US20040154858A1 - Apparatus and method for steering a vehicle - Google Patents
Apparatus and method for steering a vehicle Download PDFInfo
- Publication number
- US20040154858A1 US20040154858A1 US10/765,731 US76573104A US2004154858A1 US 20040154858 A1 US20040154858 A1 US 20040154858A1 US 76573104 A US76573104 A US 76573104A US 2004154858 A1 US2004154858 A1 US 2004154858A1
- Authority
- US
- United States
- Prior art keywords
- rack
- ball
- steering
- steering system
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0421—Electric motor acting on or near steering gear
- B62D5/0424—Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
- B62D5/0427—Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel the axes being coaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0442—Conversion of rotational into longitudinal movement
Definitions
- This invention relates generally to an apparatus and method for steering a vehicle, and more specifically to a rack-independent actuator.
- the system is powered by a rotary type electric motor.
- the motor has speed reducers and rotary-to-linear actuators to achieve feasible size and linear actuation.
- the actuation unit is decoupled from the directionally unwanted loads by providing universal joints (or an equivalent degree of freedoms) at either end.
- One universal joint is mounted to the housing that holds the motor rotary-to-rotary speed reducer and the movable shaft of the linear-to-rotary actuator, and the other is mounted to a member that is linearly moved by the linear-to-rotary actuator.
- FIG. 1 is an illustration of a steering system for a vehicle
- FIG. 2 is an illustration of a portion of the steering system in FIG. 1;
- FIG. 3 is a perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention
- FIG. 4 is a cross-sectional view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention
- FIG. 5 is another perspective view of a rack-independent actuator
- FIG. 6 is an end view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention.
- FIG. 7 is a top plan view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention.
- FIGS. 8 and 9 are perspective views of a rack-independent actuator illustrating the universal joints in an exploded view
- FIG. 10 is an end perspective view of the rack-independent constructed in accordance with an exemplary embodiment of the present invention.
- FIG. 11 is a partial cross sectional perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention.
- FIG. 12 is a partial cross sectional perspective view of a universal joint of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention
- FIG. 13 is a partial cross sectional perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention.
- FIG. 14 is a partial cross sectional perspective view of a universal joint of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention.
- FIG. 15 is a block diagram of a rack-independent actuator system
- FIG. 16 a diagrammatic view of a steer by wire system
- FIG. 17 is a diagrammatic view of a steer by wire system with independent actuators for each steerable wheel of a vehicle.
- the independent actuator system of an exemplary embodiment of the present invention employs the judicious use of universal joints, (gimbal) expansion joints, or other equivalents to achieve freedom from lock-up as well as compensation for reasonable tolerance stack-up errors, which must be designed around current steering system designs.
- a benefit of the Electric Power Steering and Steer-by-Wire system is the enhanced comfort to the driver of a vehicle equipped with this system.
- the driver of such a vehicle would experience improved handling over less-than-smooth terrains e.g., potholes, graded surfaces, etc.
- FIGS. 1 and 2 a steering system 10 for use in a vehicle 12 (not shown) is illustrated.
- Steering system 10 allows the operator of vehicle 12 to control the direction of vehicle 12 through the manipulation of steering system 10 .
- a steering column 14 provides mechanical manipulation of the vehicle's wheels in order to control the direction of the vehicle.
- Steering column 14 includes a hand wheel 16 .
- Hand wheel 16 is positioned so that a user can apply a rotational force to steering column 14 .
- An upper steering column shaft 18 is secured to hand wheel 16 at one end and column universal joint 20 at the other.
- Column universal joint 20 couples upper steering column shaft 18 to a lower steering column shaft 22 .
- Lower steering column shaft 22 is secured to column universal joint 20 at one end and a gear housing 24 at the other.
- Gear housing 24 includes a pinion gear 26 (FIG. 2).
- Pinion gear 26 of gear housing 24 is positioned to make contact with a matching toothed portion 28 of a rack assembly 30 .
- Pinion gear 26 has helical teeth that are meshingly engaged with straight-cut teeth of matching toothed portion 28 .
- the pinion gear in combination with the straight-cut gear teeth of the rack, form a rack and pinion gear set.
- the rack 45 is coupled to the vehicle's steerable wheels with steering linkage in a known manner.
- Tie rods (only one shown) 32 are secured to rack assembly 30 at one end and knuckles 34 (only one shown) at the other.
- an electric motor 38 is energized to provide power assist to the movement of rack 45 , aiding in the steering of the vehicle by the vehicle operator.
- Electric motor 38 provides a torque force to a motor pulley 40 via motor shaft 42 .
- the rotation force of motor pulley 40 is transferred to a belt 44 .
- belt 44 There are retaining walls 41 on either one of the pulleys 40 and/or ball-screw pulley 62 to help prevent belt 44 from slipping completely off.
- motor pulley 40 can be configured to have no retaining walls.
- belt 44 is replaced by a chain or gear system or any rotary to rotary drives that provides a rotational force to the screw 64 of the ball-screw mechanism.
- Electric motor 38 is actuated by a controller 52 that receives inputs from a torque sensor 54 and a rotational position sensor 56 .
- Sensor 56 provides a steer angle signal to controller 52 .
- Controller 52 also receives an input in the form of a vehicle speed signal. Accordingly, and in response to the following inputs: vehicle velocity input; operator torque input (sensor 54 ); steering pinion gear angle (sensor 56 ); and motor shaft 42 position signals (bus 58 ), controller 52 determines the desired electric motor's current phases and provides such currents through a bus 60 .
- Motor pulley 40 is rotated by motor shaft 42 of electric motor 38 .
- a second pulley 62 is fixedly secured to the ball-screw 64 screw (or the rotary part of a rotary to linear actuator) of a ball-screw assembly 66 .
- the ball-screw assembly 66 converts the rotary force of belt 44 into the linear movement of a ball nut 68 .
- Motor pulley 40 and ball-screw pulley 62 may be constructed out of a lightweight material such as aluminum or composites. This allows the overall mass and inertia of steering system to be reduced in order to improve manufacturing costs and performance, as well as vehicle fuel efficiency.
- FIGS. 1 and 2 illustrate a power assist steering system which includes a mechanical connection between (rack and pinion) hand wheel 16 and rack assembly 30 .
- rack-independent actuator 70 provides the necessary force to effect the linear movement of a rack 45 coupled to the steerable wheels of a vehicle.
- Rack-independent actuator 70 performs the functions of rotating the steerable wheels of a vehicle in response to an input such as driver manipulation of a steering wheel.
- the rack independent actuator 70 isolates its reduction mechanisms and/or conversion mechanisms necessary to effect the rotation of the steerable wheels from transient and non-axial (to the rack) loads by a pair of universal joints 72 and 74 .
- Rack-independent actuator 70 is also contemplated for use with a power assist steering system (FIGS. 1 and 2) and/or a “steer-by-wire system” (FIGS. 16 and 17) and/or rear wheel steering and/or four-wheel steering.
- FIGS. 8 and 9 illustrate universal joints 72 and 74 in an exploded view in order to illustrate the component parts of the same.
- Universal joint 72 secures a housing 75 to a mounting member 76 of rack assembly 30 .
- Universal joint 72 contains two sets of hinge pins, or pivots 78 and 80 , the axis of each set being perpendicular to the other. Each set of pins is connected to the other by a central gimbal ring 82 .
- universal joints 72 and 74 may be replaced by a compliant member which allows similar degrees of freedom for the range of motion necessary to isolate the reduction mechanisms from transient and non-axial (to the rack) loads.
- gimbal ring 82 is replaced by a rubber ring which is inserted into mounting member 76 while also covering a portion of housing 75 .
- the rubber ring is compressible and thus capable of providing kinematic freedom.
- gimbal ring 92 may be replaced by a compliant rubber ring.
- rack independent actuator may be constructed with a universal joint and a rubber compliant member.
- universal joints 72 and a rubber compliant member replacing universal joint 74 or vice versa.
- pins 78 and 80 are pressed at their respective openings in gimbal ring 82 . This allows the rotational movement of gimbal ring 82 while also providing a means for securing the same.
- pins 78 and 80 slip in openings in housing 75 and mounting member 76 .
- pins 78 and 80 and their respective openings in gimbal ring 82 , housing 75 and mounting member 76 are configured to provide a movable means of securing the same.
- Pins 78 movably connect gimbal ring 82 to housing 75 .
- housing 75 is configured to have an elongated cylindrical shape allowing a portion of housing 75 to be inserted within an inner opening of gimbal ring 82 .
- pins 78 allow gimbal ring to be movably secured to housing 75 .
- pins 80 movably connect gimbal ring 82 to mounting member 76 .
- Mounting member 76 is fixedly secured to an outer housing 77 of rack assembly 30 .
- mounting member 76 defines an inner opening 88 sufficiently large enough to pass over gimbal ring 82 .
- gimbal ring 82 is movably secured to housing 75 , and housing 75 is sufficiently long enough to position gimbal ring 82 within opening 88 of securement member 76 , thus gimbal ring 82 connects housing 75 and securement member 76 by pins 78 and 80 .
- Pins 78 pass through openings 73 in securement member 76 and movably secured gimbal ring 82 to securement member 76 , while pins 80 movably secure gimbal ring 82 to housing 75 by engaging openings 81 in housing 75 .
- pins 78 and 80 are positioned at right angles with respect to each other. Of course, the angular positioning of pins 78 and 80 may vary as long as the intended effect of isolating potions of the rack independent actuator from unwanted loads is achieved.
- pins 80 prevent a load from being transferred in-between mounting member 76 and gimbal ring 82 in a first direction while pins 78 prevent a load from being transferred in-between housing 75 and gimbal ring 82 in a second direction.
- the first and second directions being different from each other.
- Rack-independent actuator 70 has an electric motor assembly 90 .
- Electric motor assembly 90 includes electric motor 38 , rotatable shaft 42 , and motor pulley 40 that is fixedly secured to motor shaft 42 .
- belt 44 engages with pulley 40 as well as pulley 62 .
- pulley 62 is fixedly secured to screw 64 of the ball-screw mechanism, the rotational movement of pulley 62 causes screw 64 of the ball-screw mechanism to rotate.
- motor 38 , belt 44 , pulleys 40 and 62 provide a rotary to rotary conversion, which is determined by the dimensions of pulley 40 and 62 with respect to each other (e.g. gear ratio).
- pulleys 40 and 62 and belt 44 can be replaced by a direct mechanical linkage such as a gear train rotary to rotary drive or equivalent thereof.
- One end of screw 64 of the ball-screw mechanism is mounted for rotation within a plurality of bearings 65 located within housing 75 proximate to pulley 62 .
- a pre-load nut adjuster or locking nut 67 screws onto the screw 64 of the ball-screw mechanism adjacent to bearings 65 , once in position locking nut is secured to screw 64 of the ball-screw mechanism through the use of a plurality of locking screws 63 which when rotated lock locking nut 67 onto screw 64 of the ball-screw mechanism.
- bearings 65 are positioned between locking nut 67 and pulley 62 allowing for the rotational movement of screw 64 of the ball-screw mechanism.
- screw 64 of the ball-screw mechanism is rotatably supported by ball-screw nut 68 of ball-screw mechanism 66 . Accordingly, the rotational movement of screw 64 of the ball-screw mechanism by motor 38 is isolated at one end by universal joint 72 .
- a portion of screw 64 of the ball-screw mechanism passes through ball-screw nut 68 , and the respective surfaces of screw 64 of the ball-screw mechanism and ball-screw nut 68 are configured to effect the linear movement of ball-screw nut 68 as screw 64 of the ball-screw mechanism is rotated.
- a plurality of balls 69 are received within a pair of threaded or grooved surfaces 71 positioned on the inner surface of ball-screw nut 68 and the outer surface of screw 64 of the ball-screw mechanism.
- the interface of screw 64 of the ball-screw mechanism and ball-screw nut 68 of ball-screw mechanism 66 are constructed in a known manner.
- pins 94 and 96 are pressed in their respective openings in gimbal ring 92 . This allows the rotational movement of gimbal ring 92 while also providing a means for securing the same.
- pins 94 and 96 and their respective openings in gimbal ring 92 , ball-screw nut 68 and housing member 100 are configured to provide a movable means of securing the same.
- Pins 94 movably connect gimbal ring 92 to ball-screw nut 68 allowing for movement in a first direction.
- gimbal ring 92 is configured to have a cylindrical shape slightly larger than ball-screw nut 68 , allowing a portion of ball-screw nut 68 to be inserted within gimbal ring 92 .
- Pins 94 are received within a pair of pin openings 98 in the ball-screw nut 68 .
- universal joint 74 and ball-screw nut 68 are shown in FIGS. 8 and 9 in an exploded manner so as to illustrate the attachment of universal joints 72 and 74 .
- Pins 96 movably connect gimbal ring 92 to a housing member 100 allowing for movement in second direction, the second directional plane being orthogonal to the first directional plane. Pins 96 pass through a pair of apertures 102 in housing 100 , thus movably connecting gimbal ring 92 to housing 100 .
- the gimbal mechanisms or in particular universal joints 72 and 74 provide the necessary kinematic degrees of freedom to prevent non-axial loads and for turning or bending moments on the ball-screw nut or screw, such as those that would result from misalignment of the shafts, from producing undesirable friction and the resultant loss of efficiency on the rotary to linear motion conversion mechanism.
- housing 100 is fixedly secured to rack 45 through a plurality of bolts 104 which pass through complementary bolt openings 106 in rack 45 and housing 100 . Accordingly, and as a rotational force is applied to screw 64 of the ball-screw mechanism, ball-screw assembly 66 converts the rotary movement of screw 64 of the ball-screw mechanism into the linear movement of ball-screw nut 68 .
- Ball-screw nut 68 is connected to rack 45 through a universal joint 74 , which is connected to ball-screw nut 68 at one end and housing 100 at the other. Housing 100 is fixedly secured to rack 45 and accordingly, as ball-screw nut 68 moves in the direction indicated by arrows 36 , a similar movement of rack 45 is produced.
- Housing member 100 is configured to have a mounting portion 101 which is configured to be received within opening 108 .
- Mounting portion 101 is configured to be slidably received within opening 108 and contains the apertures into which bolts 104 are received.
- Universal joints 72 and 74 isolate electric motor assembly 90 and ball-screw pulley 62 from transient non-axial loads, which may damage or misalign pulleys 40 and 62 . Moreover, universal joints 72 and 74 isolate the system from undesirable loads or stack buildup which may be the result of misalignment of a component part such as rack 45 , ball-screw 64 and/or any other component part which may produce an undesirable load or stack buildup.
- the rack-independent actuator also allows the two pulleys on the belt and pulley mechanism to be mounted to the same housing and to eliminate all force components that could alter their parallelism.
- the rack-independent actuator of an exemplary embodiment no longer requires the motor shaft of motor 38 or the screw 64 of the ball-screw mechanism to be parallel to rack 45 , as motor assembly 90 and screw 64 of the ball-screw mechanism are isolated from rack 45 through the use of universal joints 72 and 74 .
- any misalignment of screw 64 of the ball-screw mechanism with regard to rack 45 is accommodated for by universal joints 72 and 74 .
- motor shaft 42 need only be parallel to screw 64 of the ball-screw mechanism, or alternatively, pulleys 40 and 62 need only be parallel to each other. Accordingly, and since they are mounted to the same housing, this is easily achieved and maintained.
- any loads which may cause misalignment are isolated from the motor assembly through the use of universal joints 72 and 74 .
- pulleys 40 and 62 may be configured with or without retaining walls because, as stated above, belt 44 is isolated from transient forces, thus reducing belt/pulley production costs, since the belt and pulley system does not have to be designed to withstand large forces.
- outer housing 77 of rack assembly 30 is configured to have an elongated opening 108 .
- an anti-rotation device 110 is secured to rack 45 (FIG. 4) that moves within the confinement of the elongated opening 108 .
- anti-rotation device 10 is a plug 112 fixedly secured within an opening 114 of rack 45 .
- Plug 112 has an upper member depending outwardly from rack 45 , and is sized and configured to pass along in elongated opening 108 .
- a plurality of bearings 116 are positioned around the periphery of anti-rotation device 110 . Accordingly, anti-rotation device 110 prevents rotational movement of rack 45 while allowing linear movement of the same.
- Rack assembly 30 is also configured to have a pair of mounting members 118 .
- Mounting members 118 are configured to secure rack-independent actuator 70 to a vehicle frame (not shown).
- housing 77 of rack assembly 30 has a pair of apertures 120 .
- Apertures 120 are positioned to allow a tool such as a screwdriver or other type of tool to be inserted into openings 120 in order to facilitate the securement of bolts 104 to housing 100 and rack 45 .
- the steering system is equipped with several sensors that relay information to the electric motor 38 by way of a controller 52 (FIG. 1). Controller 52 will track the position and force upon rack 45 at all times by means of a pair of force sensors 122 . Force sensors 122 provide input into controller 52 corresponding to the amount of force included at the ends of rack 45 .
- a pair of absolute position sensors 124 and a high-resolution sensor 126 also provide input into controller 52 in the form of a rack position location.
- an on-center position sensor may comprise Hall-Effect devices, which are mounted within rack-independent actuator 70 . It may be understood that the sensors and controller 52 comprise a calibration means for maintaining the values of the steering position signals that correspond with the actual steering positions.
- Rack 45 has a center position in which the steerable wheels of a vehicle are directed straight ahead relative to the vehicle.
- rack-independent actuator 70 will provide a return torque that assists in returning the steering system to a center position.
- the return torque is generated by electric motor 38 , and a return torque component of the total desired torque signal is generated in controller 52 based upon the input received from sensors 122 , 124 , and 126 .
- a return torque component of the total desired torque signal is generated in controller 52 based upon the input received from sensors 122 , 124 , and 126 .
- an accurate signal of the steering position is derived from absolute position sensor 124 .
- the apparatus utilizes an algorithm in controller 52 .
- the algorithm may be embodied in a programmed digital computer or a custom digital processor (not shown).
- FIG. 15 a block diagram illustrates the use of the universal joints and the unit interaction between various components of the rack-independent actuator system.
- Block 130 represents the electric motor.
- Block 130 interfaces with block 132 that represents the rotary-to-rotary assembly of the rack-independent actuator system.
- Block 130 also interfaces with the housing of the ball-screw indicated at block 134 .
- Block 132 interfaces with a block 136 that represents a rotary-to-linear assembly.
- Block 136 interfaces with a block 138 that represents the bearings of the ball-screw, and block 138 interfaces with the ball-screw housing.
- Block 140 represents a high-resolution sensor that interfaces with the housing (block 134 ) and the rotary to linear assembly (block 136 ).
- Block 142 represents an interface between the rotary-to-linear assembly and the housing of the rack assembly.
- Block 144 represents the housing of the rack assembly.
- Block 146 represents an absolute position sensor which interfaces with box 136 and box 144 .
- Block 148 represents a tie rod and force sensor which interfaces with the housing of the rack assembly (block 144 ).
- Block 150 represents the interface between housing 134 and the rack housing 144 . It is here at block 150 in which universal joint 72 or stationary universal joint 72 is inserted to isolate the motor and belt and pulley assembly from the housing of the rack assembly.
- Block 142 represents the interface between the rotary-to-linear assembly housing and the rack assembly. It is here at block 142 in which universal joint 74 or mobile universal joint 74 is inserted to isolate the movement of the rack assembly from the ball-screw nut of the ball-screw assembly.
- This system accomplishes compensation through a series of sensors that provide feedback to several components.
- the rotary-to-linear assembly at block 136 receives inputs from the absolute position sensors at block 146 .
- the absolute position sensors are mounted to the ball-screw assembly.
- the absolute position sensor at block 146 provides steer angle signals that are sent to the controller.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Steering Mechanism (AREA)
Abstract
A steering system for a vehicle, the steering system includes a rack-independent actuator. The rack-independent actuator has component parts isolates from undesirable loads by two universal joints that isolate mechanical components of the actuator from transient loads that may be encountered by the rack or rack housing.
Description
- This application is related to U.S. patent application Ser. No. 09/664,850, filed Sep. 19, 2000, the contents of which are incorporated herein by reference thereto.
- This application is also related to U.S. patent application Ser. No. 09/650,869, filed Aug. 30, 2000, the contents of which are incorporated herein by reference thereto.
- This application is also related to U.S. patent application Ser. No. 09/663,549, filed Sep. 18, 2000, the contents of which are incorporated herein by reference thereto.
- This invention relates generally to an apparatus and method for steering a vehicle, and more specifically to a rack-independent actuator.
- Many current steering system designs have replaced the hydraulic power steering pump with electrically assisted systems based on fuel economy, modularity, engine independence, and environmental issues.
- With electrically actuated or electrically assisted steering systems there is a significant servo mechanism design challenge associated with the need to maintain proper kinematical constraint, while at the same time, providing reasonable insulation from the drawbacks of tolerance stack up which may produce system lock up.
- Although a successful servo mechanism design may appear to be a combination of basic “catalogue” mechanisms (e.g. ball-screw, gears, belts, various joints, etc.), the way these are used in combination represents an unmistakably cardinal feature of this art.
- The current state of engineering meets these concerns by anticipating the stresses likely to be encountered by designing heavy-duty components. Needless to say, these designs are expensive to manufacture, have excessive performance challenges because of the increased inertia and friction, and add to the overall weight of the vehicle.
- The system is powered by a rotary type electric motor. The motor has speed reducers and rotary-to-linear actuators to achieve feasible size and linear actuation. The actuation unit is decoupled from the directionally unwanted loads by providing universal joints (or an equivalent degree of freedoms) at either end. One universal joint is mounted to the housing that holds the motor rotary-to-rotary speed reducer and the movable shaft of the linear-to-rotary actuator, and the other is mounted to a member that is linearly moved by the linear-to-rotary actuator.
- The use of universal joints (or gimbals), which provides kinematical degrees of freedom to prevent non-axial loads, also prevents bending moments on the rotary-to-linear actuator. In particular, such loads may result from the misalignment of the shafts and/or non-axial loading from other components. This situation may produce undesirable friction and high stresses resulting in loss of efficiency and/or undesirable steering feel. By avoiding the non-axial loads, the mechanization becomes feasible for all types of linear-to-rotary mechanizations, which today are limited to very special ball-screws.
- FIG. 1 is an illustration of a steering system for a vehicle;
- FIG. 2 is an illustration of a portion of the steering system in FIG. 1;
- FIG. 3 is a perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 4 is a cross-sectional view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 5 is another perspective view of a rack-independent actuator;
- FIG. 6 is an end view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 7 is a top plan view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIGS. 8 and 9 are perspective views of a rack-independent actuator illustrating the universal joints in an exploded view;
- FIG. 10 is an end perspective view of the rack-independent constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 11 is a partial cross sectional perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 12 is a partial cross sectional perspective view of a universal joint of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 13 is a partial cross sectional perspective view of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 14 is a partial cross sectional perspective view of a universal joint of a rack-independent actuator constructed in accordance with an exemplary embodiment of the present invention;
- FIG. 15 is a block diagram of a rack-independent actuator system;
- FIG. 16 a diagrammatic view of a steer by wire system; and
- FIG. 17 is a diagrammatic view of a steer by wire system with independent actuators for each steerable wheel of a vehicle.
- The independent actuator system of an exemplary embodiment of the present invention employs the judicious use of universal joints, (gimbal) expansion joints, or other equivalents to achieve freedom from lock-up as well as compensation for reasonable tolerance stack-up errors, which must be designed around current steering system designs.
- A benefit of the Electric Power Steering and Steer-by-Wire system is the enhanced comfort to the driver of a vehicle equipped with this system. The driver of such a vehicle would experience improved handling over less-than-smooth terrains e.g., potholes, graded surfaces, etc.
- Less-than-smooth terrain increases the loads and deflections encountered by the steering system. Thus, any bumps experienced by the vehicle may increase the wear and tear to the steering system, thus shortening and reducing its effective life.
- Referring now to FIGS. 1 and 2, a
steering system 10 for use in a vehicle 12 (not shown) is illustrated.Steering system 10 allows the operator ofvehicle 12 to control the direction ofvehicle 12 through the manipulation ofsteering system 10. - A
steering column 14 provides mechanical manipulation of the vehicle's wheels in order to control the direction of the vehicle.Steering column 14 includes ahand wheel 16.Hand wheel 16 is positioned so that a user can apply a rotational force tosteering column 14. An uppersteering column shaft 18 is secured tohand wheel 16 at one end and columnuniversal joint 20 at the other. Columnuniversal joint 20 couples uppersteering column shaft 18 to a lowersteering column shaft 22. Lowersteering column shaft 22 is secured to columnuniversal joint 20 at one end and agear housing 24 at the other.Gear housing 24 includes a pinion gear 26 (FIG. 2).Pinion gear 26 ofgear housing 24 is positioned to make contact with a matchingtoothed portion 28 of arack assembly 30.Pinion gear 26 has helical teeth that are meshingly engaged with straight-cut teeth of matchingtoothed portion 28. - The pinion gear, in combination with the straight-cut gear teeth of the rack, form a rack and pinion gear set. The
rack 45 is coupled to the vehicle's steerable wheels with steering linkage in a known manner. - Tie rods (only one shown)32 are secured to rack
assembly 30 at one end and knuckles 34 (only one shown) at the other. - As a rotational force is applied to
steering column 14, through the manipulation ofhand wheel 16 or other applied force, the pinion gear ofgear housing 24 is accordingly rotated. The movement of the pinion gear causes the movement ofrack assembly 30 in the direction ofarrows 36, which in turn manipulatestie rods 32 andknuckles 34 in order to reposition wheels 36 (only one shown) of the motor vehicle. Accordingly, when thesteering wheel 16 is turned,rack 45 andpinion gear 26 convert the rotary motion of thesteering wheel 16 into the linear motion ofrack 45. - In order to assist the user-applied force to the steering system, an
electric motor 38 is energized to provide power assist to the movement ofrack 45, aiding in the steering of the vehicle by the vehicle operator. -
Electric motor 38 provides a torque force to amotor pulley 40 viamotor shaft 42. The rotation force ofmotor pulley 40 is transferred to abelt 44. There are retaining walls 41 on either one of thepulleys 40 and/or ball-screw pulley 62 to help preventbelt 44 from slipping completely off. Alternatively,motor pulley 40 can be configured to have no retaining walls. In yet another alternative,belt 44 is replaced by a chain or gear system or any rotary to rotary drives that provides a rotational force to thescrew 64 of the ball-screw mechanism. - Accordingly, and as a torque force is applied to the
belt 44, the rotational force is converted into a linear force via the rotary-to-linear actuator (ball-screw assembly 66), andrack 45 is moved in one of the directions ofarrows 36. Of course, the direction of movement ofrack assembly 30 corresponds to the rotational direction ofmotor pulley 40.Belt 44 has an outer surface 46 and an inner engagement surface 48. Theconfiguration belt 44 and the position ofelectric motor 38 allows inner engagement surface 48 ofbelt 44 to wrap around and engage both themotor pulley 40 and ball-screw pulley 62, that are fixed to the rotary portion of a ball-screw 66 (rotary to linear actuator) mechanism. -
Electric motor 38 is actuated by acontroller 52 that receives inputs from atorque sensor 54 and arotational position sensor 56.Sensor 56 provides a steer angle signal tocontroller 52. - In addition, and as the
motor shaft 42 ofelectric motor 38 turns, the motor shaft position signals of each phase are generated withinelectric motor 38 and are inputted intocontroller 52 through abus 58. -
Controller 52 also receives an input in the form of a vehicle speed signal. Accordingly, and in response to the following inputs: vehicle velocity input; operator torque input (sensor 54); steering pinion gear angle (sensor 56); andmotor shaft 42 position signals (bus 58),controller 52 determines the desired electric motor's current phases and provides such currents through abus 60. -
Motor pulley 40 is rotated bymotor shaft 42 ofelectric motor 38. Asecond pulley 62 is fixedly secured to the ball-screw 64 screw (or the rotary part of a rotary to linear actuator) of a ball-screw assembly 66. The ball-screw assembly 66 converts the rotary force ofbelt 44 into the linear movement of aball nut 68. -
Motor pulley 40 and ball-screw pulley 62 may be constructed out of a lightweight material such as aluminum or composites. This allows the overall mass and inertia of steering system to be reduced in order to improve manufacturing costs and performance, as well as vehicle fuel efficiency. - FIGS. 1 and 2 illustrate a power assist steering system which includes a mechanical connection between (rack and pinion)
hand wheel 16 andrack assembly 30. - Alternatively, and in applications in which a “steer-by-wire system” is employed, there is no direct mechanical connection between
hand wheel 16 andrack assembly 30. In this application, the driver's rotational movement of the hand wheel 16 (and/or signal from an equivalent driver control device such as a joystick, pedal(s) and other mechanism for manipulation by the vehicle operator) is input into thecontroller 52 whileelectric motor 38 provides the necessary force to manipulaterack assembly 30. - Referring now to FIGS.3-14, a rack-
independent actuator 70 is illustrated. In accordance with an exemplary embodiment, rack-independent actuator 70 provides the necessary force to effect the linear movement of arack 45 coupled to the steerable wheels of a vehicle. Rack-independent actuator 70 performs the functions of rotating the steerable wheels of a vehicle in response to an input such as driver manipulation of a steering wheel. In addition, and while performing this function the rackindependent actuator 70 isolates its reduction mechanisms and/or conversion mechanisms necessary to effect the rotation of the steerable wheels from transient and non-axial (to the rack) loads by a pair ofuniversal joints - Rack-
independent actuator 70 is also contemplated for use with a power assist steering system (FIGS. 1 and 2) and/or a “steer-by-wire system” (FIGS. 16 and 17) and/or rear wheel steering and/or four-wheel steering. - FIGS. 8 and 9 illustrate
universal joints - Universal joint72 secures a
housing 75 to a mountingmember 76 ofrack assembly 30. Universal joint 72 contains two sets of hinge pins, or pivots 78 and 80, the axis of each set being perpendicular to the other. Each set of pins is connected to the other by acentral gimbal ring 82. - As an alternative,
universal joints gimbal ring 82 is replaced by a rubber ring which is inserted into mountingmember 76 while also covering a portion ofhousing 75. The rubber ring is compressible and thus capable of providing kinematic freedom. Similarly,gimbal ring 92 may be replaced by a compliant rubber ring. - In yet another alternative, rack independent actuator may be constructed with a universal joint and a rubber compliant member. For example,
universal joints 72 and a rubber compliant member replacing universal joint 74 or vice versa. - In an exemplary embodiment, pins78 and 80 are pressed at their respective openings in
gimbal ring 82. This allows the rotational movement ofgimbal ring 82 while also providing a means for securing the same. Alternatively, pins 78 and 80 slip in openings inhousing 75 and mountingmember 76. - Alternatively, pins78 and 80 and their respective openings in
gimbal ring 82,housing 75 and mountingmember 76 are configured to provide a movable means of securing the same. -
Pins 78 movably connectgimbal ring 82 tohousing 75. In an exemplary embodiment,housing 75 is configured to have an elongated cylindrical shape allowing a portion ofhousing 75 to be inserted within an inner opening ofgimbal ring 82. Thus, pins 78 allow gimbal ring to be movably secured tohousing 75. - In addition, pins80 movably connect
gimbal ring 82 to mountingmember 76. Mountingmember 76 is fixedly secured to anouter housing 77 ofrack assembly 30. In an exemplary embodiment, mountingmember 76 defines aninner opening 88 sufficiently large enough to pass overgimbal ring 82. - Accordingly,
gimbal ring 82 is movably secured tohousing 75, andhousing 75 is sufficiently long enough to positiongimbal ring 82 within opening 88 ofsecurement member 76, thusgimbal ring 82 connectshousing 75 andsecurement member 76 bypins Pins 78 pass throughopenings 73 insecurement member 76 and movablysecured gimbal ring 82 tosecurement member 76, whilepins 80 movablysecure gimbal ring 82 tohousing 75 by engagingopenings 81 inhousing 75. In an exemplary embodiment, pins 78 and 80 are positioned at right angles with respect to each other. Of course, the angular positioning ofpins - For example, pins80 prevent a load from being transferred in-between mounting
member 76 andgimbal ring 82 in a first direction whilepins 78 prevent a load from being transferred in-betweenhousing 75 andgimbal ring 82 in a second direction. The first and second directions being different from each other. - As an alternative, and in order to prevent a load from being transferred to
gimbal ring 82 and/orgimbal ring 92 the pins which secure the gimbal rings are covered with plastic and/or rubber to further enhance the isolation of the mechanism from unwanted loads. - Rack-
independent actuator 70 has anelectric motor assembly 90.Electric motor assembly 90 includeselectric motor 38,rotatable shaft 42, andmotor pulley 40 that is fixedly secured tomotor shaft 42. Aspulley 40 is rotated bymotor shaft 42,belt 44 engages withpulley 40 as well aspulley 62. Sincepulley 62 is fixedly secured to screw 64 of the ball-screw mechanism, the rotational movement ofpulley 62 causes screw 64 of the ball-screw mechanism to rotate. Accordingly,motor 38,belt 44, pulleys 40 and 62 provide a rotary to rotary conversion, which is determined by the dimensions ofpulley - As an alternative and in accordance with the present invention it is contemplated that other mechanisms and means for rotary to rotary conversion may be employed with the present invention. For example, pulleys40 and 62 and
belt 44 can be replaced by a direct mechanical linkage such as a gear train rotary to rotary drive or equivalent thereof. - One end of
screw 64 of the ball-screw mechanism is mounted for rotation within a plurality ofbearings 65 located withinhousing 75 proximate topulley 62. A pre-load nut adjuster or lockingnut 67 screws onto thescrew 64 of the ball-screw mechanism adjacent tobearings 65, once in position locking nut is secured to screw 64 of the ball-screw mechanism through the use of a plurality of lockingscrews 63 which when rotatedlock locking nut 67 ontoscrew 64 of the ball-screw mechanism. Thus,bearings 65 are positioned between lockingnut 67 andpulley 62 allowing for the rotational movement ofscrew 64 of the ball-screw mechanism. The other end ofscrew 64 of the ball-screw mechanism is rotatably supported by ball-screw nut 68 of ball-screw mechanism 66. Accordingly, the rotational movement ofscrew 64 of the ball-screw mechanism bymotor 38 is isolated at one end byuniversal joint 72. - A portion of
screw 64 of the ball-screw mechanism passes through ball-screw nut 68, and the respective surfaces ofscrew 64 of the ball-screw mechanism and ball-screw nut 68 are configured to effect the linear movement of ball-screw nut 68 asscrew 64 of the ball-screw mechanism is rotated. In an exemplary embodiment, a plurality ofballs 69 are received within a pair of threaded orgrooved surfaces 71 positioned on the inner surface of ball-screw nut 68 and the outer surface ofscrew 64 of the ball-screw mechanism. The interface ofscrew 64 of the ball-screw mechanism and ball-screw nut 68 of ball-screw mechanism 66 are constructed in a known manner. - Accordingly, and as
screw 64 of the ball-screw mechanism is rotated by the rotational movement ofpulley 62 bymotor 38, the rotational movement ofscrew 64 of the ball-screw mechanism is converted into linear movement of ball-screw nut 68. It is here that rotary to linear conversion occurs. As an alternative, other means for rotary to linear conversion are contemplated for use with the present invention. - The interface between ball-
screw nut 68 andrack 45 is isolated byuniversal joint 74. Ball-screw nut 68 is secured to agimbal ring 92 ofuniversal joint 74. Similarly to universal joint 72, universal joint 74 contains two sets of hinge pins or pivots 94 and 96, the axis of each set being perpendicular to the other. Each set of pins is connected to the other bycentral gimbal ring 92. - In an exemplary embodiment, pins94 and 96 are pressed in their respective openings in
gimbal ring 92. This allows the rotational movement ofgimbal ring 92 while also providing a means for securing the same. - Alternatively, pins94 and 96 and their respective openings in
gimbal ring 92, ball-screw nut 68 andhousing member 100 are configured to provide a movable means of securing the same. -
Pins 94 movably connectgimbal ring 92 to ball-screw nut 68 allowing for movement in a first direction. In an exemplary embodiment,gimbal ring 92 is configured to have a cylindrical shape slightly larger than ball-screw nut 68, allowing a portion of ball-screw nut 68 to be inserted withingimbal ring 92.Pins 94 are received within a pair ofpin openings 98 in the ball-screw nut 68. It is noted that universal joint 74 and ball-screw nut 68 are shown in FIGS. 8 and 9 in an exploded manner so as to illustrate the attachment ofuniversal joints -
Pins 96 movably connectgimbal ring 92 to ahousing member 100 allowing for movement in second direction, the second directional plane being orthogonal to the first directional plane.Pins 96 pass through a pair ofapertures 102 inhousing 100, thus movably connectinggimbal ring 92 tohousing 100. - The gimbal mechanisms or in particular
universal joints - In so doing, the torque output and power consumption requirements of the mechanism used to turn the ball-screw such as the electric motor is reduced. This allows the electric motor to be reduced in size as well as the components of the rotary to linear actuator. This is particularly useful for applications such as vehicular electric steering actuators, where the dynamic loads experienced by the vehicle and the requirements placed on the mechanism can significantly impact the motor and actuator mechanism requirements. The reduction in power consumption of the motor and the weight reductions associated with a smaller electric motor and mechanism represent desirable to design parameters.
- Referring now in particular to FIG. 4,
housing 100 is fixedly secured to rack 45 through a plurality ofbolts 104 which pass throughcomplementary bolt openings 106 inrack 45 andhousing 100. Accordingly, and as a rotational force is applied to screw 64 of the ball-screw mechanism, ball-screw assembly 66 converts the rotary movement ofscrew 64 of the ball-screw mechanism into the linear movement of ball-screw nut 68. Ball-screw nut 68 is connected to rack 45 through auniversal joint 74, which is connected to ball-screw nut 68 at one end andhousing 100 at the other.Housing 100 is fixedly secured to rack 45 and accordingly, as ball-screw nut 68 moves in the direction indicated byarrows 36, a similar movement ofrack 45 is produced. -
Housing member 100 is configured to have a mountingportion 101 which is configured to be received withinopening 108. Mountingportion 101 is configured to be slidably received withinopening 108 and contains the apertures into whichbolts 104 are received. -
Universal joints electric motor assembly 90 and ball-screw pulley 62 from transient non-axial loads, which may damage or misalignpulleys universal joints rack 45, ball-screw 64 and/or any other component part which may produce an undesirable load or stack buildup. - The rack-independent actuator also allows the two pulleys on the belt and pulley mechanism to be mounted to the same housing and to eliminate all force components that could alter their parallelism.
- Moreover, the rack-independent actuator of an exemplary embodiment no longer requires the motor shaft of
motor 38 or thescrew 64 of the ball-screw mechanism to be parallel to rack 45, asmotor assembly 90 and screw 64 of the ball-screw mechanism are isolated fromrack 45 through the use ofuniversal joints screw 64 of the ball-screw mechanism with regard torack 45 is accommodated for byuniversal joints motor shaft 42 need only be parallel to screw 64 of the ball-screw mechanism, or alternatively, pulleys 40 and 62 need only be parallel to each other. Accordingly, and since they are mounted to the same housing, this is easily achieved and maintained. Moreover, any loads which may cause misalignment are isolated from the motor assembly through the use ofuniversal joints - Also, pulleys40 and 62 may be configured with or without retaining walls because, as stated above,
belt 44 is isolated from transient forces, thus reducing belt/pulley production costs, since the belt and pulley system does not have to be designed to withstand large forces. - Referring back now to FIGS. 4, 8,9 and 11-14,
outer housing 77 ofrack assembly 30 is configured to have anelongated opening 108. In order to prevent the rotational motion of therack 45, ananti-rotation device 110 is secured to rack 45 (FIG. 4) that moves within the confinement of theelongated opening 108. - In an exemplary embodiment,
anti-rotation device 10 is aplug 112 fixedly secured within anopening 114 ofrack 45.Plug 112 has an upper member depending outwardly fromrack 45, and is sized and configured to pass along inelongated opening 108. In addition, and in order to reduce any frictional buildup betweenplug 112 and theelongated opening 108, a plurality ofbearings 116 are positioned around the periphery ofanti-rotation device 110. Accordingly,anti-rotation device 110 prevents rotational movement ofrack 45 while allowing linear movement of the same. -
Rack assembly 30 is also configured to have a pair of mountingmembers 118. Mountingmembers 118 are configured to secure rack-independent actuator 70 to a vehicle frame (not shown). - In addition, and referring now to FIG. 4,
housing 77 ofrack assembly 30 has a pair ofapertures 120.Apertures 120 are positioned to allow a tool such as a screwdriver or other type of tool to be inserted intoopenings 120 in order to facilitate the securement ofbolts 104 tohousing 100 andrack 45. - The steering system is equipped with several sensors that relay information to the
electric motor 38 by way of a controller 52 (FIG. 1).Controller 52 will track the position and force uponrack 45 at all times by means of a pair offorce sensors 122.Force sensors 122 provide input intocontroller 52 corresponding to the amount of force included at the ends ofrack 45. - A pair of
absolute position sensors 124 and a high-resolution sensor 126 also provide input intocontroller 52 in the form of a rack position location. For example, an on-center position sensor may comprise Hall-Effect devices, which are mounted within rack-independent actuator 70. It may be understood that the sensors andcontroller 52 comprise a calibration means for maintaining the values of the steering position signals that correspond with the actual steering positions. -
Rack 45 has a center position in which the steerable wheels of a vehicle are directed straight ahead relative to the vehicle. In an exemplary embodiment, rack-independent actuator 70 will provide a return torque that assists in returning the steering system to a center position. - In this system, the return torque is generated by
electric motor 38, and a return torque component of the total desired torque signal is generated incontroller 52 based upon the input received fromsensors absolute position sensor 124. - In order to express the full range of steering angles as the output of absolute position sensor changes, the apparatus utilizes an algorithm in
controller 52. The algorithm may be embodied in a programmed digital computer or a custom digital processor (not shown). - Referring now to FIG. 15, a block diagram illustrates the use of the universal joints and the unit interaction between various components of the rack-independent actuator system.
-
Block 130 represents the electric motor. Block 130 interfaces withblock 132 that represents the rotary-to-rotary assembly of the rack-independent actuator system. Block 130 also interfaces with the housing of the ball-screw indicated atblock 134. Block 132 interfaces with ablock 136 that represents a rotary-to-linear assembly. Block 136 interfaces with ablock 138 that represents the bearings of the ball-screw, and block 138 interfaces with the ball-screw housing.Block 140 represents a high-resolution sensor that interfaces with the housing (block 134) and the rotary to linear assembly (block 136). -
Block 142 represents an interface between the rotary-to-linear assembly and the housing of the rack assembly. -
Block 144 represents the housing of the rack assembly.Block 146 represents an absolute position sensor which interfaces withbox 136 andbox 144.Block 148 represents a tie rod and force sensor which interfaces with the housing of the rack assembly (block 144). -
Block 150 represents the interface betweenhousing 134 and therack housing 144. It is here atblock 150 in which universal joint 72 or stationary universal joint 72 is inserted to isolate the motor and belt and pulley assembly from the housing of the rack assembly. -
Block 142 represents the interface between the rotary-to-linear assembly housing and the rack assembly. It is here atblock 142 in which universal joint 74 or mobileuniversal joint 74 is inserted to isolate the movement of the rack assembly from the ball-screw nut of the ball-screw assembly. - This system accomplishes compensation through a series of sensors that provide feedback to several components. For instance, the rotary-to-linear assembly at
block 136 receives inputs from the absolute position sensors atblock 146. In this embodiment, the absolute position sensors are mounted to the ball-screw assembly. The absolute position sensor atblock 146 provides steer angle signals that are sent to the controller. - While an exemplary embodiment of the present invention has been described with reference to a steering system for a vehicle, the rotary-to-linear mechanism is not intended to be limited to such applications. It is contemplated that in accordance with the present invention, a rotary-to-linear conversion mechanism utilizing a pair of universal joints for isolating the mechanism from misalignment and/or uneven loading can be applied to any application.
- While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims (30)
1. A steering system for a vehicle, comprising:
a) a steering wheel being positioned for manipulation by a vehicle operator;
b) a steering mechanism for transmitting a steering operation of said steering wheel to vary the angular configuration of a pair of wheels of said vehicle;
c) a power assist mechanism for providing an assisting force to said steering mechanism, said power assist mechanism being activated in response to said steering operation of said steering wheel; and
d) a load displacement system being operatively coupled to said power assist mechanism, said load displacement system allowing transient loads of said steering mechanism to be displaced.
2. A steering system as in claim 1 , wherein said power assist mechanism comprises:
i) an electric motor for providing a rotational force to a first motor pulley;
ii) a second motor pulley being fixedly secured to a ball-screw;
iii) a ball-screw nut wherein said ball-screw is configured and dimensioned to meshingly engage said ball-screw nut;
iv) a first universal joint being fixedly attached on one end to a rack housing, and said first universal joint being fixedly attached to said electric motor on its opposing end; and
vi) a second universal joint being fixedly attached to said rack on one end and being fixedly attached to said ball-screw nut on its opposing end.
3. A steering system for a vehicle, comprising:
a) a rack being movably mounted within a rack housing, said rack being coupled to a steerable road wheel at one end and another steerable road wheel at the other end;
b) a ball-screw mechanism being coupled to said rack at one end and an electric motor at the other, said electric motor providing an actuating force to said ball-screw mechanism, said actuating force causing said rack to move linearly within said rack housing;
c) a first coupling mechanism coupling said electric motor to said rack housing; and
d) a second coupling mechanism coupling said ball nut to said rack.
4. The steering system as in claim 3 , wherein said first coupling mechanism and said second coupling mechanism are universal joints.
5. The steering system as in claim 4 , wherein said actuating force is the rotation of a first pulley fixedly secured to a rotatable shaft of said motor, said first pulley being coupled to a second pulley, said second pulley being fixedly secured to a ball-screw screw of said ball-screw mechanism.
6. The steering system as in claim 5 , wherein said first pulley is coupled to said second pulley by a belt.
7. The steering system as in claim 5 , wherein the rotation of said ball-screw causes linear movement of a ball-screw nut of said ball-screw mechanism.
8. The steering mechanism as in claim 4 , wherein said first and second universal joints each have a gimbal ring with a first pair and a second pair of pins for movably securing said gimbal ring, said first pair of pins being orthogonal with respect to said second pair of pins.
9. The steering mechanism as in claim 5 , wherein said first universal joint movably secures said motor and its housing to said rack housing.
10. The steering mechanism as in claim 9 , wherein said second universal joint movably secures said ball-screw nut to said rack.
11. The steering mechanism as in claim 7 , wherein said ball-screw mechanism further includes a housing, said housing being secured movably secured to said second universal joint.
12. The steering system as in claim 3 , further comprising a plurality of sensors for providing signals to a controller, said controller controlling the activation and deactivation of said electric motor.
13. The steering system as in claim 12 , wherein said plurality of sensors includes position sensors, force sensors, steering sensors, and a high-resolution sensor.
14. The steering system as in claim 13 , wherein said force sensors detect forces acting on the ends of said rack.
15. The steering system as in claim 13 , wherein said position sensors detect movements of said rack.
16. The steering system as in claim 13 , wherein said steering sensor detects forces applied to a steering wheel.
17. The steering system as in claim 3 , wherein said rack includes an anti-rotation mechanism, said anti-rotation mechanism preventing the rotation of said rack.
18. The steering system as in claim 17 , wherein said anti-rotation feature includes a plurality of bearings and a protruding member being fixedly secured to said rack, said plurality of bearings movably engaging an elongated opening of said rack housing.
19. A method for providing an actuation force to a rack of a vehicle, comprising:
isolating non-axial loads from an electric motor of a steering system, said motor providing a rotational force to a rotatable member of a rotary-to-linear conversion device; and
isolating non-axial loads from a linearly actuatable member of said rotary-to-linear conversion device, said linearly actuatable member being coupled to a rack of said steering system.
20. A steering system for a vehicle, comprising:
a) a rack being movably mounted within a rack housing, said rack being coupled to a steerable road wheel at one end and another steerable road wheel at the other end;
b) a rotary-to-linear mechanism being coupled to said rack at one end and an electric motor at the other, said electric motor providing an actuating force to said rotary-to-linear mechanism, said actuating force causing said rack to move linearly within said rack housing;
c) a first coupling mechanism coupling said electric motor to said rack housing; and
d) a second coupling mechanism coupling said ball nut to said rack.
21. The steering system as in claim 20 , wherein said first coupling mechanism and said second coupling mechanism are universal joints.
22. The steering system as in claim 20 , wherein said first coupling mechanism and said second coupling mechanism are compliant members.
23. The steering system as in claim 22 , wherein said compliant members are rubber.
24. The steering system as in claim 8 , wherein said pins are coated with a rubber material.
25. The steering system as in claim 24 , wherein said pins are press fitted in said gimbal rings.
26. The steering system as in claim 3 , wherein said steering system is a steer-by-wire system.
27. The steering system as in claim 26 , wherein said steer-by-wire system responds to a plurality of inputs from a controller.
28. The steering system as in claim 27 , wherein said plurality of inputs indicate movement of a steering mechanism being manipulated by a user.
29. The steering system as in claim 3 , wherein said rack is movably mounted a first road wheel and said steering system further comprises:
a second rack being movably mounted within a second rack housing, said second rack being coupled to a second steerable road wheel;
a second ball-screw mechanism being coupled to said second rack at one end and a second electric motor at the other, said second electric motor providing an actuating force to said second ball-screw mechanism, said actuating force causing said second rack to move linearly within said second rack housing;
a first coupling mechanism coupling said second electric motor to said second rack housing; and
a second coupling mechanism coupling said second ball nut to said second rack, wherein said rack and said second rack independently actuate said first road wheel and said second road wheel.
30. The steering system as in claim 3 , wherein said electric motor provides a return torque for returning said rack to a center position corresponding to a center position of said road wheels.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/765,731 US20040154858A1 (en) | 2001-08-01 | 2004-01-26 | Apparatus and method for steering a vehicle |
US11/016,039 US7293626B2 (en) | 2001-08-01 | 2004-12-17 | Apparatus and method for steering a vehicle |
US11/863,061 US7591342B2 (en) | 2001-08-01 | 2007-09-27 | Apparatus and method for steering a vehicle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/920,181 US6488115B1 (en) | 2001-08-01 | 2001-08-01 | Apparatus and method for steering a vehicle |
US10/262,751 US6705423B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
US10/765,731 US20040154858A1 (en) | 2001-08-01 | 2004-01-26 | Apparatus and method for steering a vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/262,751 Continuation US6705423B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/016,039 Continuation-In-Part US7293626B2 (en) | 2001-08-01 | 2004-12-17 | Apparatus and method for steering a vehicle |
US11/863,061 Continuation-In-Part US7591342B2 (en) | 2001-08-01 | 2007-09-27 | Apparatus and method for steering a vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040154858A1 true US20040154858A1 (en) | 2004-08-12 |
Family
ID=25443301
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,181 Expired - Lifetime US6488115B1 (en) | 2001-08-01 | 2001-08-01 | Apparatus and method for steering a vehicle |
US10/262,730 Expired - Lifetime US6615947B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
US10/262,751 Expired - Lifetime US6705423B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
US10/765,731 Abandoned US20040154858A1 (en) | 2001-08-01 | 2004-01-26 | Apparatus and method for steering a vehicle |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/920,181 Expired - Lifetime US6488115B1 (en) | 2001-08-01 | 2001-08-01 | Apparatus and method for steering a vehicle |
US10/262,730 Expired - Lifetime US6615947B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
US10/262,751 Expired - Lifetime US6705423B2 (en) | 2001-08-01 | 2002-10-01 | Apparatus and method for steering a vehicle |
Country Status (1)
Country | Link |
---|---|
US (4) | US6488115B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100024509A1 (en) * | 2006-10-16 | 2010-02-04 | Ube Machinery Corporation Ltd., a corporation of Japan | Stem slide device |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749040B1 (en) * | 1999-09-01 | 2004-06-15 | Delphi Technologies, Inc. | Electric power assisted rack and pinion system |
AU2002304795A1 (en) * | 2001-03-28 | 2002-10-08 | Continental Teves Ag And Co.Ohg | Threaded mechanism with rolling bodies and drive device of an automotive axle guide module |
US6488115B1 (en) * | 2001-08-01 | 2002-12-03 | Delphi Technologies, Inc. | Apparatus and method for steering a vehicle |
US7293626B2 (en) * | 2001-08-01 | 2007-11-13 | Delphi Technologies, Inc. | Apparatus and method for steering a vehicle |
US7591342B2 (en) * | 2001-08-01 | 2009-09-22 | Delphi Technologies, Inc. | Apparatus and method for steering a vehicle |
US20030039856A1 (en) | 2001-08-15 | 2003-02-27 | Gillispie Bryan A. | Product and method of brazing using kinetic sprayed coatings |
US6691819B2 (en) * | 2001-09-17 | 2004-02-17 | Delphi Technologies, Inc. | Actuator for active front wheel steering system |
US6685988B2 (en) | 2001-10-09 | 2004-02-03 | Delphi Technologies, Inc. | Kinetic sprayed electrical contacts on conductive substrates |
US6546780B1 (en) * | 2001-12-10 | 2003-04-15 | Delphi Technologies, Inc. | Position sensor method and apparatus |
US6681886B2 (en) * | 2001-12-11 | 2004-01-27 | Visteon Global Technologies, Inc | Flexibly coupled electric power assist steering system |
US6666294B2 (en) * | 2002-01-10 | 2003-12-23 | Dayco Products, Llc | Belt driven mechanical boost power steering |
KR100625072B1 (en) * | 2002-01-29 | 2006-09-19 | 가부시키가이샤 제이텍트 | Electric power steering apparatus |
US6892605B2 (en) * | 2002-03-04 | 2005-05-17 | Delphi Technologies, Inc. | Hand wheel actuator having stationary hub |
US6896933B2 (en) * | 2002-04-05 | 2005-05-24 | Delphi Technologies, Inc. | Method of maintaining a non-obstructed interior opening in kinetic spray nozzles |
JP3975823B2 (en) * | 2002-05-15 | 2007-09-12 | 株式会社ジェイテクト | Vehicle steering system |
US7476422B2 (en) | 2002-05-23 | 2009-01-13 | Delphi Technologies, Inc. | Copper circuit formed by kinetic spray |
US6820713B2 (en) * | 2002-07-17 | 2004-11-23 | Delphi Technologies, Inc. | Hand wheel actuator with steering-feel enhancement |
US6924249B2 (en) * | 2002-10-02 | 2005-08-02 | Delphi Technologies, Inc. | Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere |
US20040065432A1 (en) * | 2002-10-02 | 2004-04-08 | Smith John R. | High performance thermal stack for electrical components |
US20040101620A1 (en) * | 2002-11-22 | 2004-05-27 | Elmoursi Alaa A. | Method for aluminum metalization of ceramics for power electronics applications |
US20040136873A1 (en) * | 2003-01-09 | 2004-07-15 | Argonaut Technologies, Inc. | Modular reactor system |
US20040142198A1 (en) * | 2003-01-21 | 2004-07-22 | Thomas Hubert Van Steenkiste | Magnetostrictive/magnetic material for use in torque sensors |
US6872427B2 (en) * | 2003-02-07 | 2005-03-29 | Delphi Technologies, Inc. | Method for producing electrical contacts using selective melting and a low pressure kinetic spray process |
DE10310492A1 (en) * | 2003-03-11 | 2004-09-23 | Zf Lenksysteme Gmbh | Power steering |
US20040187606A1 (en) * | 2003-03-28 | 2004-09-30 | Nehl Thomas Wolfgang | Torque sensing apparatus for picking up a magnetic flux |
US6871553B2 (en) * | 2003-03-28 | 2005-03-29 | Delphi Technologies, Inc. | Integrating fluxgate for magnetostrictive torque sensors |
DE10316599A1 (en) * | 2003-04-11 | 2004-11-18 | Contitech Antriebssysteme Gmbh | Gear device for drives of motor vehicle steering systems |
US7021160B2 (en) * | 2003-06-10 | 2006-04-04 | Delphi Technologies, Inc. | Apparatus for sensing position and/or torque |
DE10329292A1 (en) * | 2003-06-30 | 2005-01-20 | Zf Lenksysteme Gmbh | Device for generating a torque |
US7484213B2 (en) * | 2003-07-11 | 2009-01-27 | Boban Mathew | Agent architecture employed within an integrated message, document and communication system |
US20050040260A1 (en) * | 2003-08-21 | 2005-02-24 | Zhibo Zhao | Coaxial low pressure injection method and a gas collimator for a kinetic spray nozzle |
US7351450B2 (en) * | 2003-10-02 | 2008-04-01 | Delphi Technologies, Inc. | Correcting defective kinetically sprayed surfaces |
US7335341B2 (en) * | 2003-10-30 | 2008-02-26 | Delphi Technologies, Inc. | Method for securing ceramic structures and forming electrical connections on the same |
US7475831B2 (en) * | 2004-01-23 | 2009-01-13 | Delphi Technologies, Inc. | Modified high efficiency kinetic spray nozzle |
US7024946B2 (en) * | 2004-01-23 | 2006-04-11 | Delphi Technologies, Inc. | Assembly for measuring movement of and a torque applied to a shaft |
US20060006108A1 (en) * | 2004-07-08 | 2006-01-12 | Arias Jeffrey L | Fuel cell cartridge and fuel delivery system |
US20060031340A1 (en) * | 2004-07-12 | 2006-02-09 | Boban Mathew | Apparatus and method for advanced attachment filtering within an integrated messaging platform |
US20060278466A1 (en) * | 2005-06-13 | 2006-12-14 | Bo Cheng | Electric power steering systems |
WO2007005533A2 (en) * | 2005-06-30 | 2007-01-11 | Globe Motors, Inc. | Steering system torque sensor |
KR100651141B1 (en) * | 2005-10-24 | 2006-11-29 | 주식회사 만도 | Electrically-assisted power steering apparatus |
DE102006016429A1 (en) * | 2006-04-07 | 2007-10-11 | Zf Lenksysteme Gmbh | Steering assist drive |
US7485984B2 (en) * | 2006-05-12 | 2009-02-03 | Delphi Technologies, Inc. | Control module |
US20100280878A1 (en) * | 2009-04-30 | 2010-11-04 | Wilson Matthew J | System and method for managing, reconciling, balancing, and forecasting financial media in self-service devices |
DE102009053226A1 (en) * | 2009-11-06 | 2011-05-12 | Thyssenkrupp Presta Ag | Steer-by-wire steering with electromechanical steering lock |
KR101126248B1 (en) * | 2009-12-03 | 2012-03-20 | 현대자동차주식회사 | Steer by wire apparatus |
US10589774B2 (en) | 2015-05-01 | 2020-03-17 | Steering Solutions Ip Holding Corporation | Counter rotation steering wheel |
US20160375931A1 (en) | 2015-06-25 | 2016-12-29 | Steering Solutions Ip Holding Corporation | Rotation control system for a steering wheel and method |
CN105151115A (en) * | 2015-08-18 | 2015-12-16 | 捷伸电子科技(上海)有限公司 | Electric power steering system |
US10160472B2 (en) | 2015-10-20 | 2018-12-25 | Steering Solutions Ip Holding Corporation | Steering column with stationary hub |
US10160473B2 (en) | 2016-09-13 | 2018-12-25 | Steering Solutions Ip Holding Corporation | Steering column decoupling system |
EP3532360B1 (en) * | 2016-10-31 | 2021-05-05 | thyssenkrupp Presta AG | Method for controlling a steer-by-wire steering system with a reduced feedback in automatic drive mode |
DE112019000464T5 (en) * | 2018-01-18 | 2020-09-24 | Trw Automotive U.S. Llc | DEVICE FOR USE WHEN TURNING STEERABLE VEHICLE WHEELS |
DE102019101614A1 (en) * | 2019-01-23 | 2020-07-23 | Trw Automotive Gmbh | Sensor unit, steering wheel assembly, rack assembly and steering system |
KR102667922B1 (en) * | 2020-02-18 | 2024-05-22 | 현대모비스 주식회사 | Steering feel control apparatus |
US11952056B2 (en) * | 2020-04-02 | 2024-04-09 | Steering Solutions Ip Holding Corporation | Electric powered recirculating ball assembly |
DE102021203404B4 (en) * | 2021-04-07 | 2024-06-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for maneuvering a vehicle |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US283263A (en) * | 1883-08-14 | Boot and shoe | ||
US337404A (en) * | 1886-03-09 | Circle-iron for wagons | ||
US423817A (en) * | 1890-03-18 | Sewing-machine | ||
US423818A (en) * | 1890-03-18 | Brake-shoe | ||
US427807A (en) * | 1890-05-13 | Cyeus bussey | ||
US2329767A (en) * | 1941-06-28 | 1943-09-21 | Keeler Brass Co | Handle, drawer pull, or the like |
US2525208A (en) * | 1946-09-27 | 1950-10-10 | Clink Ray | Sectional tool cabinet |
US2575661A (en) * | 1950-01-20 | 1951-11-20 | Anne E Kass | Medical therapy cart |
US2697244A (en) * | 1953-08-03 | 1954-12-21 | Emil L Lincke | Push-pull type furniture handle |
US2981549A (en) * | 1959-01-16 | 1961-04-25 | Hotton George Richardson | Mobile tool stand |
US3997218A (en) * | 1975-03-14 | 1976-12-14 | Wolf Hugo M | Cabinet structure for dental treatment room |
US4120549A (en) * | 1977-04-27 | 1978-10-17 | Harvey Lee Bureau | Sheet metal tool chest support with sliding work shelf |
US4586762A (en) * | 1983-07-18 | 1986-05-06 | Syntex (U.S.A.) Inc. | Door and drawer front having a recessed grasping surface |
US4880248A (en) * | 1988-05-03 | 1989-11-14 | Mark Elmer | Manually propelled automotive painting tool cart |
US5221132A (en) * | 1991-08-30 | 1993-06-22 | Max Combs | Tool storage system with magnetic swinging arms |
US5489106A (en) * | 1994-03-16 | 1996-02-06 | Sony Corporation | Clean room cart |
US5588659A (en) * | 1995-03-29 | 1996-12-31 | Triple B Trenching, Inc. | Tool cart |
US5673983A (en) * | 1995-04-21 | 1997-10-07 | Metro Industries, Inc. | Cassette assembly and unit dose medication cart using the cassette assembly |
US5720535A (en) * | 1996-08-30 | 1998-02-24 | Waterloo Industries, Inc. | Cabinet construction and locking system |
US5913582A (en) * | 1996-10-08 | 1999-06-22 | Coonan; Gary M. | Computer workstation |
US6264219B1 (en) * | 1999-08-06 | 2001-07-24 | Dave W. Smith | Utility cart |
US20010035702A1 (en) * | 1999-12-02 | 2001-11-01 | Murphy Brian G. | Cart for surgical console |
US6578938B2 (en) * | 2001-02-28 | 2003-06-17 | Robert A. Norman | Securable toolchest with visual-surround workbench |
US20030155729A1 (en) * | 2002-02-15 | 2003-08-21 | Chen Shwu Ruu | Tool box having drawers |
US6705423B2 (en) * | 2001-08-01 | 2004-03-16 | Delphi Technologies, Inc. | Apparatus and method for steering a vehicle |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US637204A (en) | 1897-08-27 | 1899-11-14 | Frederick H Heath | Ball-bearing. |
US1234779A (en) | 1915-05-20 | 1917-07-31 | Karl J Ljungberg | Ball-bearing. |
US1284827A (en) | 1916-10-27 | 1918-11-12 | Josef Vorraber | Ball-bearing. |
US1321417A (en) | 1919-09-29 | 1919-11-11 | August Carlborg | Shaft and axle bearing. |
GB1590629A (en) | 1976-09-23 | 1981-06-03 | Cam Gears Ltd | Powerassisted gear system |
US4415054A (en) * | 1982-08-05 | 1983-11-15 | Trw Inc. | Steering gear |
JPH0729610B2 (en) | 1984-11-02 | 1995-04-05 | 本田技研工業株式会社 | Electromagnetic booster |
JP2568817B2 (en) | 1984-11-29 | 1997-01-08 | 富士重工業株式会社 | Motor control device for electric power steering device |
DE3606234A1 (en) | 1985-02-26 | 1986-09-18 | Honda Motor Co Ltd | MOTOR DRIVEN STEERING SYSTEM |
US4681182A (en) | 1985-04-11 | 1987-07-21 | Jidosha Kiki Co., Ltd. | Electric power steering apparatus |
JPS61271168A (en) | 1985-05-27 | 1986-12-01 | Honda Motor Co Ltd | Electric motor drive circuit for electrically-driven power steering device |
GB8603084D0 (en) * | 1986-02-07 | 1986-03-12 | Trw Cam Gears Ltd | Road vehicle power assisted steering system |
US4825972A (en) | 1986-02-25 | 1989-05-02 | Honda Giken Kogyo Kabushiki Kaisha | Steering system for vehicles |
US4742882A (en) * | 1986-03-12 | 1988-05-10 | Honda Giken Kogyo Kabushiki Kaisha | Motor-driven power steering device |
JPS62221966A (en) | 1986-03-24 | 1987-09-30 | Honda Motor Co Ltd | Electric power steering gear |
JPH0796387B2 (en) | 1986-03-31 | 1995-10-18 | 本田技研工業株式会社 | Electric power steering device |
JPH0624953B2 (en) | 1986-04-08 | 1994-04-06 | 本田技研工業株式会社 | Electric power steering device |
JPH0662092B2 (en) | 1986-04-11 | 1994-08-17 | 本田技研工業株式会社 | Electric power steering device |
JPS62251273A (en) | 1986-04-22 | 1987-11-02 | Honda Motor Co Ltd | Electrically driven power steering device |
JPH088943Y2 (en) | 1986-07-17 | 1996-03-13 | 東海ティーアールダブリュー株式会社 | Rack and pinion type electric power steering device |
US4751978A (en) | 1987-03-16 | 1988-06-21 | Trw Inc. | Electric assist steering system with alternator power source |
GB2202501B (en) | 1987-03-24 | 1991-08-21 | Honda Motor Co Ltd | Electric power steering system for vehicles |
JPH04133864A (en) | 1990-09-25 | 1992-05-07 | Honda Motor Co Ltd | Control method for vehicle steering device |
JPH04133861A (en) | 1990-09-25 | 1992-05-07 | Honda Motor Co Ltd | Control method for vehicle steering device |
JPH04133860A (en) | 1990-09-25 | 1992-05-07 | Honda Motor Co Ltd | Control method for vehicle steering device |
US5991675A (en) | 1993-06-02 | 1999-11-23 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle control system based on estimation of the driving skill of a vehicle operator |
US5732791A (en) | 1995-11-30 | 1998-03-31 | Trw Inc. | Steering apparatus |
JP2966818B2 (en) | 1997-07-01 | 1999-10-25 | 本田技研工業株式会社 | Electric power steering device |
JP3678548B2 (en) | 1997-07-29 | 2005-08-03 | 光洋精工株式会社 | Electric power steering device |
US6298941B1 (en) | 1999-01-29 | 2001-10-09 | Dana Corp | Electro-hydraulic power steering system |
US6389924B1 (en) * | 2000-12-05 | 2002-05-21 | Delphi Technologies, Inc. | Steering column for motor vehicle |
-
2001
- 2001-08-01 US US09/920,181 patent/US6488115B1/en not_active Expired - Lifetime
-
2002
- 2002-10-01 US US10/262,730 patent/US6615947B2/en not_active Expired - Lifetime
- 2002-10-01 US US10/262,751 patent/US6705423B2/en not_active Expired - Lifetime
-
2004
- 2004-01-26 US US10/765,731 patent/US20040154858A1/en not_active Abandoned
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US283263A (en) * | 1883-08-14 | Boot and shoe | ||
US337404A (en) * | 1886-03-09 | Circle-iron for wagons | ||
US423817A (en) * | 1890-03-18 | Sewing-machine | ||
US423818A (en) * | 1890-03-18 | Brake-shoe | ||
US427807A (en) * | 1890-05-13 | Cyeus bussey | ||
US2329767A (en) * | 1941-06-28 | 1943-09-21 | Keeler Brass Co | Handle, drawer pull, or the like |
US2525208A (en) * | 1946-09-27 | 1950-10-10 | Clink Ray | Sectional tool cabinet |
US2575661A (en) * | 1950-01-20 | 1951-11-20 | Anne E Kass | Medical therapy cart |
US2697244A (en) * | 1953-08-03 | 1954-12-21 | Emil L Lincke | Push-pull type furniture handle |
US2981549A (en) * | 1959-01-16 | 1961-04-25 | Hotton George Richardson | Mobile tool stand |
US3997218A (en) * | 1975-03-14 | 1976-12-14 | Wolf Hugo M | Cabinet structure for dental treatment room |
US4120549A (en) * | 1977-04-27 | 1978-10-17 | Harvey Lee Bureau | Sheet metal tool chest support with sliding work shelf |
US4586762A (en) * | 1983-07-18 | 1986-05-06 | Syntex (U.S.A.) Inc. | Door and drawer front having a recessed grasping surface |
US4880248A (en) * | 1988-05-03 | 1989-11-14 | Mark Elmer | Manually propelled automotive painting tool cart |
US5221132A (en) * | 1991-08-30 | 1993-06-22 | Max Combs | Tool storage system with magnetic swinging arms |
US5489106A (en) * | 1994-03-16 | 1996-02-06 | Sony Corporation | Clean room cart |
US5588659A (en) * | 1995-03-29 | 1996-12-31 | Triple B Trenching, Inc. | Tool cart |
US5673983A (en) * | 1995-04-21 | 1997-10-07 | Metro Industries, Inc. | Cassette assembly and unit dose medication cart using the cassette assembly |
US5720535A (en) * | 1996-08-30 | 1998-02-24 | Waterloo Industries, Inc. | Cabinet construction and locking system |
US5913582A (en) * | 1996-10-08 | 1999-06-22 | Coonan; Gary M. | Computer workstation |
US6264219B1 (en) * | 1999-08-06 | 2001-07-24 | Dave W. Smith | Utility cart |
US20010035702A1 (en) * | 1999-12-02 | 2001-11-01 | Murphy Brian G. | Cart for surgical console |
US6578938B2 (en) * | 2001-02-28 | 2003-06-17 | Robert A. Norman | Securable toolchest with visual-surround workbench |
US6705423B2 (en) * | 2001-08-01 | 2004-03-16 | Delphi Technologies, Inc. | Apparatus and method for steering a vehicle |
US20030155729A1 (en) * | 2002-02-15 | 2003-08-21 | Chen Shwu Ruu | Tool box having drawers |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100024509A1 (en) * | 2006-10-16 | 2010-02-04 | Ube Machinery Corporation Ltd., a corporation of Japan | Stem slide device |
US8438892B2 (en) * | 2006-10-16 | 2013-05-14 | Ube Machinery Corporation, Ltd. | Stem slide device |
Also Published As
Publication number | Publication date |
---|---|
US6615947B2 (en) | 2003-09-09 |
US20030029668A1 (en) | 2003-02-13 |
US20030024760A1 (en) | 2003-02-06 |
US6705423B2 (en) | 2004-03-16 |
US6488115B1 (en) | 2002-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6488115B1 (en) | Apparatus and method for steering a vehicle | |
US7591342B2 (en) | Apparatus and method for steering a vehicle | |
EP1559630B1 (en) | Apparatus for steering a vehicle | |
US7293626B2 (en) | Apparatus and method for steering a vehicle | |
EP1270369B1 (en) | Ball-screw assembly isolator | |
US6817437B2 (en) | Steer-by wire handwheel actuator | |
CN109153406B (en) | Steer-by-wire steering system and method for controlling the same | |
US8678405B2 (en) | Motor vehicle steering system | |
WO2003011674A1 (en) | Apparatus and method for steering a vehicle | |
JP3433324B2 (en) | Motor vehicle having at least one part controllable via at least one operating lever | |
US11952056B2 (en) | Electric powered recirculating ball assembly | |
US20240157999A1 (en) | Methods and systems for a steer-by-wire system with sensor devices | |
US10807633B2 (en) | Electric power steering assembly and system with anti-rotation coupler | |
US20230052313A1 (en) | Electric steering assemblies for commercial vehicles | |
JP5491930B2 (en) | Vehicle power steering device | |
CN215436584U (en) | Electric multi-mode steer-by-wire system | |
EP1595766A2 (en) | Steering device for motor vehicles in general | |
GB2383021A (en) | Steering system having an interlocking mechanism | |
JP2952910B2 (en) | Electric power steering system | |
JPS6238188B2 (en) | ||
JPH072357Y2 (en) | Rear-wheel steering system for 4-wheel steering vehicle | |
JPS6233988B2 (en) | ||
JP2022014258A (en) | Steering apparatus | |
JPH0239901Y2 (en) | ||
JP2006159962A (en) | Steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |