-07-10 | Medtronic Inc | Method for making biocompatible medical article |
US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US6299604B1 (en) * | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
US20010029351A1 (en) * | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
US6319277B1 (en) * | 1994-08-12 | 2001-11-20 | Meadox Medicals, Inc. | Nested stent |
US6335029B1 (en) * | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6379379B1 (en) * | 1998-05-05 | 2002-04-30 | Scimed Life Systems, Inc. | Stent with smooth ends |
US6387121B1 (en) * | 1996-10-21 | 2002-05-14 | Inflow Dynamics Inc. | Vascular and endoluminal stents with improved coatings |
US6395326B1 (en) * | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6409716B1 (en) * | 1989-12-15 | 2002-06-25 | Scimed Life Systems, Inc. | Drug delivery |
US20020111667A1 (en) * | 2000-11-02 | 2002-08-15 | Scimed Life Systems, Inc. | Non-expanded porous polytetrafluoroethylene (PTFE) products and methods of manufacture |
US20020123505A1 (en) * | 1998-09-24 | 2002-09-05 | Mollison Karl W. | Medical devices containing rapamycin analogs |
US6506437B1 (en) * | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6521658B1 (en) * | 1999-05-28 | 2003-02-18 | Abbott Laboratories | Cell proliferation inhibitors |
US20030068355A1 (en) * | 2001-08-20 | 2003-04-10 | Shanley John F. | Therapeutic agent delivery device with protective separating layer |
US6558733B1 (en) * | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
US20030129215A1 (en) * | 1998-09-24 | 2003-07-10 | T-Ram, Inc. | Medical devices containing rapamycin analogs |
US6627246B2 (en) * | 2000-05-16 | 2003-09-30 | Ortho-Mcneil Pharmaceutical, Inc. | Process for coating stents and other medical devices using super-critical carbon dioxide |
US20030207019A1 (en) * | 2002-05-02 | 2003-11-06 | Avraham Shekalim | Stent coating device |
US6645547B1 (en) * | 2002-05-02 | 2003-11-11 | Labcoat Ltd. | Stent coating device |
US6676987B2 (en) * | 2001-07-02 | 2004-01-13 | Scimed Life Systems, Inc. | Coating a medical appliance with a bubble jet printing head |
US6699281B2 (en) * | 2001-07-20 | 2004-03-02 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US20040053953A1 (en) * | 2002-03-18 | 2004-03-18 | Schering Corporation | Treatment of chemokine mediated diseases |
US6743463B2 (en) * | 2002-03-28 | 2004-06-01 | Scimed Life Systems, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
US20040130584A1 (en) * | 2002-07-26 | 2004-07-08 | Shinya Kobayashi | Inkjet recording device with ink refresh function |
US20040202773A1 (en) * | 2002-11-07 | 2004-10-14 | Donald Verlee | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US424576A (en) * | 1890-04-01 | Farm-gate | ||
US591227A (en) * | 1897-10-05 | Bicycle | ||
US424577A (en) * | 1890-04-01 | Vehicle-wheel | ||
US424607A (en) * | 1890-04-01 | Chusetts | ||
US424574A (en) * | 1890-04-01 | Emil j | ||
US424575A (en) * | 1890-04-01 | Electrical insulation | ||
US4324812A (en) * | 1980-05-29 | 1982-04-13 | Ransburg Corporation | Method for controlling the flow of coating material |
US5064435A (en) * | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US6020140A (en) * | 1991-08-09 | 2000-02-01 | Washington University | Autoantibodies and their targets in the diagnosis of peripheral neuropathies |
US5767144A (en) | 1994-08-19 | 1998-06-16 | Abbott Laboratories | Endothelin antagonists |
IT1280817B1 (en) * | 1995-03-22 | 1998-02-11 | Sip | PROCEDURE AND EQUIPMENT FOR DETERMINING THE POLYMERIZATION PROFILE OF A POLYMER LAYER |
US5591277A (en) * | 1995-06-28 | 1997-01-07 | Intri-Plex Technologies, Inc. | Method for thermally conditioning disc drive swage mounts |
CA2179083A1 (en) * | 1995-08-01 | 1997-02-02 | Michael S. Williams | Composite metal and polymer locking stents for drug delivery |
US6070533A (en) * | 1995-08-02 | 2000-06-06 | Pugin; Andre O. | Elevated cableway system |
US5837904A (en) * | 1996-03-28 | 1998-11-17 | Porter Instrument Company, Inc. | Flowmeter tubes and method of installing them |
US6783543B2 (en) * | 2000-06-05 | 2004-08-31 | Scimed Life Systems, Inc. | Intravascular stent with increasing coating retaining capacity |
US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
BR9602991A (en) | 1996-07-05 | 1998-04-28 | Cosmeticos Natural Ind Com | Skin moisturizing and protective cosmetic compositions against ultraviolet and infrared radiation |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
US6056993A (en) * | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6235786B1 (en) | 1997-08-06 | 2001-05-22 | Abbott Laboratories | Reverse hydroxamate inhibitors of matrix metalloproteinases |
US6782506B1 (en) * | 1998-02-12 | 2004-08-24 | Newriver, Inc. | Obtaining consent for electronic delivery of compliance information |
US6254634B1 (en) | 1998-06-10 | 2001-07-03 | Surmodics, Inc. | Coating compositions |
EP0966979B1 (en) | 1998-06-25 | 2006-03-08 | Biotronik AG | Implantable bioresorbable support for the vascular walls, in particular coronary stent |
DE19855421C2 (en) * | 1998-11-02 | 2001-09-20 | Alcove Surfaces Gmbh | Implant |
JP2000251666A (en) * | 1999-02-24 | 2000-09-14 | Canon Inc | Electron source substrate, manufacturing device and manufacture of the electron source substrate, and image forming device |
US6296708B1 (en) * | 1999-04-29 | 2001-10-02 | Nordson Corporation | Systems for setting automatic gun triggering parameters in automated spray coating systems |
AU6076200A (en) | 1999-07-08 | 2001-01-30 | Johnson & Johnson Consumer Companies, Inc. | Exothermic bandage |
CA2375650A1 (en) | 1999-07-21 | 2001-02-01 | Yung-Fu Chang | Ehrlichia canis genes and vaccines |
DE19940241A1 (en) | 1999-08-25 | 2001-03-01 | Lohmann Therapie Syst Lts | Method for applying at least one active substance to a thin substrate forming a carrier layer involves use of liquid active substances which are applicable by bubble jet printing techniques |
DE19940242A1 (en) | 1999-08-25 | 2001-03-01 | Lohmann Therapie Syst Lts | Applying a preparation in liquid phase containing active substances to a substrate constituting an adhesive therapeutic system involves use of a free jet similarly to bubble jet printing |
US6713119B2 (en) | 1999-09-03 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for a prosthesis and a method of forming the same |
JP3842495B2 (en) * | 1999-10-12 | 2006-11-08 | 太平洋工業株式会社 | Tire pressure monitoring device |
AU2001247425A1 (en) | 2000-04-10 | 2001-10-23 | Advanced Cardiovascular Systems Inc. | Selectively coated stent delivery system and method of manufacture thereof |
JP4503208B2 (en) * | 2000-04-25 | 2010-07-14 | インプレス メディカル, インコーポレイテッド | Method and apparatus for generating adhesions in the uterus |
WO2001091918A1 (en) * | 2000-05-31 | 2001-12-06 | Advanced Cardiovascular Systems, Inc. | An apparatus and method for forming a coating onto a surface of a prosthesis |
AU2001273276A1 (en) | 2000-07-10 | 2002-01-21 | Epion Corporation | Improving effectiveness of medical stents by gcib |
WO2002023505A1 (en) | 2000-09-16 | 2002-03-21 | Thomas Moss | Portable traffic-light signals and sets |
WO2002026162A2 (en) * | 2000-09-26 | 2002-04-04 | Advanced Cardiovascular Systems, Inc. | A method of loading a substance onto an implantable device |
US7077859B2 (en) | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
AU2002244164A1 (en) | 2001-03-06 | 2002-09-19 | Board Of Regents, The University Of Texas System | Apparatus for stent deployment with delivery of bioactive agents |
US20020136136A1 (en) * | 2001-03-26 | 2002-09-26 | Daniel Gelbart | Method for storing data using VCSEL device |
US7862495B2 (en) * | 2001-05-31 | 2011-01-04 | Advanced Cardiovascular Systems, Inc. | Radiation or drug delivery source with activity gradient to minimize edge effects |
SE0103313D0 (en) | 2001-10-03 | 2001-10-03 | Astrazeneca Ab | Novel compounds |
US7083822B2 (en) * | 2002-04-26 | 2006-08-01 | Medtronic Vascular, Inc. | Overlapping coated stents |
US6945995B2 (en) * | 2002-08-29 | 2005-09-20 | Boston Scientific Scimed, Inc. | Stent overlap point markers |
US7125577B2 (en) * | 2002-09-27 | 2006-10-24 | Surmodics, Inc | Method and apparatus for coating of substrates |
-
2003
- 2003-11-07 US US10/703,820 patent/US7208190B2/en not_active Expired - Fee Related
- 2003-11-07 KR KR1020057008172A patent/KR20050086430A/en not_active Application Discontinuation
- 2003-11-07 JP JP2004551918A patent/JP4917753B2/en not_active Expired - Fee Related
- 2003-11-07 AU AU2003290675A patent/AU2003290675A1/en not_active Abandoned
- 2003-11-07 KR KR1020057008171A patent/KR20060037233A/en not_active Application Discontinuation
- 2003-11-07 AT AT03783258T patent/ATE471126T1/en not_active IP Right Cessation
- 2003-11-07 MX MXPA05004926A patent/MXPA05004926A/en unknown
- 2003-11-07 MX MXPA05004915A patent/MXPA05004915A/en not_active Application Discontinuation
- 2003-11-07 BR BR0316106-4A patent/BR0316106A/en not_active IP Right Cessation
- 2003-11-07 AU AU2003295419A patent/AU2003295419A1/en not_active Abandoned
- 2003-11-07 CA CA2504723A patent/CA2504723C/en not_active Expired - Fee Related
- 2003-11-07 MX MXPA05004916A patent/MXPA05004916A/en unknown
- 2003-11-07 WO PCT/US2003/035563 patent/WO2004043298A1/en active Application Filing
- 2003-11-07 PL PL376752A patent/PL376752A1/en unknown
- 2003-11-07 JP JP2004551882A patent/JP2006505355A/en not_active Ceased
- 2003-11-07 AU AU2003290676A patent/AU2003290676A1/en not_active Abandoned
- 2003-11-07 EP EP10154000.3A patent/EP2198976A3/en not_active Withdrawn
- 2003-11-07 BR BR0316065-3A patent/BR0316065A/en not_active IP Right Cessation
- 2003-11-07 AT AT03783257T patent/ATE461673T1/en not_active IP Right Cessation
- 2003-11-07 KR KR1020057008170A patent/KR20050086429A/en not_active Application Discontinuation
- 2003-11-07 BR BR0316102-1A patent/BR0316102A/en not_active IP Right Cessation
- 2003-11-07 US US10/704,114 patent/US9296011B2/en not_active Expired - Fee Related
- 2003-11-07 WO PCT/US2003/035627 patent/WO2004043300A1/en active Application Filing
- 2003-11-07 EP EP03786605A patent/EP1562518A1/en not_active Withdrawn
- 2003-11-07 US US10/703,891 patent/US20040185081A1/en not_active Abandoned
- 2003-11-07 JP JP2004551915A patent/JP4592421B2/en not_active Expired - Fee Related
- 2003-11-07 CA CA2520368A patent/CA2520368C/en not_active Expired - Fee Related
- 2003-11-07 WO PCT/US2003/035624 patent/WO2004043299A1/en active Application Filing
- 2003-11-07 DE DE60331854T patent/DE60331854D1/en not_active Expired - Lifetime
- 2003-11-07 CA CA002505367A patent/CA2505367A1/en not_active Abandoned
- 2003-11-07 EP EP03783257A patent/EP1572029B1/en not_active Expired - Lifetime
- 2003-11-07 PL PL376783A patent/PL376783A1/en unknown
- 2003-11-07 PL PL377190A patent/PL377190A1/en unknown
- 2003-11-07 DE DE60333028T patent/DE60333028D1/en not_active Expired - Lifetime
- 2003-11-07 EP EP03783258A patent/EP1562517B1/en not_active Expired - Lifetime
-
2006
- 2006-08-17 US US11/465,396 patent/US7597764B2/en not_active Expired - Fee Related
-
2007
- 2007-04-23 US US11/738,839 patent/US7645476B2/en not_active Expired - Fee Related
-
2009
- 2009-08-31 US US12/551,413 patent/US8001926B2/en not_active Expired - Fee Related
-
2011
- 2011-07-05 US US13/176,319 patent/US20110262621A1/en not_active Abandoned
Patent Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US570583A (en) * | 1896-11-03 | Fountain marking-brush | ||
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) * | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US6409716B1 (en) * | 1989-12-15 | 2002-06-25 | Scimed Life Systems, Inc. | Drug delivery |
US5705583A (en) * | 1991-07-05 | 1998-01-06 | Biocompatibles Limited | Polymeric surface coatings |
US6090901A (en) * | 1991-07-05 | 2000-07-18 | Biocompatibles Limited | Polymeric surface coatings |
US6107004A (en) * | 1991-09-05 | 2000-08-22 | Intra Therapeutics, Inc. | Method for making a tubular stent for use in medical applications |
US6027863A (en) * | 1991-09-05 | 2000-02-22 | Intratherapeutics, Inc. | Method for manufacturing a tubular medical device |
US5741429A (en) * | 1991-09-05 | 1998-04-21 | Cardia Catheter Company | Flexible tubular device for use in medical applications |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5464650A (en) * | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5824048A (en) * | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US6187322B1 (en) * | 1994-01-13 | 2001-02-13 | Lts Lohmann Therapie-Systeme Gmbh | Process and a device for the production of a flat administration form comprising a preparation which contains pharmaceutical active substances |
US6319277B1 (en) * | 1994-08-12 | 2001-11-20 | Meadox Medicals, Inc. | Nested stent |
US5649977A (en) * | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US6231600B1 (en) * | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
US5605696A (en) * | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US6358556B1 (en) * | 1995-04-19 | 2002-03-19 | Boston Scientific Corporation | Drug release stent coating |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US5820917A (en) * | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
US5873904A (en) * | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5824049A (en) * | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
US6096070A (en) * | 1995-06-07 | 2000-08-01 | Med Institute Inc. | Coated implantable medical device |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US6209621B1 (en) * | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
US5906682A (en) * | 1995-10-13 | 1999-05-25 | Nordson Corporation | Flip chip underfill system and method |
US6083257A (en) * | 1995-11-01 | 2000-07-04 | Biocompatibles Limited | Braided stent |
US5667840A (en) * | 1996-02-27 | 1997-09-16 | Becton Dickinson And Company | Lubricant soluble fluorescent agent and method for its use in a system for detection of lubricant coatings |
US5951586A (en) * | 1996-05-15 | 1999-09-14 | Medtronic, Inc. | Intraluminal stent |
US6099562A (en) * | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
US5820918A (en) * | 1996-07-11 | 1998-10-13 | Hercules Incorporated | Medical devices containing in-situ generated medical compounds |
US5833891A (en) * | 1996-10-09 | 1998-11-10 | The University Of Kansas | Methods for a particle precipitation and coating using near-critical and supercritical antisolvents |
US6387121B1 (en) * | 1996-10-21 | 2002-05-14 | Inflow Dynamics Inc. | Vascular and endoluminal stents with improved coatings |
US5980972A (en) * | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US6106548A (en) * | 1997-02-07 | 2000-08-22 | Endosystems Llc | Non-foreshortening intraluminal prosthesis |
US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US20010027340A1 (en) * | 1997-04-18 | 2001-10-04 | Carol Wright | Stent with therapeutically active dosage of rapamycin coated thereon |
US6808536B2 (en) * | 1997-04-18 | 2004-10-26 | Carol Wright | Stent containing rapamycin or its analogs using a modified stent |
US6121027A (en) * | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6015815A (en) * | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6329386B1 (en) * | 1997-09-26 | 2001-12-11 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US6258371B1 (en) * | 1998-04-03 | 2001-07-10 | Medtronic Inc | Method for making biocompatible medical article |
US20010029351A1 (en) * | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
US6379379B1 (en) * | 1998-05-05 | 2002-04-30 | Scimed Life Systems, Inc. | Stent with smooth ends |
US6086942A (en) * | 1998-05-27 | 2000-07-11 | International Brachytherapy S.A. | Fluid-jet deposition of radioactive material for brachytherapy devices |
US6153252A (en) * | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
US6299604B1 (en) * | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
US6335029B1 (en) * | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US20020123505A1 (en) * | 1998-09-24 | 2002-09-05 | Mollison Karl W. | Medical devices containing rapamycin analogs |
US20030129215A1 (en) * | 1998-09-24 | 2003-07-10 | T-Ram, Inc. | Medical devices containing rapamycin analogs |
US6521658B1 (en) * | 1999-05-28 | 2003-02-18 | Abbott Laboratories | Cell proliferation inhibitors |
US6251136B1 (en) * | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US6627246B2 (en) * | 2000-05-16 | 2003-09-30 | Ortho-Mcneil Pharmaceutical, Inc. | Process for coating stents and other medical devices using super-critical carbon dioxide |
US6395326B1 (en) * | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6616765B1 (en) * | 2000-05-31 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6506437B1 (en) * | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6558733B1 (en) * | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
US20020111667A1 (en) * | 2000-11-02 | 2002-08-15 | Scimed Life Systems, Inc. | Non-expanded porous polytetrafluoroethylene (PTFE) products and methods of manufacture |
US6676987B2 (en) * | 2001-07-02 | 2004-01-13 | Scimed Life Systems, Inc. | Coating a medical appliance with a bubble jet printing head |
US6699281B2 (en) * | 2001-07-20 | 2004-03-02 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US20030068355A1 (en) * | 2001-08-20 | 2003-04-10 | Shanley John F. | Therapeutic agent delivery device with protective separating layer |
US20040053953A1 (en) * | 2002-03-18 | 2004-03-18 | Schering Corporation | Treatment of chemokine mediated diseases |
US6743463B2 (en) * | 2002-03-28 | 2004-06-01 | Scimed Life Systems, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
US6645547B1 (en) * | 2002-05-02 | 2003-11-11 | Labcoat Ltd. | Stent coating device |
US20030207019A1 (en) * | 2002-05-02 | 2003-11-06 | Avraham Shekalim | Stent coating device |
US7048962B2 (en) * | 2002-05-02 | 2006-05-23 | Labcoat, Ltd. | Stent coating device |
US20040130584A1 (en) * | 2002-07-26 | 2004-07-08 | Shinya Kobayashi | Inkjet recording device with ink refresh function |
US20040254634A1 (en) * | 2002-11-07 | 2004-12-16 | Donald Verlee | Prosthesis having varied concentration of beneficial agent |
US20040202773A1 (en) * | 2002-11-07 | 2004-10-14 | Donald Verlee | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US7208190B2 (en) * | 2002-11-07 | 2007-04-24 | Abbott Laboratories | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080213278A1 (en) * | 1997-09-26 | 2008-09-04 | Abbott Laboratories | Method Of Treating Disorders Using Compositions Comprising Zotarolimus And Paclitaxel |
US8318190B2 (en) * | 1997-09-26 | 2012-11-27 | Abbott Laboratories | Method of treating disorders using compositions comprising zotarolimus and paclitaxel |
US8257726B2 (en) * | 1997-09-26 | 2012-09-04 | Abbott Laboratories | Compositions, systems, kits, and methods of administering rapamycin analogs with paclitaxel using medical devices |
US20070026034A1 (en) * | 1997-09-26 | 2007-02-01 | Burke Sandra E | Compositions, systems, kits, and methods of administering rapamycin analogs with paclitaxel using medical devices |
US20050203612A1 (en) * | 2000-12-22 | 2005-09-15 | Avantec Vascular Corporation | Devices delivering therapeutic agents and methods regarding the same |
US7989018B2 (en) | 2001-09-17 | 2011-08-02 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US20100003396A1 (en) * | 2002-11-07 | 2010-01-07 | Abbott Laboratories | System and Method of Loading and Detecting Beneficial Agent on a Prosthesis |
US7597764B2 (en) | 2002-11-07 | 2009-10-06 | Abbott Laboratories | System of loading beneficial agent to a prosthesis by fluid-jet |
US20080020129A1 (en) * | 2002-11-07 | 2008-01-24 | Abbott Laboratories | Method of Loading Beneficial Agent to a Prosthesis by Fluid-Jet Application |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
US8001926B2 (en) | 2002-11-07 | 2011-08-23 | Abbott Laboratories | System and method of loading and detecting beneficial agent on a prosthesis |
US20070053953A1 (en) * | 2002-11-07 | 2007-03-08 | Donald Verlee | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US8524148B2 (en) | 2002-11-07 | 2013-09-03 | Abbott Laboratories | Method of integrating therapeutic agent into a bioerodible medical device |
US20040254634A1 (en) * | 2002-11-07 | 2004-12-16 | Donald Verlee | Prosthesis having varied concentration of beneficial agent |
US7645476B2 (en) | 2002-11-07 | 2010-01-12 | Abbott Laboratories | Method of loading beneficial agent to a prosthesis by fluid-jet application |
US8221495B2 (en) | 2002-11-07 | 2012-07-17 | Abbott Laboratories | Integration of therapeutic agent into a bioerodible medical device |
US9296011B2 (en) | 2002-11-07 | 2016-03-29 | Abbott Laboratories | Prosthesis having varied concentration of beneficial agent |
WO2005077347A1 (en) * | 2004-02-10 | 2005-08-25 | Edwards Lifesciences Corporation | Use of endothelin antagonists to prevent restenosis |
US20050175667A1 (en) * | 2004-02-10 | 2005-08-11 | Wenda Carlyle | Use of endothelin antagonists to prevent restenosis |
US8118864B1 (en) * | 2004-05-25 | 2012-02-21 | Endovascular Technologies, Inc. | Drug delivery endovascular graft |
US20090232964A1 (en) * | 2005-04-26 | 2009-09-17 | Advanced Cardiovascular Systems, Inc. | Compositions for Medical Devices Containing Agent Combinations in Controlled Volumes |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
US8318236B2 (en) | 2005-12-16 | 2012-11-27 | Advanced Cardiovascular Systems, Inc. | Stent coating method |
US8865189B2 (en) | 2006-02-28 | 2014-10-21 | Abbott Cardiovascular Systems Inc. | Poly(ester amide)-based drug delivery systems |
US8377107B2 (en) | 2006-02-28 | 2013-02-19 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
US8377499B2 (en) | 2006-02-28 | 2013-02-19 | Abbott Cardiovascular Systems Inc. | Methods of forming Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
US8389044B2 (en) | 2006-02-28 | 2013-03-05 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
US20100285203A1 (en) * | 2006-05-26 | 2010-11-11 | Yung Ming Chen | Stent Coating Method |
US8236369B2 (en) | 2006-05-26 | 2012-08-07 | Advanced Cardiovascular Systems, Inc. | Stent coating method |
US7775178B2 (en) | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
US8616152B2 (en) | 2006-05-26 | 2013-12-31 | Abbott Cardiovascular Systems Inc. | Stent coating apparatus |
US8637111B2 (en) | 2006-08-29 | 2014-01-28 | Abbott Cardiovascular Systems Inc. | Methods for modulating the release rate of a drug-coated stent |
US8293318B1 (en) | 2006-08-29 | 2012-10-23 | Abbott Cardiovascular Systems Inc. | Methods for modulating the release rate of a drug-coated stent |
US20080292778A1 (en) * | 2007-05-25 | 2008-11-27 | Tarcha Peter J | One-step Phosphorylcholine-linked polymer coating and drug loading of stent |
US8834549B2 (en) * | 2007-05-25 | 2014-09-16 | Abbott Laboratories | One-step phosphorylcholine-linked polymer coating and drug loading of stent |
US8084077B2 (en) * | 2007-05-25 | 2011-12-27 | Abbott Laboratories | One-step phosphorylcholine-linked polymer coating and drug loading of stent |
US20090053392A1 (en) * | 2007-06-05 | 2009-02-26 | Abbott Cardiovascular Systems Inc. | Implantable medical devices for local and regional treatment |
US8252361B2 (en) * | 2007-06-05 | 2012-08-28 | Abbott Cardiovascular Systems Inc. | Implantable medical devices for local and regional treatment |
US9802216B2 (en) | 2007-11-14 | 2017-10-31 | Biosensors International Group, Ltd. | Automated stent coating apparatus and method |
US8573150B2 (en) | 2007-11-14 | 2013-11-05 | Biosensors International Group, Ltd. | Automated stent coating apparatus and method |
US20100262230A1 (en) * | 2007-11-14 | 2010-10-14 | Biosensors International Group, Ltd. | Automated Coating Apparatus and Method |
US9511385B2 (en) | 2007-11-14 | 2016-12-06 | Biosensors International Group, Ltd. | Automated stent coating apparatus and method |
US8632841B2 (en) | 2010-06-17 | 2014-01-21 | Abbott Cardiovascular Systems, Inc. | Systems and methods for rotating and coating an implantable device |
US8389041B2 (en) | 2010-06-17 | 2013-03-05 | Abbott Cardiovascular Systems, Inc. | Systems and methods for rotating and coating an implantable device |
US10695200B2 (en) | 2013-03-15 | 2020-06-30 | Covidien Lp | Anti-thrombogenic medical devices |
US10226366B2 (en) | 2013-03-15 | 2019-03-12 | Covidien Lp | Anti-thrombogenic medical devices |
US11376141B2 (en) | 2013-03-15 | 2022-07-05 | Covidien Lp | Anti-thrombogenic medical devices |
US20170232156A1 (en) | 2013-11-22 | 2017-08-17 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US9668890B2 (en) | 2013-11-22 | 2017-06-06 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US10258486B2 (en) | 2013-11-22 | 2019-04-16 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US10835393B2 (en) | 2013-11-22 | 2020-11-17 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US11369497B2 (en) | 2013-11-22 | 2022-06-28 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US11406514B2 (en) | 2013-11-22 | 2022-08-09 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US11903850B2 (en) | 2013-11-22 | 2024-02-20 | Covidien Lp | Anti-thrombogenic medical devices and methods |
US20170035555A1 (en) * | 2014-04-17 | 2017-02-09 | Seoul National University R&Db Foundation | Prosthesis for in vivo insertion, coated with cross- linked polyphosphorylcholine |
US11129706B2 (en) * | 2014-04-17 | 2021-09-28 | Seoul National University R&Db Foundation | Prosthesis for in vivo insertion, coated with cross-linked polyphosphorylcholine |
US11925547B2 (en) | 2014-04-17 | 2024-03-12 | Seoul National University R&Db Foundation | Prosthesis for in vivo insertion, coated with cross-linked polyphosphorylcholine |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7208190B2 (en) | Method of loading beneficial agent to a prosthesis by fluid-jet application | |
US8057813B2 (en) | Multiple drug delivery from a balloon and a prosthesis | |
US20070088255A1 (en) | Method of treating vascular disease at a bifurcated vessel using a coated balloon | |
ZA200503613B (en) | Prosthesis with multiple drugs in discrete unmixed droplets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VERLEE, DONALD;TARCHA, PETER;CROMACK, KEITH;AND OTHERS;REEL/FRAME:016295/0597;SIGNING DATES FROM 20050504 TO 20050523 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |