US20040121322A9 - Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses - Google Patents

Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses Download PDF

Info

Publication number
US20040121322A9
US20040121322A9 US10/080,170 US8017002A US2004121322A9 US 20040121322 A9 US20040121322 A9 US 20040121322A9 US 8017002 A US8017002 A US 8017002A US 2004121322 A9 US2004121322 A9 US 2004121322A9
Authority
US
United States
Prior art keywords
mycobacterium
seq
tuberculosis
tab
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/080,170
Other versions
US20030129601A1 (en
Inventor
Stewart Cole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/080,170 priority Critical patent/US20040121322A9/en
Publication of US20030129601A1 publication Critical patent/US20030129601A1/en
Publication of US20040121322A9 publication Critical patent/US20040121322A9/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1089Design, preparation, screening or analysis of libraries using computer algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/08Antibacterial agents for leprosy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/345Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Brevibacterium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention is directed to a method of selection of purified nucleotidic sequences or polynucleotides encoding proteins or part of proteins carrying at least an essential function for the survival or the virulence of mycobacterium species by a comparative genomic analysis of the sequence of the genome of M. tuberculosis aligned on the genome sequence of M. leprae .
  • the selection by the method of the invention of these nucleotidic or peptidic sequences of interest which are encoding said essential functions of mycobacterium leads to identify and characterize specific antigens or regulator sequences, said antigens being chosen as potential candidates for an immunogenic or vaccine composition, but also useful to determine novel potential drug targets for the pharmaceutical industry.
  • the molecules having essential functions encoded by these genes or corresponding to regulatory elements represent also new highly specific targets for chemotherapy.
  • the sequence of the polynucleotides according to the invention have the particularity to be maintained during the evolution of the mycobacterium and therefore have been highly conserved in pathogenic mycobacterium species.
  • the invention is directed to purified nucleic acid selected by the method of the invention as well as the purified polypeptides with essential functions for the survival or the virulence of mycobacterium species encoded by these sequences.
  • the invention is directed to genes that code for essential proteins for which the functions have been attributed.
  • the invention is also directed to a process for the production of recombinant polypeptides and chimeric polypeptides comprising them, antibodies generated against these polypeptides, immunogenic or vaccine compositions comprising at least one polypeptide useful as protective antigens or capable to induce a protective response in vivo or in vitro against mycobacterium infections, immunotherapeutic compositions comprising at least such a polypeptide according to the invention, and the use of such nucleic acids and polypeptides in diagnostic methods, vaccines, kits, or antimicrobial therapy.
  • a comparative genomic analysis which permitted the inventors to select the sequences encoding essential molecules as regulatory nucleotidic sequences and proteins for the survival or the virulence of mycobacterium species, has been made by analysis of the complete genome sequence of both Mycobacterium tuberculosis and Mycobacterium leprae . The whole genome comparisons led also to the identification of genes that are present in both M. tuberculosis and M. leprae but have no counterparts elsewhere.
  • polypeptides having essential functions for the survival or the virulence mycobacterium species are characterized by at least 40% identity at the protein level and at least 70% identity at the gene level between both genomic sequences.
  • the amino acid sequences have been compared using the program GAP, “GCG” (Genetic Computer Group) from Program Manual (UNIX), Wisconsin Sequence Analysis PackageTM, Algorithm of Needleman and Wunsch. (J.Mol.Biol.48:443, 1970) The parameters are chosen as follows:
  • Length the sequence to be compared are the following XXX SED ID NO:XXX and having XXX amino acids.
  • Leprosy one of the oldest recorded diseases, remains a major public health problem. Although prevalence has been reduced extensively by WHO multidrug therapy and vaccination with BCG1,2, the incidence of the disease remains worrying with more than 690,000 new cases annually3 in the world. Leprosy was common in Europe in the middle ages but gradually disappeared.
  • the invention aids in fulfilling these needs in the art.
  • the method according to the invention has the advantage to reduce drastically the number of potential new targets and protective antigens by giving for the first time an exhaustive description of conserved proteins in the tuberculosis and leprae bacilli .
  • the isolated polynucleotides and proteins described in the present invention which are highly conserved in both genomic sequences of M. tuberculosis and M. leprae, are by this characteristic essential for the survival or the virulence of these mycobacteria in the host.
  • the identification of antigens and potentially therapeutic targets has been made on an evolutionary basis by a method of comparative genomic analysis.
  • This invention provides a method for the identification and the selection of essential genes for the survival or the virulence of mycobacterium species which comprises:
  • step c testing the polypolynucleotide selected in step b) for its capacity of virulence or involved in the survival of a mycobacterium species, said testing being based on the activation or inactivation of said polyucleotide in a bacterial host or said testing being based on the activity of the product of expression of said polynucleotide in vivo or in vitro.
  • This invention provides also a method for the identification and the selection in silico of essential genes for the survival or the virulence of mycobacterium species which comprises the following steps:
  • testing the polypolynucleotide selected in step b) for its capacity of virulence or involved in the survival of a mycobacterium species can be carried out, said testing being based on the activation or inactivation of said polynucleotide in a bacterial host or said testing being based on the activity of the product of expression of said polynucleotide in vivo or in vitro.
  • the method according to the invention permits also to determine the polynucleotidic sequences, which encode for polypeptides and regulatory sequences essential for the virulence and/or the survival of mycobacterium which are, in one hand, specific to Mycobacterium tuberculosis and, in the other hand, specific to Mycobacterium leprae, that is to say, said polynucleotidic sequences are not found in publicly accessible banks of non- Mycobacterium tuberculosis and non- Mycobacterium leprae genome.
  • a gene according to the invention is a defined nucleotidic sequence, which contains an open reading frame with base composition, codon usage, GC skew and other features typical of a microorganism, preferably a mycobacterium.
  • the definition of gene according to the invention comprises nucleotidic sequences, which encode an antigen or a fragment thereof, or nucleotidic sequences, which encode for essential polypeptide with essential function in the host, or nucleotidic sequence, which encodes polypeptide with regulation function in the bacteria, by example, in the DNA expression or in the transcription.
  • An essential function for a polypeptide in bacteria according to the invention comprises functions implicated in the survival or in the virulence of the bacteria.
  • the first genomic sequence of mycobacterium belongs to Mycobacterium tuberculosis .
  • the Mycobacterium microti is a Mycobacterium which infect the vole. It has a genome sequence close to the sequence of Mycobacterium tuberculosis (Cole et al. (1998, Nature, 393, 537-544)) and therefore in a second preferred embodiment, the first genomic sequence of Mycobacterium microti belongs to Mycobacterium genus.
  • the second genomic sequence of mycobacterium belongs to Mycobacterium leprae.
  • the method according to the invention comprises the complete genomic sequence of said mycobacterium species which is analysed.
  • This invention provides purified polypolynucleotide molecule obtained by the method according to the invention.
  • this invention provides a purified polynucleotide molecule according to the invention which encodes essential proteins or fragments of proteins of Mycobacterium species.
  • the invention also encompasses a purified polynucleotide molecule of a formula selected from the group consisting of polynucleotidic sequences, which encode for polypeptides and regulatory sequences essential for the virulence and/or the survival of mycobacterium which are, in one hand, specific to Mycobacterium tuberculosis and, in the other hand, specific to Mycobacterium leprae, that is to say, said polynucleotidic sequences are not found in publicly accessible banks of non- Mycobacterium tuberculosis and non- Mycobacterium leprae genome.
  • this purified polynucleotide is obtained by the method according to the invention.
  • the invention emcompasses a purified polypolynucleotide molecule that hybridizes to either stand of a denatured, double-stranded DNA comprising the purified polynucleotide sequence according to the invention under conditions of moderate stringency in 50% formamide and 6 ⁇ SSC at 42° C. with washing conditions of 60° C., 0.5 ⁇ SSC, 0.1% SDS.
  • This invention provides a purified polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 644.
  • This invention also provides a purified nucleic acid molecule encoding a polypeptide of a formula selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:644.
  • the nucleic acid molecules of the invention which include DNA and RNA, are referred to herein as “ M. tuberculosis and M. leprae marker nucleic acids” or “ M. tuberculosis and M. leprae marker DNA”.
  • the polypeptides encoded by these molecules which are referred to herein as “ M. tuberculosis and M. leprae marker polypeptides,” have formulas selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:644.
  • this invention provides a purified nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid molecule encoding the polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644 under conditions of moderate stringency in 50% formamide and 6 ⁇ SSC, at 42° C. with washing conditions of 60° C., 0.5 ⁇ SSC, 0.1% SDS.
  • This nucleic acid molecule that hybridizes under the stated conditions can be derived by in vitro mutagenesis of a M. tuberculosis and M. leprae marker nucleic acid of the invention.
  • the invention also encompasses purified nucleic acid molecules degenerate from M. tuberculosis and M. leprae marker nucleic acids as a result of the genetic code, purified nucleic acid molecules that are allelic variants of M. tuberculosis and M. leprae marker nucleic acids, and a species homolog of M. tuberculosis and M. leprae marker nucleic acids.
  • the invention also encompasses recombinant vectors that direct the expression of these nucleic acid molecules and host cells transformed or transfected with these vectors.
  • the invention further encompasses methods for the production of M. tuberculosis and M. leprae marker polypeptides, including culturing a host cell under conditions promoting expression, and recovering the polypeptide from the culture medium.
  • methods for the production of M. tuberculosis and M. leprae marker polypeptides including culturing a host cell under conditions promoting expression, and recovering the polypeptide from the culture medium.
  • the expression of M. tuberculosis and M. leprae marker polypeptides in bacteria, yeast, plant, and animal cells is encompassed by the invention.
  • This invention also provides labeled M. tuberculosis and M. leprae marker polypeptides.
  • the labeled polypeptides are in purified form. It is also preferred that the unlabeled or labeled polypeptide is capable of being immunologically recognized by human body fluid containing antibodies to a mycobacterium.
  • the polypeptides can be labeled, for example, with an immunoassay label selected from the group consisting of radioactive, enzymatic, fluorescent, chemiluminescent labels, and chromophores.
  • Immunological complexes between the M. tuberculosis and M. leprae marker polypeptides of the invention and antibodies recognizing the polypeptides are also provided.
  • the immunological complexes can be labeled with an immunoassay label selected from the group consisting of radioactive, enzymatic, fluorescent, chemiluminescent labels, and chromophores.
  • this invention provides a method for detecting infection by mycobacteria.
  • the method comprises providing a composition comprising a biological material suspected of being infected with a mycobacteria, and assaying for the presence of M. tuberculosis and M. leprae marker polypeptide of the mycobacteria.
  • the polypeptides are typically assayed by electrophoresis or by immunoassay with antibodies that are immunologically reactive with M. tuberculosis and M. leprae marker polypeptides of the invention.
  • This invention also provides an in vitro diagnostic method for the detection of the presence or absence of antibodies, which bind to an antigen comprising a M. tuberculosis and M. leprae marker polypeptide of the invention or mixtures of the polypeptides.
  • the method comprises contacting the antigen with a biological fluid for a time and under conditions sufficient for the antigen and antibodies in the biological fluid to form an antigen-antibody complex, and then detecting the formation of the complex.
  • the detection step can further comprise measuring the formation of the antigen-antibody complex.
  • the formation of the antigen-antibody complex is preferably measured by immunoassay based on Western blot technique, ELISA (enzyme linked immunosorbent assay), indirect immunofluorescent assay, or immunoprecipitation assay.
  • polypeptides of this invention are thus useful as a portion of a diagnostic composition for detecting the presence of antibodies to antigenic proteins associated with mycobacteria.
  • a diagnostic kit for the detection of the presence or absence of antibodies, which bind to the M. tuberculosis and M. leprae marker polypeptide of the invention or mixtures of the polypeptides contains antigen comprising the M. tuberculosis and M. leprae marker polypeptide, or mixtures thereof, and means for detecting the formation of immune complex between the antigen and antibodies.
  • the antigens and the means are present in an amount sufficient to perform the detection.
  • This invention also provides an immunogenic composition
  • an immunogenic composition comprising a M. tuberculosis and M. leprae marker polypeptide of the invention or a mixture thereof in an amount sufficient to induce an immunogenic or protective response in vivo, in association with a pharmaceutically acceptable carrier therefor.
  • a vaccine composition of the invention comprises a neutralizing amount of the M. tuberculosis and M. leprae marker polypeptide and a pharmaceutically acceptable carrier therefor.
  • M. tuberculosis and M. leprae marker polypeptides can be used to raise antibodies for detecting the presence of antigenic proteins associated with a mycobacterium.
  • Purified polyclonal or monoclonal antibodies that bind to M. tuberculosis and M. leprae marker polypeptides are encompassed by the invention.
  • the polypeptides of the invention can be also employed to raise neutralizing antibodies that either inactivate the mycobacteria, reduce the viability of a mycobacterium in vivo, or inhibit or prevent bacterial replication.
  • the ability to elicit mycobacteria-neutralizing antibodies is especially important when the proteins and polypeptides of the invention are used in immunizing or vaccinating compositions to activate the B-cell arm of the immune response or induce a cytotoxic T lymphocyte response (CTL) in the recipient host, or other T cell mediated response.
  • CTL cytotoxic T lymphocyte response
  • this invention provides a method for detecting the presence or absence of a mycobacterium comprising:
  • nucleotide probe is complementary to the full-length sequence of a purified M. tuberculosis and M. leprae marker nucleic acid of the invention.
  • this invention provides a method of comparing genetic complements of different types of organisms, wherein the method comprises:
  • the method can be carried out using a computer system comprising a database including sequence libraries for a plurality of types of organisms, wherein the libraries have multiple genomic sequences, and providing a database including the one or more probe sequences encoding a polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644.
  • the computer system includes a user interface capable of receiving sequence information from the sequence libraries and the probe sequence information for comparison and displaying the results of the comparison.
  • FIG. 1 is a circular genome map. From the outside, circles 1 , 2 , clockwise and anticlockwise, genes on the ⁇ and + strands, respectively; circles 3 and 4 , pseudogenes; 5 and 6 , M. leprae specific genes; 7 , repeat sequences; 8 , G+C content; 9 , G/C bias (G+C)/(G ⁇ C). See legend to FIG. 2 for colour code.
  • FIG. 2 is a comparison of the proS loci of M. leprae and M. tuberculosis .
  • FIG. 3 shows distribution of genes by functional category. The number of complete (blue) and pseudogenes (red) within each category for M. leprae is shown. Data for M. tuberculosis (green) were taken from the published genome sequence 8 .
  • FIG. 4 Polynucleotidic sequence of the Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv221, deposited at the C.N.C.M. under the accession number I-2625, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 2,115,612 and extends to position 2,198,604 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 5 Polynucleotidic sequence of the Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv230, deposited at the C.N.C.M. under the accession number I-2626, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 1,336,764 and extends to position 1,411,979 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 6 Polynucleotidic sequence of the Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv234, deposited at the C.N.C.M. under the accession number I-2627, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 2,847,864 and extends to position 2,928,420 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 7 Polynucleotidic sequence of the Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv265, deposited at the C.N.C.M. under the accession number I-2628, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 514,402 and extends to position 599,515 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 8 Polynucleotidic sequence of the Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv267, deposited at the C.N.C.M. under the accession number I-2629, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 1,124,621 and extends to position 1,169,811 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 9 Polynucleotidic sequence of the Mycobacterium leprae cosmid which corresponds to pYUB18 with Sau3A partial digest fragment from the genome of M. leprae that starts at position 1,373,705 and extends to position 1,403,746.
  • This sequence comprises the sequence of the Mycobacterium leprae cosmid MLCY 811 which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae deposited at the C.N.C.M. under the accession number I-2633 that starts at position 1,363,759 and extends to position 1,403,737 according to Cole et al. (2001, Nature, 409, 1007-1011).
  • FIG. 10 Polynucleotidic sequence of the Mycobacterium leprae cosmid which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae that starts at position 3,160,443 and extends to position 3,194,161.
  • This sequence comprises the sequence of the Mycobacterium leprae cosmid MLCY 047 which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae deposited at the C.N.C.M. under the accession number I-2632 that starts at position 3,160,458 and extends to position 3,194,087 according to Cole et al. (2001, Nature, 409, 1007-1011).
  • FIG. 4 to 10 can be found in the APPENDIX hereto.
  • M. leprae contains 3,268,203 bp, and has an average G+C content of 57.8%. These values are much lower than those reported for the M. tuberculosis genome, comprising ⁇ 4,000 genes, 4,411,529 bp and 65.6% G+C 8 .
  • proteome sequences 8, 9 it was immediately apparent that only 49.5% of the genome was occupied by protein-coding genes, while 27% contained recognisable pseudogenes, inactive reading frames with functional counterparts in the tubercle bacillus. The remaining 23.5% of the genome did not appear to be coding, and probably contains gene remnants mutated beyond recognition.
  • the G+C content of M. leprae genes (60.1%) is higher than that of the pseudogenes (56.5%), and the remainder of the genome (54.5%).
  • the high G+C content of M. leprae, and other mycobacteria is apparently driven by the codon preference of active genes, while random mutation within non-coding regions results in drift towards a more neutral G+C content, closer to that of the host.
  • M. tuberculosis H37Rv which contains at least two prophages and 56 intact or truncated IS elements 8, 18
  • M. leprae has only three phage-like genes, all with M. tuberculosis orthologs, and 26 transposase gene fragments.
  • some signs of horizontal transfer of genetic material were detected when the aminoacyl-tRNA synthetase genes were examined. With one exception, all of these are more closely related to M. tuberculosis enzymes than to those of any other organism.
  • prolyl-tRNA synthetase encoded by proS
  • proS is more similar to the enzymes of Borrelia burgdorfieri and eukaryotes such as Drosophila, humans and yeast. It has been proposed that horizontal transfer of tRNA synthetase genes occurs frequently, and that the pathogen B. burgdorferi may have acquired proS from its host 19 . Comparison of the genetic context provides further support for this hypothesis as the M. leprae proS is both displaced and inverted with respect to the M. tuberculosis genome (FIG. 4), consistent with recent acquisition.
  • leprae M leprae Function Pathway Gene Gene Pseudogene gltA1, gltA2, gltA2 citA Citrate synthase Krebs cycle cit, 4 icd1, icd2 icd2 icd1 Isocitrate Krebs cycle dehydrogenase ic1, aceA aceA ic1 Isocitrate lyase Glyoxy- latecycle gnd1, gnd2 gnd1 gnd2 6- Pentose phosphogluconated phosphate ehydrogenase pathway pfkA, pjkB pfkA pfkB Phospho- Glycolysis fructokinase aceE, lpdA, aceE, lpd lpdA, pdhA, Pyruvate, Energy pdhA, pdhB, (Rv0462) pdhB, pdhC dehydrogenase metabolism pdh
  • Mycolic acids structural components of all mycobacteria, include the alpha mycolates, lacking oxygen functions, and the oxygenated keto- and methoxy- forms. Reappraisal of mycolic acid modification is now possible in the light of the reduced cmaA, mmaA and umaA gene-sets encoding the effector methyltransferases.
  • M. leprae contains no methoxy-mycolates 23 , probably due to the loss of the MmaA2 and MmaA3 enzymes that attach the methoxy group in M. tuberculosis 10, 24 .
  • the mycolic acids do contain cyclopropane functions 25 that in M. tuberculosis are introduced by MmaA2 and CmaAI.
  • PGL1 phenolic glycolipid 1
  • PGL1 is derived from phthiocerol-dimycocerosate (PDIM), an esterified compound lipid generated by mycocerosic acid synthase and a type I polyketide synthase (PKS), by addition of three o-methylated deoxy sugars 23 .
  • PDIM phthiocerol-dimycocerosate
  • PKS type I polyketide synthase
  • tuberculosis requires the RND protein, MmpL7, for its transport across the cytoplasmic membrane 9,28,29 .
  • MmpL7 the RND protein
  • MmpL7 the RND protein
  • PKS systems identifiable in M. tuberculosis 8 only six were predicted in M. leprae and the number of mmpL genes (often linked to PKS genes) has decreased from 16 to five, presumably because they are no longer required for polyketide or lipid export. Deletion of such systems may be reflected in the lack of mycolipenic and hydroxylipenic acids, polyketides esterified to trehalose in M. tuberculosis. Further PKS missing from M. leprae include the mbt operon required for production of the salicylate-based mycobactin siderophores.
  • Lipids, polyketides and aromatic compounds are often substrates, for cytochrome-P450 monooxygenases 30 , enzymes that are exceptionally abundant in M. tuberculosis 8 . Astonishingly, none of these is functional in M. leprae although a novel enzyme is predicted.
  • Intracellular mycobacteria probably derive much of their energy from degradation of host-derived lipids 31 , a process initiated by lipases.
  • M. leprae has only two lipase genes, of which, lipG, clusters with mmaA genes and could, therefore, effect fatty acid remodelling. This appears to leave just one lipase for scavenging fatty acids.
  • the enzyme LipE (ML1190) or its counterpart in M. tuberculosis (Rv3775) could represent an attractive drug target.
  • the multifunctional FadA and FadB enzymes which catalyse ⁇ -oxidation, M.
  • tuberculosis has numerous alternative systems for fatty acid degradation 8 .
  • M. leprae has roughly one third as many potential enzymes; however, there are three-times more FadD acyl-CoA synthases than FadE acyl-CoA dehydrogenases, whereas these are expected in equal amounts in M. tuberculosis . This may be explained by the dual role of FadD in ⁇ -oxidative and anabolic processes while FadE only participates catabolically.
  • M. leprae is limited to growth on very few carbon sources, or even a limited and rather specialised combination, on which it can maintain a balanced carbon metabolism. Though a similar range of potential substrates is available to both M. leprae and M.
  • the leprosy bacillus has lost anaerobic and microacrophilic electron transfer systems, such as formate dehydrogenase, nitrate, and fumarate reductase together with the biosynthetic and transport systems required to produce the cognate prosthetic groups.
  • the aerobic respiratory chain of M. leprae is truncated as only the 3′-end of the NADH oxidase operon, nuoA-N, remains.
  • the consequences of this event are far-reaching, for not only has the potential to produce ATP from the oxidation of NADH been lost, but also regeneration of NAD + may be limited, relying heavily on ndh, which is involved only in recycling NAD + .
  • M. leprae may regenerate NAD + from NADH by (1) diverting pyruvate to acetate and CO 2 using lactate dehydrogenase and lactate oxidase; (2) diverting PEP to malate or fumarate via oxaloacetate, using its PEP carboxylase (an enzyme not found in the tubercle bacillus) that only catalyses the reaction in this direction. Given the loss of genes reviewed above, the acids produced by (1) and (2) cannot be recycled and must be excreted.
  • tuberculosis met genes are all intact. This requirement for methionine may be dictated by the inactivation of the sulphate transport operon, cysYWA, and in turn this implies that M. leprae depends upon an organic source of sulphur.
  • a second auxotrophy that is predicted is for cobinamide, as examination of the cob genes shows selective deletion of those to make cobinamide, while the genes needed to produce vitamin B12 from cobinamide are retained.
  • M. leprae Central to a successful pathogenic lifestyle is the ability to obtain iron.
  • M. leprae has many genes for haem and iron-based proteins and employs the iron regulatory systems, ideR and furB, yet may be severely handicapped compared to M. tuberculosis as it appears to have lost the mbt operon, encoding the non-ribosomal peptide synthase required for production of the iron-scavenging siderophores, mycobactin/exochelin 8, 36, 37 .
  • part of the iron uptake system is functional in M. leprae, as it transports exochelinMN, from M. neoaurum but not those of M. smegmatis or M. tuberculosis 38 .
  • the genes for exochelinMN are unknown and seem unlikely to occur in M. leprae.
  • M. leprae contains several enzymes that have no counterparts in the tubercle bacillus, including a eukaryotic-like uridine phosphorylase and adenylate cyclase.
  • a eukaryotic-like uridine phosphorylase and adenylate cyclase there are two transport systems that may play significant physiological roles: an ABC-transporter for sugars, and a second member of the Nrampl family, involved in divalent metal ion uptake.
  • M. leprae may have acquired another Nrampl gene 39 to ensure adequate intracellular iron concentrations resulting from its lack of mycobactin siderophores.
  • M. leprae shows a marked tropism for myelin-producing Schwann cells, and a surface-exposed 21 kDa laminin-binding protein (LBP) may be an important virulence factor 40-42 . Inspection of the genome sequence revealed a single LBP gene and this also occurs in M. tuberculosis . No further candidates for virulence genes were detected, and many of those present in M. tuberculosis have been inactivated or lost, including three of the Mce operons encoding putative invasins 9, 43 . Although the leprosy and tubercle bacilli both survive within macrophages, M. leprae has no catalase-peroxidase 44 , and fewer peroxidoxins and epoxide hydrolases to combat reactive oxygen species. It has retained both superoxide dismutases suggesting that these may contribute to its survival.
  • LBP laminin-binding protein
  • Comparative genomics is a powerful new tool for exploring micobial evolution and identifying those genes that might encode new drug targets or protective antigens. Coupled with knowledge derived from bioinformatic analysis of the proteome, and understanding of the underlying microbiology, it is possible to reduce the number of potential new targets within a pathogen to a more tangible level.
  • This invention includes discoveries resulting from the findings of a comparative analysis in which gene and protein sets of the leprosy and tubercle bacilli have been compared pairwise, and against the completed genome sequences of various prokaryotes and eukaryotes.
  • the genome of M. leprae is substantially smaller than that of M. tuberculosis and contains numerous pseudogenes. While the genome of M. tuberculosis comprises 4.41 Mb and contains around 4,000 genes, the genome of M. leprae is only 3.27 Mb and a mere 49.5% is occupied by protein-coding genes. About 27% of the M. leprae genome contains recognizable pseudogenes, inactive reading frames with functional counterparts in the tubercle bacillus. The remaining 23.5% of the genome does not appear to be coding, and probably contains gene remnants mutated beyond recognition. The distribution of the 1,114 pseudogenes was essentially random throughout the chromosome.
  • Proteins that are secreted via the general secretory pathway 52 are readily identifiable by their characteristic signal peptides, whereas those metallo-enzymes that are secreted by the twin arginine transporter system, Tat, can be recognized by the presence at the N-terminus of the cognate motif, S/TRRXFLK preceeding the signal peptide 53 , 54 . This will be discussed further below.
  • ESAT-6 is a potent T-cell antigen that induces strong Th1-type responses 55 and has been extensively studied as a potential diagnostic reagent for infection 56 , since its gene is missing from BCG 57 , 58 , 59 , and as a component of a subunit vaccine 60 .
  • the comparative genomic analysis identified several ESAT-6 proteins, and their potential secretion machinery, that were common to both M. tuberculosis and M. leprae (Table 2).
  • ML0048 Name of an identified ORF in the genome of M. leprae.
  • Rv3876 Name of Equivalent ORF in the genome of M. tuberculosis published in 1998.
  • BLASTP score which indicates how similar the protein sequences are.
  • the analyses of the results are described in Cole et al. for the comparisons between the genome of M. tuberculosis and the genome of BCG (Analysis of the proteome of Mycobacterium tuberculosis in silico, tuber Lung. Dis. 1999; 79(6):329-42).
  • Sc3C3.03C Nomenclature of the streptomyces protein.
  • EMB AL031231: Accession number in EMBL databank for the sequence of the Streptomyces protein found to be most similar to ML0048.
  • FASTA score Different method, like BLAST, for comparing sequences for their similarity.
  • Score denotes the degree of similarity.
  • 31.6% Percentage of identity between C terminal part of the Streptomyces protein and the amino acid sequence of ML0048. This 31.6% identity is found in an overlapping region of 580 amino acids between the two sequences. The other examples should be read similarly. TABLE 2 Proteins of limited distribution with potential as drug targets, diagnostic antigens or subunit vaccine components M. Group leprae M. tub.
  • coelicolor SCL2.07C putative secreted protein, 19 TR:CAB70919 (EMBL:AL137778) (169 aa); Fasta score E( ) 7.3e-08, 35.8% identity in 120 aa overlap
  • EMBL:AB003693 hypothetical 38 protein
  • F:O24754 EMBL:AB003693
  • Fasta score E( ) 2.1e-15, 34.5% identity in 148 aa overlap.
  • coelicolor putative lipoprotein SCE33.13C TR:CAB90922 (EMBL:AL355774) fasta scores: E( ): 0.00039, 24.4% id in 624 aa A whiB1 Rv3219 6,00E- Transcription factor 31 A ML0814 Rv3208c 3,00E- S.
  • coelicolor hypothetical protein 32 gp
  • coelicolor putative membrane protein SC2H12.28c (314 aa) TR:CAB94652 (EMBL:AL359215) fasta scores: E( ): 1e-13, 30.2% id in 331 aa A ML0857 Rv2219 2,00E- S.
  • coelicolor putative integral membrane protein 59 SC3H12.04 TR:CAB90843 (EMBL:AL355740) (234 aa) fasta scores: E( ): 1.2e-26, 39.6% id in 230 aa A ML0869 Rv2206 4,00E- S.
  • coelicolor putative integral membrane protein 40 SC5F7.32 TR:Q9S2R7 (EMBL:AL096872) A ML0876 Rv2199c 2,00E- S.
  • coelicolor hypothetical proteins e.g. putative 43 integral membrane protein SC6G10.27C TR:Q9X812 (EMBL:AL049497) (132 aa) fasta scores: E( ) : 6.2e-15, 38.8% id in 139 aa
  • coelicolor TR:Q53873 (EMBL:AL031317) (411 aa); Fasta score E( ) 1.1e-12, 28.3% identity in 410 aa overlap A ML1439 Rv2050 4,00E- emb
  • S. coelicolor 101 4e-21 A ML1485 Rv2466c 2,00E- S. coelicolor TR:CAB71809 (EMBL:AL138662) (216 aa); 66 Fasta score E( ): 0, 52.3% identity in 214 aa overlap A ML1508 Rv1155 2,00E- S.
  • coelicolor TR:Q9S3Y6 (EMBL:AF170560) (597 aa); Fasta score E( ): 0, 55.5% identity in 566 aa overlap
  • (AL132644) putative membrane protein [Streptomyc . . . 109 4e-23 A ML1649 Rv2239c 3,00E- emb
  • coelicolor TR:Q9Z586 (EMBL:AL035569) (331 aa); 91 Fasta score E( ): 0, 38.6% identity in 337 aa overlap, A ML1781 Rv2256c 4,00E- 4pir
  • coelicolor hypothetical protein TR:CAB88434 14 (EMBL:AL353815) fasta scores: E( ): 0.0092, 39.3% in 61 aa; truncated at C-terminus; may represent a pseudogene A ML2063 Rv1846c 3,00E- possible regulator, pir
  • coelicolor putative integral membrane protein 82 SC10A7.04 TR:Q9XAS1 (EMBL:AL078618) fasta scores: E( ): 1.8e-19, 32.6% in 328 aa A ML2073 Rv1830 2,00E- S.
  • coelicolor hypothetical 19.1 kda protein 74 TR:CAB88877 (EMBL:AL353861) fasta scores: E( ): 3.7e- 30, 64.8% in 145 aa A ML2075 Rv1828 7,00E- S.
  • coelicolor putative membrane protein TR:Q9XAE8 (EMBL:AL079356) fasta scores: E( ) : 1.5e-13, 27.1% in 255 aa A ML2137 Rv0883c 1,00E- S. coelicolor hypothetical 39.0 kda protein TR:O50529 76 (EMBL:AL009204) fasta scores: E( ): 2.2e-19, 36.0% in 247 aa A ML2142 Rv0877 8,00E- S. coelicolor hypothetical 32.2 kda protein 91 TR:CAB93404 (EMBL:AL357524) fasta scores: E( ): 2.5e- 19, 43.3% in 270 aa.
  • coelicolor putative integral membrane 43 transport protein SCH5.28 TR:Q9X930 (EMBL:AL035636) (162 aa) fasta scores: E( ): 3.3e-10, 37.3% id A ML2306 Rv3680 e-110 S.
  • coelicolor putative ion-transporting ATPase TR:Q9XA35 (EMBL:AL079353) (481 aa) fasta scores: E( ): 0, 48.6% id in 432 aa A ML2307 Rv3681c 4,00E- whiB4 28 A ML2330 Rv3716c 6,00E- pir
  • coelicolor hypothetical protein TR:Q9X8H2 94 (EMBL:AL049819) (271 aa) fasta scores: E( ): 0, 48.4% id in 250 aa
  • S. coelicolor putative lipoprotein TR:CAB76012 (EMBL:AL157916) fasta scores: E( ): 2.5e-24, 28.6% id in 405 aa.
  • coelicolor putative dehydratase TR:CAB77291 (EMBL:AL160312) A ML2630 Rv0007 4,00E- emb
  • N-terminal 46 aa of the M. tuberculosis protein M ML1993 Rv0098 3,00E- — 50 M ML1995 Rv0100 1,00E- — 18 M ML2010 Rv1906c 4,00E- putative lipoprotein (secreted in Mt) 31 M ML2022 Rv1893 2,00E- — 13 M ML2023 Rv1891 2.00E- Contains probable N-terminal signal sequence.
  • Pseudomonas putida SW:CLCD_PSEPU (P11453) (236 aa) X ML1494 Rv1171 8,00E- conserved membrane protein, pir
  • M. tuberculosis and M. leprae marker polypeptides are disclosed in SEQ ID NO: 1 to SEQ ID NO:644.
  • the discovery of the M. tuberculosis and M. leprae marker polypeptides and DNA encoding the polypeptides enables construction of expression vectors comprising nucleic acid sequences encoding M. tuberculosis and M. leprae marker polypeptides; host cells transfected or transformed with the expression vectors; biologically active M. tuberculosis and M. leprae marker polypeptides and M. tuberculosis and M. leprae marker polypeptides as isolated or purified peptides; and antibodies immunoreactive with M.
  • tuberculosis and M. leprae marker polypeptides are tuberculosis and M. leprae marker polypeptides.
  • understanding of the mechanism by which M. tuberculosis and M. leprae marker polypeptides function enables the design of assays to detect inhibitors of M. tuberculosis and M. leprae marker polypeptide activity.
  • M. tuberculosis and M. leprae marker polypeptides refers to a genus of polypeptides that encompasses polypeptides of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644, as well as those polypeptides having a high degree of similarity (at least 90% homology) with such amino acid sequences and which polypeptides are immunoreactive or biologically active.
  • the term “purified” as used herein, means that the M. tuberculosis and M. leprae marker polypeptides are essentially free of association with other proteins or polypeptides, for example, as a purification product of recombinant host cell culture or as a purified product from a non-recombinant source.
  • substantially purified refers to a mixture that contains M. tuberculosis and M. leprae marker polypeptides and is essentially free of association with other proteins or polypeptides, but for the presence of known proteins that can be removed using a specific antibody, and which substantially purified M. tuberculosis and M. leprae marker polypeptides can be used as antigens.
  • a M. tuberculosis and M. leprae marker polypeptide “variant” as referred to herein means a polypeptide substantially homologous to native M. tuberculosis and M. leprae marker polypeptides, but which has an amino acid sequence different from that of native M. tuberculosis and M. leprae marker polypeptides because of one or more deletions, insertions, or substitutions.
  • the variant amino acid sequence preferably is at least 80% identical to a native M. tuberculosis and M. leprae marker polypeptide amino acid sequence, most preferably at least 90% identical.
  • the percent identity can be determined, for example by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. ( Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG).
  • the GAP program utilizes the alignment method of Needleman and Wunsch ( J. Mol. Biol. 48:443, 1970), as revised by Smith and Waterman ( Adv. Appl. Math 2:482, 1981).
  • the preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res.
  • Variants can comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physicochemical characteristics.
  • conservative substitutions include substitution of one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn.
  • Other such conservative substitutions for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known.
  • Naturally occurring M. tuberculosis and M. leprae marker polypeptide variants are also encompassed by the invention.
  • variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the M. tuberculosis and M. leprae marker polypeptides.
  • Variations attributable to proteolysis include, for example, differences in the termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the M. tuberculosis and M. leprae marker polypeptides.
  • variantations attributable to frameshifting include, for example, differences in the termini upon expression in different types of host cells due to different amino acids.
  • the invention provides isolated and purified, or homogeneous, M. tuberculosis and M. leprae marker polypeptides, both recombinant and non-recombinant.
  • Variants and derivatives of native M. tuberculosis and M. leprae marker polypeptides that can be used as antigens can be obtained by mutations of nucleotide sequences coding for native M. tuberculosis and M. leprae marker polypeptides. Alterations of the native amino acid sequence can be accomplished by any of a number of conventional methods.
  • Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
  • oligonucleotide directed, site specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion, or insertion.
  • Exemplary methods of making the alterations set forth above are disclosed by Walder et al. ( Gene 42:133, 1986); Bauer et al. ( Gene 37:73, 1985); Craik ( BioTechniques, January 1985, 12-19); Smith et al. ( Genetic Engineering: Principles and Methods , Plenum Press, 1981); Kunkel ( Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. ( Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462, all of which are incorporated by reference.
  • M. tuberculosis and M. leprae marker polypeptides can be utilized to prepare antibodies that specifically bind to M. tuberculosis and M. leprae marker polypeptides.
  • the term “antibodies” is meant to include polyclonal antibodies, monoclonal antibodies, fragments thereof such as F(ab′)2 and Fab fragments, as well as any recombinantly produced binding partners. Antibodies are defined to be specifically binding if they bind M. tuberculosis and M. leprae marker polypeptides with a K a of greater than or equal to about 10 7 M ⁇ 1 .
  • binding partners or antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al., Ann. N. Y Acad. Sci., 51:660 (1949).
  • Polyclonal antibodies can be readily generated from a variety of sources, for example, horses, cows, goats, sheep, dogs, chickens, rabbits, mice, or rats, using procedures that are well known in the art.
  • the invention further encompasses isolated fragments and oligonucleotides derived from the nucleotide sequences of the invention.
  • the invention also encompasses polypeptides encoded by these fragments and oligonucleotides.
  • Nucleic acid sequences within the scope of the invention include isolated DNA and RNA sequences that hybridize to the native M. tuberculosis and M. leprae marker nucleic acids disclosed herein under conditions of moderate or severe stringency, and which encode M. tuberculosis and M. leprae marker polypeptides.
  • conditions of moderate stringency as known to those having ordinary skill in the art, and as defined by Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp.
  • a DNA sequence can vary and still encode a M. tuberculosis and M. leprae marker polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644.
  • Such variant DNA sequences can result from silent mutations (e.g., occurring during PCR amplification), or can be the product of deliberate mutagenesis of a native sequence.
  • the invention thus provides equivalent isolated DNA sequences, encoding M. tuberculosis and M. leprae marker polypeptides, selected from: (a) DNA derived from the coding region of a native M. tuberculosis and M. leprae marker nucleic acid; (b) cDNA comprising the nucleotide sequence of the invention; (c) DNA capable of hybridization to a DNA of (a) under conditions of moderate stringency and which encode M. tuberculosis and M. leprae marker polypeptides; and (d) DNA which is degenerate as a result of the genetic code to a DNA defined in (a), (b) or (c) and which encodes M. tuberculosis and M. leprae marker polypeptides. M. tuberculosis and M. leprae marker polypeptides encoded by such DNA equivalent sequences are encompassed by the invention.
  • DNA that is equivalent to the DNA sequence of the invention will hybridize under moderately stringent conditions to the double-stranded native DNA sequence that encodes polypeptides of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644.
  • M. tuberculosis and M. leprae marker polypeptides encoded by such DNA include, but are not limited to, M. tuberculosis and M. leprae marker polypeptide fragments and M. tuberculosis and M. leprae marker polypeptides comprising inactivated N-glycosylation site(s), inactivated protease processing site(s), or conservative amino acid substitution(s), as described above.
  • M. tuberculosis and M. leprae marker polypeptides encoded by DNA derived from other species, wherein the DNA will hybridize to the complement of the DNA of the invention are also encompassed.
  • Recombinant expression vectors containing a nucleic acid sequence encoding M. tuberculosis and M. leprae marker polypeptides can be prepared using well known methods.
  • the expression vectors include a M. tuberculosis and M. leprae marker DNA sequence operably linked to suitable transcriptional or translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene.
  • suitable transcriptional or translational regulatory nucleotide sequences such as those derived from a mammalian, microbial, viral, or insect gene.
  • regulatory sequences include transcriptional promoters, operators, or enhancers, an mRNA ribosomal binding site, and appropriate sequences which control transcription and translation initiation and termination.
  • Nucleotide sequences are “operably linked” when the regulatory sequence functionally relates to the M.
  • a promoter nucleotide sequence is operably linked to a M. tuberculosis and M. leprae marker DNA sequence if the promoter nucleotide sequence controls the transcription of the M. tuberculosis and M. leprae marker DNA sequence.
  • the ability to replicate in the desired host cells, usually conferred by an origin of replication, and a selection gene by which transformants are identified can additionally be incorporated into the expression vector.
  • sequences encoding appropriate signal peptides that are not naturally associated with M. tuberculosis and M. leprae marker polypeptides can be incorporated into expression vectors.
  • a DNA sequence for a signal peptide secretory leader
  • M. tuberculosis and M. leprae marker nucleotide sequence so that the M. tuberculosis and M. leprae marker polypeptide is initially translated as a fusion protein comprising the signal peptide.
  • a signal peptide that is functional in the intended host cells enhances extracellular secretion of the M. tuberculosis and M. leprae marker polypeptide.
  • the signal peptide can be cleaved from the M. tuberculosis and M. leprae marker polypeptide upon secretion of the marker polypeptide from the cell.
  • Expression vectors fdr use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes.
  • a phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement.
  • useful expression vectors for prokaryotic host cells include those derived from commercially available plasmids.
  • Commercially available vectors include those that are specifically designed for the expression of proteins. These include pMAL-p2 and pMAL-c2 vectors, which are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA).
  • Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include ⁇ -lactamase (penicillinase), lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, p. 412, 1982).
  • ⁇ -lactamase penicillinase
  • lactose promoter system Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979
  • tryptophan (trp) promoter system Goeddel et al., Nucl. Acids Res. 8:
  • Suitable host cells for expression of M. tuberculosis and M. leprae marker polypeptides include prokaryotes, yeast or higher eukaryotic cells.
  • Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al. Cloning Vectors: A Laboratory Manual , Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce M. tuberculosis and M. leprae marker polypeptides using RNAs derived from DNA constructs disclosed herein.
  • the present invention is intended to encompass the previously described proteins in isolated or purified form, whether obtained using the techniques described herein or other methods.
  • the M. tuberculosis and M. leprae marker polypeptides are substantially free of human tissue and human tissue components, nucleic acids, extraneous proteins and lipids, and adventitious microorganisms, such as bacteria and a mycoplasma.
  • the invention encompasses equivalent proteins having substantially the same biological and immunogenic properties. Thus, this invention is intended to cover serotypic variants of the proteins of the invention.
  • M. tuberculosis and M. leprae marker polypeptides of the invention it may be desirable to label them.
  • suitable labels are radioactive labels, enzymatic labels, fluorescent labels, chemiluminescent labels, and chromophores.
  • the methods for labeling proteins and glycoproteins of the invention do not differ in essence from those widely used for labeling immunoglobulin.
  • the need to label may be avoided by using labeled antibody to the antigen of the invention or anti- immunoglobulin to the antibodies to the antigen as an indirect marker.
  • M. tuberculosis and M. leprae marker polypeptides of the invention can be used to produce polyclonal and monoclonal antibodies reactive therewith.
  • a polypeptide of the invention can be used to immunize an animal host by techniques known in the art. Such techniques usually involve inoculation, but they may involve other modes of administration. A sufficient amount of the polypeptide is administered to create an immunogenic response in the animal host. Any host that produces antibodies to the antigen of the invention can be used. Once the animal has been immunized and sufficient time has passed for it to begin producing antibodies to the antigen, polyclonal antibodies can be recovered.
  • the general method comprises removing blood from the animal and separating the serum from the blood.
  • the serum which contains antibodies to the antigen, can be used as an antiserum to the antigen.
  • the antibodies can be recovered from the serum.
  • Affinity purification is a preferred technique for recovering purified polyclonal antibodies to the antigen from the serum.
  • Monoclonal antibodies to the antigens of the invention can also be prepared.
  • One method for producing monoclonal antibodies reactive with the antigens comprises the steps of immunizing a host with the antigen; recovering antibody producing cells from the spleen of the host; fusing the antibody producing cells with myeloma cells deficient in the enzyme hypoxanthine-guanine phosphoribosyl transferase to form hybridomas; select at least one of the hybridomas by growth in a medium comprising hypoxanthine, aminopterin, and thymidine; identifying at least one of the hybridomas that produces an antibody to the antigen, culturing the identified hybridoma to produce antibody in a recoverable quantity; and recovering the antibodies produced by the cultured hybridoma.
  • polyclonal or monoclonal antibodies can be used in a variety of applications. Among these is the neutralization of corresponding proteins. They can also be used to detect viral antigens in biological preparations or in purifying corresponding proteins, glycoproteins, or mixtures thereof, for example, when used in a affinity chromatographic columns.
  • the M. tuberculosis and M. leprae marker polypeptides can be used as antigens to identify antibodies to a mycobacteria in materials and to determine the concentration of the antibodies in those materials.
  • the antigens can be used for qualitative or quantitative determination of a mycobacteria in a material.
  • materials include human tissue and human cells, as well as biological fluids, such as human body fluids, including human sera.
  • the antigens of the present invention provide an assay that is convenient, rapid, sensitive, and specific.
  • the antigens of the invention can be employed for the detection of a mycobacterium by means of immunoassays that are well known for use in detecting or quantifying humoral components in fluids.
  • immunoassays that are well known for use in detecting or quantifying humoral components in fluids.
  • antigen-antibody interactions can be directly observed or determined by secondary reactions, such as precipitation or agglutination.
  • immunoelectrophoresis techniques can also be employed. For example, the classic combination of electrophoresis in agar followed by reaction with anti-serum can be utilized, as well as two-dimensional electrophoresis, rocket electrophoresis, and immunolabeling of polyacrylamide gel patterns (Western Blot or immunoblot).
  • immunoassays in which the antigens of the present invention can be employed include, but are not limited to, radioimmunoassay, competitive immunoprecipitation assay, enzyme immunoassay, and immunofluorescence assay. It will be understood that turbidimetric, colorimetric, and nephelometric techniques can be employed. An immunoassay based on Western Blot technique is preferred.
  • Immunoassays can be carried out by immobilizing one of the immunoreagents, either an antigen of the invention or an antibody of the invention to the antigen, on a carrier surface while retaining immunoreactivity of the reagent.
  • the reciprocal immunoreagent can be unlabeled or labeled in such a manner that immunoreactivity is also retained.
  • enzyme immunoassays such as enzyme linked immunosorbent assay (ELISA) and competitive inhibition enzyme immunoassay (CIEIA).
  • the support is usually a glass or plastic material.
  • Plastic materials molded in the form of plates, tubes, beads, or disks are preferred. Examples of suitable plastic materials are polystyrene and polyvinyl chloride.
  • a carrier material can be interposed between the reagent and the support. Examples of suitable carrier materials are proteins, such as bovine serum albumin, or chemical reagents, such as gluteraldehyde or urea. Coating of the solid phase can be carried out using conventional techniques.
  • the invention provides immunogenic M. tuberculosis and M. leprae marker polypeptides, and more particularly, protective polypeptides for use in the preparation of vaccine compositions against a mycobacterium.
  • These polypeptides can thus be employed as viral vaccines by administering the polypeptides to a mammal susceptible to a mycobacteria infection.
  • Conventional modes of administration can be employed. For example, administration can be carried out by oral, respiratory, or parenteral routes. Intradermal, subcutaneous, and intramuscular routes of administration are preferred when the vaccine is administered parenterally.
  • the major purpose of the immune response in a mycobacteria-infected mammal is to inactivate the free mycobacteria and to eliminate mycobacteria infected cells that have the potential to release infectious mycobacteria.
  • the B-cell arm of the immune response has some responsibility for inactivating free mycobacteria. The principal manner in which this is achieved is by neutralization of infectivity.
  • Another major mechanism for destruction of the a mycobacteria-infected cells is provided by cytotoxic T lymphocytes (CTL) that recognize M. tuberculosis and M. leprae marker antigens expressed in combination with class I histocompatibility antigens at the cell surface.
  • CTLs recognize M. tuberculosis and M.
  • this invention can be employed to stimulate a B-cell response to M. tuberculosis and M. leprae marker polypeptides, as well as immunity mediated by a CTL response following infection.
  • the CTL response can play an important role in mediating recovery from primary mycobacterial infection and in accelerating recovery during subsequent infections.
  • the ability of the M. tuberculosis and M. leprae marker polypeptides and vaccines of the invention to induce protective levels of neutralizing antibody in a host can be enhanced by emulsification with an adjuvant, incorporating in a liposome, coupling to a suitable carrier, or by combinations of these techniques.
  • the M. tuberculosis and M. leprae marker polypeptides of the invention can be administered with a conventional adjuvant, such as aluminum phosphate and aluminum hydroxide gel, in an amount sufficient to potentiate humoral or cell-mediated immune responses in the host.
  • the M. tuberculosis and M. leprae marker polypeptides can be bound to lipid membranes or incorporated in lipid membranes to form liposomes. The use of nonpyrogenic lipids free of nucleic acids and other extraneous matter can be employed for this purpose.
  • the immunization schedule will depend upon several factors, such as the susceptibility of the host to infection and the age of the host.
  • a single dose of the vaccine of the invention can be administered to the host or a primary course of immunization can be followed in which several doses at intervals of time are administered. Subsequent doses used as boosters can be administered as needed following the primary course.
  • the M. tuberculosis and M. leprae marker polypeptides and vaccines of the invention can be administered to the host in an amount sufficient to prevent or inhibit a mycobacteria infection or replication in vivo. In any event, the amount administered should be at least sufficient to protect the host against substantial immunosuppression, even though a mycobacterial infection may not be entirely prevented.
  • An immunogenic response can be obtained by administering the polypeptides of the invention to the host in an amount of about 10 to about 500 micrograms antigen per kilogram of body weight, preferably about 50 to about 100 micrograms antigen per kilogram of body weight.
  • the polypeptides and vaccines of the invention can be administered together with a physiologically acceptable carrier. For example, a diluent, such as water or a saline solution, can be employed.
  • Another aspect of the invention provides a method of DNA vaccination.
  • the method also includes administering any combination of the nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides, with or without carrier molecules, to an individual.
  • the individual is an animal, and is preferably a mammal. More preferably, the mammal is selected from the group consisting of a human, a dog, a cat, a bovine, a pig, and a horse. In an especially preferred embodiment, the mammal is a human.
  • the methods of treating include administering immunogenic compositions comprising M. tuberculosis and M. leprae marker polypeptides, but compositions comprising nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides as well.
  • nucleic acid vaccines e.g., DNA vaccines
  • nucleic acid vaccine technology as well as protein and polypeptide based technologies.
  • the nucleic acid based technology allows the administration of nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides, naked or encapsulated, directly to tissues and cells without the need for production of encoded proteins prior to administration.
  • nucleic acid vaccine technology includes, but is not limited to, delivery of naked DNA and RNA and delivery of expression vectors encoding M. tuberculosis and M. leprae marker polypeptides.
  • vaccine it is equally applicable to immunogenic compositions that do not result in a protective response. Such non-protection inducing compositions and methods are encompassed within the present invention.
  • nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides and carrier molecules are included within the scope of the invention.
  • kits capable of diagnosing mycobacteria infection contains the DNA sequences of this invention, which are capable of hybridizing to RNA or analogous DNA sequences to indicate the presence of a mycobacteria infection.
  • Different diagnostic techniques can be used which include, but are not limited to: (I) Southern blot procedures to identify cellular DNA which may or may not be digested with restriction enzymes; (2) Northern blot techniques to identify RNA extracted from cells; and (3) dot blot techniques, i.e., direct filtration of the sample through an ad hoc membrane, such as nitrocellulose or nylon, without previous separation on agarose gel.
  • Suitable material for dot blot technique could be obtained from body fluids including, but not limited to, serum and plasma, supernatants from culture cells, or cytoplasmic extracts obtained after cell lysis and removal of membranes and nuclei of the cells by centrifugation.
  • the invention also provides screening assays for identifying agents that modulate (e.g. augment or inhibit) the activity of M. tuberculosis and M. leprae marker polypeptides.
  • agents that modulate e.g. augment or inhibit
  • Assays for detecting the ability of agents to inhibit or augment the activity of M. tuberculosis and M. leprae marker polypeptides provide for facile high-throughput screening of agent banks (e.g., compound libraries, peptide libraries, and the like) to identify antagonists or agonists of these marker polypeptides.
  • agent banks e.g., compound libraries, peptide libraries, and the like
  • Such M. tuberculosis and M. leprae marker polypeptide antagonists and agonists may modulate marker polypeptide activity and thereby modulate, inhibit, or even prevent infection of a host by M. tuberculosis and M. leprae
  • yeast comprising (1) an expression cassette encoding a GAL4 DNA binding domain (or GAL4 activator domain) fused to a binding fragment of M. tuberculosis or M. leprae marker polypeptide, (2) an expression cassette encoding a GAL4 DNA activator domain (or GAL4 binding domain, respectively) fused to a binding fragment of a test polypeptide, and (3) a reporter gene (e.g., ⁇ -galactosidase) comprising a cis-linked GAL4 transcriptional response element can be used for agent screening.
  • a reporter gene e.g., ⁇ -galactosidase
  • Such yeast are incubated, and expression of the reporter gene (e.g., ⁇ -galactosidase) is determined by the capacity of the agent to affect expression of the reporter gene and thereby identify the test polypeptide as a candidate modulatory agent for M. tuberculosis or M. leprae marker polypeptides.
  • the reporter gene e.g., ⁇ -galactosidase
  • Yeast two-hybrid systems can be used to screen a mammalian (typically human) cDNA expression library, wherein cDNA is fused to a GAL4 DNA binding domain or activator domain, and either a M. tuberculosis or M. leprae marker polypeptide sequence is fused to a GAL4 activator domain or DNA binding domain, respectively.
  • a yeast two-hybrid system can screen for cDNAs that encode proteins that interact with M. tuberculosis or M. leprae marker polypeptides.
  • Polypeptides that interact with M. tuberculosis or M. leprae marker polypeptides can also be identified by immunoprecipitation of M. tuberculosis or M. leprae marker polypeptides with antibody, and identification of co-precipitating species. Further, polypeptides that interact with M. tuberculosis or M. leprae marker polypeptides can be identified by screening a peptide library (e.g., a bacteriophage peptide display library) with a M. tuberculosis or M. leprae marker polypeptide.
  • a peptide library e.g., a bacteriophage peptide display library
  • Additional embodiments of the invention are directed to methods that employ specific antisense polynucleotides complementary to all or part of M. tuberculosis or M. leprae marker nucleic acids.
  • Such complementary antisense polynucleotides may include nucleotide substitutions, additions, deletions, or transpositions, so long as specific hybridization to the relevant target sequence corresponding to M. tuberculosis or M. leprae marker nucleic acids is retained as a functional property of the polynucleotide.
  • Complementary antisense polynucleotides include soluble antisense RNA or DNA oligonucleotides that can hybridize specifically to M. tuberculosis and M.
  • leprae marker nucleic acid species and prevent transcription of the mRNA species and/or translation of the encoded polypeptide. See (Ching et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:10006; Broder et al. (1990) Ann. Int. Med. 113:604; Loreau et al. (1990) FEBS Letters 274:53; Holcenberg et al., WO91/11535; U.S. Ser. No. 07/530,165; WO91/09865; WO91/04753; WO90/13641; and EP 386563).
  • the antisense polynucleotides therefore, inhibit production of M.
  • Antisense polynucleotides that prevent transcription and/or translation of mRNA corresponding to M. tuberculosis or M. leprae marker polypeptides may inhibit or prevent infection by M. tuberculosis or M. leprae .
  • Antisense polynucleotides of various lengths may be produced, although such antisense polynucleotides typically comprise a sequence of about at least 25 consecutive nucleotides, which are substantially identical to a naturally-occurring M. tuberculosis or M. leprae marker nucleic acids, and typically are identical to a M. tuberculosis or M. leprae marker nucleic acid.
  • Antisense RNA and DNA (1988) D.A. Melton, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
  • Polypeptides with similar sequence should have similar function.
  • the functions of M. tuberculosis and M. leprae marker polypeptides can be assessed by a database search.
  • One method by which structural and functional domains can be identified is by comparison of the nucleotide and/or amino acid sequence data for M. tuberculosis and M. leprae marker polypeptides, or M. tuberculosis or M. leprae marker nucleic acids, to public or proprietary sequence databases.
  • computerized comparison methods are used to identify sequence motifs or predict polypeptide conformation domains that occur in other polypeptides of known structure and/or function. For example, methods to identify protein sequences that fold into a known three-dimensional structure are known (Bowie et al. (1991) Science 253:164).
  • the programs GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package can be used to identify sequences in databases, such as GenBank/EMBL, that have regions of homology with M. tuberculosis or M. leprae marker polypeptides or M. tuberculosis or M. leprae marker nucleic acids. Such homologous regions are candidate structural or functional domains. Alternatively, other algorithms are provided for identifying such domains from sequence data. Further, network methods, whether implemented in hardware or software, can be used to: (1) identify related protein sequences and nucleotide sequences, and (2) define structural or functional domains in M. tuberculosis and M. leprae marker polypeptides.
  • Proteins can contain signals within their sequence which assist in their processing within the cell, for example leader sequences or signals which target proteins to specific compartments within cells. Web resources are available to help predict both these types of sites. Different regions of a polypeptide evolve at different rates; some parts of a polypeptide must retain a certain pattern of residues for the polypeptide to function. By identifying such conserved regions, it is possible to make predictions about the polypeptide function. Examples of conserved sequences can be found around the active sites of enzymes, sites of post-translational modification, binding sites for co-factors, protein sorting signals, etc. A number of bioinformatics resources have been developed both to build databases of conserved patterns and to search for instances of such patterns in sequences. One of the best known motif databases is PROSITE, which can be employed in this invention.
  • the whole genome sequence was obtained from a combination of sequenced cosmids 45 and 54,000 end sequences (giving 7.1 ⁇ coverage) from a pUC18 genomic shotgun library using dye terminator chemistry on ABI373 or 377 automated sequencers
  • the sequences of 42 cosmids previously generated by multiplex sequencing46 were used for scaffolding purposes only.
  • the sequence was assembled using Phrap (P. Green, unpublished), finished using GAP4 47 then compared with sequences present in public databases using FASTA, BLASTN and BLASTX 48 .
  • Potential CDS were predicted, and gene and protein sequences analysed as described previously 8, 49 , using Artemis 50 to collate data and facilitate annotation.
  • tuberculosis H37Rv were compared pairwise to identify conserved genes using the Artemis Comparison Tool (ACT) (K. Rutherford; unpublished; http://www.sanger.ac.uk/Software/ACT/). Pseudogenes had one or more mutations that would ablate expression and were pinpointed by direct comparison with M. tuberculosis
  • Preproteins transported by the TAT pathway generally bind redox cofactors and fold or oligomerize before crossing the membrane 54, 62 . After removal of the signal peptide, these proteins usually function in extracytoplasmic electron transfer chains.
  • the specialized machinery that recognizes the twin-arginine motif, and translocates the preprotein across the membrane, is composed of several different Tat proteins. In Escherichia coli, TatA and TatE are 50% identical and share weak similarity with TatB.
  • TatC protein is predicted to be an integral membrane protein with six transmembrane segments. M. tuberculosis and M. leprae both contain clearly identifiable tatA, tatB, tatC, and tatD genes and must, therefore, produce a functional Tat system.
  • leprae in the face of massive gene loss, is a strong indication that it must play an important biological role. Given the many parallels with Tat systems elsewhere, it is likely to be in electron transport. These indirect arguments suggest on the one hand that, if this function were essential, the ML1190/Rv2525c gene product might represent a novel drug target or, on the other, since it is likely to be located extracellularly it may, therefore, be an important sentinel protein antigen.
  • the Mycobacterium tuberculosis strain HRV37 genomic library has been deposited at the Collection Nationale de Cultures de Microorganismes (C.N.C.M.), of Institut Pasteur, 28, rue du Dondel Roux, F-75724 Paris, Cedex 15, France, on Nov. 19, 1997, under the Accession Number I-1945.
  • This genomic DNA library is disclosed in International patent application No. WO 9954487 (Institut Pasteur).
  • Leprosy a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae , a close relative of the tubercle bacillus.
  • M. leprae has the longest doubling time of all known bacteria and has thwarted every effort at axenic culture.
  • Comparison of the 3.27 Mb genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes while pseudogenes, with intact counterparts in M. tuberculosis, abound.
  • Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences.
  • Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative, and all of the microaerophilic and anaerobic respiratory chains, together with numerous catabolic systems and their regulatory circuits.
  • tuberculosis proteins that are potential targets for the diagnosis, prophylaxis or treatment of mycobacterioses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention is directed to a method of selection of purified nucleotidic sequences or polynucleotides encoding proteins or part of proteins carrying at least an essential function for the survival or the virulence of mycobacterium species by a comparative genomic analysis of the sequence of the genome of M. tuberculosis aligned on the genome sequence of M. leprae and M. tuberculosis and M. leprae marker polypeptides of nucleotides encoding the polypeptides, and methods for using the nucleotides and the encoded polypeptides are disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based on and claims the benefit of U.S. Provisional application Ser. No. 60/270,123, filed Feb. 22, 2001 (attorney docket no. 03495.6061) The entire disclosure of this application is relied upon and incorporated by reference herein.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention is directed to a method of selection of purified nucleotidic sequences or polynucleotides encoding proteins or part of proteins carrying at least an essential function for the survival or the virulence of mycobacterium species by a comparative genomic analysis of the sequence of the genome of [0002] M. tuberculosis aligned on the genome sequence of M. leprae. The selection by the method of the invention of these nucleotidic or peptidic sequences of interest which are encoding said essential functions of mycobacterium leads to identify and characterize specific antigens or regulator sequences, said antigens being chosen as potential candidates for an immunogenic or vaccine composition, but also useful to determine novel potential drug targets for the pharmaceutical industry. The molecules having essential functions encoded by these genes or corresponding to regulatory elements represent also new highly specific targets for chemotherapy. The sequence of the polynucleotides according to the invention have the particularity to be maintained during the evolution of the mycobacterium and therefore have been highly conserved in pathogenic mycobacterium species. The invention is directed to purified nucleic acid selected by the method of the invention as well as the purified polypeptides with essential functions for the survival or the virulence of mycobacterium species encoded by these sequences. In a preferred embodiment, the invention is directed to genes that code for essential proteins for which the functions have been attributed. The invention is also directed to a process for the production of recombinant polypeptides and chimeric polypeptides comprising them, antibodies generated against these polypeptides, immunogenic or vaccine compositions comprising at least one polypeptide useful as protective antigens or capable to induce a protective response in vivo or in vitro against mycobacterium infections, immunotherapeutic compositions comprising at least such a polypeptide according to the invention, and the use of such nucleic acids and polypeptides in diagnostic methods, vaccines, kits, or antimicrobial therapy.
  • To illustrate the new approach of comparative mycobacterial genomics for identifying essential molecules as regulator nucleotidic sequences and proteins for the survival or the virulence of mycobacterium species, the inventors made several examples which will not limit the scope of the present invention. A comparative genomic analysis, which permitted the inventors to select the sequences encoding essential molecules as regulatory nucleotidic sequences and proteins for the survival or the virulence of mycobacterium species, has been made by analysis of the complete genome sequence of both [0003] Mycobacterium tuberculosis and Mycobacterium leprae. The whole genome comparisons led also to the identification of genes that are present in both M. tuberculosis and M. leprae but have no counterparts elsewhere. The polypeptides having essential functions for the survival or the virulence mycobacterium species are characterized by at least 40% identity at the protein level and at least 70% identity at the gene level between both genomic sequences. The amino acid sequences have been compared using the program GAP, “GCG” (Genetic Computer Group) from Program Manual (UNIX), Wisconsin Sequence Analysis Package™, Algorithm of Needleman and Wunsch. (J.Mol.Biol.48:443, 1970) The parameters are chosen as follows:
  • For amino acid comparisons: [0004]
  • Gap penalty: 5 [0005]
  • Gap extension penalty: 0.30 [0006]
  • Length: the sequence to be compared are the following XXX SED ID NO:XXX and having XXX amino acids. [0007]
  • For nucleotide comparisons: [0008]
  • Gap penalty: 50 [0009]
  • Gap extension penalty: 3 [0010]
  • Also the parameters could be adapted case by case. [0011]
  • Other techniques are known by the man of the art for the comparison of sequences. We can refer to the algorithm of Smith and Wateman (Ad. App. Math. 2: 482, 1982), the method of search of similarities of Pearson and Lipman (Proc. NatI. Acad. Sci. USA 85: 2444, 1988), Zhang et al. “a greedy algorithm for aligning DNA sequences” (J. Comp. Biol. 2000, Feb-Apr. 7 (1-2) p203-214), these algorithms are used by the way of informatic tools (GAP, BLASTP, BLASTN, BLASTX, BESTFIT, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Sciences Dr., Madison Wis.). [0012]
  • The recombinant clones carrying DNA from [0013] Mycobacterium tuberculosis and Mycobacterium leprae strains containing genomic sequences of said bacteria, have been deposited at the Collection Nationale de Cultures de Microoganismes (C.N.C.M.), of Institut Pasteur, 28, rue du Docteur Roux, F-75724 Paris cedex 15, France, and are designated as following.
  • HRV37 genomic library, deposited on Nov. 19, 1997 . . . under the accession number I-1945; [0014]
  • A recombinant BAC containing a fragment of [0015] M. tuberculosis genome deposited at the C.N.C.M. under the accession number I-2625.
  • A recombinant BAC containing a fragment of [0016] M. tuberculosis genome deposited on Feb. 20, 2001, at the C.N.C.M. under the accession number I-2626.
  • A recombinant BAC containing a fragment of [0017] M. tuberculosis genome deposited on Feb. 20, 2001, at the C.N.C.M. under the accession number I-2627.
  • A recombinant BAC containing a fragment of [0018] M. tuberculosis genome deposited on Feb. 20, 2001, at the C.N.C.M. under the accession number I-2628.
  • A recombinant BAC containing a fragment of [0019] M. tuberculosis genome deposited on Feb. 20, 2001, at the C.N.C.M. under the accession number I-2629.
  • A recombinant cosmid containing a fragment of [0020] M. leprae genome deposited on Feb. 21, 2001, at the C.N.C.M. under the accession number I-2632.
  • A recombinant cosmid containing a fragment of [0021] M. leprae genome deposited on Feb. 21, 2001, at the C.N.C.M. under the accession number I-2633.
  • Leprosy, one of the oldest recorded diseases, remains a major public health problem. Although prevalence has been reduced extensively by WHO multidrug therapy and vaccination with BCG1,2, the incidence of the disease remains worrying with more than 690,000 new cases annually3 in the world. Leprosy was common in Europe in the middle ages but gradually disappeared. [0022]
  • In 1873, in the first convincing association of a microorganism with a human disease, Armauer Hansen4 discovered the leprosy bacillus in skin biopsies but failed to culture [0023] Mycobacterium leprae. A century later, the nine-banded armadillo5 was used as a surrogate host, enabling large quantities of the bacillus to be isolated for biochemical and physiological studies. Subsequent efforts to demonstrate multiplication in synthetic media have been equally fruitless altough metabolic activity can be detected6. The exceptionally slow growth of the bacillus, which has a doubling time of ˜14 days 7, may contribute to these failures.
  • The means of transmission of leprosy is uncertain but, like tuberculosis, it is believed to be spread by the respiratory route since lepromatous patients harbour bacilli in their nasal passages. The bacterium accumulates principally in the extremities of the body where it resides with macrophages and infects the Schwann cells of the peripheral nervous system. Lack of myelin production by infected Schwann cells, and their desctruction by host-mediated immune reactions, leads to nerve damage, sensory loss and the disfiguration that, sadly, are hallmarks of leprosy. [0024]
  • There is no data or technical information in the prior art which permit to select specifically potential new targets and protective antigens for new drugs and vaccine compositions to treat and prevent mycobacterial diseases, particularly tuberculosis and leprosy. Furthermore, there is a need for the development of new tools for the selection of genes which are encoding for essential proteins or regulatory nucleotidic sequences in the survival or infection of mycobacterium species and useful for the design of antituberculosis drugs and vaccines based on the knowledge of comparative mycobactertial genomics. [0025]
  • SUMMARY OF THE INVENTION
  • The invention aids in fulfilling these needs in the art. The method according to the invention has the advantage to reduce drastically the number of potential new targets and protective antigens by giving for the first time an exhaustive description of conserved proteins in the [0026] tuberculosis and leprae bacilli. The isolated polynucleotides and proteins described in the present invention, which are highly conserved in both genomic sequences of M. tuberculosis and M. leprae, are by this characteristic essential for the survival or the virulence of these mycobacteria in the host. The identification of antigens and potentially therapeutic targets has been made on an evolutionary basis by a method of comparative genomic analysis.
  • This invention provides a method for the identification and the selection of essential genes for the survival or the virulence of mycobacterium species which comprises: [0027]
  • a. Aligning the genomic sequence of a first mycobacterium species on a genomic sequence of the genomic sequence of a second mycobacterium species, [0028]
  • b. Selecting a polypolynucleotide sequence highly conserved in both genomes with no counterparts in other bacterial genomic sequences and which corresponds to an essential gene for the survival or the virulence of mycobacterium species, and [0029]
  • c. Optionaly, testing the polypolynucleotide selected in step b) for its capacity of virulence or involved in the survival of a mycobacterium species, said testing being based on the activation or inactivation of said polyucleotide in a bacterial host or said testing being based on the activity of the product of expression of said polynucleotide in vivo or in vitro. [0030]
  • This invention provides also a method for the identification and the selection in silico of essential genes for the survival or the virulence of mycobacterium species which comprises the following steps: [0031]
  • a. Aligning the genomic sequence of a first mycobacterium specie on a genomic sequence of the genomic sequence of a second mycobacterium specie, and [0032]
  • b. Selecting a polynucleotide sequence highly conserved in both genomes with no counterparts in other bacterial genomic sequences and which corresponds to an essential gene for the survival or the virulence of mycobacterium species. [0033]
  • Optionally, testing the polypolynucleotide selected in step b) for its capacity of virulence or involved in the survival of a mycobacterium species can be carried out, said testing being based on the activation or inactivation of said polynucleotide in a bacterial host or said testing being based on the activity of the product of expression of said polynucleotide in vivo or in vitro. [0034]
  • The method according to the invention permits also to determine the polynucleotidic sequences, which encode for polypeptides and regulatory sequences essential for the virulence and/or the survival of mycobacterium which are, in one hand, specific to [0035] Mycobacterium tuberculosis and, in the other hand, specific to Mycobacterium leprae, that is to say, said polynucleotidic sequences are not found in publicly accessible banks of non-Mycobacterium tuberculosis and non-Mycobacterium leprae genome.
  • A gene according to the invention is a defined nucleotidic sequence, which contains an open reading frame with base composition, codon usage, GC skew and other features typical of a microorganism, preferably a mycobacterium. The definition of gene according to the invention comprises nucleotidic sequences, which encode an antigen or a fragment thereof, or nucleotidic sequences, which encode for essential polypeptide with essential function in the host, or nucleotidic sequence, which encodes polypeptide with regulation function in the bacteria, by example, in the DNA expression or in the transcription. An essential function for a polypeptide in bacteria according to the invention comprises functions implicated in the survival or in the virulence of the bacteria. [0036]
  • In a preferred embodiment the first genomic sequence of mycobacterium belongs to [0037] Mycobacterium tuberculosis. The Mycobacterium microti is a Mycobacterium which infect the vole. It has a genome sequence close to the sequence of Mycobacterium tuberculosis (Cole et al. (1998, Nature, 393, 537-544)) and therefore in a second preferred embodiment, the first genomic sequence of Mycobacterium microti belongs to Mycobacterium genus.
  • In another preferred embodiment the second genomic sequence of mycobacterium belongs to [0038] Mycobacterium leprae.
  • In a preferred embodiment, the method according to the invention comprises the complete genomic sequence of said mycobacterium species which is analysed. This invention provides purified polypolynucleotide molecule obtained by the method according to the invention. [0039]
  • Further, this invention provides a purified polynucleotide molecule according to the invention which encodes essential proteins or fragments of proteins of Mycobacterium species. [0040]
  • The invention also encompasses a purified polynucleotide molecule of a formula selected from the group consisting of polynucleotidic sequences, which encode for polypeptides and regulatory sequences essential for the virulence and/or the survival of mycobacterium which are, in one hand, specific to [0041] Mycobacterium tuberculosis and, in the other hand, specific to Mycobacterium leprae, that is to say, said polynucleotidic sequences are not found in publicly accessible banks of non-Mycobacterium tuberculosis and non-Mycobacterium leprae genome. In a preferred embodiment, this purified polynucleotide is obtained by the method according to the invention.
  • The invention emcompasses a purified polypolynucleotide molecule that hybridizes to either stand of a denatured, double-stranded DNA comprising the purified polynucleotide sequence according to the invention under conditions of moderate stringency in 50% formamide and 6× SSC at 42° C. with washing conditions of 60° C., 0.5×SSC, 0.1% SDS. [0042]
  • This invention provides a purified polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 644. [0043]
  • This invention also provides a purified nucleic acid molecule encoding a polypeptide of a formula selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:644. [0044]
  • The nucleic acid molecules of the invention, which include DNA and RNA, are referred to herein as “[0045] M. tuberculosis and M. leprae marker nucleic acids” or “M. tuberculosis and M. leprae marker DNA”. The polypeptides encoded by these molecules, which are referred to herein as “M. tuberculosis and M. leprae marker polypeptides,” have formulas selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:644.
  • Further, this invention provides a purified nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid molecule encoding the polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644 under conditions of moderate stringency in 50% formamide and 6× SSC, at 42° C. with washing conditions of 60° C., 0.5×SSC, 0.1% SDS. This nucleic acid molecule that hybridizes under the stated conditions can be derived by in vitro mutagenesis of a [0046] M. tuberculosis and M. leprae marker nucleic acid of the invention.
  • The invention also encompasses purified nucleic acid molecules degenerate from [0047] M. tuberculosis and M. leprae marker nucleic acids as a result of the genetic code, purified nucleic acid molecules that are allelic variants of M. tuberculosis and M. leprae marker nucleic acids, and a species homolog of M. tuberculosis and M. leprae marker nucleic acids. The invention also encompasses recombinant vectors that direct the expression of these nucleic acid molecules and host cells transformed or transfected with these vectors.
  • The invention further encompasses methods for the production of [0048] M. tuberculosis and M. leprae marker polypeptides, including culturing a host cell under conditions promoting expression, and recovering the polypeptide from the culture medium. Especially, the expression of M. tuberculosis and M. leprae marker polypeptides in bacteria, yeast, plant, and animal cells is encompassed by the invention.
  • This invention also provides labeled [0049] M. tuberculosis and M. leprae marker polypeptides. Preferably, the labeled polypeptides are in purified form. It is also preferred that the unlabeled or labeled polypeptide is capable of being immunologically recognized by human body fluid containing antibodies to a mycobacterium. The polypeptides can be labeled, for example, with an immunoassay label selected from the group consisting of radioactive, enzymatic, fluorescent, chemiluminescent labels, and chromophores.
  • Immunological complexes between the [0050] M. tuberculosis and M. leprae marker polypeptides of the invention and antibodies recognizing the polypeptides are also provided. The immunological complexes can be labeled with an immunoassay label selected from the group consisting of radioactive, enzymatic, fluorescent, chemiluminescent labels, and chromophores.
  • Furthermore, this invention provides a method for detecting infection by mycobacteria. The method comprises providing a composition comprising a biological material suspected of being infected with a mycobacteria, and assaying for the presence of [0051] M. tuberculosis and M. leprae marker polypeptide of the mycobacteria. The polypeptides are typically assayed by electrophoresis or by immunoassay with antibodies that are immunologically reactive with M. tuberculosis and M. leprae marker polypeptides of the invention.
  • This invention also provides an in vitro diagnostic method for the detection of the presence or absence of antibodies, which bind to an antigen comprising a [0052] M. tuberculosis and M. leprae marker polypeptide of the invention or mixtures of the polypeptides. The method comprises contacting the antigen with a biological fluid for a time and under conditions sufficient for the antigen and antibodies in the biological fluid to form an antigen-antibody complex, and then detecting the formation of the complex. The detection step can further comprise measuring the formation of the antigen-antibody complex. The formation of the antigen-antibody complex is preferably measured by immunoassay based on Western blot technique, ELISA (enzyme linked immunosorbent assay), indirect immunofluorescent assay, or immunoprecipitation assay.
  • The polypeptides of this invention are thus useful as a portion of a diagnostic composition for detecting the presence of antibodies to antigenic proteins associated with mycobacteria. Thus, a diagnostic kit for the detection of the presence or absence of antibodies, which bind to the [0053] M. tuberculosis and M. leprae marker polypeptide of the invention or mixtures of the polypeptides, contains antigen comprising the M. tuberculosis and M. leprae marker polypeptide, or mixtures thereof, and means for detecting the formation of immune complex between the antigen and antibodies. The antigens and the means are present in an amount sufficient to perform the detection.
  • This invention also provides an immunogenic composition comprising a [0054] M. tuberculosis and M. leprae marker polypeptide of the invention or a mixture thereof in an amount sufficient to induce an immunogenic or protective response in vivo, in association with a pharmaceutically acceptable carrier therefor. A vaccine composition of the invention comprises a neutralizing amount of the M. tuberculosis and M. leprae marker polypeptide and a pharmaceutically acceptable carrier therefor.
  • In addition, the [0055] M. tuberculosis and M. leprae marker polypeptides can be used to raise antibodies for detecting the presence of antigenic proteins associated with a mycobacterium. Purified polyclonal or monoclonal antibodies that bind to M. tuberculosis and M. leprae marker polypeptides are encompassed by the invention.
  • The polypeptides of the invention can be also employed to raise neutralizing antibodies that either inactivate the mycobacteria, reduce the viability of a mycobacterium in vivo, or inhibit or prevent bacterial replication. The ability to elicit mycobacteria-neutralizing antibodies is especially important when the proteins and polypeptides of the invention are used in immunizing or vaccinating compositions to activate the B-cell arm of the immune response or induce a cytotoxic T lymphocyte response (CTL) in the recipient host, or other T cell mediated response. [0056]
  • Further, this invention provides a method for detecting the presence or absence of a mycobacterium comprising: [0057]
  • (1) contacting a sample suspected of containing bacterial genetic material of a mycobacterium with at least one nucleotide probe, and [0058]
  • (2) detecting hybridization between the nucleotide probe and the bacterial genetic material in the sample, [0059]
  • wherein said nucleotide probe is complementary to the full-length sequence of a purified [0060] M. tuberculosis and M. leprae marker nucleic acid of the invention.
  • Also, this invention provides a method of comparing genetic complements of different types of organisms, wherein the method comprises: [0061]
  • (a) providing a database including sequence libraries for a plurality of types of organisms, said libraries having multiple genomic sequences; [0062]
  • (b) providing one or more probe sequences encoding a polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644; [0063]
  • (c) determining homologous matches between one or more of said probe sequences and one or more sequences of said sequences in said genomic libraries; and [0064]
  • (d) displaying the results of said determination. [0065]
  • The method can be carried out using a computer system comprising a database including sequence libraries for a plurality of types of organisms, wherein the libraries have multiple genomic sequences, and providing a database including the one or more probe sequences encoding a polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644. The computer system includes a user interface capable of receiving sequence information from the sequence libraries and the probe sequence information for comparison and displaying the results of the comparison. [0066]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee. This invention will be described with reference to the drawings in which: [0067]
  • FIG. 1 is a circular genome map. From the outside, circles [0068] 1, 2, clockwise and anticlockwise, genes on the − and + strands, respectively; circles 3 and 4, pseudogenes; 5 and 6, M. leprae specific genes; 7, repeat sequences; 8, G+C content; 9, G/C bias (G+C)/(G−C). See legend to FIG. 2 for colour code.
  • FIG. 2 is a comparison of the proS loci of [0069] M. leprae and M. tuberculosis . A. The M. leprae proS region is shown above that of M. tuberculosis. Genes or operons are depicted by arrows while crosses denote pseudogenes. Note the absence of ugpAEBC and dinF from M. leprae and the presence of proS at this site. B. Domain structures of prolyl-tRNA synthetases of bacterial (M. tuberculosis ) or eukaryotic (M. leprae ) types after19.
  • FIG. 3 shows distribution of genes by functional category. The number of complete (blue) and pseudogenes (red) within each category for [0070] M. leprae is shown. Data for M. tuberculosis (green) were taken from the published genome sequence8. Functional categories: 1. Small-molecule catabolism, 2. Energy Metabolism, 3. Central intermediary metabolism, 4. Amino acid biosynthesis, 5. Nucleosides and nucleotide biosynthesis and metabolism, 6. Biosynthesis of cofactors, prosthetic groups and carriers, 7. Lipid biosynthesis, 8. Polyketide and nonribosomal peptide synthesis, 9. Proteins performing regulatory functions, 10. Synthesis and modification of macromolecules, 11. Degradation of macromolecules, 12. Cell envelope constituents, 13. Transport/binding proteins, 14. Chaperones/Heat shock proteins, 15. Cell division proteins, 16. Protein and peptide secretion, 17. Adaptations and atypical conditions, 18. Detoxification, 19. Virulence determinants, 20. IS elements and phage derived proteins, 21. PE and PPE families, 22. Antibiotic production and resistance, 23. Cytochrome P450 enzymes, 24. Coenzyme F420-dependent enzymes, 25. Miscellaneous transferases, 26. Miscellaneous phosphatases, lyases and hydrolases, 27. Cyclases, and 28. Chelatases. Inset graph: The Y axis shows the number of genes within each functional category. The X axis shows the functional categories: 29. Conserved hypothetical proteins, 30. Hypothetical proteins which share no significant similarity with any protein currently in the databases.
  • FIG. 4: Polynucleotidic sequence of the [0071] Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv221, deposited at the C.N.C.M. under the accession number I-2625, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 2,115,612 and extends to position 2,198,604 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 5: Polynucleotidic sequence of the [0072] Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv230, deposited at the C.N.C.M. under the accession number I-2626, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 1,336,764 and extends to position 1,411,979 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 6: Polynucleotidic sequence of the [0073] Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv234, deposited at the C.N.C.M. under the accession number I-2627, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 2,847,864 and extends to position 2,928,420 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 7: Polynucleotidic sequence of the [0074] Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv265, deposited at the C.N.C.M. under the accession number I-2628, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 514,402 and extends to position 599,515 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 8: Polynucleotidic sequence of the [0075] Mycobacterium tuberculosis H37Rv BAC clone, BAC-Rv267, deposited at the C.N.C.M. under the accession number I-2629, which corresponds to pBelo BACII with HindIII partial digest fragment from the genome of M. tuberculosis H37 Rv that starts at position 1,124,621 and extends to position 1,169,811 according to Cole et al. (1998, Nature, 393, 537-544). All of the M. tuberculosis genes contained herein are of interest.
  • FIG. 9: Polynucleotidic sequence of the [0076] Mycobacterium leprae cosmid which corresponds to pYUB18 with Sau3A partial digest fragment from the genome of M. leprae that starts at position 1,373,705 and extends to position 1,403,746. This sequence comprises the sequence of the Mycobacterium leprae cosmid MLCY 811 which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae deposited at the C.N.C.M. under the accession number I-2633 that starts at position 1,363,759 and extends to position 1,403,737 according to Cole et al. (2001, Nature, 409, 1007-1011).
  • FIG. 10: Polynucleotidic sequence of the [0077] Mycobacterium leprae cosmid which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae that starts at position 3,160,443 and extends to position 3,194,161. This sequence comprises the sequence of the Mycobacterium leprae cosmid MLCY 047 which corresponds to pYUB18 with Sau3A partial digest fragment of the genome of M. leprae deposited at the C.N.C.M. under the accession number I-2632 that starts at position 3,160,458 and extends to position 3,194,087 according to Cole et al. (2001, Nature, 409, 1007-1011).
  • FIG. 4 to [0078] 10 can be found in the APPENDIX hereto.
  • DETAILED DESCRIPTION OF THE INVENTION Sequence Analysis of M. leprae
  • The complete genome sequence of [0079] M. leprae contains 3,268,203 bp, and has an average G+C content of 57.8%. These values are much lower than those reported for the M. tuberculosis genome, comprising ˜4,000 genes, 4,411,529 bp and 65.6% G+C8. On detailed pairwise comparisons of both genome and proteome sequences8, 9, it was immediately apparent that only 49.5% of the genome was occupied by protein-coding genes, while 27% contained recognisable pseudogenes, inactive reading frames with functional counterparts in the tubercle bacillus. The remaining 23.5% of the genome did not appear to be coding, and probably contains gene remnants mutated beyond recognition. The distribution of the 1,114 pseudogenes was essentially random (FIG. 1) and, after their exclusion, 1604 potentially active genes remained, of which 1,439 were common to both pathogens. Among the remaining 165 genes, with no ortholog in M. tuberculosis , were 29 for which functions could be attributed. Many of the 136 residual CDS in M. leprae , showing no similarity to known genes, may also represent pseudogenes as they are shorter than average and occur in regions of low gene density (FIGS. 1).
  • Reductive evolution
  • Assuming that the genome of [0080] M. leprae was once topologically equivalent and similar in size to those of all other mycobacteria (˜4.4 Mb)10-12, then extensive downsizing and rearrangement must have occurred during evolution. Loss of 1.1 Mb would eliminate ˜1100 CDS, and M. leprae would, therefore, be expected to produce 3000 proteins compared to the 4000 predicted in M. tuberculosis. On analysis of the proteome only 391 soluble protein species were detected13, compared to nearly 1800 in M. tuberculosis 14, consistent with there being many pseudogenes. In conclusion, since diverging from the last common mycobacterial ancestor, the leprosy bacillus may have lost >2000 genes.
  • Reductive evolution is documented in obligate intracellular parasites, such as Rickettsia and Chlamydia spp., and in some endosymbionts[0081] 15, as genes become inactivated once their functions are no longer required in highly specialised niches. This process may have naturally defined the minimal gene set for a pathogenic mycobacterium. The most extensive genome degradation reported previously was in Rickettsia prowazekii, the typhus agent, where only 76% of the potential coding capacity was used and 12 pseudogenes identified16. In comparison with M. leprae, the level of gene loss detected was modest, and it is striking that elimination of pseudogenes by deletion lags far behind gene inactivation in both pathogens. Intriguingly, the G+C content of M. leprae genes (60.1%) is higher than that of the pseudogenes (56.5%), and the remainder of the genome (54.5%). The high G+C content of M. leprae, and other mycobacteria, is apparently driven by the codon preference of active genes, while random mutation within non-coding regions results in drift towards a more neutral G+C content, closer to that of the host.
  • Mosaic Organisation and Horizontal Transfer
  • While the precise mechanism behind pseudogene formation in [0082] M. leprae is unclear, loss of dnaQ-mediated proof-reading activities of DNA polymerase III17 may have contributed. By contrast, there is extensive evidence for large scale rearrangements and deletions arising from homologous recombination events. Comparison with M. tuberculosis delineated ˜65 segments that show synteny but differ in their relative order and distribution in the M. leprae genome. Breaks in synteny generally correspond to dispersed repeats, tRNA genes or gene-poor regions. Copies of all three repeats, RLEP, REPLEP, and LEPREP, occur at the junctions of discontinuity suggesting that the mosaic arrangement of the M. leprae genome reflects multiple recombination events between related repetitive sequences. In some cases, aberrant recombination may have occurred as truncated repeats exist.
  • While there is little sequence similarity indicating that they are insertion sequences, RLEP is clearly capable of transposition since it exists within sequences corresponding to known genes. Unlike [0083] M. tuberculosis H37Rv, which contains at least two prophages and 56 intact or truncated IS elements8, 18, M. leprae has only three phage-like genes, all with M. tuberculosis orthologs, and 26 transposase gene fragments. However, some signs of horizontal transfer of genetic material were detected when the aminoacyl-tRNA synthetase genes were examined. With one exception, all of these are more closely related to M. tuberculosis enzymes than to those of any other organism. Surprisingly, prolyl-tRNA synthetase, encoded by proS, is more similar to the enzymes of Borrelia burgdorfieri and eukaryotes such as Drosophila, humans and yeast. It has been proposed that horizontal transfer of tRNA synthetase genes occurs frequently, and that the pathogen B. burgdorferi may have acquired proS from its host19. Comparison of the genetic context provides further support for this hypothesis as the M. leprae proS is both displaced and inverted with respect to the M. tuberculosis genome (FIG. 4), consistent with recent acquisition.
  • Multigene Families
  • Half of the genes (52%) present in [0084] M. tuberculosis arose from gene duplication events leading to extensive functional redundancy9. Many of these are involved in lipid metabolism or belong to the novel PE and PPE families, encoding unusual glycine-rich proteins of repetitive structure and unknown function. The latter are confined to certain mycobacterial species20, and represent sources of genetic and, possibly antigenic, variation8. The corresponding 167 genes are exceptionally GC-rich and occupy >8% of the M. tuberculosis genome21. By contrast, only 9 intact PE and PPE genes were found in M. leprae although 30 pseudogenes were present. No intact members of the PE-PGRS subfamily were found. This reduction partly contributes to the smaller genome size and the lower GC content of M. leprae . Recently, some PE-PGRS proteins were shown to be upregulated in Mycobacterium marinum during granuloma formation in frogs22. However, this effect is probably not mediated directly by the PE-PGRS, as granulomas are a prominent cytological feature of all forms of leprosy. Essentially all of the gene families9 have undergone extensive retraction in M. leprae and now encode “just-enough” activity to permit intracellular growth. Selected examples of this are given in Table 1, whereas the comprehensive comparison presented in FIG. 3 shows that all functional categories have shrunk.
    TABLE 1
    Selected examples of metabolic streamlining.
    M.
    tuberculosis M. leprae M. leprae Function Pathway
    Gene Gene Pseudogene
    gltA1, gltA2, gltA2 citA Citrate synthase Krebs cycle
    cit, 4
    icd1, icd2 icd2 icd1 Isocitrate Krebs cycle
    dehydrogenase
    ic1, aceA aceA ic1 Isocitrate lyase Glyoxy-
    latecycle
    gnd1, gnd2 gnd1 gnd2 6- Pentose
    phosphogluconated phosphate
    ehydrogenase pathway
    pfkA, pjkB pfkA pfkB Phospho- Glycolysis
    fructokinase
    aceE, lpdA, aceE, lpd lpdA, pdhA, Pyruvate, Energy
    pdhA, pdhB, (Rv0462) pdhB, pdhC dehydrogenase metabolism
    pdhC, lpd complex
    (Rv0462)
    lldD1, lldD2 lldD2 lldD1 L-lactate Respiration
    dehydrogenase
    mmaA1, mmaA2, mmaA1, mmaA2, Methyltransferase Mycolic acid
    mmaA3, mmaA4, mmaA4, nmaA3, modification
    cmaA1, cmaA2, cmaA2, umaA2 cmaA1, umaA1
    umaAl, umaA2
    glnA1, glnA2, glnA1, glnA2 glnA3, glnA4 Glutamine Glutamine
    glnA3, glnA4 synthase biosynthesis
    metA, metB, met4, metB, metC Various Methionine
    metC, metE, metE, biosynthesis
    metH, metK, metZ metH, metK,
    metZ
    bfrA, bfrB bfrA bfrB Bacterioferritin Iron storage
    ligA, ligB, ligC ligA ligB DNA ligase DNA metabolism
  • Metabolic clues
  • Successive generations of microbiologists have failed to grow [0085] M. leprae in axenic culture leading to the notion that the bacterium lacks certain biosynthetic pathways. Complete genome comparisons shed new light on this. Lipid metabolism is prominent in the biochemical repertoire of M. leprae but to a lesser extent than in the tubercle bacillus whose cell envelope has a greater diversity of lipids, glycolipids and carbohydrates23.
  • Envelope Biogenesis
  • Mycolic acids, structural components of all mycobacteria, include the alpha mycolates, lacking oxygen functions, and the oxygenated keto- and methoxy- forms. Reappraisal of mycolic acid modification is now possible in the light of the reduced cmaA, mmaA and umaA gene-sets encoding the effector methyltransferases. [0086] M. leprae contains no methoxy-mycolates23, probably due to the loss of the MmaA2 and MmaA3 enzymes that attach the methoxy group in M. tuberculosis 10, 24. However, the mycolic acids do contain cyclopropane functions25 that in M. tuberculosis are introduced by MmaA2 and CmaAI. Since both the mmaA2 and cmaA1 genes have decayed in M. leprae , cyclopropanation must be encoded by one of the related umaA genes. Recently, both umaA2 and cmaA2 were shown to be essential for the cyclopropanation function in M. tuberculosis 26, The same enzymes also catalyse cyclopropanation in M. leprae as their duplicate copies are both inactive (Table 1).
  • Foremost among the outer lipids of the leprosy bacillus is phenolic glycolipid 1 (PGL1), an envelope component not found in [0087] M. tuberculosis 27. PGL1 is derived from phthiocerol-dimycocerosate (PDIM), an esterified compound lipid generated by mycocerosic acid synthase and a type I polyketide synthase (PKS), by addition of three o-methylated deoxy sugars23. However, the genes for the glycosyltransferases, that modify PDIM to produce PGLI, could not be detected despite extensive comparisons. PDIM, a virulence factor in M. tuberculosis, requires the RND protein, MmpL7, for its transport across the cytoplasmic membrane9,28,29. Of the 18 PKS systems identifiable in M. tuberculosis 8, only six were predicted in M. leprae and the number of mmpL genes (often linked to PKS genes) has decreased from 16 to five, presumably because they are no longer required for polyketide or lipid export. Deletion of such systems may be reflected in the lack of mycolipenic and hydroxylipenic acids, polyketides esterified to trehalose in M. tuberculosis. Further PKS missing from M. leprae include the mbt operon required for production of the salicylate-based mycobactin siderophores. Lipids, polyketides and aromatic compounds are often substrates, for cytochrome-P450 monooxygenases30, enzymes that are exceptionally abundant in M. tuberculosis 8. Astonishingly, none of these is functional in M. leprae although a novel enzyme is predicted.
  • Lipolysis
  • Intracellular mycobacteria probably derive much of their energy from degradation of host-derived lipids[0088] 31, a process initiated by lipases. In remarkable contrast to the 22 lip genes of M. tuberculosis, M. leprae has only two lipase genes, of which, lipG, clusters with mmaA genes and could, therefore, effect fatty acid remodelling. This appears to leave just one lipase for scavenging fatty acids. The enzyme LipE (ML1190) or its counterpart in M. tuberculosis (Rv3775) could represent an attractive drug target. In addition to the multifunctional FadA and FadB enzymes, which catalyse β-oxidation, M. tuberculosis has numerous alternative systems for fatty acid degradation8. Once again, M. leprae has roughly one third as many potential enzymes; however, there are three-times more FadD acyl-CoA synthases than FadE acyl-CoA dehydrogenases, whereas these are expected in equal amounts in M. tuberculosis. This may be explained by the dual role of FadD in β-oxidative and anabolic processes while FadE only participates catabolically.
  • The acetyl-CoA produced by β-oxidation, or glycolysis, flows into the central pathways of carbon metabolism in [0089] M. leprae . However, the pattern of “just enough” genes for each step is firmly established, so that the redundancy seen in M. tuberculosis almost never occurs. For instance, there is only one isocitrate lyase (with low predicted activity) capable of participating in the glyoxylate shunt (Table 1)32, 33, and one enzyme complex that oxidatively decarboxylates pyruvate to acetyl-CoA, compared to two such systems in M. tuberculosis. In the Krebs cycle, as in glycolysis, replicate genes for the same activity are deleted although differences in expression levels might compensate for some missing copies. Thus, while lack of pdh genes is reflected in a low rate of oxidative decarboxylation of pyruvate, isocitrate dehydrogenase activity is comparable in host-grown leprosy and tubercle bacilli34 even though a duplicate icd gene is inactivated in M. leprae.
  • Central and Energy Metabolism
  • Despite an active glyoxylate cycle, there appear to be fundamental differences elsewhere in anaplerotic pathways between [0090] M. leprae and M. tuberculosis. Here, phospho-enol-pyruvate (PEP) carboxylase replaces the pyruvate carboxylase of M. tuberculosis, and the malic enzyme, associated with fast growth in mycobacteria35, is missing. The metabolic implications are that flux between C3 and C4 compounds and the balance between glycolysis and gluconeogenesis will be very different. Another missing link between by-products of lipid metabolism and the Krebs cycle is the production of succinyl-CoA by catabolic Acc carboxylases predicted for M. tuberculosis 8. Other carbon sources lost to M. leprae are acetate, as ackA, pta and acs are all inactive, and galactose, so the cell wall galactan can only be produced from glucose since the galK, T genes are missing. This might imply that M. leprae is limited to growth on very few carbon sources, or even a limited and rather specialised combination, on which it can maintain a balanced carbon metabolism. Though a similar range of potential substrates is available to both M. leprae and M. tuberculosis in the host, marked differences in their ability to exploit them are apparent on examination of the systems involved in carbon and nitrogen compound degradation: there are fewer oxidoreductases, oxygenases and short-chain alcohol dehydrogenases, and their probable regulatory genes, (FIG. 3). The inescapable conclusion is that catabolism in M. leprae is severely limited.
  • In the same vein, the leprosy bacillus has lost anaerobic and microacrophilic electron transfer systems, such as formate dehydrogenase, nitrate, and fumarate reductase together with the biosynthetic and transport systems required to produce the cognate prosthetic groups. Likewise, the aerobic respiratory chain of [0091] M. leprae is truncated as only the 3′-end of the NADH oxidase operon, nuoA-N, remains. The consequences of this event are far-reaching, for not only has the potential to produce ATP from the oxidation of NADH been lost, but also regeneration of NAD+ may be limited, relying heavily on ndh, which is involved only in recycling NAD+. Alternatively, M. leprae may regenerate NAD+ from NADH by (1) diverting pyruvate to acetate and CO2 using lactate dehydrogenase and lactate oxidase; (2) diverting PEP to malate or fumarate via oxaloacetate, using its PEP carboxylase (an enzyme not found in the tubercle bacillus) that only catalyses the reaction in this direction. Given the loss of genes reviewed above, the acids produced by (1) and (2) cannot be recycled and must be excreted.
  • Anabolism
  • In surprising contrast, all the anabolic pathways seem to be relatively intact. With few exceptions, complete enzyme systems are predicted for synthesis of amino acids, purines, pyrimidines, nucleosides, nucleotides, most vitamins and cofactors. This suggests that the availability of these metabolites in phagosomes is either highly limited or that [0092] M. leprae cannot transport them efficiently. It also sets the biology of the leprosy bacillus apart from that of the other obligate parasites for which genomes have been sequenced15, 16. M., leprae may, however, be auxotrophic for methionine as metC, encoding cystathionine β-lyase, is a pseudogene, whereas the other counterparts of M. tuberculosis met genes are all intact. This requirement for methionine may be dictated by the inactivation of the sulphate transport operon, cysYWA, and in turn this implies that M. leprae depends upon an organic source of sulphur. A second auxotrophy that is predicted is for cobinamide, as examination of the cob genes shows selective deletion of those to make cobinamide, while the genes needed to produce vitamin B12 from cobinamide are retained.
  • Pathogenesis and Disease Control
  • Central to a successful pathogenic lifestyle is the ability to obtain iron. [0093] M. leprae has many genes for haem and iron-based proteins and employs the iron regulatory systems, ideR and furB, yet may be severely handicapped compared to M. tuberculosis as it appears to have lost the mbt operon, encoding the non-ribosomal peptide synthase required for production of the iron-scavenging siderophores, mycobactin/exochelin8, 36, 37. However, part of the iron uptake system is functional in M. leprae, as it transports exochelinMN, from M. neoaurum but not those of M. smegmatis or M. tuberculosis 38. The genes for exochelinMN are unknown and seem unlikely to occur in M. leprae.
  • As might be expected given the differences in their respective pathologies, [0094] M. leprae contains several enzymes that have no counterparts in the tubercle bacillus, including a eukaryotic-like uridine phosphorylase and adenylate cyclase. In addition, there are two transport systems that may play significant physiological roles: an ABC-transporter for sugars, and a second member of the Nrampl family, involved in divalent metal ion uptake. M. leprae may have acquired another Nrampl gene39 to ensure adequate intracellular iron concentrations resulting from its lack of mycobactin siderophores.
  • [0095] M. leprae, shows a marked tropism for myelin-producing Schwann cells, and a surface-exposed 21 kDa laminin-binding protein (LBP) may be an important virulence factor40-42. Inspection of the genome sequence revealed a single LBP gene and this also occurs in M. tuberculosis . No further candidates for virulence genes were detected, and many of those present in M. tuberculosis have been inactivated or lost, including three of the Mce operons encoding putative invasins9, 43. Although the leprosy and tubercle bacilli both survive within macrophages, M. leprae has no catalase-peroxidase44, and fewer peroxidoxins and epoxide hydrolases to combat reactive oxygen species. It has retained both superoxide dismutases suggesting that these may contribute to its survival.
  • Comparative Mycobacterial Genomics
  • Comparative genomics is a powerful new tool for exploring micobial evolution and identifying those genes that might encode new drug targets or protective antigens. Coupled with knowledge derived from bioinformatic analysis of the proteome, and understanding of the underlying microbiology, it is possible to reduce the number of potential new targets within a pathogen to a more tangible level. [0096]
  • This invention includes discoveries resulting from the findings of a comparative analysis in which gene and protein sets of the leprosy and tubercle bacilli have been compared pairwise, and against the completed genome sequences of various prokaryotes and eukaryotes. [0097]
  • The genome of [0098] M. leprae , an exceptionally slow growing bacterium, is substantially smaller than that of M. tuberculosis and contains numerous pseudogenes. While the genome of M. tuberculosis comprises 4.41 Mb and contains around 4,000 genes, the genome of M. leprae is only 3.27 Mb and a mere 49.5% is occupied by protein-coding genes. About 27% of the M. leprae genome contains recognizable pseudogenes, inactive reading frames with functional counterparts in the tubercle bacillus. The remaining 23.5% of the genome does not appear to be coding, and probably contains gene remnants mutated beyond recognition. The distribution of the 1,114 pseudogenes was essentially random throughout the chromosome. 1,604 potentially active genes were identified, of which 1,439 were common to both pathogens. Among the remaining 165 genes, with no ortholog in M. tuberculosis, were 29 for which functions could be attributed. Many of the 136 residual CDS in M. leprae, showing no similarity to known genes, may also represent pseudogenes as they are shorter than average and occur in regions of low gene density. In summary, assuming that all mycobacteria are descendants of a common ancestor, M. leprae has probably lost around 2,000 genes during evolution and the minimal gene set required by a pathogenic mycobacterium has been naturally defined.
  • Whole genome comparisons led to the identification of genes that are present in both [0099] M. tuberculosis and M. leprae but have no counterparts elsewhere. Since these pathogenic mycobacteria occupy similar niches in the human body where they encounter the same physiological stresses and immune responses, it is conceivable that the products of some of these genes may conduct highly specialized functions that could be essential for intracellular growth of mycobacteria. If this were the case, the corresponding proteins or enzymes might represent novel drug targets. In addition to those proteins that are confined to the species or the genus, there is a second group of polypeptides that also occur in Streptomyces spp., related members of the Actinomycetales kingdom, but not in other prokaryotes. It is reasonable to assume that such proteins confer specific properties on actinomycetes.
  • Knowledge of the subcellular location of proteins is particularly valuable for the design of new tuberculosis vaccines since it is widely believed that surface-exposed or secreted proteins correspond to those antigenic components that are first encountered by the immune system during infection[0100] 51. Bioinformatics has also been used to identify proteins that localize to the cell envelope and these include transmembrane proteins with hydrophobic domains, and lipoproteins with N-terminal cysteine residues that are modified by addition of lipid groups. Proteins that are secreted via the general secretory pathway52 are readily identifiable by their characteristic signal peptides, whereas those metallo-enzymes that are secreted by the twin arginine transporter system, Tat, can be recognized by the presence at the N-terminus of the cognate motif, S/TRRXFLK preceeding the signal peptide53, 54. This will be discussed further below.
  • Other proteins that lack signal peptides and are secreted from mycobacteria in a Sec-independent manner, include those belonging to the ESAT-6 family[0101] 61. ESAT-6 is a potent T-cell antigen that induces strong Th1-type responses55 and has been extensively studied as a potential diagnostic reagent for infection56, since its gene is missing from BCG57, 58, 59, and as a component of a subunit vaccine60. The comparative genomic analysis identified several ESAT-6 proteins, and their potential secretion machinery, that were common to both M. tuberculosis and M. leprae (Table 2).
  • Several examples are given in Table 2 of proteins of limited distribution with potential drug targets, diagnostic antigens or subunit vaccine components. [0102]
  • Legend of Table 2: [0103]
  • The reading of the first example, by instance, [0104]
  • [0105] M. leprae
  • ML0048: Name of an identified ORF in the genome of [0106] M. leprae.
  • [0107] M. tub.:
  • Rv3876: Name of Equivalent ORF in the genome of [0108] M. tuberculosis published in 1998.
  • BLASTP: [0109]
  • Method of comparing protein sequences for establishing their degree of similarity or identity. [0110]
  • 1,00[0111] E−79:
  • BLASTP score, which indicates how similar the protein sequences are. The analyses of the results are described in Cole et al. for the comparisons between the genome of [0112] M. tuberculosis and the genome of BCG (Analysis of the proteome of Mycobacterium tuberculosis in silico, tuber Lung. Dis. 1999; 79(6):329-42).
  • Description: [0113]
  • Description of the protein, identified from all publically accessible databases, with highest similarity for the [0114] M. leprae protein ML0048.
  • Sc3C3.03C: Nomenclature of the streptomyces protein. [0115]
  • EMB : AL031231: Accession number in EMBL databank for the sequence of the Streptomyces protein found to be most similar to ML0048. [0116]
  • 1083: length of the sequence in the EMBL databank. [0117]
  • FASTA score: Different method, like BLAST, for comparing sequences for their similarity. [0118]
  • Score denotes the degree of similarity. [0119]
  • 31.6%: Percentage of identity between C terminal part of the Streptomyces protein and the amino acid sequence of ML0048. This 31.6% identity is found in an overlapping region of 580 amino acids between the two sequences. The other examples should be read similarly. [0120]
    TABLE 2
    Proteins of limited distribution with potential as drug targets,
    diagnostic antigens or subunit vaccine components
    M.
    Group leprae M. tub. BLASTP Description
    A ML0048 Rv3876 1,00E- C-terminal half of Streptomyces coelicolor SC3C3.03C,
    79 hypothetical protein, TR:O86637 (EMBL:AL031231) (1083
    aa); Fasta score E( ): 5.9e-27, 31.6% identity in 580
    aa overlap, which contains Pro-Gln repeats
    A ML0115 Rv3780 2,00E- S. coelicolor SCGD3.23C, hypothetical protein,
    44 TR:Q9XA56 (EMBL:AL096822)
    A ML0124 Rv0164 2,00E- S. coelicolor SC6G10.02C, hypothetical protein,
    40 TR:Q9X7Y8 (EMBL:AL049497) (144 aa); Fasta score E( ):
    7e-05, 21.9% identity in 137 aa overlap.
    A ML0151 Rv0948c 2,00E- S. coelicolor SCD63.16C, hypothetical protein,
    25 TR:CAB82023 (EMBL:AL161755)
    A ML0169 Rv0966c 7,00E- S. coelicolor SCE6.30C, hypothetical protein,
    66 TR:CAB88834 (EMBL:AL353832) (277 aa); Fasta score E( ):
    3.3e-20, 41.0% identity in 205 aa overlap.
    A ML0229 Rv3603c 2,00E- N-terminal half of S. coelicolor SCE126.02C,
    60 hypothetical protein, TR:Q9X845 (ENBL):AL049630) (420
    aa); Fasta score E( ): 4.1e-24, 36.7% identity in 294
    aa overlap
    A lsr2 Rv3597c 1,00E- S. coelicolor SCE94.26C, putative lsr2-like protein,
    27 TR:Q9X8N1 (EMBL:AL049628) (111 aa); Fasta score E( ):
    7.3e-18, 56.3% identity in 112 aa overlap
    A ML0284 Rv0360c 3,00E- S. coelicolor SCH10.25C, hypothetical protein,
    23 TR:Q9X8R4 (EMBL:AL049754)
    A whiB3 Rv3416 6,00E- Transcriptional regulator
    38
    A lppS Rv2518c e-135 many predicted lipoproteins from S. coelicolor.
    A ML0451 Rv2609c 2,00E- S. coelicolor e.g. SC2E1.17, hypothetical protein,
    85 TR:O69888 (EMBL:AL023797) (172 aa); Fasta score E( ):
    2e-13, 43.3% identity in 150 aa overlap.
    A ML0486 Rv2588c 2,00E- S. coelicolor SCL2.07C, putative secreted protein,
    19 TR:CAB70919 (EMBL:AL137778) (169 aa); Fasta score E( )
    7.3e-08, 35.8% identity in 120 aa overlap
    A ML0542 Rv1390 6,00E- S. coelicolor SC9C5.02C, hypothetical protein,
    51 TR:CAB93358 (EMBL:AL357523) (90 aa); Fasta score E( ):
    2e-18, 71.3% identity in 80 aa overlap.
    A ML0561 Rv1417 3,00E- Corynebacterium ammoniagenes ribX, hypothetical
    38 protein, TR:O24754 (EMBL:AB003693) (184 aa); Fasta
    score E( ): 2.1e-15, 34.5% identity in 148 aa overlap.
    Contains hydrophobic, possible membrane-spanning
    regions
    A ML0580 Rv1446c 2,00E- hypothetical proteins from S. coelicolor e.g.
    64 SCC22.20, hypothetical protein, TR:Q9XAB8
    (EMBL:AL096839) (351 aa); Fasta score E( ): 7.1e-21,
    36.0% identity in 203 aa overlap, although these have
    a short N-terminal extension relative to this
    homologue.
    A ML0603 Rv2413c 3,00E- S. coelicolor SCC123.02C, putative DNA-binding
    77 protein, TR:Q9RDM2 (EMBL:AL136518) (336 aa); Fasta
    score E( ): 0, 39.3% identity in 326 aa overlap.
    A ML0630 Rv2365c 2,00E- S. coelicolor SCC77.05, hypothetical protein,
    15 TR:Q9RDF3 (EMBL:AL136503) (132 aa); Fasta score E( ):
    3.3e-06, 39.4% identity in 99 aa overlap.
    A ML0642 Rv3195 e-143 S. coelicolor SCE9.14C, hypothetical protein,
    TR:Q9X8I7 (EMBL:AL049841) (375 aa) ; Fasta score E( )
    4.9e-12, 24.9% identity in 305 aa overlap.
    A whiB2 Rv3260c 9,00E- Transcription factor
    31
    A ML0762 Rv3258c 4,00E- S. coelicolor hypothetical 15.0 kDa protein SCE34.11C
    41 TR:CAB88914 (EMBL:AL353862) fasta scores: E( ): 4.8e-
    16, 47.0% id in 151 aa.
    A lpqB Rv3244c 0.0 S. coelicolor putative lipoprotein SCE33.13C
    TR:CAB90922 (EMBL:AL355774) fasta scores: E( ):
    0.00039, 24.4% id in 624 aa
    A whiB1 Rv3219 6,00E- Transcription factor
    31
    A ML0814 Rv3208c 3,00E- S. coelicolor hypothetical protein
    32 gp|AL390975|AL390975_32 (94 aa) E( ): 2.5e-09; 47.945%
    identity
    A ML0816 Rv3207c e-101 S. coelicolor putative membrane protein SC2H12.28c
    (314 aa) TR:CAB94652 (EMBL:AL359215) fasta scores:
    E( ): 1e-13, 30.2% id in 331 aa
    A ML0857 Rv2219 2,00E- S. coelicolor putative integral membrane protein
    59 SC3H12.04 TR:CAB90843 (EMBL:AL355740) (234 aa) fasta
    scores: E( ): 1.2e-26, 39.6% id in 230 aa
    A ML0869 Rv2206 4,00E- S. coelicolor putative integral membrane protein
    40 SC5F7.32 TR:Q9S2R7 (EMBL:AL096872)
    A ML0876 Rv2199c 2,00E- S. coelicolor hypothetical proteins e.g. putative
    43 integral membrane protein SC6G10.27C TR:Q9X812
    (EMBL:AL049497) (132 aa) fasta scores: E( ) : 6.2e-15,
    38.8% id in 139 aa
    A ML0920 Rv2147c 3,00E- pir||T34949 hypothetical protein SC4A10.12c -
    89 Streptomyces coelicolor
    A ML0921 Rv2146c 5,00E- S. coelicolor TR:Q9S2X3 (EMBL:AL109663) (94 aa); Fasta
    32 score E( ): 2.9e-12, 40.7% identity in 86 aa overlap.
    Contains possible membrane spanning hydrophobic
    domains.
    A ML0986 Rv2738c 3,00E- S. coelicolor TR:O50484 (EMBL:AL020958) (64 aa); Fasta
    21 score E( ) : 2.5e-08, 44.4% identity in 63 aa overlap
    A ML0994 Rv2728c 1,00E- S. coelicolor TR:O69964 (EMBL:AL022268) (237 aa);
    56 Fasta score E( ): 1.3e-13, 32.9% identity in 243 aa
    overlap
    A ML1009 Rv2714 e-106 pir||T35742 hypothetical protein SC7H2.11c S.
    coelicolor
    A ML1016 Rv2708c 1,00E- emb|CAB72193.1| (AL138851) hypothetical protein
    25 SCE59.06c [S. coelicolor A3(2)] Length = 97
    A ML1026 Rv2699c 2,00E- T34816 hypothetical protein SC2E9.05 SC2E9.05 - S.
    32 coelicolor 144 2e-34
    A ML1027 Rv2698 1,00E- membrane protein, S. coelicolor TR:O54132
    33 (EMBL:AL021530) (154 aa); Fasta score E( ) : 1.1e-08,
    33.6% identity in 149 aa overlap.
    A ML1029 Rv2696c 7,00E- pir||T34821 hypothetical protein SC2E9.10 SC2E9.10 -
    69 S. coelicolor 86 4e-16
    A ML1041 Rv2680 2,00E- pir||T34710 hypothetical protein SC1C3.18c SC1C3.18c -
    62 S. coelicolor 158 5e-38
    A ML1067 Rv1211 9,00E- emb|CAC01346.1| (AL390975) conserved hypothetical
    23 protein S. coelicolor 101 1e-21
    A ML1093 Rv1244 5,00E- lipoprotein, pir||T35857 probable secreted substrate-
    78 binding protein - S. coelicolor 67 3e-10
    A ML1105 Rv1259 e-115 S. coelicolor TR:Q9S2L3 (EMBL:AL109732) (237 aa);
    Fasta score E( ): 0, 54.5% identity in 231 aa overlap.
    A ML1117 Rv1276c 3,00E- pir||T36773 hypothetical protein SCI28.03c - S.
    53 coelicolor 115 4e-25
    A ML1147 Rv1312 3,00E- possible secreted protein, emb|CAB94546.1| (AL359152)
    42 putative secreted/membrane protein S. coelicolor 66
    2e-10
    A ML1166 Rv1332 7,00E- S. coelicolor TR:Q9S2G6 (EMBL:AL096852) (202 aa);
    54 Fasta score E( ) 1.5e-05, 34.6% identity in 188 aa
    overlap.
    A ML1230 Rv1182 e-149 papA3, emb|CAC08383.1|(AL392176) hypothetical protein
    S.coelicolor 132 8e-30
    A ML1306 Rv2125 5,00E- S. coelicolor TR:Q9S2K6 (EMBL:AL109732) (312 aa);
    87 Fasta score E( ) 1.6e-07, 23.4% identity in 278 aa
    overlap
    A ML1321 Rv2111c 3,00E- upstream of bacterial proteasome beta subunits
    07 including: Mycobacterium smegmatis TR:O30517
    (EMBL:AF009645) (64 aa); Fasta score E( ): 6.2e-18,
    82.8% identity in 64 aa overlap, Rhodococcus
    A ML1338 Rv2673 e-150 conserved integral membrane protein, S. coelicolor
    TR:Q53873 (EMBL:AL031317) (411 aa); Fasta score E( )
    1.1e-12, 28.3% identity in 410 aa overlap
    A ML1439 Rv2050 4,00E- emb|CAB61670.1| (AL133213) hypothetical protein
    31 SC6D7.18c. S. coelicolor 101 4e-21
    A ML1485 Rv2466c 2,00E- S. coelicolor TR:CAB71809 (EMBL:AL138662) (216 aa);
    66 Fasta score E( ): 0, 52.3% identity in 214 aa overlap
    A ML1508 Rv1155 2,00E- S. coelicolor TR:Q9XAG1 (EMBL:AL079356) (144 aa);
    48 Fasta score E( ): 5.6e-25, 54.3% identity in 140 aa
    overlap.
    A ML1525 Rv2771c 8,00E- S. coelicolor TR:Q9RD46 (EMBL:AL133424) (151 aa);
    27 Fasta score E( ): 1.3e-28, 56.1% identity in 148 aa
    overlap
    A ML1548 Rv2795c e-132 S. coelicolor TR:O88028 (EMBL:AL031107) (295 aa);
    Fasta score E( ): 0, 54.4% identity in 285 aa overlap
    A ML1557 Rv2840c 2,00E- emb|CAB91141.1| (AL355913) hypothetical protein S.
    27 coelicolor 46 7e-05
    A ML1561 Rv2844 1,00E- S. coelicolor TR:CAB91137 (EMBL:AL355913) (167 aa);
    39 Fasta score E( ): 1.4e-07, 35.8% identity in 137 aa
    A ML1624 Rv2917 0.0 S. coelicolor TR:Q9S3Y6 (EMBL:AF170560) (597 aa);
    Fasta score E( ): 0, 55.5% identity in 566 aa overlap
    A ML1644 Rv2235 e-113 N-terminal signal sequence plus membrane spanning
    hydrophobic domain; emb|CAB59445.1| (AL132644)
    putative membrane protein [Streptomyc . . . 109 4e-23
    A ML1649 Rv2239c 3,00E- emb|CAB92846.1| (AL356892) hypothetical protein
    36 [Streptomyces Co . . . 137 6e-32
    A ML1652 Rv2242 0.0 S. coelicolor TR:Q9RDP8 (EMBL:AL133423) (401 aa);
    Fasta score E( ) : 4.3e-26, 42.0% identity
    A ML1666 Rv2968c 9,00E- S. coelicolor putative integral membrane protein
    59 TR:CAB93387 (EMBL:AL357523) (240 aa); Fasta score E( ):
    3.6e-25, 36.1% identity in 191 aa overlap
    A ML1698 Rv3005c 4,00E- conserved membrane protein, emb|CAB61735.1| (AL133220)
    54 putative membrane protein. S. coelicolor 99 5e-20
    A ML1706 Rv3015c 1,00E- S. coelicolor TR:Q9Z586 (EMBL:AL035569) (331 aa);
    91 Fasta score E( ): 0, 38.6% identity in 337 aa overlap,
    A ML1781 Rv2256c 4,00E- 4pir||T11215 hypothetical protein 5 - Streptomyces
    62 glaucescens >g . . . 153 1e-36
    A ML1782 Rv2257c e-121 S. coelicolor SC4A7.08 TR:Q9RDQ4 (EMBL:AL133423) (273
    aa); Fasta score E( ): 0, 53.2% identity in 269 aa
    overlap
    A ML1791 Rv1976c 8,00E- S. coelicolor hypothetical protein SC1C3.03C TR:O69845
    25 (EMBL:AL023702) (125 aa); Fasta score E( ): 4.3e-06,
    36.6% identity in 112 aa overlap.
    A ML1908 Rv0637 3,00E- S. coelicolor SCD82.07 TR:CAB77410 (EMBL:AL160431)
    62 (150 aa); Fasta score E( ): 4.7e-11, 29.3% identity in
    150 aa overlap.
    A ML1910 Rv0635 9,00E- emb|CAB77410.1| (AL160431) hypothetical protein
    49 SCD82.07 S. coelicolor 83 1e-15
    A ML1926 Rv0431 6,00E- S. coelicolor hypothetical protein SCD95A.20
    24 TR:CAB93047 (EMBL:AL357432) (84 aa); Fasta score E( ):
    4.1e-11
    A ML1927 Rv0430 2,00E- S. coelicolor hypothetical protein SCD95A.20
    25 TR:CAB93047 (EMBL:AL357432) (84 aa) ; Fasta score E( )
    4.1e-11, 52.8% identity in 72 aa overlap.
    A ML1997 Rv0970 7,00E- S. coelicolor putative integral membrane protein
    39 SCM2.15C
    A ML2030 Rv1884c 1,00E- Rpf, emb|CAC09538.1| (AL442120) putative secreted
    34 protein S. coelicolor 108 5e-23
    A ML2031 Rv1883c 1,00E- Streptomyces actuosus NSH-OrfB TR:P72384 (EMBL:U75434)
    44 fasta scores: E( ): 2.5e-08, 34.4% in 125 aa
    A ML2048 Rv1871c 2,00E- S. coelicolor hypothetical protein TR:CAB88434
    14 (EMBL:AL353815) fasta scores: E( ): 0.0092, 39.3% in 61
    aa; truncated at C-terminus; may represent a
    pseudogene
    A ML2063 Rv1846c 3,00E- possible regulator, pir||T36388 hypothetical protein
    35 SCE94.28c - S. coelicolor 64 6e-10
    A ML2064 Rv1845c 3,00E- S. coelicolor putative integral membrane protein
    82 SC10A7.04 TR:Q9XAS1 (EMBL:AL078618) fasta scores: E( ):
    1.8e-19, 32.6% in 328 aa
    A ML2073 Rv1830 2,00E- S. coelicolor hypothetical 19.1 kda protein
    74 TR:CAB88877 (EMBL:AL353861) fasta scores: E( ): 3.7e-
    30, 64.8% in 145 aa
    A ML2075 Rv1828 7,00E- S. coelicolor hypothetical 26.5 kda protein
    71 TR:CAB88879 (EMBL:AL353861) fasta scores: E( ): 1.1e-
    14, 41.4% in 237 aa.
    A ML2114 Rv0909 7,00E- S. coelicolor hypothetical 9.9 kda protein TR:O69965
    07 (EMBL:AL022268) fasta scores: E( ): 0.038, 41.3% in 46
    aa
    A ML2135 Rv0885 e-123 S. coelicolor putative membrane protein TR:Q9XAE8
    (EMBL:AL079356) fasta scores: E( ) : 1.5e-13, 27.1% in
    255 aa
    A ML2137 Rv0883c 1,00E- S. coelicolor hypothetical 39.0 kda protein TR:O50529
    76 (EMBL:AL009204) fasta scores: E( ): 2.2e-19, 36.0% in
    247 aa
    A ML2142 Rv0877 8,00E- S. coelicolor hypothetical 32.2 kda protein
    91 TR:CAB93404 (EMBL:AL357524) fasta scores: E( ): 2.5e-
    19, 43.3% in 270 aa.
    A ML2143 Rv0876c e-172 S. coelicolor putative integral membrane protein
    TR:CAB93403 (EMBL:AL357524) fasta scores: E( ): 5.3e-
    16, 38.8% in 448 aa.
    A ML2151 Rv0867c 1,00E- Probable resusicitation-promoting factors, exported
    35 protein
    A ML2156 Rv0862c 0.0 S. coelicolor hypothetical 90.4 kda protein
    TR:CAB93395 (EMBL:AL357524) fasta scores: E( ): 3.9e-
    27, 34.6% in 856 aa
    A ML2193 Rv0819 2,00E- Acetyltransferase (GNAT) family, emb|CAB88484.1|
    87 (AL353816) putative acetyltransferase S. coelicolor
    216 3e-55
    A ML2199 Rv3118 1,00E- Saccharopolyspora erythraea hypothetical 10.2 kda
    28 protein TR:Q54084 (EMBL:M29612) fasta scores: E( ):
    2.7e-16, 53.0% in 100 aa
    A ML2200 Rv0813c 3,00E- S. coelicolor hypothetical 21.7 kda protein
    59 TR:CAB94083 (EMBL:AL358692) fasta scores: E( ): 4.4e-
    11, 30.5% in 167 aa
    A ML2204 Rv0810c 2,00E- S. coelicolor hypothetical 9.3 kda protein SCD25.24C
    13 TR:Q9RKJ8 (EMBL:AL118514) fasta scores: E( ): 1.3e-06,
    46.8% id in 62 aa.
    A ML2207 Rv0807 8,00E- S. coelicolor hypothetical protein SCD25.20 TR:Q9RKK0
    36 (EMBL:AL118514) (202 aa) fasta scores: E( ): 6.6e-16,
    52.5% id in 101 aa.
    A ML2219A Rv0787A 1,00E- S. coelicolor hypothetical protein SCD25.13 (AL118514)
    33
    A ML2253 Rv2145c 1,00E- antigen 84 homolog, also in S. coelicolor, etc.
    06
    A ML2261 Rv0546c 1,00E- emb|CAB95979.1| (AL360034) conserved hypothetical
    43 protein S. coelicolor 119 1e-26
    A ML2289 Rv3662c 7,00E- S. coelicolor putative oxidoreductase SCH5.22C
    64 TR:Q9X924 (EMBL:AL035636) (274 aa) fasta scores: E( )
    1e-11, 40.9% id in 269 aa
    A ML2295 Rv3668c 7,00E- emb|CAB61552.1| (AL133171) protease precursor S.
    67 coelicolor 53 2e-06
    A ML2296 Rv3669 2,00E- Similar_to S. coelicolor putative integral membrane
    43 transport protein SCH5.28 TR:Q9X930 (EMBL:AL035636)
    (162 aa) fasta scores: E( ): 3.3e-10, 37.3% id
    A ML2306 Rv3680 e-110 S. coelicolor putative ion-transporting ATPase
    TR:Q9XA35 (EMBL:AL079353) (481 aa) fasta scores: E( ):
    0, 48.6% id in 432 aa
    A ML2307 Rv3681c 4,00E- whiB4
    28
    A ML2330 Rv3716c 6,00E- pir||T35387 hypothetical protein SC66T3.30c - S.
    10 coelicolor 47 6e-05
    A ML2332 Rv3718c 1,00E- S. coelicolor conserved hypothetical protein TR:Q9ZBJ2
    39 (EMBL:AL035161) (147 aa) fasta scores: E( ) : 1.4e-22,
    47.6% id in 147 aa.
    A ML2410 Rv0528 e-160 conserved membrane protein, emb|CAC08381.1| (AL392176)
    putative integral membrane protein S. coelicolor 221
    2e-56
    A ML2425 Rv0504c 7,00E- emb|CAB77410.1| (AL160431) hypothetical protein
    52 SCD82.07 [Strept . . . 73 2e-12
    A ML2428A Rv0500B 6,00E- Small, strongly basic, S. coelicolor SCE68.25c,
    17 gp|AL079345|AL079345_25 S. coelicolor (32 aa) E( ):
    1.7e-07; 93.103%
    A ML2432 Rv0498 e-101 S. coelicolor hypothetical protein TR:Q9X8H0
    (EMBL:AL049819) (285 aa) fasta scores: E( ): 3.2e-30,
    51.6% id in 273 aa
    A ML2435 Rv0495c 7,00E- S. coelicolor hypothetical protein TR:Q9X8H2
    94 (EMBL:AL049819) (271 aa) fasta scores: E( ): 0, 48.4%
    id in 250 aa
    A ML2442 Rv0487 1,00E- emb|CAC04041.1| (AL391406) conserved hypothetical
    47 protein S. coelicolor 142 2e-33
    A ML2446 Rv0483 e-137 possible lipoprotein, S. coelicolor putative
    lipoprotein TR:CAB76012 (EMBL:AL157916) fasta scores:
    E( ): 2.5e-24, 28.6% id in 405 aa.
    A ML2453 Rv0476 9,00E- conserved membrane protein, emb|CAC04036.1| (AL391406)
    22 putative membrane protein S. coelicolor 57 3e-08
    A ML2522 Rv0309 5,00E- S. coelicolor putative secreted protein SCL24.08
    65 TR:CAB76092 (EMBL:AL157956)
    A ML2529 Rv0290 e-116 S. coelicolor putative integral membrane protein
    SC3C3.21 TR:O86654 (EMBL:AL031231) fasta scores: E( ):
    1.9e-05, 23.8% id in 483 aa
    A ML2566 Rv0241c e-125 S. coelicolor putative dehydratase TR:CAB77291
    (EMBL:AL160312)
    A ML2630 Rv0007 4,00E- emb|CAB92992.1| (AL357152) putative integral membrane
    06 protein S. coelicolor 69 5e-11
    A ML2640 Rv0146 3,00E- pir||T35930 hypothetical protein SC9B5.10 - S.
    93 coelicolor 141 1e-32
    A ML2664 Rv0116c 1,00E- possible secreted protein, pir||T35535 probable
    72 secreted protein - S. coelicolor 154 7e-37
    A ML2687 Rv0051 e-150 conserved membrane protein, pir||T36589 probable
    transmembrane protein - S. coelicolor 185 1e-45
    A ML2699 Rv3909 0.0 putative secreted protein, pir||T36582 hypothetical
    protein SCH24.17c - S. coelicolor 90 8e-17
    M ML0007 Rv0007 6,00E- Putative membrane protein
    51
    M ML0012 Rv0010c 4,00E- Contains hydrophobic, possible membrane-spanning
    30 regions.
    M ML0013 Rv0011c 3,00E- Contains hydrophobic, possible membrane-spanning
    36 regions.
    M ML0022 Rv0020c e-114
    M ML0030 Rv0039c 9,00E- putative membrane protein
    06
    M ML0031 Rv0040c 3,00E- Contains a probable N-terminal signal sequence
    48
    M ML0042 Rv3882c e-138 putative membrane protein
    M ML0044 Rv3880c 2,00E-
    19
    M ML0047 Rv3877 e-146 putative membrane protein
    M ML0049 Rv3875 5,00E- possible secreted protein, ESAT-6
    14
    M ML0050 Rv3874 4,00E- possible secreted protein, ESAT-6
    12
    M ML0051 Rv3873 1,00E- PPE-family protein
    30
    M ML0054 Rv3869 e-151 putative membrane protein
    M ML0056 Rv3867 2,00E-
    13
    M ML0068 Rv3850 8,00E-
    71
    M ML0069 Rv3849 4,00E-
    41
    M ML0071 Rv3847 2,00E-
    65
    M ML0073 Rv3843c 3,00E- putative membrane protein
    51
    M ML0081 Rv3835 e-107 putative membrane protein, possible membrane-spanning
    region near the N-terminus.
    M ML0091 Rv3810 1,00E- erp, pirG, exported repetitive protein precursor
    39
    M ML0093 Rv3808c 0.0
    M ML0094 Rv3807c 6,00E- putative membrane protein
    30
    M ML0096 Rv3805c 0.0 putative membrane protein
    M ML0099 Rv3802c 8,00E-
    96
    M embB Rv3795 0.0 arabinosyl transferase
    M embA Rv3794 0.0 arabinosyl transferase
    M embC Rv3793 0.0 arabinosyl transferase
    M ML0107 Rv3792 0.0 Nycobacterium smegmatis ORF3, hypothetical membrane
    protein
    M ML0116 Rv3779 e-179 putative membrane protein
    M ML0133 Rv2949c 3,00E- Pfam match to entry PF01947 DUF98, Protein of unknown
    64 function
    M lppX Rv2945c 6,00E- putative lipoprotein
    60
    M ML0158 Rv0954 4,00E- 34 kDa antigen, membrane protein
    20
    M ML0159 Rv0955 2,00E- putative membrane protein
    74
    M ML0185 Rv0996 2,00E- possible membrane-spanning regions
    74
    M ML0187 Rv0998 e-124 Cyclic nucleotide-binding domain.
    M ML0199 Rv3647c 2,00E-
    52
    M ML0208 Rv3632 2,00E- putative membrane protein
    38
    M ML0227 Rv3605c 3,00E- putative membrane protein
    36
    M MML0228 Rv3604c 2,00E- putative membrane protein
    51
    M lpqT Rv1016c 1,00E- putative lipoprotein
    52
    M ML0256 Rv1024 2,00E- Contains hydrophobic, possible membrane-spanning
    42 region
    M ML0271 Rv0401 1,00E- putative membrane protein
    23
    M ML0279 Rv0356c 9,00E-
    63
    M ML0281 Rv0358 2,00E-
    36
    M ML0285 Rv0361 1,00E- putative membrane protein
    50
    M ML0298 Rv0416 5,00E- possibly thiamine_biosynthesis
    10
    M lpqE Rv3584 3,00E- putative lipoprotein
    40
    M ML0370 Rv3438 2,00E- Contains PS00107 Protein kinases ATP-binding region
    78 signature
    M NL0383 Rv3415c 5,00E-
    59
    M ML0386 Rv3412 4,00E-
    45
    M ML0405 Rv3616c 1,00E-
    71
    M ML0406 Rv3615c 2,00E-
    14
    M ML0407 Rv3614c 2,00E-
    45
    M ML0410 Rv2107 8,00E- PE-family protein
    08
    M ML0411 Rv2108 1,00E- PPE-family protein, serine-rich antigen
    22
    M ML0425 Rv2520c 2,00E- putative membrane protein
    10
    M ML0431 Rv2507 1,00E- putative membrane protein
    41
    M ML0520 Rv2536 1,00E- putative membrane protein
    40
    M PE Rv1386 1,00E- PE protein family
    21
    M PPE.0 Rv1387 3,00E- PPE protein family
    99
    M mihF Rv1388 4,00E- integration host factor
    24
    M lprG Rv1411c 1,00E- putative lipoprotein
    50
    M mtb12 Rv2376c 2,00E- putative secreted protein
    28
    M ML0676 Rv3354 2,00E-
    15
    M ML0703 Rv3311 e-125
    M ML0730 Rv3281 1,00E- Contains Pfam match to entry PF01039 Carboxyl_trans,
    20 Carboxyl transferase domain
    M ML0733 Rv3278c 4,00E- putative membrane protein
    53
    M ML0734 Rv3277 2,00E- putative membrane protein
    64
    M ML0748 Rv3269 1,00E- irpA
    15
    M ML0761 Rv3259 2,00E- Mycobacterium smegmatis hypothetical 6.0 kDa protein
    48 (partial CDS) TR:Q9S425 (EMBL:AF164439) fasta scores:
    E( ): 1e-10, 75.5% id in 53 aa
    M ML0764 Rv3256c 1,00E-
    79
    M ML0806 Rv3217c 5,00E- putative membrane protein
    25
    M ML0810 Rv3212 e-104 putative membrane protein
    M ML0813 Rv3209 2,00E- putative membrane protein
    24
    M ML0818 Rv3205c e-102
    M ML0834 Rv2342 1,00E-
    21
    M ML0872 Rv2203 9,00E- putative membrane protein
    43
    M mmpS3 Rv2198c 3,00E- putative membrane protein
    49
    M ML0878 Rv2197c 1,00E- putative membrane protein
    55
    M ML0888 Rv2186c 8,00E-
    41
    M ML0889 Rv2185c 8,00E-
    41
    M ML0891 Rv2183c 2,00E-
    27
    M ML0895 Rv2179c 1,00E-
    60
    M ML0898 Rv2175c 1,00E- putative DNA-binding protein
    41
    M MML0901 Rv2172c e-102
    M ML0902 Rv2171 3,00E- probable lipoprotein
    57
    M ML0903 Rv2170 9,00E-
    55
    M ML0904 Rv2169c 7,00E- putative membrane protein
    32
    M ML0907 Rv2164c 2,00E- putative conserved membrane protein
    50
    M ML0923 Rv2144c 3,00E- possible membrane protein
    07
    M ML0984 Rv2740 3,00E-
    31
    M ML0990 Rv2732c 9,00E- possible conserved membrane protein
    46
    M ML1001 Rv2722 7,00E-
    06
    M ML1004 Rv2719c 1,00E- possible conserved membrane protein
    17
    M ML1015 Rv2709 7,00E- possible conserved membrane protein
    26
    M ML1025 Rv2700 1,00E- possible secreted protein
    62
    M ML1030 Rv2695 1,00E-
    47
    M ML1053 Rv2107 8,00E- PE protein
    11
    M ML1055 Rv2347c 1,00E- —, family
    19
    M ML1056 Rv3619c 6,00E- —, family
    18
    M ML1065 Rv1209 6,00E- membrane protein
    21
    M ML1077 Rv1222 3,00E- Mycobacterium avium TR:O05736 (EMBL:U87308) (133 aa);
    34 Fasta score E( ): 0, 71.7% identity in 138 aa overlap
    M ML1079 Rv1224 2,00E- possible secreted protein
    29
    M ML1096 Rv1249c 2,00E- putative membrane protein
    48
    M ML1098 Rv1251c 0.0 some_similarity_to_GTP-binding_proteins
    M ML1099 Rv1252c 5,00E- putative lipoprotein
    41
    M ML1115 Rv1274 3,00E- lipoprotein, lprB
    58
    M ML1116 Rv1275 8,00E- lipoprotein, lprC
    54
    M ML1120 Rv1278 0.0 Contains multiple possible coiled-coils. Contains
    PS00017 ATP/GTP-binding site motif A (P-loop)
    M ML1138 Rv1303 3,00E- integral membrane protein
    20
    M ML1176 Rv1342c 3,00E- possible conserved membrane protein
    34
    M ML1177 Rv1343c 5,00E- possible lipoprotein, membrane protein
    43
    M ML1180 Rv3619c 6,00E- ESAT-6 family
    18
    M ML1181 Rv2347c 1,00E- QILSS family
    19
    M ML1182 Rv1361c 2,00E- PPE family
    47
    M ML1183 Rv2107 8,00E- PE family
    11
    M ML1190 Rv2525c 3,00E- —, twin-Arginine secreted protein
    70
    M ML1221 Rv1590 2,00E-
    18
    M ML1222 Rv1591 1,00E- membrane protein
    29
    M ML1232 Rv1184c 2,00E- Possibly secreted PE protein, Contains PS00017
    77 ATP/GTP-binding site motif A (P-loop)
    M ML1233 Rv3821 9,00E- conserved membrane protein
    33
    M ML1244 Rv2484c e-130 conserved membrane protein
    M ML1255 Rv2468c 1,00E-
    41
    M ML1270 Rv1610 8,00E- conserved membrane protein, Contains Pfam match to
    36 entry PF00218 IGPS,
    M ML1296 Rv2137c 1,00E-
    25
    M ML1299 Rv2134c 9,00E-
    60
    M ML1300 Rv2133c 4,00E-
    90
    M ML1315 Rv2116 1,00E- lipoprotein, LppK
    35
    M ML1334 Rv2091c 6,00E- conserved membrane protein, calcium-binding
    28
    M ML1357 Rv1693 7,00E-
    09
    M ML1361 Rv1697 e-114 conserved membrane protein
    M ML1362 Rv1698 6,00E- conserved secreted protein
    58
    M ML1389 Rv1635c e-144 conserved membrane protein
    M ML1446 Rv2061c 5,00E-
    35
    M ML1470 Rv2446c 2,00E- conserved membrane protein
    16
    M ML1505 Rv1158c 7,00E- conserved hypothetical Proline rich protein, possibly
    17 secreted
    M ML1506 Rv1157c 4,00E-
    62
    M ML1526 Rv2772c 2,00E- conserved membrane protein
    43
    M ML1537 Rv1797 1,00E- possible secreted protein
    98
    M ML1540 Rv1794 e-101
    M ML1544 Rv1782 e-155 conserved membrane protein
    M ML1560 Rv2843 8,00E-
    24
    M ML1584 Rv2876 3,00E- conserved membrane protein
    25
    M ML1607 Rv2898c 2,00E- Contains Pfam match to entry PF02021 UPF0102,
    17 Uncharacterised protein family UPF0102,
    sp|O83883|Y913_TREPA HYPOTHETICAL PROTEIN TP0913
    >gi|7514634|pir.
    M ML1610 Rv2901c 2,00E-
    39
    M ML1638 Rv2229c 2,00E-
    63
    M ML1677 Rv2980 3,00E- possible secreted protein
    33
    M ML1704 Rv3013 6,00E-
    71
    M ML1720 Rv3035 e-107
    M ML1813 Rv1476 3,00E-
    39
    M PPE.1 Rv0256c 3,00E- PPE-family protein
    93
    M ML1828A Rv0257 1,00E- Probably pseudogene as Rv0257 is longer
    15
    M ML1911A Rv0634A —, May be pseudogene as Rv0634A is predicted to be 13
    aa longer
    M ML1918 Rv3587c 5,00E- conserved hypothetical membrane protein
    69
    M ML1937 Rv1111c 9,00E- probable integral membrane protein
    39
    M MML1939 Rv1109c 9,00E-
    49
    M ML1945 Rv1100 6,00E- possible membrane protein
    57
    M ML1991 Rv0096 4,00E- PPE
    90
    M ML1988 Rv0093c 1,00E- Contains possible membrane spanning hydrophobic
    52 domains. Note lacks the N-terminal 46 aa of the M.
    tuberculosis protein
    M ML1993 Rv0098 3,00E-
    50
    M ML1995 Rv0100 1,00E-
    18
    M ML2010 Rv1906c 4,00E- putative lipoprotein (secreted in Mt)
    31
    M ML2022 Rv1893 2,00E-
    13
    M ML2023 Rv1891 2.00E- Contains probable N-terminal signal sequence.
    46
    M ML2054 Rv1861 1,00E- integral membrane protein
    07
    M ML2070 Rv1836c e-171
    M ML2111 Rv0912 1,00E- membrane protein
    35
    M ML2113 Rv0910 6,00E-
    49
    M ML2141 Rv0879c 9,00E-
    22
    M ML2144 Rv0875c 2,00E- possible exported protein
    45
    M ML2155 Rv0863 2,00E-
    18
    M ML2195 Rv0817c 4,00E- probable exported protein
    68
    M ML2228 Rv0779c 3,00E- probable membrane protein
    50
    M ML2258 Rv0543c 2,00E-
    28
    M ML2259 Rv0544c 2,00E- possible membrane protein
    16
    M ML2271 Rv0556 6,00E- putative membrane protein
    46
    M ML2274 Rv0559c 9,00E- putative secreted protein
    23
    M ML2320 Rv3705c 8,00E-
    64
    M ML2337 Rv3723 4,00E- possible membrane spanning hydrophobic domains
    57
    M ML2377 Rv0451c 1,00E- mmpS4, Mycobacterium avium TmtpA TR:Q9XCF4
    35 (EMBL:AF143772) (221 aa) fasta scores: E( ): 0, 58.9%
    id in 146 aa
    M ML2380 Rv0455c 2,00E- possible secreted protein
    37
    M ML2388 Rv0463 9,00E- possible membrane protein
    18
    M ML2390 Rv1083 1,00E- possible secreted/membrane protein
    10
    M ML2392 Rv1081c 6,00E- conserved membrane protein,
    34 hydrophobic_stretch_from_aa_26-48
    M ML2407 Rv0531 5,00E- putative membrane protein
    06
    M ML2433 Rv0497 5,00E- conserved membrane protein
    39
    M ML2450 Rv0479c 7,00E- possible secreted protein, >gb|AAF74996.1|AF143402_1
    57 (AF143402) putative multicopper oxidase
    [Mycobacterium avium]
    M ML2452 Rv0477 2,00E-
    23
    M ML2454 Rv0475 6,00E- possible hemagglutinin
    40
    M ML2465 Rv0464c 7,00E-
    53
    M ML2473 Rv3753c 2,00E-
    53
    M ML2489 Rv0383c 5,00E- possible secreted protein, hydrophobic N-terminus and
    91 Pro-rich C-terminus
    M ML2491 Rv1754c e-109
    M ML2518 Rv0313 1,00E-
    39
    M ML2527 Rv0292 2,00E- conserved membrane protein,
    69
    M ML2530 Rv0289 2,00E-
    92
    M ML2531 Rv0288 5,00E- ESAT-6 family, possible cell surface protein
    27
    M ML2532 Rv3020c 9,00E- PE-family protein
    10
    M ML2534 Rv0285 9,00E- PE-family protein
    13
    M ML2536 Rv0283 e-156 conserved membrane protein
    M ML2557 Rv0250c 2,00E-
    26
    M mce Rv0169 e-107 Mce protein
    M ML2569A Rv0236A 2,00E- Small secreted protein with typical N-terminal signal
    24 peptide
    M ML2570 Rv0236c 0.0 possible integral membrane protein
    M ML2581 Rv0227c e-116 putative integral membrane protein
    M ML2582 Rv0226c e-132 conserved membrane protein
    M ML2595 Rv0175 2,00E- possible membrane protein
    41
    M ML2596 Rv0176 1,00E- conserved membrane protein
    73
    M ML2597 Rv0177 1,00E- conserved membrane protein
    42
    M ML2598 Rv0178 2,00E- conserved membrane protein
    43
    M ML2604 Rv0184 8,00E-
    64
    M ML2605 Rv0185 3,00E-
    47
    M ML2614 Rv0199 3,00E- conserved membrane protein
    47
    M ML2615 Rv0200 5,00E- probable membrane protein
    55
    M ML2616 Rv0201c 5,00E-
    36
    M ML2621 Rv0207c 2,00E-
    43
    M ML2627 Rv0216 e-103
    M ML2629 Rv0164 6,00E-
    44
    M ML2689 Rv0049 1,00E-
    45
    X ML0190 Rv1000 7,00E- gp|AL357613|AL357613_12 S. coelicolor cosmid (210 aa)
    53 E( ): 2.4e-44; 55.122% identity in 205 aa overlap;
    AE003963|AE003963_5 Xylella fastidiosa, E( ) 9.7e-
    14; 3 9.894% identity in 188 aa overlap. Weak
    similarity to proteins involved in DNA repair
    X ML0257 Rv1025 4,00E- Also hypothetical proteins from Thermotoga maritima
    72 e.g. TN1078, hypothetical protein, TR:Q9X0G7
    (EMBL:AE001768) (170 aa)
    X ML0418 Rv3368c 2,00E- weak similarity Thermus aquaticus nox, NADH
    76 dehydrogenase, SW:NOX_THETH (X60110) (205 aa); Fasta
    score E( ) 0.00023, 28.8% identity in 212 aa overlap.
    X ML0577 Rv1440 9,00E- putative protein-export membrane protein, secG
    12
    X ML0776 Rv3242c 3,00E- probable competence protein ComF - Deinococcus
    11 radio . . . 77 2e-13
    X ML1037 Rv2683 2,00E- Contains 2 Pfam matches to entry PF00571 CBS, CBS
    42 domain.
    X ML1119 Rv1277 e-105 possibly phosphoesterase
    X ML1159 Rv1324 e-116 probable thioredoxin
    X ML1249 Rv2476c 0.0 Rickettsia prowazekii TR:Q9ZCI2 (EMBL:AJ235273) (1581
    aa); Fasta score E( ): 0, 32.9% identity in 1494 aa
    overlap
    X ML1399 Rv1647 1,00E- weakly adenylate cyclases
    76
    X ML1444 Rv2054 3,00E- Weakly several carboxymethylenebutenolidases (EC
    94 3.1.1.45) involved in 3-chlorocatechol degradation
    e.g. Pseudomonas putida SW:CLCD_PSEPU (P11453) (236
    aa)
    X ML1494 Rv1171 8,00E- conserved membrane protein, pir||PH0210 hypothetical
    19 protein 133 (fdxA 5′ region) - Saccharo . . . 74 5e-
    13
    X ML1503A Rv1159A 9,00E- S. coelicolor (SC5C7.25) gp|AL03151
    33 5AL031515|AL031515_25 (101 aa) E( ): 1.9e-06; 34.831%
    identity in 89 aa overlap; and archaebacteria.
    X ML1660 Rv2926c 2,00E- —, pir||E72412 conserved hypothetical protein -
    69 Thermotoga manitima . . . 66 4e-10
    X ML1723 Rv3038c e-152 —, gb|AAC01738.1| (AF040571) methyltransferase
    [Amycolatopsis medit . . . 59 1e-07
    X ML1909 Rv0636 9,00E- Contains Pfam match to entry PF01575 MaoC_dehydratas,
    72 MaoC like domain. ML2566
    X desA2 Rv1094 7,00E- Gossypium hirsutum (Upland cotton) acyl-[acyl-carrier
    85 protein) desaturase precursor SW:STAD_GOSHI (X95988)
    (397 aa); Fasta score E( ): 5.6e-05, 23.9% identity in
    293 aa overlap.
    X ML1983 Rv1919c 8,00E- weakly similar pollen allergen
    45
    X ML2366 Rv3760 1,00E- Deinococcus radiodurans conserved hypothetical
    12 protein TR:Q9RU17
    X ML2463 Rv0466 e-102 weakly similar acyl-ACP thioesterase
  • [0121]
    TABLE 3
    Possible twin arginine secreted proteins
    M. tuberculosis M. leprae Gene Predicted function
    Rv0203 del unknown
    Rv0265c NF fecB2
    iron_transport_protein_FeIII_dicitrate_transporter
    Rv0846c ML2171 ps similar_to_several_L-ascorbate_oxidases
    Rv1755c del plcD phospholipase_C_precursor
    Rv2349c NF plcC phospholipase_C_precursor
    Rv2350c del plcB phospholipase_C_precursor
    Rv2351c NF plcA phospholipase_C_precursor
    Rv2525c ML1190 unknown
    Rv2577 ML0497 ps similarity_to_G755244_acid_phosphatase
    Rv2833c del ugpB sn-glycerol-3-phosphate transport
    Rv3353c del unknown
    NF ML2649 unknown
  • The implications for this invention are widespread. [0122] M. tuberculosis and M. leprae marker polypeptides are disclosed in SEQ ID NO: 1 to SEQ ID NO:644. The discovery of the M. tuberculosis and M. leprae marker polypeptides and DNA encoding the polypeptides enables construction of expression vectors comprising nucleic acid sequences encoding M. tuberculosis and M. leprae marker polypeptides; host cells transfected or transformed with the expression vectors; biologically active M. tuberculosis and M. leprae marker polypeptides and M. tuberculosis and M. leprae marker polypeptides as isolated or purified peptides; and antibodies immunoreactive with M. tuberculosis and M. leprae marker polypeptides. In addition, understanding of the mechanism by which M. tuberculosis and M. leprae marker polypeptides function enables the design of assays to detect inhibitors of M. tuberculosis and M. leprae marker polypeptide activity.
  • As used herein, the term “[0123] M. tuberculosis and M. leprae marker polypeptides” refers to a genus of polypeptides that encompasses polypeptides of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644, as well as those polypeptides having a high degree of similarity (at least 90% homology) with such amino acid sequences and which polypeptides are immunoreactive or biologically active.
  • The term “purified” as used herein, means that the [0124] M. tuberculosis and M. leprae marker polypeptides are essentially free of association with other proteins or polypeptides, for example, as a purification product of recombinant host cell culture or as a purified product from a non-recombinant source. The term “substantially purified” as used herein, refers to a mixture that contains M. tuberculosis and M. leprae marker polypeptides and is essentially free of association with other proteins or polypeptides, but for the presence of known proteins that can be removed using a specific antibody, and which substantially purified M. tuberculosis and M. leprae marker polypeptides can be used as antigens.
  • A [0125] M. tuberculosis and M. leprae marker polypeptide “variant” as referred to herein means a polypeptide substantially homologous to native M. tuberculosis and M. leprae marker polypeptides, but which has an amino acid sequence different from that of native M. tuberculosis and M. leprae marker polypeptides because of one or more deletions, insertions, or substitutions. The variant amino acid sequence preferably is at least 80% identical to a native M. tuberculosis and M. leprae marker polypeptide amino acid sequence, most preferably at least 90% identical. The percent identity can be determined, for example by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443, 1970), as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745, 1986, as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
  • Variants can comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physicochemical characteristics. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known. Naturally occurring [0126] M. tuberculosis and M. leprae marker polypeptide variants are also encompassed by the invention. Examples of such variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the M. tuberculosis and M. leprae marker polypeptides. Variations attributable to proteolysis include, for example, differences in the termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the M. tuberculosis and M. leprae marker polypeptides. Variations attributable to frameshifting include, for example, differences in the termini upon expression in different types of host cells due to different amino acids.
  • As stated above, the invention provides isolated and purified, or homogeneous, [0127] M. tuberculosis and M. leprae marker polypeptides, both recombinant and non-recombinant. Variants and derivatives of native M. tuberculosis and M. leprae marker polypeptides that can be used as antigens can be obtained by mutations of nucleotide sequences coding for native M. tuberculosis and M. leprae marker polypeptides. Alterations of the native amino acid sequence can be accomplished by any of a number of conventional methods. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
  • Alternatively, oligonucleotide directed, site specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion, or insertion. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. ([0128] Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); Kunkel (Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. (Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462, all of which are incorporated by reference.
  • Within an aspect of the invention, [0129] M. tuberculosis and M. leprae marker polypeptides can be utilized to prepare antibodies that specifically bind to M. tuberculosis and M. leprae marker polypeptides. The term “antibodies” is meant to include polyclonal antibodies, monoclonal antibodies, fragments thereof such as F(ab′)2 and Fab fragments, as well as any recombinantly produced binding partners. Antibodies are defined to be specifically binding if they bind M. tuberculosis and M. leprae marker polypeptides with a Ka of greater than or equal to about 107 M−1. Affinities of binding partners or antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al., Ann. N. Y Acad. Sci., 51:660 (1949). Polyclonal antibodies can be readily generated from a variety of sources, for example, horses, cows, goats, sheep, dogs, chickens, rabbits, mice, or rats, using procedures that are well known in the art.
  • The invention further encompasses isolated fragments and oligonucleotides derived from the nucleotide sequences of the invention. The invention also encompasses polypeptides encoded by these fragments and oligonucleotides. [0130]
  • Nucleic acid sequences within the scope of the invention include isolated DNA and RNA sequences that hybridize to the native [0131] M. tuberculosis and M. leprae marker nucleic acids disclosed herein under conditions of moderate or severe stringency, and which encode M. tuberculosis and M. leprae marker polypeptides. As used herein, conditions of moderate stringency, as known to those having ordinary skill in the art, and as defined by Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press, (1989), include use of a prewashing solution for the nitrocellulose filters 5× SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization conditions of 50% formamide, 6× SSC at 42° C. (or other similar hybridization solution, such as Stark's solution, in 50% formamide at 42° C.), and washing conditions of about 60° C., 0.5× SSC, 0.1% SDS. Conditions of high stringency are defined as hybridization conditions as above, and with washing at 68° C., 0.2× SSC, 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe.
  • Due to the known degeneracy of the genetic code, wherein more than one codon can encode the same amino acid, a DNA sequence can vary and still encode a [0132] M. tuberculosis and M. leprae marker polypeptide of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644. Such variant DNA sequences can result from silent mutations (e.g., occurring during PCR amplification), or can be the product of deliberate mutagenesis of a native sequence.
  • The invention thus provides equivalent isolated DNA sequences, encoding [0133] M. tuberculosis and M. leprae marker polypeptides, selected from: (a) DNA derived from the coding region of a native M. tuberculosis and M. leprae marker nucleic acid; (b) cDNA comprising the nucleotide sequence of the invention; (c) DNA capable of hybridization to a DNA of (a) under conditions of moderate stringency and which encode M. tuberculosis and M. leprae marker polypeptides; and (d) DNA which is degenerate as a result of the genetic code to a DNA defined in (a), (b) or (c) and which encodes M. tuberculosis and M. leprae marker polypeptides. M. tuberculosis and M. leprae marker polypeptides encoded by such DNA equivalent sequences are encompassed by the invention.
  • DNA that is equivalent to the DNA sequence of the invention will hybridize under moderately stringent conditions to the double-stranded native DNA sequence that encodes polypeptides of a formula selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:644. Examples of [0134] M. tuberculosis and M. leprae marker polypeptides encoded by such DNA, include, but are not limited to, M. tuberculosis and M. leprae marker polypeptide fragments and M. tuberculosis and M. leprae marker polypeptides comprising inactivated N-glycosylation site(s), inactivated protease processing site(s), or conservative amino acid substitution(s), as described above. M. tuberculosis and M. leprae marker polypeptides encoded by DNA derived from other species, wherein the DNA will hybridize to the complement of the DNA of the invention are also encompassed.
  • Recombinant expression vectors containing a nucleic acid sequence encoding [0135] M. tuberculosis and M. leprae marker polypeptides can be prepared using well known methods. The expression vectors include a M. tuberculosis and M. leprae marker DNA sequence operably linked to suitable transcriptional or translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, an mRNA ribosomal binding site, and appropriate sequences which control transcription and translation initiation and termination. Nucleotide sequences are “operably linked” when the regulatory sequence functionally relates to the M. tuberculosis and M. leprae marker DNA sequence. Thus, a promoter nucleotide sequence is operably linked to a M. tuberculosis and M. leprae marker DNA sequence if the promoter nucleotide sequence controls the transcription of the M. tuberculosis and M. leprae marker DNA sequence. The ability to replicate in the desired host cells, usually conferred by an origin of replication, and a selection gene by which transformants are identified can additionally be incorporated into the expression vector.
  • In addition, sequences encoding appropriate signal peptides that are not naturally associated with [0136] M. tuberculosis and M. leprae marker polypeptides can be incorporated into expression vectors. For example, a DNA sequence for a signal peptide (secretory leader) can be fused in-frame to the M. tuberculosis and M. leprae marker nucleotide sequence so that the M. tuberculosis and M. leprae marker polypeptide is initially translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cells enhances extracellular secretion of the M. tuberculosis and M. leprae marker polypeptide. The signal peptide can be cleaved from the M. tuberculosis and M. leprae marker polypeptide upon secretion of the marker polypeptide from the cell.
  • Expression vectors fdr use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes. A phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement. Examples of useful expression vectors for prokaryotic host cells include those derived from commercially available plasmids. Commercially available vectors include those that are specifically designed for the expression of proteins. These include pMAL-p2 and pMAL-c2 vectors, which are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA). [0137]
  • Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include β-lactamase (penicillinase), lactose promoter system (Chang et al., [0138] Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p. 412, 1982).
  • Suitable host cells for expression of [0139] M. tuberculosis and M. leprae marker polypeptides include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al. Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce M. tuberculosis and M. leprae marker polypeptides using RNAs derived from DNA constructs disclosed herein.
  • It will be understood that the present invention is intended to encompass the previously described proteins in isolated or purified form, whether obtained using the techniques described herein or other methods. In a preferred embodiment of this invention, the [0140] M. tuberculosis and M. leprae marker polypeptides are substantially free of human tissue and human tissue components, nucleic acids, extraneous proteins and lipids, and adventitious microorganisms, such as bacteria and a mycoplasma. It will also be understood that the invention encompasses equivalent proteins having substantially the same biological and immunogenic properties. Thus, this invention is intended to cover serotypic variants of the proteins of the invention.
  • Depending on the use to be made of the [0141] M. tuberculosis and M. leprae marker polypeptides of the invention, it may be desirable to label them. Examples of suitable labels are radioactive labels, enzymatic labels, fluorescent labels, chemiluminescent labels, and chromophores. The methods for labeling proteins and glycoproteins of the invention do not differ in essence from those widely used for labeling immunoglobulin. The need to label may be avoided by using labeled antibody to the antigen of the invention or anti- immunoglobulin to the antibodies to the antigen as an indirect marker.
  • Once the [0142] M. tuberculosis and M. leprae marker polypeptides of the invention have been obtained, they can be used to produce polyclonal and monoclonal antibodies reactive therewith. Thus, a polypeptide of the invention can be used to immunize an animal host by techniques known in the art. Such techniques usually involve inoculation, but they may involve other modes of administration. A sufficient amount of the polypeptide is administered to create an immunogenic response in the animal host. Any host that produces antibodies to the antigen of the invention can be used. Once the animal has been immunized and sufficient time has passed for it to begin producing antibodies to the antigen, polyclonal antibodies can be recovered. The general method comprises removing blood from the animal and separating the serum from the blood. The serum, which contains antibodies to the antigen, can be used as an antiserum to the antigen. Alternatively, the antibodies can be recovered from the serum. Affinity purification is a preferred technique for recovering purified polyclonal antibodies to the antigen from the serum.
  • Monoclonal antibodies to the antigens of the invention can also be prepared. One method for producing monoclonal antibodies reactive with the antigens comprises the steps of immunizing a host with the antigen; recovering antibody producing cells from the spleen of the host; fusing the antibody producing cells with myeloma cells deficient in the enzyme hypoxanthine-guanine phosphoribosyl transferase to form hybridomas; select at least one of the hybridomas by growth in a medium comprising hypoxanthine, aminopterin, and thymidine; identifying at least one of the hybridomas that produces an antibody to the antigen, culturing the identified hybridoma to produce antibody in a recoverable quantity; and recovering the antibodies produced by the cultured hybridoma. [0143]
  • These polyclonal or monoclonal antibodies can be used in a variety of applications. Among these is the neutralization of corresponding proteins. They can also be used to detect viral antigens in biological preparations or in purifying corresponding proteins, glycoproteins, or mixtures thereof, for example, when used in a affinity chromatographic columns. [0144]
  • The [0145] M. tuberculosis and M. leprae marker polypeptides can be used as antigens to identify antibodies to a mycobacteria in materials and to determine the concentration of the antibodies in those materials. Thus, the antigens can be used for qualitative or quantitative determination of a mycobacteria in a material. Such materials of course include human tissue and human cells, as well as biological fluids, such as human body fluids, including human sera. When used as a reagent in an immunoassay for determining the presence or concentration of the antibodies to a mycobacteria, the antigens of the present invention provide an assay that is convenient, rapid, sensitive, and specific.
  • More particularly, the antigens of the invention can be employed for the detection of a mycobacterium by means of immunoassays that are well known for use in detecting or quantifying humoral components in fluids. Thus, antigen-antibody interactions can be directly observed or determined by secondary reactions, such as precipitation or agglutination. In addition, immunoelectrophoresis techniques can also be employed. For example, the classic combination of electrophoresis in agar followed by reaction with anti-serum can be utilized, as well as two-dimensional electrophoresis, rocket electrophoresis, and immunolabeling of polyacrylamide gel patterns (Western Blot or immunoblot). Other immunoassays in which the antigens of the present invention can be employed include, but are not limited to, radioimmunoassay, competitive immunoprecipitation assay, enzyme immunoassay, and immunofluorescence assay. It will be understood that turbidimetric, colorimetric, and nephelometric techniques can be employed. An immunoassay based on Western Blot technique is preferred. [0146]
  • Immunoassays can be carried out by immobilizing one of the immunoreagents, either an antigen of the invention or an antibody of the invention to the antigen, on a carrier surface while retaining immunoreactivity of the reagent. The reciprocal immunoreagent can be unlabeled or labeled in such a manner that immunoreactivity is also retained. These techniques are especially suitable for use in enzyme immunoassays, such as enzyme linked immunosorbent assay (ELISA) and competitive inhibition enzyme immunoassay (CIEIA). [0147]
  • When either the antigen of the invention or antibody to the antigen is attached to a solid support, the support is usually a glass or plastic material. Plastic materials molded in the form of plates, tubes, beads, or disks are preferred. Examples of suitable plastic materials are polystyrene and polyvinyl chloride. If the immunoreagent does not readily bind to the solid support, a carrier material can be interposed between the reagent and the support. Examples of suitable carrier materials are proteins, such as bovine serum albumin, or chemical reagents, such as gluteraldehyde or urea. Coating of the solid phase can be carried out using conventional techniques. [0148]
  • The invention provides immunogenic [0149] M. tuberculosis and M. leprae marker polypeptides, and more particularly, protective polypeptides for use in the preparation of vaccine compositions against a mycobacterium. These polypeptides can thus be employed as viral vaccines by administering the polypeptides to a mammal susceptible to a mycobacteria infection. Conventional modes of administration can be employed. For example, administration can be carried out by oral, respiratory, or parenteral routes. Intradermal, subcutaneous, and intramuscular routes of administration are preferred when the vaccine is administered parenterally.
  • The major purpose of the immune response in a mycobacteria-infected mammal is to inactivate the free mycobacteria and to eliminate mycobacteria infected cells that have the potential to release infectious mycobacteria. The B-cell arm of the immune response has some responsibility for inactivating free mycobacteria. The principal manner in which this is achieved is by neutralization of infectivity. Another major mechanism for destruction of the a mycobacteria-infected cells is provided by cytotoxic T lymphocytes (CTL) that recognize [0150] M. tuberculosis and M. leprae marker antigens expressed in combination with class I histocompatibility antigens at the cell surface. The CTLs recognize M. tuberculosis and M. leprae marker polypeptides processed within cells from a M. tuberculosis and M. leprae marker polypeptide that is produced, for example, by the infected cell or that is internalized by a phagocytic cell. Thus, this invention can be employed to stimulate a B-cell response to M. tuberculosis and M. leprae marker polypeptides, as well as immunity mediated by a CTL response following infection. The CTL response can play an important role in mediating recovery from primary mycobacterial infection and in accelerating recovery during subsequent infections.
  • The ability of the [0151] M. tuberculosis and M. leprae marker polypeptides and vaccines of the invention to induce protective levels of neutralizing antibody in a host can be enhanced by emulsification with an adjuvant, incorporating in a liposome, coupling to a suitable carrier, or by combinations of these techniques. For example, the M. tuberculosis and M. leprae marker polypeptides of the invention can be administered with a conventional adjuvant, such as aluminum phosphate and aluminum hydroxide gel, in an amount sufficient to potentiate humoral or cell-mediated immune responses in the host. Similarly, the M. tuberculosis and M. leprae marker polypeptides can be bound to lipid membranes or incorporated in lipid membranes to form liposomes. The use of nonpyrogenic lipids free of nucleic acids and other extraneous matter can be employed for this purpose.
  • The immunization schedule will depend upon several factors, such as the susceptibility of the host to infection and the age of the host. A single dose of the vaccine of the invention can be administered to the host or a primary course of immunization can be followed in which several doses at intervals of time are administered. Subsequent doses used as boosters can be administered as needed following the primary course. [0152]
  • The [0153] M. tuberculosis and M. leprae marker polypeptides and vaccines of the invention can be administered to the host in an amount sufficient to prevent or inhibit a mycobacteria infection or replication in vivo. In any event, the amount administered should be at least sufficient to protect the host against substantial immunosuppression, even though a mycobacterial infection may not be entirely prevented. An immunogenic response can be obtained by administering the polypeptides of the invention to the host in an amount of about 10 to about 500 micrograms antigen per kilogram of body weight, preferably about 50 to about 100 micrograms antigen per kilogram of body weight. The polypeptides and vaccines of the invention can be administered together with a physiologically acceptable carrier. For example, a diluent, such as water or a saline solution, can be employed.
  • Another aspect of the invention provides a method of DNA vaccination. The method also includes administering any combination of the nucleic acids encoding [0154] M. tuberculosis and M. leprae marker polypeptides, with or without carrier molecules, to an individual. In embodiments, the individual is an animal, and is preferably a mammal. More preferably, the mammal is selected from the group consisting of a human, a dog, a cat, a bovine, a pig, and a horse. In an especially preferred embodiment, the mammal is a human.
  • The methods of treating include administering immunogenic compositions comprising [0155] M. tuberculosis and M. leprae marker polypeptides, but compositions comprising nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides as well. Those of skill in the art are cognizant of the concept, application, and effectiveness of nucleic acid vaccines (e.g., DNA vaccines) and nucleic acid vaccine technology as well as protein and polypeptide based technologies. The nucleic acid based technology allows the administration of nucleic acids encoding M. tuberculosis and M. leprae marker polypeptides, naked or encapsulated, directly to tissues and cells without the need for production of encoded proteins prior to administration. The technology is based on the ability of these nucleic acids to be taken up by cells of the recipient organism and expressed to produce an immunogenic determinant to which the recipient's immune system responds. Typically, the expressed antigens are displayed on the surface of cells that have taken up and expressed the nucleic acids, but expression and export of the encoded antigens into the circulatory system of the recipient individual is also within the scope of the present invention. Such nucleic acid vaccine technology includes, but is not limited to, delivery of naked DNA and RNA and delivery of expression vectors encoding M. tuberculosis and M. leprae marker polypeptides. Although the technology is termed “vaccine”, it is equally applicable to immunogenic compositions that do not result in a protective response. Such non-protection inducing compositions and methods are encompassed within the present invention.
  • Although it is within the present invention to deliver nucleic acids encoding [0156] M. tuberculosis and M. leprae marker polypeptides and carrier molecules as naked nucleic acid, the present invention also encompasses delivery of nucleic acids as part of larger or more complex compositions. Included among these delivery systems are mycobacterium, mycobacteria-like particles, or bacteria containing the nucleic acid encoding M. tuberculosis and M. leprae marker polypeptides. Also, complexes of the invention's nucleic acids and carrier molecules with cell permeabilizing compounds, such as liposomes, are included within the scope of the invention. Other compounds, such as molecular vectors (EP 696,191, Samain et al.) and delivery systems for nucleic acid vaccines are known to the skilled artisan and exemplified in, for example, WO 93 06223 and WO 90 11092, U.S. Pat. Nos. 5,580,859, and U.S. 5,589,466 (Vical's patents), which are incorporated by reference herein, and can be made and used without undue or excessive experimentation.
  • To further achieve the objective and in accordance with the purposes of the present invention, a kit capable of diagnosing mycobacteria infection is described. This kit, in one embodiment, contains the DNA sequences of this invention, which are capable of hybridizing to RNA or analogous DNA sequences to indicate the presence of a mycobacteria infection. Different diagnostic techniques can be used which include, but are not limited to: (I) Southern blot procedures to identify cellular DNA which may or may not be digested with restriction enzymes; (2) Northern blot techniques to identify RNA extracted from cells; and (3) dot blot techniques, i.e., direct filtration of the sample through an ad hoc membrane, such as nitrocellulose or nylon, without previous separation on agarose gel. Suitable material for dot blot technique could be obtained from body fluids including, but not limited to, serum and plasma, supernatants from culture cells, or cytoplasmic extracts obtained after cell lysis and removal of membranes and nuclei of the cells by centrifugation. [0157]
  • The invention also provides screening assays for identifying agents that modulate (e.g. augment or inhibit) the activity of [0158] M. tuberculosis and M. leprae marker polypeptides. Assays for detecting the ability of agents to inhibit or augment the activity of M. tuberculosis and M. leprae marker polypeptides provide for facile high-throughput screening of agent banks (e.g., compound libraries, peptide libraries, and the like) to identify antagonists or agonists of these marker polypeptides. Such M. tuberculosis and M. leprae marker polypeptide antagonists and agonists may modulate marker polypeptide activity and thereby modulate, inhibit, or even prevent infection of a host by M. tuberculosis and M. leprae
  • For example, yeast comprising (1) an expression cassette encoding a GAL4 DNA binding domain (or GAL4 activator domain) fused to a binding fragment of [0159] M. tuberculosis or M. leprae marker polypeptide, (2) an expression cassette encoding a GAL4 DNA activator domain (or GAL4 binding domain, respectively) fused to a binding fragment of a test polypeptide, and (3) a reporter gene (e.g., β-galactosidase) comprising a cis-linked GAL4 transcriptional response element can be used for agent screening. Such yeast are incubated, and expression of the reporter gene (e.g., β-galactosidase) is determined by the capacity of the agent to affect expression of the reporter gene and thereby identify the test polypeptide as a candidate modulatory agent for M. tuberculosis or M. leprae marker polypeptides.
  • Yeast two-hybrid systems can be used to screen a mammalian (typically human) cDNA expression library, wherein cDNA is fused to a GAL4 DNA binding domain or activator domain, and either a [0160] M. tuberculosis or M. leprae marker polypeptide sequence is fused to a GAL4 activator domain or DNA binding domain, respectively. Such a yeast two-hybrid system can screen for cDNAs that encode proteins that interact with M. tuberculosis or M. leprae marker polypeptides.
  • Polypeptides that interact with [0161] M. tuberculosis or M. leprae marker polypeptides can also be identified by immunoprecipitation of M. tuberculosis or M. leprae marker polypeptides with antibody, and identification of co-precipitating species. Further, polypeptides that interact with M. tuberculosis or M. leprae marker polypeptides can be identified by screening a peptide library (e.g., a bacteriophage peptide display library) with a M. tuberculosis or M. leprae marker polypeptide.
  • Additional embodiments of the invention are directed to methods that employ specific antisense polynucleotides complementary to all or part of [0162] M. tuberculosis or M. leprae marker nucleic acids. Such complementary antisense polynucleotides may include nucleotide substitutions, additions, deletions, or transpositions, so long as specific hybridization to the relevant target sequence corresponding to M. tuberculosis or M. leprae marker nucleic acids is retained as a functional property of the polynucleotide. Complementary antisense polynucleotides include soluble antisense RNA or DNA oligonucleotides that can hybridize specifically to M. tuberculosis and M. leprae marker nucleic acid species and prevent transcription of the mRNA species and/or translation of the encoded polypeptide. See (Ching et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:10006; Broder et al. (1990) Ann. Int. Med. 113:604; Loreau et al. (1990) FEBS Letters 274:53; Holcenberg et al., WO91/11535; U.S. Ser. No. 07/530,165; WO91/09865; WO91/04753; WO90/13641; and EP 386563). The antisense polynucleotides, therefore, inhibit production of M. tuberculosis or M. leprae marker polypeptides. Antisense polynucleotides that prevent transcription and/or translation of mRNA corresponding to M. tuberculosis or M. leprae marker polypeptides may inhibit or prevent infection by M. tuberculosis or M. leprae. Antisense polynucleotides of various lengths may be produced, although such antisense polynucleotides typically comprise a sequence of about at least 25 consecutive nucleotides, which are substantially identical to a naturally-occurring M. tuberculosis or M. leprae marker nucleic acids, and typically are identical to a M. tuberculosis or M. leprae marker nucleic acid. For general methods relating to antisense polynucleotides, see Antisense RNA and DNA, (1988) D.A. Melton, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
  • Polypeptides with similar sequence should have similar function. Thus, the functions of [0163] M. tuberculosis and M. leprae marker polypeptides can be assessed by a database search. One method by which structural and functional domains can be identified is by comparison of the nucleotide and/or amino acid sequence data for M. tuberculosis and M. leprae marker polypeptides, or M. tuberculosis or M. leprae marker nucleic acids, to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predict polypeptide conformation domains that occur in other polypeptides of known structure and/or function. For example, methods to identify protein sequences that fold into a known three-dimensional structure are known (Bowie et al. (1991) Science 253:164).
  • As other examples, but not for limitation, the programs GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package (Genetics Computer Group, 575 Science Dr., Madison, Wis.) can be used to identify sequences in databases, such as GenBank/EMBL, that have regions of homology with [0164] M. tuberculosis or M. leprae marker polypeptides or M. tuberculosis or M. leprae marker nucleic acids. Such homologous regions are candidate structural or functional domains. Alternatively, other algorithms are provided for identifying such domains from sequence data. Further, network methods, whether implemented in hardware or software, can be used to: (1) identify related protein sequences and nucleotide sequences, and (2) define structural or functional domains in M. tuberculosis and M. leprae marker polypeptides.
  • Thus, those of skill in the art can recognize sequence motifs and structural conformations that may be used to define structural and functional domains in the [0165] M. tuberculosis and M. leprae marker nucleic acids of the invention. Hydrophobicity profiles can be generated and displayed graphically using the ProtScale utility at ExPASy (http://expasy.hcuge.ch/cgi-bin/protscale.pl). There are a number of different ways of predicting transmembrane helices in sequences, the simplest being merely to look for regions of the protein containing a run of 20 hydrophobic residues. However, there are also a number of more sophisticated, and accurate, algorithms which can be used not only to predict the location of transmembrane helices but also their orientation in the membrane.
  • Proteins can contain signals within their sequence which assist in their processing within the cell, for example leader sequences or signals which target proteins to specific compartments within cells. Web resources are available to help predict both these types of sites. Different regions of a polypeptide evolve at different rates; some parts of a polypeptide must retain a certain pattern of residues for the polypeptide to function. By identifying such conserved regions, it is possible to make predictions about the polypeptide function. Examples of conserved sequences can be found around the active sites of enzymes, sites of post-translational modification, binding sites for co-factors, protein sorting signals, etc. A number of bioinformatics resources have been developed both to build databases of conserved patterns and to search for instances of such patterns in sequences. One of the best known motif databases is PROSITE, which can be employed in this invention. [0166]
  • This invention will be described in greater detail in the following Examples. [0167]
  • EXAMPLE 1
  • The whole genome sequence was obtained from a combination of sequenced cosmids[0168] 45 and 54,000 end sequences (giving 7.1× coverage) from a pUC18 genomic shotgun library using dye terminator chemistry on ABI373 or 377 automated sequencers The sequences of 42 cosmids previously generated by multiplex sequencing46 were used for scaffolding purposes only. The sequence was assembled using Phrap (P. Green, unpublished), finished using GAP447 then compared with sequences present in public databases using FASTA, BLASTN and BLASTX48. Potential CDS were predicted, and gene and protein sequences analysed as described previously8, 49, using Artemis50 to collate data and facilitate annotation. The genome and proteome sequences of M. leprae and M. tuberculosis H37Rv were compared pairwise to identify conserved genes using the Artemis Comparison Tool (ACT) (K. Rutherford; unpublished; http://www.sanger.ac.uk/Software/ACT/). Pseudogenes had one or more mutations that would ablate expression and were pinpointed by direct comparison with M. tuberculosis
  • EXAMPLE 2 Target Discovery
  • To illustrate the usefulness of comparative mycobacterial genomics for identifying potentially important proteins, a precise example will now be given. Preproteins transported by the TAT pathway generally bind redox cofactors and fold or oligomerize before crossing the membrane[0169] 54, 62. After removal of the signal peptide, these proteins usually function in extracytoplasmic electron transfer chains. The specialized machinery that recognizes the twin-arginine motif, and translocates the preprotein across the membrane, is composed of several different Tat proteins. In Escherichia coli, TatA and TatE are 50% identical and share weak similarity with TatB. All three proteins are predicted to be anchored to the cytoplasmic membrane via an N-terminal hydrophobic alpha-helix, and to have cytoplasmic amphipathic helices followed by variable regions. The TatC protein is predicted to be an integral membrane protein with six transmembrane segments. M. tuberculosis and M. leprae both contain clearly identifiable tatA, tatB, tatC, and tatD genes and must, therefore, produce a functional Tat system.
  • On examination of the proteome of [0170] M. tuberculosis, eleven potential substrates for the Tat export system were recognized on the basis of their signal peptides containing potential twin arginine motifs (Table 3). During the extensive reductive evolution of the genome of M. leprae only one of the corresponding genes, ML1190, has escaped inactivation. It is orthologous to Rv2525c of M. tuberculosis but shows no similarity to proteins present in sequence databases. The 240 amino acid long precursor protein encoded by Rv2525c (or its counterpart ML1190 contains five histidines and one cysteine residue that may be important for coordinating divalent metal ions. The conservation of this coding sequence by M. leprae , in the face of massive gene loss, is a strong indication that it must play an important biological role. Given the many parallels with Tat systems elsewhere, it is likely to be in electron transport. These indirect arguments suggest on the one hand that, if this function were essential, the ML1190/Rv2525c gene product might represent a novel drug target or, on the other, since it is likely to be located extracellularly it may, therefore, be an important sentinel protein antigen.
  • The [0171] Mycobacterium tuberculosis strain HRV37 genomic library has been deposited at the Collection Nationale de Cultures de Microorganismes (C.N.C.M.), of Institut Pasteur, 28, rue du Docteur Roux, F-75724 Paris, Cedex 15, France, on Nov. 19, 1997, under the Accession Number I-1945. This genomic DNA library is disclosed in International patent application No. WO 9954487 (Institut Pasteur).
  • In summary, Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen [0172] Mycobacterium leprae , a close relative of the tubercle bacillus. M. leprae has the longest doubling time of all known bacteria and has thwarted every effort at axenic culture. Comparison of the 3.27 Mb genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes while pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative, and all of the microaerophilic and anaerobic respiratory chains, together with numerous catabolic systems and their regulatory circuits.
  • REFERENCES
  • The entire disclosure of each of the following publications is relied upon and incorporated by reference herein. [0173]
  • 1. Anon. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed [0174] Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Karonga Prevention Trial Group. Lancet 348, 17-24 (1996).
  • 2. Nordeen, S. K. & Hombach, J. M. in [0175] Tropical disease resarch: Progress 1991-1992: eleventh programme report of the UNDP/Warld Bank/WHO Special Programme for Research and Training in Tropical Diseases. (eds. Walgate, R. & Simpson, K.) 47-55 (World Health Organisation, Geneva, 1993).
  • 3. Anon. WHO [0176] Weekly Epidemiological Record 73, 40 (1998).
  • 4. Hansen, G. H. A. Undersogelser angaende spedalskhedens aasager. [0177] Norsk Magazin for Laegervidenskaben (supplement) 4, 1-88 (1874).
  • 5. Kirchheimer, W. K. &. Storrs, E. E. Attempts to establish the armadillo ([0178] Dasypus novemcinctus Linn.) as a model for the study of leprosy. 1. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lep 39,693-702 (197 1).
  • 6. Franzblau, S. Drug susceptibility testing of [0179] Mycobacterium leprae in the BACTEC 460 system. Antimicrobial Agents and Chemotherapy 33, 2115-2117 (1989).
  • 7. Shephard, C. C. in [0180] Leprosy (eds. Hastings, R. C.) 269-286 (Churchill Livingstone, Edinburgh, 1985).
  • 8. Cole, S. T., et al. Deciphering the biology of [0181] Mycobacterium tuberculosis from the complete genome sequence. Nature 393,537-544 (1998).
  • 9. Tekaia, F., et al. Analysis of the proteome of [0182] Mycobacterium. tuberculosis in silico. Tubercle Lung Disease 79,329-342 (1999).
  • 10. Brosch, R., Gordon, S. V., Eigimeier, K., Gamier, T. & Cole, S. T. Comparative genomics of the leprosy and tubercle bacilli. [0183] Res. Microbiol. 151, 135-142 (2000).
  • 11. Philipp, W., Schwartz, D. C., Telenti, A. & Cole, S. T. Mycobacterial genome structure. [0184] Electrophoresis 19, 573-576(1998).
  • 12. Stinear, T. P., Jenkin, G. A., Johnson, P. D. R. & Davies, J. K. Comparative genetic analysis of [0185] Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent divergence. J. Bacteriol. 182, 6322-6330 (2000).
  • 13. Marques, M. A. M., Chitale, S., Brennan, P. J. & Pessolani, M. C. V. Mapping and identification of the major cell-wall associated components of [0186] Mycobacterium leprae. Infection Immunity 66, 2625-2631 (1998).
  • 14. Jungblut, P. R., et al. Comparative proteome analysis of [0187] Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33, 1103-1117 (1999).
  • 15. Andersson, J. O. & Andersson, S. G. E. Insights into the evolutionary process of genome degradation. [0188] Curr. Opin. Genetics & Development 9, 664-671 (1999).
  • 16. Anderssen, S. G. E., et al. The complete genome sequence of the obligate intracellular parasite [0189] Rickettsia prowazekii. Nature 396,133-140(1998).
  • 17. Mizrahi, V., Dawes, S. S. & Rubin, H, in [0190] Molecular genetics of mycobacteria (eds. Haffull, G. F. & Jacobs, W. R., Jr.) 159-172(ASM Press, Washington, D.C., 2000).
  • 18. Gordon, S. V., Heym, B., Parkhill, J., Barrell, B. & Cole, S. T. New insertion sequences and a novel repeated sequence in the genome of [0191] Mycobacterium tuberculosis H37Rv. Microbiology 145, 881-892 (1999).
  • 19. Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of amino-acyl-tRNA synthetases —analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. [0192] Genome Research 9, 689-710. (1999).
  • 20. Poulet, S. & Cole, S. T. Repeated DNA sequences in mycobacteria. [0193] Arch. Microbiol. 163, 79-86 (1995).
  • 21. Cole, S. T. Learning from the genome sequence of [0194] Mycobacterium tuberculosis H37Rv. FEBS Letters 452, 7-10(1999).
  • 22. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of mycobacteriurm virulence proteins from the glycine-rich PE-PGRS family. [0195] Science 288, 1436-1439 (2000).
  • 23. Daffe, M. & Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. [0196] Advances in Microbial Physiology 39, 131-203 (1998).
  • 24. Yuan, Y. & Barry, C. E., 3rd. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in [0197] Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 93, 12828-33 (1996).
  • 25. Draper, P., Dobson, G., Minnikin, D. E. & Minnikin, S. M. The mycolic acids of [0198] Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Ann Microbiol (Paris) 133,39-47 (1982).
  • 26. Glickman, M. S., Cox, J. S. & Jacobs, W. R., Jr. A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of [0199] Mycobacterium tuberculosis. Mol Cell 5, 717-27 (2000).
  • 27. Melancon-Kaplan, J., et al. Immunological significance of the cell wall of [0200] Mycobacterium leprae. Proc. Nad. Acad. Sci. USA 85,1917-1921 (1988).
  • 28. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R., Jr. Complex lipid determines tissue specific replication of [0201] Mycobacterium tuberculosis in mice. Nature 402, 79-83 (1999).
  • 29. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of [0202] Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257-267 (1999).
  • 30. Peterson, J. A. & Graham, S. E. A close family resemblance: the importance of structure in understanding cytochromes P450. [0203] Structure 6,1079-1085 (1998).
  • 31. Wheeler, P. R. & Ratledge, C. in [0204] Tuberculosis: Pathogenesis, protection, and control. (eds. Bloom, B. R.) 353-385 (American Society for Microbiology, Washington DC 20005, 1994).
  • 32. Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in [0205] Mycobacterium avium and Mycobacterium tuberculosis. Journal of Bacteriology 181,7161-7167 (1999).
  • 33. McKinney, J. D., et al. Persistence of [0206] Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735-738 (2000).
  • 34. Wheeler, P. R. Oxidation of carbon sources through the tricarboxylic acid cycle in [0207] Mycobacterium leprae grown in armadillo liver. J Gen Microbiol 130, 381-9 (1984).
  • 35. Ratledge, C. R. in [0208] The Biology of the Mycobacteria (eds. Ratledge, C. & Stanford, J.) 53-94 (Academic Press Limited, San Diego, Calif., 1982).
  • 36. De Voss, J. J., et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. [0209] Natl.Acad. Sci. USA 97, 1252-7, (2000).
  • 37. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a [0210] Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chemistry & Biology 5, 631-45 (1998).
  • 38. Hall, R. M. & Wheeler, P. R. Exochelin-mediated iron uptake into [0211] Mycobacteriurn leprae. Int J Lepr Other Mycobact Dis 51, 490-4 (1983).
  • 39. Makui, H., et al. Identification of the Escherichia coli k-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. [0212] Molecular Microbiology 35, 1065-1078 (2000).
  • 40. Shimoji, Y., Ng, V., Matsumura, K., Fischetti, V. A. & Rambukkana, A. A 21-kDa surface protein of [0213] Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proceedings of the National Academy of Sciences of the United States ofAmerica 96,9857-62 (1999).
  • 41. Rambukkana, A., et al. Role of alpha-dystroglycan as a Schwann cell receptor for [0214] Mycobacterium leprae. 282 2076-9 (1998).
  • 42. Rambukkana, A., Salzer, J. L., Yurchenco, P. D. & Tuomanen, E. I. Neural targeting of [0215] Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88,811-821 (1997).
  • 43. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. & Riley, L. W. Cloning of an [0216] M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454-1457 (1993).
  • 44. Eigimeier, K., Fsihi, H., Heym, B. & Cole, S. T. On the catalase-peroxidase gene, katG,of [0217] Mycobacterium leprae and the implications for treatment of leprosy with isoniazid. FEMS Microbiol. Lett. 149, 273-278 (1997).
  • 45. Eiglmeier, K., Honoré, N., Woods, S. A., Caudron, B. & Cole, S. T. Use of an ordered cosmid library to deduce the genomic organisation of [0218] Mycobacterium leprae Mol. Microbiol. 7,197-206 (1993).
  • 46. Smith, D. R., et al. Multiplex sequencing of 1.5 Mb of the [0219] Mycobacterium leprae genome. Genome Research 7, 802-819 (1997).
  • 47. Bonfield, J. K., Smith, K. F. & Staden, R. A new DNA sequence assembly program. [0220] Nucleic Acids Res. 24, 4992-4999 (1995).
  • 48. Altschul, S. F., Boguski, M. S., Gish, W. & Wooton, J. C. Issues in searching molecular sequence databases. [0221] Nature Genet. 6,119-129 (1994).
  • 49. Parkhill, J., et al. Complete DNA sequence of a serogroup A strain of [0222] Neisseria meningitidis Z249 1. Nature 404,502-505 (2000).
  • 50. Rutherford, K, et al Artemis: sequence visualization and annotation. [0223] Bioinformatics 16, 944-945 (2000).
  • 51. Andersen, P. Host responses and antigens involved in protective immunity to [0224] Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 45, 115-31 (1997).
  • 52. Pugsley, A. P. The complete general secretory pathway in gram-negative bacteria. [0225] Microbiological Reviews, 57, 50-108 (1993).
  • 53. Stanley, N. R., Palmer, T. & Berks, B. C. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. [0226] J. Biol. Chem., 275, 11591-61 (2000).
  • 54. Berks, B. C., Sargent, F. & Palmer, T. The Tat protein export pathway. [0227] Mol. Microbiol., 35, 260-74 (2000).
  • 55. Lalvani, A., et al. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for [0228] Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 95, 270-5 (1998).
  • 56. Pollock, J. M. & Andersen, P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. [0229] J. Inf. Dis., 175, 1251-1254 (1997).
  • 57. Gordon, S. V., et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. [0230] Molec. Microbiol., 32, 643-656 (1999).
  • 58. Harboe, M., Oettinger, T., Wiker, H. G, Rosenkrands, I & Andersen, P. Evidence for occurrence of the ESAT-6 protein in [0231] Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovid BVG. Infection Immun., 64 16-22 (1996).
  • 59. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D.C> & Stover, C. K. Molecular analysis of genetic differences between [0232] Mycobacterium bovis BCG and virulent M. bovis, J. Bacteriol., 178, 1274-1282 (1996).
  • 60. Brandt, L., Elhay, M., Rosenkrands, I., Lindblad, E. B. & Andersen, P. ESAT-6 subunit vaccination against [0233] Mycobacterium tuberculosis. Infect Immun., 68, 791-795 (2000).
  • 61. Tekaia, F., et al. Analysis of the proteome of [0234] Mycobacterium tuberculosis in silico. Tubercle Lung Disease, 79, 329-342 (1999).
  • 62. Berks, B. C., et al. A novel protein transport involved in the biogenesis of bacterial electron transfer chains. [0235] Biochim. Biophys. Acta., 1459, 325-330 (2000).
    M. leprae proteins that are potential targets for the diagnosis,
    prophylaxis or treatment of mycobacterioses.
    >BL;ML0007, ML.tab 11195:12106 forward MW:32204
    VTSPNESRAFNAADDLIGDGSVERAGLHRATSVPGESSEGLQRGHSPEPNDSPPWQRGSARASQSGYRPSDPLTTTRQSN (SEQ ID NO:1)
    PAPGANVRSNRFISGMTAPALSGQLPKKNNSTQALEPVLMSNEVPFTESYASELPDLSGPVQRTVPCKPSPDRGSSTPRM
    GRLEITKVRGTGEIRSQISRRSHGPVRASMQIRRIDPWSMLKVSLLLSVALFFVWMIAVAFLYLLLGGMGVWAKLNSNVG
    DLLNNTGGNSGELVSNSTIFGCAVLVGLVNIVLMTTMAAIAAFVYNLSSDLVGGVEVTLADLD
    >BL;ML0012, ML.tab 16566:16979 reverse MW:14690
    MQQTAWGPRTARIAGCGGAGIVIAIACSTLDIDTPGFMLTGIAALGLILFAGLSWRARPKLAINPDGLAVQGWFRTRLFG (SEQ ID NO:2)
    PADIKIIRITEFRRFGRKVRLLEIEAINGDLVILSRWDLGTGPLEVLDALITAGYAG
    >BL;ML0013, ML.tab 17134:17415 reverse MW:10464
    MPKSKVRKKNDFTITSVSRTPVKVKVGPSSVWFVTLFVGLMLIGLVWLMVFQLAALGTQAPTALHWMAQLGPWNYAIAFA (SEQ ID NO:3)
    FMITGLLLTMRWH
    >BL;ML0022, ML.tab 27173:28639 reverse MW:52748
    MDNQKELIQRIERKLESSIDDAFARMFGGSIVPQEVEALLRREASDGVRSLQGNRLLAPNEYIITLGVHDLEKNKADPDL (SEQ ID NO:4)
    TSSAFASDLADYINEQGWQTYGDVVVRFDQSSSLHTGQIRARSVVNPDVEPRPTVNDPVRTQSNQAFSAEPGVPPMTDNS
    SYRGGQGQGRPSDDYYGRPQDDPRGADPQGGQDPRGCYPPKPGSYPQQAGHPPLHRPDQGGYPGQGGYEDQRAYHDQGQG
    GYPSPYEQRPATPGGYGSQGHDQGYRPGSYGPPSGGQPGYGGYGDYGRGPARPDEGSYTPSGFPAPPEQRVAYPDQGGGY
    DQGYQHSGLGYGREDYGRQEYTQYAENLPGGVYAPSSGGYAEPAGRDYDYGQPGAANDYSQPVIGGYGGYGALGSAVILQ
    LDDGSGRTYQLREGSNIVGRGQDAQFRLPDTGVSRRHLEIRWDGQVALLSDLNSTNGTTVNNAPVQEWQLADGDVIRLGH
    SEIIVRIH
    >BL;ML0030, ML.tab 34750:35091 reverse MW:11383
    MLIAGTLCVCAAVISAVFGTWALIHNQTVDPTQLAMRAMAPPQLAAAIMLAAGGVVALVAVAHTALIVVAVCVTGAVGTL (SEQ ID NO:5)
    AAGSWQSARYTLRRRATATSCGKNCAGCILSCR
    >BL;ML0031, ML.tab 35287:36123 reverse MW:28788
    MIQSTQTWRVLAGGLAATAMGVTVFAGGTAAADPSPPAPPPAIPGVLPPASLPPIQSVTAVPGGITTNNRFVATPQAPGP (SEQ ID NO:6)
    AALGQPPLAVAAPVSESLHDYFKAKNIKLVAQKPHGFKALDITLPVPTRWTQVPDPNVPDAFAVIADRLGNSLYTSNAQL
    VVYNLVGNFDPKEAITHGFVDTQQLSAWQTTNASKADFDGFPSSIIEGTYRENGMTLNTSRRHVIASSGPDKYLVSLSVT
    TALSQAVADAPATNAIVNGFRVSSPTVSAPVPPQLGTR
    >BL;ML0042, ML.tab 51993:53396 forward MW:51453
    MRNPVWLRFSMGRALLVTALVPPCIILFFHTQYWWAGIALVVLVVILTLVEFSGRWLSGWLMALYSFFRRSSKPLDTPSE (SEQ ID NO:7)
    PVIGATVKPADQVIMRWQDGFLVSVVELIPRPFTPTVIVDGEAQTDDLLETQLLEHLLSVHCPDLEAVVVSAGYRVGHVA
    SLDVVNLYQQVIGADPAPAHRRTWIMLRADPVRTRKSAQRRDAGVAGLARYLIASTTRIADQLASHGVDAVCGHSFESVD
    HATDVGFMQEKWSMMRGQNAYSVAYTAPAGPDAWWSARADHTITRVWVAPGKTPQATVVLTTLGKPKTPCGFYRLHGAQQ
    PALLGRSFVAYQHCQMPIGSAGVLVGETVNRCSVYMPFDDVDVSVSLGDVQTFTQFVVRAAAAGGIVTLGQQFEKFARMI
    GGQIGSVAKVAWPNATTYLDPYPGSERVILKHDIIGTPRHRKLPIRRISPPEEGHYQMVLPKSSYEL
    >BL;ML0044, ML.tab 54698:55039 forward MW:12157
    MDLDPTQAQTMALLGQFQSALDEQCNRMTDGVFKASDQEKTVEVTINGYQWLTGIRIESGALREFGHAVVADRINEALQN (SEQ ID NO:8)
    AQGVATAYNEVSGEQLAARLSALSCSIGEPPPT
    >BL;ML0047, ML.tab 58020:59558 reverse MW:54486
    LSAPAVTAGPATAGITPARPSATRVTILTGKRMTDLVLPSTVSIEAYIDETVAVLSDLLEDAPADVLAGFDFSAQGVWTF (SEQ ID NO:9)
    ARPGSPPMKLDQSLDDAGVVDGSLLTLVSTSRTERYRPLVEDVIDAIAVLNESPEFNRKAVDRFIGVAIPVLSLPITAVA
    VWAWWVTGRSPFWSLAIGILSIVALTGSIVAEKFYKNLDLSESLLLTSYPLIASAAALVTPLPNGVDSLGPPQVAAAAAA
    VLFLTLLTRGGARRHSGYASFTAITTIAIVVIAIAYGFGYQHWVPTGAVAFGLFIVTNAAKLTVAVARIALPPIPVPGET
    VDNEELLDPVVTPHEATHEETPTWQAIIASVPDSAVRLTERSSLAKRLLIGYVISGTLILCSGAIAVIVRGHFFAHSLVV
    AFLLTVVCTFRSRLYAERWCAWALLAAAVVIPTGLTVKLCIWYTQIAWLLLTSYLVAAIIALMVFGATVRVRRVSPVTKR
    IMELIDGAVVASIIPLLLWIAGVYDMVRNLSF
    >BL;ML0048, ML.tab 59555:61315 reverse MW:63226
    MAADYDKLFRLDDGAYASPDQAAEQLFDDAPLYPPPIIPTCTTTPNGEVASPMPDWSEQLPPNPPAASKSPLPPMPIGSS (SEQ ID NO:10)
    VQPPPASSESPRAPMPVSAPPRSPAASLMPISEPPQWPPAEAPEHQFAKAEPPSVPIPINEPSPAKPATPMPMTPIDGSQ
    RTPVTSPEPSLAEFEAQPPATPKPSLLPRPMSSPPEAPRPSANQHSRHARRGHHHRDETQQANPASATEPMIAPRARTAE
    LRQAPHAAAEPAPTQHLTRPDGLVSHRTALHDSTATSAIGVQTGRSTGAKKPSKVVAKRGWRHWVHTVTRINLGLSPDER
    YELDLRTRVRRPPRGSYQIGILGLKGGAGKTTVTVTLGSMFARVRNDRILVVDADTSCGNLADRAGRFSEANIADLLADK
    DVKSYNDIRTHTSVNAVNLEVLPAAEYSTAQHALSGEDWNFAAATVSKYYNVMLADCGVGLFDPVTRGVLSTASGVVIVT
    STSVDAARQAAIALDWLRHNGYQDLLSRACVVINHVMPKEPNIASKDLVQQFEQQIQPGRVVVLPWDKHIAAGTEIRLOR
    LDPLYRRRILELAAALSDDFERAGRH
    >BL;ML0049, ML.tab 61406:61693 reverse MW:10464
    MIQAWHFPALQGAVNELQGSQSRIDALLEQCQESLTKLQSSWHGSGNESYSSVQRRFNQNTEGINHALGDLVQAINHSAE (SEQ ID NO:11)
    TMQQTEAGVMSMFTG
    >BL;ML0050, ML.tab 61720:62022 reverse MW:10964
    MAEMITEAAILTQQAAQFDQIASGLSQERNFVDSIGQSFQNTWEGQAASAALGALGRFDEAMQDQIRQLESIVDKLNRSG (SEQ ID NO:12)
    GNYTKTDDEANQLLSSKNNF
    >BL;ML0051, ML.tab 62201:63109 reverse MW:32135
    MTWPMLWPASVPSECPPNYWHTPAPSAKCEPEQAAVAPIAAAKPMITWLQSAAEQTTTQAEAHRQAMASTPGMAVITENH (SEQ ID NO:13)
    ITQAILATINFFGINMAPIAFTEAGDFICMRTQTALAMNSYQAETLLNTAFQKLEPMAAILNPSSYSPPSALTSQVNQFT
    QMISGFSAALPSTQVLQQTVGQVAELARPMQQVKSLFTSIDSTGVYTSAQRGDTESAHRIGLFGASTLSSHPLVGITGTT
    TDTRLLCAESLPSASGSLAWTPLMTQFQLIDKSIAPEPRQRVMLPPWAAGSPGHNAQDGGTT
    >BL;ML00S4, ML.tab 67417:68862 reverse MW:51875
    MGLRLTTKVQVSGWRFLLRRVEHAIVRRDTRMFDDPLQFYSRSIALGIVVAVALLIGAVLLAYFKPQGKLGASTLLTDRA (SEQ ID NO:14)
    TNQLYVLLSGHLYPVYNLTSARLALGKPANPAAVKSSELTKLPIGQTIGIPGAPYATPVSGDSSSTWTLCDTVAKIESES
    PAVQTSVIARSLQIDPAINPLQPNEALLASYRDKTWLVNSKGRHSIDLADRALTSAIGISVNVKPTPLSEGLFNALPDVG
    RWELPTIPDTGAPNSLGLSPDLVIGSVFQIQMEKSPQYYVVLSDGIAQVNATTADALRATQSHGLVAPPSLVPNVVVQIP
    ERVYDSPLPDEPLKMVARDDYPTLCWAWERKASDQAPKRTMLIGQHLPLQPSANSTGIKQIRGTATVYIDGGRYVALQSP
    DPRYSESLYYVDPEGVRYGLANSEAVKALGLASPQTAPWVIVRLLVEGPVLSRDAALLEHDTLIADPSPRKVPAGYSGVR
    P
    >BL;ML0056, ML.tab 70584:71093 reverse MW:18452
    VNLLGNDDDNHLASLDFYSANRYYEESLFFDELDGYAPTTPVGIEANDLDVFQSLTEPEEELEVELLAVTNPAKSVSALM (SEQ ID NO:15)
    NGRVHQVELTDQVTRIGEKKPATEAFVLASLARQKARTSQGTCILDSLQGGGENTTARCELVGLTLNLPTSEQAAAEAEM
    FSNNILRQK
    >BL;ML0068, ML.tab 89620:90336 reverse MW:26088
    MGLFHKRRSRAMRRAEARAIKARAKLEARLAAKNEARRLNSAQRATNKALKAQLKAKRNSDRVALKVAETELKAAKECKL (SEQ ID NO:16)
    LSPTRIRRVLTVSRLLAPIVVPLIYRAAIATRALIDQRRADQLGIPLAQIGQFSGPSARLSARIARSEQSVLLVQEKKPK
    DAETKQFVSTITERLIDLSAAVAAVENMPATRRRAVHSTISSQLDGIEADLMARLGVDLTTSMADNRSVADSTRKAAT
    >BL;ML0069, ML.tab 90521:90919 reverse MW:14807
    MSTTFAARLNRLFDTVYPPGRGPHTSAEVIAALKAEGITMSAPYLSQLRSGNRTNPSSATISALANFFRIKPAYFTNDEY (SEQ ID NO:17)
    YEKLDQELAWLATMRDEGVRRIAMRTIGLSAQAQQDIVDRVDELRRAEHLDV
    >BL;ML0071, ML.tab 91913:92446 reverse MW:18446
    METGSGLPIGVVPFHARGALKGFVISGRWPDSTKEWAQLLMVAVRIASLPGLLSTTTVFGAREELPDEPEPGTVGLVLAE (SEQ ID NO:18)
    GTVFGESAIQPGYFADHQPPALLMLHPPSETMPSLPECTGAASGCVLLPGLPYLGLEHRAAWVEAEADGTITSMVSRVGV
    DPISHPDTAILAMLLAA
    >BL;ML0073, ML.tab 94092:95126 forward MW:38124
    VIQVCSQCGTRWNVRERRREWCLRCRGALIAPQAEMPTAVKQWSSHVGLPAGIVPEALGWQRTPPGFRWIAVRPGAAPPN (SEQ ID NO:19)
    RRRQRHHVPTPRYAVMPRWGLADRVDQDSTWIQAPLKPGPSSAKVRTTLFVAVLVFTLAALVYVVRYVLLVINRNTLLNF
    GVAAIADWLGVIASLAAIAATLACVMALSRWLIARRAAAYAHHAVPEQRSSWELRAGCLLPLVNLLWAPVYVIELALMEN
    HYTQLQKPIFMWWIVWVFSYVISVVAVVTSWAKDAQGIANNTVAMVFAYLFAAAAVAAVARVFEGFECKSIKRPVHRWVV
    VHLGGSVVHPSPGSVELEGQEPAA
    >BL;ML0081, ML.tab 100648:102000 reverse MW:48150
    MLDAPEEEPALADDLTGEDEQPPVEFQWPSTLQARATRRGLLLTALGGLLIGGLVTAIPTVGTGSGLLATYIDSNPVPST (SEQ ID NO:20)
    GAKSNVAFNRATNGDCLMWPDSTPHTAVIVNCADDHRFEVAESIDMRTFPGSEYGPNAAPPSPARIQQISEEQCETAVRR
    YLGTKFDPNSKYTISMLWSGDRAWRQSGERRMLCGLQLPGVNNQQVAFKGKVANIDQSKVWPAGTCLSIDLTTNQPIDIP
    VDCVAPHAMEVTGTVNLADKFPNALPAASEQDTFIKDACTRLTDIYLAAIELRTTTLTLIYPTLSLSSWAAGSRKVACSI
    GATMGNGGWATLVNSAKGPLLINNQPPTPPPDIPEERLGMPPIPLHHLQVPNSQSNVPVNPIPPGNQQHRKQQPIVTVPQ
    SPASTAPAASVSPAKHLPKARHTRQMSKRRGRPISPHPWAGRASPGGLAE
    >BL;ML0091, ML.tab 113153:113863 reverse MW:23752
    VPNRRRCKLSTAISTVATLAIASPCAYFLVYEPTASAKPAAKHYEFKQAASIADLPGEVLDAISQGLSQFGINLPPVPSL (SEQ ID NO:21)
    TGTDDPGNGLRTPGLTSPDLTNQELGTPVLTAPGTGLTPPVTGSPICTAPDLNLGGTCPSEVPITTPISLDPGTDGTYPI
    LGDPSTLGGTSPISTSSGELVNDLLKVANQLGASQVMDLIKGVVMPAVMQGVQNGNVAGDLSGSVTPAAISLIPVT
    >BL;ML0093, ML.tab 115371:117302 forward MW:72371
    MTAVSLLARVILPRPGDPLDVRKLYLVESITNARRAHALSPTTLQIGAESEVSFATYFNAFPASYWRRWTICKSVVLRVE (SEQ ID NO:22)
    VTGAGRVDVYRTKANGARIFVEGREFAGVEDDASKAQVVELEVGLQPFEDGGWIWFDITAETRVTLCSGGWYATSPAPGR
    ANIAVGIPTFNRPADCTNALAELTADPLVDEVIGAVIVPDQGVRKVRDHPDFPEAAARLGDRLSIHDQPNLGGSGGYSRV
    MYEALKNTDCQQILFMDDDIRIEPDSILRVLAMHRFAKSPMLVGGQMLSLQEPSHLHIMGEVVNRSNFIWTAAPHAEYDH
    DFVEYPLNDKEDKSKLLHRRIDVDYNGWWTCMIPRQVAEELGQPLPLFIKWDDADYGLRAAEHGYPTVTLPGAAIWHMAW
    SDKDDAIDWQAYFHLRNRLVVAAMHWDGDVTGLVRSHLKATLKHLACLEYSTVAIQNKAIDDFLAGPDHIFSILESALPE
    VHRMRKEYPDAVVLPAATELPPPVHKNKVMKPPENPLSIVYRLLRGIFHNLTAADPECHKRPEFNIPTQDARWFRLCTVD
    GTTVTTADGCGVVYRQRDRAKNFLLLFSSLHRQLQLARRFDELRKIYRDALPVLSSKQKWEMALLPLPDSPTRFPAEQEP
    EHA
    >BL;ML0094, ML.tab 117295:117873 forward MW:19928
    MPEDKAPTGELAAIAAVQSVLVDRPGVLPTARGMSHFGEHSIGWLAISLLGAILVPCRRRYWLVAGAGVFAAHVAAVLIK (SEQ ID NO:23)
    RMVRRIRPNHPAVTVNVGTPSPLSFPSAHATSTAAAAILIGRASRLPKGIVAAVLVAPMALSRIVLGVHYPSDVAFGVVL
    GAAVAGTTARFDSRLSRRWTVQHGLSSGSAVK
    >BL;ML0096, ML.tab 118819:120768 forward MW:71091
    MRRRMVSRQVGWPLFPYHIVVRVSLWASVLLVAALFGWGAWQRRWIADDGLIVLRTVRNLLAGNGPVFNQGERVEANTST (SEQ ID NO:24)
    VWTYLLYAGSWVGGPMRFEYVALAAALVLSVLGMVLLMLGTGRLYAPSLQGRQAIMLPAGALVYVALPPARDFATSGLES
    GLVLTYLGLLWWMMVCWAQPLRNRSQSRRFIGALAFVAGCSVLVRPELALMGGSALIMLMIAARTCWLRALIVVAGGSLP
    VAYQLFRMGYYGLLVPGTALAKDAAGDKWSQGIIYLSNFNQPYVLWVPLVLLVLLGLLLMLIHRWPSFMHPLETPDSGRV
    ARAVQSPPAVVVFVVFSGLLQAFYWIRQGGDFMHGRVLLAPLFCLLAPVVVIPVVISEGADFSRQTGNWLAGVTSLLWLG
    VAGWSLWAANSPGMGDDATNVSYSGIVDERRFYAQATGHAHPLTAADYLGYPRMAAVLVALNNTPDGALLLPSGNYIKWD
    LVPMIQLSPSSPGSPPDSLVSQKPQHTVFFTNLGMLGMNVGLDVRVIDQIGLANPLAQHTERLQHGRIGHDKNLFPDWVI
    ADGPWVKWYPGIPGYLDQAWIAQAVAALQCSGTQAVLSSVRAPMALHRFISNLLNSFEFTRYRFDRVPLYELVRCGLPVP
    DVLPATPPE
    >BL;ML0099, ML.tab 123370:124380 forward MW:35611
    MVEKVPRKRHRVLAWTAALSMAAVVALAIVAVVILLRSAESPRSSLPPGVLPIPSTAPHPRKPRPAFQDVSCPDVQLLVV (SEQ ID NO:25)
    PGTWESSLQDNPLDPVQFPDALLRNSTMTIGQQFPTSRVQTYTIPYTAQFHNPLSGDKQMTYNDSRAEGTRAMVQEMINV
    NNKCPLTSYVLVGFSQGAVIAGDITSDIGNGHGPVDDDLVLGVTLIADGRRQQGVGNDIGPNPPGEGAEVTLHEVPVLSG
    LGMTMTCARPGGFGVLHSRTNEICAPGDLICAAPAEAFSVANLPATLNTLASGAGQPIHANYATAQFWDLDGAPATVWTL
    NWVHRLIEGAPHPKHG
    >BL;ML0107, ML.tab 147460:149358 reverse MW:68650
    MRNALASFGQIVLAAVVASGVAAVSLIAIARVHWPAFPSSNQLHALTTVGQVGCLTGLLAVGGVWQAGRFRRLAQLGGLV (SEQ ID NO:26)
    FVSAFTVVTLGMPLGATKLYLFGISVDQQFRTEYLTRLTDSAALQDMTYLGLPPFYPPGWFWIGGRVAALTGTPAWEIFK
    PWAITSITIAVAITLVLWWQMIRFEYALLVTIATAAVTLVYSSPEPYAAMITVLLPPALVLTWSGLRAAEREADRTLGNK
    RGWATVVGAGIFLGFAATWYTLLLAYTAFTVVLMTLLLATALCRRAGFRATFDPLRRLAGIVVIAAAIGAITWLPFLARA
    AHDPVSDTGSAQHYLPADGAELAFPMLQFSLLGMICMLGTLWLIVRTSSSVRASALMISVLAVYLWSLLSILTTLARTTL
    LSFRLQPTLTVLLVTAGVFGFIETAQSLAKHNRAVLSVASAIGLAGAIAFSQDIPNVLRPDLTIAYTDTDGHGQRGDRRP
    PGSEKYYWAIDEAVLHITGKPRDQTVVLTADYSFLAYYPYWGFQGLTSHYANPLAQFDLRAAQIQQWSRLTTASELIHAL
    DTLPWPPPTVFVMRHGAGNTYTLRLAKNVYPNQPNVRRYTVDLPAALFADQRFAVQDIGPFVLAIRKPMGNA
    >BL;ML0115, ML.tab 155413:155937 reverse MW:19053
    LNNDNDDSIEIIGGVDPRTMATRGEDESRDSDEPSLTDLVEQPAKVMRIGTMIKQLLEEVRAAPLDEASRNQLREIHATS (SEQ ID NO:27)
    IRELEDGLAPELREELDRLTLPFNESTAPSNAELRIAQAQLVGWLEGLFHGIQTALFAQQMAARAQLEQMRNSALPPGMG
    KPGQAGGQGTGQYL
    >BL;ML0116, ML.tab 155965:157929 reverse MW:70767
    VGLCCGTLIALFLLIVPETIVARFAALTWPIAIAVSPALTYGVIALVIIPFGAVGIPWNSWTALAALVAVSMLMIAFRLL (SEQ ID NO:28)
    LVRYRDTAAETRGISGWPAVTVAVGVLLGALLIGWAAYRGLLHWQSIPSTWDAVWHANTVRFILDTGQASPTHMGELRNV
    ETHSVLYYPSVLHALAGVYCQLTGAAPTTGYTVSSLAVAVWLFPVSAATLTWHLLRPVTTQKRAAGASATAAALSAAFTS
    VPYVEFGVAANPNLAAYGVAVPTMVLITSTLRHRDRIPVAILALVGTFSVHLTGGIVVSLFLLGWWLMNALLHPVRSRAA
    DARTLAAVVMPTALILAPQFIAVLNQADIIAGHSFPSFKSVKQGVIDALLLHTRHLNDFPIQYGLVVLAAIGMAILLYQK
    IWWPSIAWLVLTVATVYSAAPFRGPIGSAIESFSQFFYNDPRRLSAVVTMLLTPMAGIALFAGVLLLVVGARRVTARFTA
    LPRPVWTTATVVLLVAATVLTAWHYLFRHLVLFGDKYDSVMVNQKDLDAMSYLATLPGAHNTIIGNSNTDGSSWMYAVAD
    LHPLWTHYDFPQQTGPGYFRYAFWAYARTGNPWVVEAVRVFNIRYILTTSPTVQGFAIPDGLVSLEESKSWTKIYDNGAA
    RIFEWSGNATATRA
    >BL;ML0124, ML.tab 166949:167389 reverse MW:16448
    MPVLSKTVEIDTDTATIMAIVTDFESYPQWHEWIKGVWVLAHYDDGRPSQLRIDINFQGMQGTYIQAVYYPGVNQIQTVM (SEQ ID NO:29)
    QOGOLYSKQEQLFSVTQAEGGSVLTVDLDVELTMPVPAPMVKNLLNTALDRLAEKLKLYAEHLAPS
    >BL;ML0133, ML.tab 179256:179888 forward MW:24045
    MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELENLKIGRILQRDILLKGQKSG (SEQ ID NO:30)
    ILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIETYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGG
    QPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL
    >BL;ML0151, ML.tab 213175:213492 reverse MW:11830
    MRPEPPHHENAELTEMNTEVVEAPLLTDIEELREEIDRLDAQILATVKRRAEVSQAIGKVRMASGGTRLVHSREMKVIER (SEQ ID NO:31)
    YSELGPDGKDLAILLLRLGRGRLGH
    >BL;ML0158, ML.tab 221657:222601 forward MW:31355
    LHCSSGAVTALEITGGVNTYLPGSPGYPLVQPAGSYPGATPSFVKSDVGESQLYHYLTIAVVVLGLAVYLGNFGPTFTSS (SEQ ID NO:32)
    SDIGPGSGGFAGDAGTAVVVALLAALLAGLDLLPKAKSSAGVVGAIAVLGALLAISEMINMPAGFSIGWANWFILVCSVL
    QAIAAVAALLLEAGIITAPAPRLSYDPYLQYGQYGAQSYYGQPNRQLQVGLNAHSPQQSPAGYGAQYGAYTSSPTQIQAG
    MPATGGFSAQHSAQQGPSTPPTGFPSFSPPPSVGAAAGSQAGSAPVSYSNPTDSKQGFGQGRESTSSSSGSAPV
    >BL;ML0159, ML.tab 222650:223942 forward MW:44093
    VGDNRAAGVRQARDLVKVAFGPAVVALAIIAAITLLQLLIANSDMTGALGAIASMWLGVHQVPIAIGGRELSIMPLLPVL (SEQ ID NO:33)
    LMVWATAHSTSQATSAYSSWLVIRWVVASALGGPLLIAAISLAVIHDASSVLTELQTPKALRAFTGVLVVHAIGAAIGVN
    SRVGRRVLTASRLPDWVGDSVHAATAGVLALLGLSGLVTAGSLVVHWATMQEFYGITDSIFGQFSLTVLSVLYAPNVIVG
    TSAVAVGSSAHLGFATFSSFTVFGGDIPALPVLAAAPTPPLAPVWVALLIVGAASGVAVGQQCTRHPLPLLAALAKLLVA
    AATGALMMALLGYAGSGRLGNFGDIDVDQGALVVGVFFWFAVVGWVTVVVACGIKRFPRHLKPPPALSSEEHADASSKDH
    EAYFGVDLNVPFDLSGEDEIPKAEPGEAAD
    >BL;ML0169, ML.tab 234932:235534 forward MW:22082
    MSNSAQRDAKGARDEPLRAADTDRIQIAQLLAYAAEQGRLELKDYEDRLAKAYAATTYQELEQLRDDLPGSQVSARRGGN (SEQ ID NO:34)
    PNPAPSTLLLALMSGFERRGRWNVPRKLTTFSLWGSGVLDLRYADFTSTEVELHAYSVMGVQTILLPPEVNVEISGHGVM
    GSFDRQVRGQGTPGAPTVKIRGFSLWGGVGIKRKARRPRR
    >BL;ML0185, ML.tab 250221:251249 forward MW:38250
    MPSIPQSLLWISLVVLWLFVLVPMLISKRDVVRRISDVALATRVLNGVAGARLLKRGGPATGHRSDHNWELDEDWRQNPV (SEQ ID NO:35)
    DGEFADADQDIGEEQDQNVDDTQRTRPVVMEVAVAELTGTDYLDVDVVEDSVALPIEDSADVTESVLLAVGEGGSPGEEA
    EAEQRQSDRYGYVDASSGLGLEQKDDKSPVPVAPTVSRQRRYDTKTATAVSARKYAFRKRVLMVMAIILVGSAAAAFEVD
    SNAWWICGSSTTVTVLYLAYLRRQTRIEEKVRSRRMHRIARARVDVENAHDREFDVVPSRLRRPGAVVLEIDDEDPIFEH
    LDYEMPIRTFGWPRDLPRAVGQ
    >BL;ML0187, ML.tab 252658:253719 forward MW:38375
    VAGSWQCGHCESCASPLGPRDIAVVELIADRAEEFAAMDIFRGLPAEDLMSVAVSVEPVLAAAGEVLMQQGEQAVSFLLI (SEQ ID NO:36)
    SSGNVEVRRVDDDGAVIVGQASHGMIIGEIALLRDGRRTATVITTEPLTGWVGDIDAFAQMVQIPSITRRLLLTVRQRLA
    AFITPIPVQLRDGTHLMLRPVLPGDTERSLRGHVRFSRETLYLRFMSARAPSDELMHYLSEVDYVDHFVWVVTDGGDPVA
    DARFVRDESDPTLAEIAFTVADAYQGRGVGNFLISALSIAAHVNGVNRFSARMLTDNGPMRAIMDHHGAVWRRYDVGVIT
    TVIDVPRQRDLIIGRAMADQIAGVVRQVIGAVG
    >BL;ML0190, ML.tab 255125:255742 reverse MW:22988
    MCDMLVDVGIAFQGSLFEYHERRQLGDGAFIELRSGWLTDGVELLDTLLSEVPWRIERRRMYDKVVNVPRLVSFHDLTTD (SEQ ID NO:37)
    DPPHPLLTRLRRRLNDIYAGELGEPFTSVGLCCYRDGSDSIAWHGDTIGRNSSEDTMVAIISLGATRVFALRKRGGGPSL
    RLPLTHGDLLVMGGSCQRTWEHSVPKTSASTGPRVSIQFRPRNVH
    >BL;ML0199, ML.tab 265213:265815 forward MW:21217
    VSQLSFFTAESLLPAIADLAGVLAASGQIVVVSASGQSPAPAARLSVVVDQLWRASALAEMISEAGLVPEISRTEEDTPL (SEQ ID NO:38)
    VRTAVDPLLCPIAAEWTRGAVKTVPPRWLPGPRELRAWILAAGVPEAANRYLLGLDPHAPDTHSPLASALMRVGIAPTLI
    GTRSGRPALRISGRRRLSRLLENVGEPPDWAEALALWPRV
    >BL;ML0208, ML.tab 279784:280125 forward MW:12884
    MNWIQVLLIGSIIVLLIYLLRSRRNVRSRAWVKVGYIAFVLGGVYAVLRPNDTTVVAHWFGVCRGTDLMLYALIMAFSFT (SEQ ID NO:39)
    TLSIYIRFKDLELRYACLARVVALEGARAPEPF
    >BL;ML0227, ML.tab 298516:298992 forward MW:17121
    MGPTRKRDLTAANIGAAVVGYLLVLVLYRWFPPITVWTGLSLLAVAIPEALWARYVRTKISDGEIGDGPGWLHPLAVAHS (SEQ ID NO:40)
    LMVAKASAWVGALVLGWWVGVLVYFLPRWPWLRVADKDTSGTVVAALSALALLVAALWLQHCCKSPQDPTEHGEGAEN
    >BL;ML0229, ML.tab 300537:301466 forward MW:32734
    MVQFDGLRSARLNIAILSTGRVGVALERADQVVVACSAVSHASRQWVQFRLPETSVASPPEVASSAELLLLAVPDCEFAG (SEQ ID NO:41)
    LMSGVAVTSVPRPGTIVAHTSWANGVGILAQLGKDGCIPLAIHPANMFSGSDEDLSQCQLRDTYFGITKTDDVGYAIAQS
    LVLEMGGEPFCVVEYARILYHSVSPHVGNNIVTVLADALEVRRSALRGSELLGLGVPPACRGEVVDDQLDVIVERIVGSL
    ARAACENTLQRGQAGLTKLVARGDLDALAGHLVALMRIGPELAQAYRVNALRKTQRAHAPYDVVEALAP
    >BL;ML0256, ML.tab 335129:335812 forward MW:24402
    MSEAKRLDPKRRSPASRPGKAGDSVRGRRSTKPVAKLSVKPSRTTPASSHSGRNSTRMLTQHVVEPIRQSIIESRERRSD (SEQ ID NO:42)
    QQLGFTARRAAVLAAVVCVLTLTIAGPVRTYFAQHAEIEQLAATEATLRRQIADLEQQKGKLADSAYIAARARERLGFVM
    PGDVPFQVQLPSTAAVSSQPGGRAAKPANNDPWYTSLWHNIADAPHLPPGAGTPPFSLTPLSTTSGG
    >BL;ML0257, ML.tab 335805:336308 forward MW:17960
    VVDRADLEAVARHLGREPRGVLEIAYRCPSGEPGVVKTAPKLDDGTPFPTLYYLTHPVLIAAASRLESTGLMREMTERLG (SEQ ID NO:43)
    QDPELAAGYRRAHESYLTERDAIESLGTTFSAGGMPDRVKCLHVLIAHSLAKGPGLNSLGDEVLALLAADPKTAATLVAG
    QWKECDR
    >BL;ML0271, ML.tab 354849:355220 reverse MW:12992
    MRLGQALAWLATDIVAVSVFCAVGRCSHAEGLTVADLAVTLWPFLTGTAIGWLASRGWQRPTAVVPTGVVVWLCTVVVGV (SEQ ID NO:44)
    ALRKASSAGVVANFMVVAASTTAALFLGWRAVVELILRRRSTR
    >BL;ML0279, ML.tab 361297:361953 reverse MW:24062
    VTYYSSLRPEDLPPERPKHEHYSGFPEYELANPGVGFRRFVATMRRLQDLAVSADPSDEVWYAAADRAVALVELLGPFAT (SEQ ID NO:45)
    DEGKAPAGRVPDMPGMGSLLLPPWTLTRSGPDSVEMTGYFTRFHVGFNHAVIIGGVLPLVFDHLFGMISYTAGRSISRTAF
    LHVDYRKITPIDEPLVMRGRVTRTEGRKAFVSAELVDGDEMLLAEGNGMMVRLLAGQP
    >BL;ML0281, ML.tab 363432:364121 forward MW:25240
    LNTSDSAPGVAVLLFGDDRTRQRWNTLTALSTYRAGGPDDIDSIDATIGPYRRLVVVGGDGDLAAVLGRLLRADRLDIEV (SEQ ID NO:46)
    AYVPHQRTAATRVYRLPTGRRAARRARRGYATRVPLIRDETGSVIVGRADWLPVVDRQPLNGEAIVDDIPLFDGDVAGVR
    IAPTLANPGLRARLHTSRTGIGIWSRWLTGRAVQLGSTGVAVVRDGVPTRRRERRSTFYRNVEGWMLVR
    >BL;ML0284, ML.tab 365860:366273 reverse MW:14541
    MTSMGDLLGPDPILLPDDSAAEVELRANKDPGTVAAAHIPSASVAWAALAEGALADDKATTAYAYARTGYHRGLDQLRCNG (SEQ ID NO:47)
    WKGFGPVPYSHEPNRGFLRCVAALARAANAIGETDEYRRCLNLLDDCDPAARNELGL
    >BL;ML0285, ML.tab 366385:367263 forward MW:31593
    MPNASEPERGITLNRPGLAPRTLDKNVVSNLPEAKDNPANTHGEEIAAGYPLAHSDSETEAMVLTKTEPDQDPGADRQHH (SEQ ID NO:48)
    ERRFTAPGFDARATAIMATAPDPATEAIHPPLSSSDPPGHLGISPKAAVPQSIPPVLGTKLRSARHFHWGWVVALLMMVL
    ALAAIAILGTVLLTRGKHVKASPAEQVRHAIQSFDVAVQTGNLTALRSITCGTTRDGYVEYDESSWDETYHRVSAAKQYP
    VIASIDQVVVNGQHAEANITTFMAYDPQVRSTRSLDLQFCDDQWKICQSPSG
    >BL;ML0298, ML.tab 381423:381647 reverse MW:7851
    MIVXTVNERPVEVNEQTTVAALLESLGFPASGIAVAVEFSVLPRSYWATKISELPAVTGRSEPIRLEVVTAVQGG (SEQ ID NO:49)
    >BL;ML0370, ML.tab 461945:462814 reverse MW:30055
    VRYRRQVAHTRKLLAALSRRGPHRVLRGDLSFAGLPGVVYTPAGGLNLPGVAFGHDWLTGTARYAGLLEHLASWGIVTGA (SEQ ID NO:50)
    PDTQRGLTPSVLNLAFDLGSALDIVAGVRLGPGNISVHPAKLGLVGHGFGGSAAVLAAAGLPGLAGLPAKSAVAIFPTVT
    SPAPEQPAATCKVPGLILTAPGDPKTLNSNALSLYRAWDDATLRIVSKAKAGGLVEGWRMTKVVGLAGPHRATQKAVRSL
    LTGYLLYALGGDKEYRDFADPDMHLPHTVPVDPEAPLVTPEQKIVTLLK
    >BL;ML0383, ML.tab 476440:477285 forward MW:29301
    VTSVSIVVEIGHTSAAEPMLAAAAFGNQPGRWPLPTATTPHQLWLRAVAAGGQGHYSSAYRDLAVLRRSVPAGRLASLAH (SEQ ID NO:51)
    STEGSFLRQLGWHSLARGWDGRALVLAGTDSEARADALIGLAADALGVGRLAAAATLLRRVGSALAPAQLPAQVADRLAV
    RRRWVAAELAMAVGDGATAVRNAREAVELAQVGRVSVRHQVKSDVVLALCSAATEPRVVAEAALAATGRLGLIPLR
    WALACLLIDIGSVTFSEPELSELRDVCADQVRRAGGTWRTA
    >BL;ML0386, ML.tab 480093:480506 reverse MW:15294
    VRDHLPPGLPPDPFADDPCDPSAALDAVEPGQPLDQQERIAVEADLADLAVYEALLAHKGIRGLVVCCDECQQDHYHDWD (SEQ ID NO:52)
    MLRANLLQLLIDGTVRPHEPAYDPEPDSYVTWDYCRGYADASLNQATSDADGYRRRH
    >BL;ML0405, ML.tab 503217:504401 forward MW:40754
    MSGAFIIDPTLKAIEAWHALLGIGVPNDGGVLYSSLSFFEKALEHLAAAFPGDGWLGSAADKYAGQNRKRVDIFQELAEL (SEQ ID NO:53)
    DKELIELIHNQANSVQTTRGILDGAKKALLFVRPVAIDLNYIPLVGSVMSASIQAQACAAAMAAVSGGLAYLLVQTAIHT
    AKFVALLARLAHLLASAVADVVSDGVAIIKGIVDHLWHFIAGALTGLKDIVEKIIHWFFGLFSHWWSRLHSFFGGIPGLS
    GATSGLSQVTGLFGVPGLAGSSGLLSGESLLSTENLPSLAGVGAGLGLGSLPQLAQLHAASTRQGTRSQAGVSAELSTEQ
    FGGQQEPVSAQGSQGMGGSQGMGGMTPASTKSKKDERKKKKYSEGAAAGTDDAERAPIEVQSGGGKRALAQHVV
    >BL;ML0406, ML.tab 504459:504779 forward MW:11110
    MRSMIDNLTVQSEHLNSLASQHENEAACASSGVSAAAGLANAVSTSHGSYCAQFNDTLKMYEDAHRTLGESLHTGGIDLA (SEQ ID NO:54)
    RVLRVAAANYCDADEICGSDIKSAFG
    >BL;ML0407, ML.tab 504793:505443 forward MW:24227
    MGSRRRINRRLLPMSTFPAWQEFRRDVVVVFPGNDFDRDDCDTVDPWGVGGAAHWTIDPIVGFASSSAPQDRGTDVDNTR (SEQ ID NO:55)
    GQAEEDEKQKEPEVAIFTVTNPPRTVSVSVLMDGRIDHVELSKRVTWMSESQVASEILVLADLARQKAQSAQYTFILDKL
    SQLADGDEHRVALLRESVGNTWNLPSPEQAAEAEAEVFATRYSDYCPAQDTENDQW
    >BL;ML0410, ML.tab 508327:508629 forward MW:10951
    MSFFLRVEVGGLMMAAGRLERITSESMACNAKLTPVTTKVVPPAADQVSKLVSQVFSSYGKQYEGYAAQGVDQSRLFVQS (SEQ ID NO:56)
    LKDAAGDYMDSDHMYLNTED
    >BL;ML0411, ML.tab 508755:509981 forward MW:42466
    MFDFMVYSPEVNAFLMSRGPGSTPLWGAAEAWISLAEQLMEAAQEVSDTIVVAVPASFAGETSDMLASRVSTFVAWLDGN (SEQ ID NO:57)
    AENAGLIARVLHAVAYAFEEARAGMVPLLTVLGNIIHTMALKAINWFGQVSTTVAALEADYDLMWVQNSTAMTTYRDTVL
    RETGKMENFEPAPQLVSRYCMDRRDSVNSFHSSSSSDSLYESIDNLYDSVAQSEEHGSDSMSQSYNTCGSVAQSELCDSP
    FGTPSQSSQSNDLSATSLTQQLGGLDSIISSASASILLTTNSISSSTASSIMPIVASQVTETLGRSQVAVEKMIQSISSTA
    VSVDVAASKVVAGVGQAVSVGALRVPENWATASQPVMATAHSVPAGCSAITTAVSGPLEGVTQPAEEVLTASVAGGSGTG
    GPAFNEAV
    >BL;ML0418, ML.tab 517644:518276 forward MW:23558
    LLSVDEVLTTTRSVRKRLDFDKPVPRDVLMECLQLALQAPTGSNSQGWHWVFVEDAEKRKAIGDIYLVNARCYLSQPAPEY (SEQ ID NO:58)
    PEGDTRGERMRLVRDSATYLAEHMHEVPVLLIPCLLGRAEESPLGAVSYWASLFPAVWSFCLALRSRGLGTCWTSLHLLG
    DGEQRAAEVLGIPSDKYSQGGLFPIAYTKGTDFRPANRLPAENVTHWDIW
    >BL;ML0425, ML.tab 524416:524643 forward MW:8231
    VADRHPDTIKLEIDVAREQFAATVDSLAERANPRRLAGDLKARVVEFGRRPAVIAALVSCAVLTVIVVVRKVKNR (SEQ ID NO:59)
    >BL;ML0431, ML.tab 530916:531695 reverse MW:27233
    MNNPRRSEWLGPSLAGSGPIEPQVHQYPPLTDPAYAEQAPYAPAYGASLPPWTPKKPPQQLPRYWQQDQPPPTDIPPEGL (SEQ ID NO:60)
    TLPPPHEPKSPHWFLWVVAGASVVLVVGLVMALIIANGAIKTQTAVPPLPAITESSSATPTPTTKTSPTPTAGPAPSTTG
    SGTLTQTIGPSAMLDVVYSITGQGRAISVTYMDTGDVIQTEFNVVLPWSKQVSLSKSAVHPASVTIVNIGHDVTCSVTVA
    GVQIRQHTGVGLTICDAPR
    >BL;ML0451, ML.tab 551191:552240 reverse MW:37930
    MLTLLVLLVALATLAGGWGYQTANRLNRLHVRYDLSWQALDGALARRAVVARAVAIDAYSGTSPGRRLAALADAAECAPR (SEQ ID NO:61)
    HTRENAENELSAALAMVDPASLPTALIAELADAEARVLLARRFHNDAVRDTLALGEQRLVRTLRLRGTASVPTYFEIVER
    PHALTHGDHGVPNQRTSARVVLLDETGAVLLLCGSDPAITNGHAPRWWITVGGEVRPGERLAAAAARELAEETGLRVIPT
    HMVGPIWRRDAIFEFNGSVIDSEEFYLVYRTRRFEPSTVGWTELEHLCLHGSRWCDANDIAELVASGEQVYPRQLGELLP
    VANQLADASTGTARGTAAARNTYVLLSIC
    >BL;ML0486, ML.tab 589652:589996 forward MW:12749
    MESLVLLLLFLLIMGGFMFFASRRQRRSMQATIDLYNSLQPGDRVNTTSGLQATIIVVGDDTVDLEIAPGVVTTWMKLAI (SEQ ID NO:62)
    RDRILPDDAYMDEHEAEPGDFVYCDELEESDGSS
    >BL;ML0520, ML.tab 631179:631787 reverse MW:21872
    MNNWMLRGLVFAALMIVVRLMQGTMINVWQAQSVLISVVLLAVFIIAVVVWAARDGRADAIANPDPDRRRDLAMTWLLTG (SEQ ID NO:63)
    ILVGVLSDAVAWVISLLYNGIYTGGLVSELTTFSAFTALIVFLTGIIGVACGRWRVDRRSPPVPEHSRSGQNRADSNVFA
    AVCTDDDTPTGELSAAQTKEQTAAVATAESEAPTEIIYIIQRA
    >BL;ML0542, ML.tab 657980:658312 forward MW:11942
    VSIPQSNTSLSAVIAVDQFDPSSGGQGVYDTPLGITNPPIDELLDRVSSKYALVIYAAKRARQINDHYNQLGEGILEYVG (SEQ ID NO:64)
    PLVEPGLQEKPLSIANREIHADLLEHTEGE
    >BL;ML0561, ML.tab 678085:678555 forward MW:17254
    MTAQLDRDDWDVELRPYWTPLFAYAAAFLIAAAHITVGLLLRIKSSGVVFRTADQVAIGALGLVIASAVLLLTRPRLRVG (SEQ ID NO:65)
    AAGLLVRNIMFYRIIPWSHVVDVSFPLGSHWARIDLPDDEYIPLMAIQAVDKERAVEAMDAVRALLARYRAGPYGP
    >BL;ML0577, ML.tab 699950:700183 forward MW:8150
    MELALQITLVVTSILVVLLVLLHRAKGGGLSTLFGGGVQSSLSGSTVVEKNLDRLTLFVTGIWLVSIIGVALLTKYR (SEQ ID NO:66)
    >BL;ML0580, ML.tab 704001:704798 reverse MW:29039
    MSRVLTLVITPYSKANLKESIEAANGASHKYPNRIIIANRVNSYANKARLDAQLWVGADTGAGVVVSRTLAVYAHSVVIS (SEQ ID NO:67)
    ILLPDIPMVAWWPNIAPTMSGQDSLGKLAIQRITNATNSIDPLATIKSRLSDYTADDTHLAWDLITYWRALLTSAVNLPP
    HEPIDLALVSGMKTEPALDVLAGWLANRINRPLRRAVADLKVELIRNSETIVLSRPQTWVTSTLIRTVKPDALVPWGAQG
    SRGVPSRKSATTGSRQVLLQCLRRH
    >BL;ML0603, ML.tab 735002:736117 forward MW:39051
    VLVLWRCFRVANISALMVAVACLPDWLSGFLTGGLIAGSSARRATIYGVSNKFSSLHLVLGNEELLVERAVGEVLRSARQ (SEQ ID NO:68)
    RAGTQDVPVSRMRAGDVGTYELTELLSPSLFADERIVVLEAAAEAGKEAAALIVSAAADIPQGTVLVVVHSGGGRAKALA
    NELQSLGATVHPCARITKLSERTDFVRKELRSLRVKVDEGAVTALLNAVGSDVRELASACSQLVADTAGDVDADAVQRYH
    SGKAEVKGFDIADKAVGGDVSGAVEALRWANMRGEPLVVLADALAEAVHTIGRVGPLSGDSYRLASRLGMPPWRVQKAQQ
    QARRWSRDTVAAAMRVVAALNADVKGAAADAYYALESAVRKVAELAADGSR
    >BL;ML0630, ML.tab 763032:763358 forward MW:11114
    MAELLNTEDAKLVVLVRAAMARTEAGSGAVVRDFDGRTYAAAPVTLSTLELIGLQEEAAAAFSASSVVSGLEVGVLVAGS (SEQ ID NO:69)
    VDEPDIAMVRELASTAVVILIDRNGNRV
    >BL;ML0642, ML.tab 774506:775945 reverse MW:50246
    VAHSGSPVSTVDGVANPPFGFSSGNDSPNDESGRDKHGKNGPDSGSSGSDPLASFGMSGDFGMSDLGQIFTHLGQMFTNA (SEQ ID NO:70)
    GTAMTADKQLGPVNYELARRVASSSIGFVAPIPATTSSAIGDAVHLAETWLDGVTALPAGTTKAEGWTPDDWVNNTLETW
    KRLCDPMAQQISTVWAASLPEEAKSMASPLLSMMSQMGGMAFGSQLGQAFGQLSREVLTSTDIGLPLGPRGVAAIMPQAV
    ESFADGLEQPRCEILTFLATREAAHHRLFSHVPWLASQLLGAVEAYAAGMKIDMNGIEELARDFNPASLSDPTAIEELLG
    QGVFEPQATPAQTQALERLEALLALIEGWVQVVVTAALGDRIPGAAALGETLRRRRASGGPAEQTFATLVGLELRPRKLR
    EAAVLWERLTQAAGVDARDAVWQHPDLLPSGKDLDDPASFIDRIIGGDTSGIDEAIAKLDLDRGNSDGRTPGSGGPVDN
    >BL;ML0676, ML.tab 811815:812291 reverse MW:16889
    MFLRLMLSALKALQRLGAVMNSLARIDHWIWLFRCQPLTIRLLVATAALFTAATAFEVPAEADAIDDTFIKALNHAGVNF (SEQ ID NO:71)
    GEPRSAMTMGHYVCPILAKSGGNFAAAVQRIRGNSDMSPQMAETFAKIAISIYCPTMMANVASGNLPSLPPGPGIPGI
    >BL;ML0703, ML.tab 840882:842153 reverse MW:46028
    MVADLVPICLSLPAGDRYTVWAPRWRDGGDEWEAFLGKDDNLYACETVADLVAFVRTDSDNDLVDHPAWKDLTSVHAHKL (SEQ ID NO:72)
    DPSEDNQFDLVVVEELVAEKPTAESVTTLAATLAIVASIGSVCELPAVSKFFNGNPSLGAVSGGIEHFTGRAGQRRWNSI
    AEIIGRSWDDVLSAIDKVISTPRVNAAMSAKAADELAEEPVEPEVEPDDEDGADSATAQANNSDDTEDESRTAGDTVVLG
    SDKDFWLQVGIDPVRIMTGAGTFYTLRCYLDDHPIFLGRNGRISVFSSERALARYLADEHDHDLSYLSTYDDIRTAATDG
    SLAIDITDDNIYVLSGLSDDLADGPDAVDRDQLDLAVELLRDIGQYSEESAVDTALETNRPLGKLVAHVLSPSAVDKPVA
    PYSAAVREWEKLEQFVESRLRLE
    >BL;ML0730, ML.tab 871757:872011 reverse MW:9373
    VSAANDGSETNKLPTTQNPHIQITKGQPTDQELAALIVVLSSIGGASQVKQPEPTRWGLPVDKLRYPVFSWQRITLHEMT (SEQ ID NO:73)
    HMRR
    >BL;ML0733, ML.tab 874677:875195 forward MW:19913
    MRYPGNTLVAGEQVVLHRHPHWKRLIWPAVVLILATGLVSFGSGYVNSTHWAQVAKNVIYGVLWGVWLVIVGWLTLWPFL (SEQ ID NO:74)
    NWLTTHFVVTNRRVMFRQGTLTRSGVDIPLARINSVEFRDRLFERMFRTGTLIIESASQDPVEFYNIPRLRQMYALLYHE
    VFDTLGSEESPS
    >BL;ML0734, ML.tab 875150:875836 reverse MW:25515
    VSFPDATITRLPTVLQPYAQRYHELIKFAIVGGTTFIIDSAIFYTLKLTILEPKPVTAKVVAGIVAVIASYVLNREWSFR (SEQ ID NO:75)
    DRGGRERHNEALLFFAFSGIGVLLSNAPLWFSSYVLQLRAPTVSLTVENLADFLSAYIIGNLLQMAFRFWAFRRWVFPDA
    FARNPEKTLESALTAGGIAEVFEDAIDGVFEDFGDALLRAWRNRSRRLDLSPASQLGDSSEPRVSKTS
    >BL;ML0748, ML.tab 890981:891259 reverse MW:9830
    MVQGLLAKAATMVITGLTGVTAYEMLRKAVTKVPLHQIAVSALELGLRGSRKAEEAAESARLKLADVMAEARERIGKETT (SEQ ID NO:76)
    APAVSDIHQHDH
    >BL;ML0761, ML.tab 903525:904028 reverse MW:18775
    VSNSCSSSRHGQWSRRFSSRRAAKRGRDIRGPLLPPTVPGWRSRAERFDMAVLEAYEPIEQRWQGRVSELDVAVDEIPRI (SEQ ID NO:77)
    AARNPENVQWPPEVIADGPIALARLIPAGVDVRSNATRARIVLFRKPIERRAHDTVELGELLHDILVAQVAIYLDVEPSA
    IDPTMDD
    >BL;ML0762, ML.tab 904068:904565 forward MW:17248
    MRVSGASATFSHDSLSVVNVPRRCCRPGCPHYAVATLTFVYSDSTAVVGPLATVREPHSWDLCVDHAARITAPRGWELVR (SEQ ID NO:78)
    HAGPLPSNPDEDDLVALADAVREGPGGEHGSYGNGARASLGGFADPQLQSAGAHATVPSGGLLAPSELRSGRRRGHLRVL
    PDPSD
    >BL;ML0764, ML.tab 906078:907175 forward MW:37464
    VNATRLIDLEDTKGLIAADRDGLLRAASSAGAQVRAIAAAAEEGALETLRAHDRPRTVIWVAGRGTAETAGAMLAATSGG (SEQ ID NO:79)
    ATTEPIVVASEAPPWVGPLDVLIVAGDDPGDPALVGAAATAVGRGARVVVVAPYEGPLRDATAGRVAVLEPRLRIPNEFG
    LCRYLAAGLAALQTVDPRLRLDLANLADELDSEALHNSVGYEVFTNPAKTLAASVSGHRVALAGDCAATLALARHGSSVL
    LRIAHQVTSATGLSDAVVAVRSSVDVADYAPTSVDVLFHDEEIDGSLPERLRVLALTLASERTVVAARVVGLDDVYLVAA
    EDVPDGPSGLAGLPVSGGADRAEQELANLAVRLEMAAVYLRLVRG
    >BL;ML0776, ML.tab 920258:920515 forward MW:8946
    VAGCGVFATRWSDACTAELSVAAGEPRVVSLCVDPLVPVVVLGRYVGARRQAILAMKEHGRRNLVALPTRQCVSRLGSCT (SEQ ID NO:80)
    LPGRG
    >BL;ML0806, ML.tab 955206:955727 forward MW:17808
    VDRVIALLSSGAIVGPCDYADVVTLPHKRAVFSRAPAAVRGAGLIVVVQGAVALVVAAALVVRGLTGADQRIVNGLGTAI (SEQ ID NO:81)
    WFVVVGVAVLAAGCALLVGKRWGRGLAVFTQLLLLPVAWYLVVGSHQSAFGFPMGIVALIALILLFSPPAVRWSAGAYQR
    SVASSANRKADSR
    >BL;ML0810, ML.tab 958882:960105 reverse MW:42979
    MVRPERRTKADTIAAMTITVVMAAMVSLIWWTSDAQATHSRPATIPAPNPTPAREVPTAFNQLWAAASPATTAPVVVGGA (SEQ ID NO:82)
    VITGDGHQIDGRNPVTGESRWSYARDSDLCGVSWVYHYAVAVYRDDRGCGQVSTIDGSTGRREAARSSYADPNVRLSSDG
    TAVLSAGDTRLELWRSDMVRMLAYGEIDARVKPPARGLHSGCTLESTAASSSAVAVLEACANQDDLQLVLLRPGKEDDEP
    QQHLVAEPRVRSGSGARVLTVSDTHTAVYLPGEAGTQPRVDVIDETGTTVASTLLTKPPSSSAVVSQAGNLVTWWTGDTL
    MVFNQSNLTLRYTIAAGETTAPVGPGVMMAGQLLVPVTGKIGVYDLFSGANNRYIPVRRPPSSSAVIPAVSGSTVFEQRG
    DTLVALG
    >BL;ML0813, ML.tab 962707:963294 reverse MW:20353
    MRLTETTSIRRTTTTSYSGHPIVDGRQVAALLGSVAALCAIATAVIINSGDNATTKAIVGAPTPRPVLTTPSIPLPATPS (SEQ ID NO:83)
    STPPLLLLFDTATATIPHKAAPPALHPRTVVYNVTGMKELLDLVTVVYTDARGYPKTEFNVVLPWTKAVVLNLGVKTQSV
    VATSFHSQLHCSIVNAEGQPVVASTNNAVIATCTR
    >BL;ML0814, ML.tab 963593:963841 forward MW:8652
    VEVKIGITDSPRELTFSSAQTPGEIEELVSAALREGLGLLVLTDERGRRFLIHGAKIAYVEIGVADARRVGFGIGAESAT (SEQ ID NO:84)
    NG
    >BL;MLO816, ML.tab 964701:965726 forward MW:37443
    VSSPGPVGSPGRVPVLREEWRAPLRAQREPLARGEGRVRVNRGRSRRWRKQTRLGRFVSVFGWRAYALPFLMALTAVVLY (SEQ ID NO:85)
    QTVTGTNAPEPAASEPITEPPVIGAVGTAIMDVPPRGLAAFDANLPAGTLPDGGAFTEAGDKTWHVVPGTMPQISQSATK
    VFKYSIEIENGLDPTMFGGDGAFAQMVDQTLANPKGWTHNPQFAFTRIDTGMPDFRISLVSPLTIRAGCGYEFRLETSCY
    NPSFGPDRQARVLINEARWLRGALPFEGDVGSYRQYVINHEVGHAIGYVRHEPCDKQGGLAPVMMQQTFSTSNNDGAKFD
    PEWVKPDGKTCRFNPWPYPIA
    >BL;ML0818, ML.tab 967172:968065 forward MW:32374
    LRSPRSGSTRLTRVTVEPPPEHVLSAFGLTGVQPVPLGASWEGGWRCGEVVLSMVADNARAAWSARVRETLFVDGIRLAR (SEQ ID NO:86)
    PVRSTDGRYVVSCWRANTFVAGTPEARHDEVVSAAVRLHEATGKLERPRFLTQGPTARWADVDIFIAADRAAWEGRPLQS
    VPSGVWAAPMTTDGQRSVDLINQLAGLRKPTRSPNQLVHGDLYGTMLFVGTAAPGITDITPYWRPASWAAGVVVVDALSW
    GEADDGLIERWNALPEWPQMLLRALMFRLAVHALHPRSTAEAFPGLARTAALVRLVL
    >BL;ML0834, ML.tab 990401:990703 reverse MW:10909
    VRQDGASRTVVGGTALIRYVIVLGLGYVLGAKAGRRRYEQIVGIYRTLTGSPMAKSMIAEGRRKVANRISPDEGFVTLAE (SEQ ID NO:87)
    IDNQTTVIERSAEWRENGGN
    >BL;ML0857, ML.tab 1019690:1020442 reverse MW:26808
    MAKPRNAAAHKAARAEAKAARKAASRQRRLQLWQAFTIQRTEDKRLIPYMIAAFSLMVSASVTAGVLVGGLTMITLILLG (SEQ ID NO:88)
    VVLGALVAFIIFGRRTQQSVYHKAEGQTGGAAWALDNLRGKWRVSPGVAANGHFDAVHRVIGRPGVIFVAEGSAARVKPL
    LAQEKKRTARLVGDVPIYDI IVGNGDGEVALVKLERHLARLPANISVKQVDILESRLAALGSRAGASLIPKCPLPNACKN
    RGVQRTVRRK
    >BL;ML0869, ML.tab 1033201:1033575 reverse MW:13804
    MMAGEEAYLPPRDQGPVRRYIRDLVDARRNALGLFTPSALVLLFITFGVPQLQLYMSPAMLVLLSVMGIDGIILGRKISK (SEQ ID NO:89)
    LVDVKFPSNTESHWRLGLYAAGRASQMRRLRVPRPQVEHGSSVG
    >BL;ML0872, ML.tab 1035615:1036130 reverse MW:19047
    MLPPAVSYPRRRSKRLI ISVLVAIALVAAMTAVI IYGVRTNGSKTGGTFSEVTAKTAI EDYLKALEQSNINTIARNALCG (SEQ ID NO:90)
    MYDSVRDQRPDQALAQLSSDAFRKQFSQVELTS IDQIVYWSPYQAQVLFTMRTSPATGGPKRRQIQGIAQLLYRRNQVLV
    CSYMLRTADSH
    >BL;ML0876, ML.tab 1040896:1041315 forward MW:14969
    MHI EARLFEFVAVFFVIMAVLYGVLTSMFATGGVDWVGTTALALTGGLALIVATFFRFVARRLDI RPEDYEGAEISDGAG (SEQ ID NO:91)
    ELGFFSPHSWWPVLVALSGSVAAVGIALWLPWLIVAGVVFVLASAAGLVFEYYVGPEKH
    >BL;ML0878, ML.tab 1042383:1043021 forward MW:22756
    MMNRYSPY2RGSDTIASDVIDRILVGVCAAVWLVLIGVSVAAAVALEDLGRGFHKIASDPHTTWVLYGIIVVSVLIIAGA (SEQ ID NO:92)
    VPVLLWARRVARVEPPIRPAGVPERGGVRQLVSAGRSTARIEVERVCAEERVQSVAQPGEWFDAAVDRIWLRGTVGLTGT
    MGAALVAVAASTYLMAVGRDGASWVGYVLAGIVTAVMPVIEWIYVRQLRRVG
    >BL;ML0888, ML.tab 1055260:1055667 forward MW:15125
    MNSTNS IQIADETYVAADRALIGAAVADRSSWHRWWPDLRLQVVEDRAEKGIRWAVTGTLTGTMEIWLEPLTEELDGVVL (SEQ ID NO:93)
    HYFLHAEPAGVAAWQLAKMNMAKVTHRRRVAGKAMAFEVKKTLERSRSIGVSPVI
    >BL;ML0889, ML.tab 1055786:1056220 forward MW:16483
    VADKTTQTFYIDANPGEVMKTIADIESYPQWISEYKEVEVLEVDDEDFPKRARMLMDAKIFKDTLIMSYDWTADHQSVSW (SEQ ID NO:94)
    ILESSSLLKSLEGSYRLVPKGSTTEVTYELAVDFAIPMIGMLKRKAEHRLIDGALKDLKKRVEG
    >BL;ML0891, ML.tab 1057485:1057877 forward MW:13550
    MSGGYADIGPELRKLAQMTLDGIGPAVRSAAALVAGARGTGKCQQAWCPVCALTALVIGEQHPLLTVIADHSVALLDVIR (SEQ ID NO:95)
    AIVDDIDQSNKIPPDSPHGGGLDTETPAQTNTSNGTVRRRYQPIPVSVED
    >BL;ML0895, ML.tab 1061008:1061523 forward MW:19954
    MRYPYDTEFIEDGRTIELVSIGVVAEDGREYYAVSNEFDPERAGNWVRVNVLSKLPPLASQLWRSRRQIRLDLEEFFGVD (SEQ ID NO:96)
    GSEPTEPIELWAWVGAYDHVALCQLWGPMPDLPEALPRFTREIRQLWEDRGCPRMPPRPRDLHDALVDARDQLRRFRIIM
    SADDVGSLPTH
    >BL;ML0898, ML.tab 1064343:1064747 forward MW:14698
    VGSIPAGDDVLDPDEPTYDLTQVAELLGIPVSRVHRKLCEGYLVAVRRGDSLVVPQIFFTNSGAVVKSLPGLLTILHDGS (SEQ ID NO:97)
    FHETEIVRWLFTPDPSLTLTRDGSRDVVSNARPVDALHTHQAREVVRRAQAMAY
    >BL;ML0902, ML.tab 1068511:1069230 reverse MW:25542
    VRARFPPLFTRGCTAQRRRTLTIALLLVAMVPLATGCLRVTASITISPDNLVSGKIIAAAKPKNKNDAGPQLNDNLPFSQ (SEQ ID NO:98)
    KIAVSNYNSDGYVGSQAVFSDLTFAELPQLANMNSSTTDVTLSLRRNGNLVILESRADLTSVTDPDADVELTVAFPGVVT
    STNGDRIETKVVAWKLKPGVVSTMSARARYTDPDTRSFTGAAVWLGIASFSAASVVVLLAWNERKSSARLQIPRDSSSS
    >BL;ML0903, ML.tab 1069302:1069934 reverse MW:23864
    LAIFLINLSPNEMERRLNEALEVYVDAMRYPRNTENLRAGIWLEHIRRPGWQAVAAVEVRIEVADVADMADGPAHPAPSA (SEQ ID NO:99)
    DELNNAPLRGVAYGYPGAPGQWWQQQVVQGLQRSGLSTLEIARLMNSYFELTELHIHPHTQGRGIGEALTRRLLAHRREN
    NVLLSTPETNGETNRAWRLYRRLGFMDIIRRHYFAGDPRAFAILGRTLPL
    >BL;ML0904, ML.tab 1070251:1070655 forward MW:14614
    MPLSDHEQRMLDQIESALYAEDPKFVSSVRGGGLRVPTARRRTQGAALFVIGLGMLVCGVAFKATMIGSFPILSVFGFVV (SEQ ID NO:100)
    MFGGVLFAITGSRLSGREDHPGLAPGTSRQRRSKGAAGSFTSRMEDRFRRRFDE
    >BL;ML0907, ML.tab 1072702:1073835 forward MW:39543
    MKAQRDTPIRRGDSGRPGGRDGAARSGKRTANEAGSRRLRTHAGKISASAREVGVPKSGPRTSPMSRPVERPARPRNTTQ (SEQ ID NO:101)
    AKARAKARKAKAPKVVRPRLGECLIARLALIDLRPRTLVNKVPFVVLVISSLGVGLGLTLWLSTDSAERSYQLGDAREQA
    RMLQQQKEALERDVREAESAPALAETARKQGMIPTRDTAHLVQGPGGNWVVVGTPKPADGVPPPPLNTKLPDAGPPSLKP
    PEIPLEVPVRVVPGPGGPPPPARSGPQMWLRVPDGATTLGGQHLPQELPQLPGMLNGPAAAQVQVPGFMPTPGLPIPGST
    MRVPVPAPAPTEVPVRLQPGLVSPAVTSPVISTSPVPTPVNSEQFGPVTATAPGTSR
    >BL;ML0920, ML.tab 1090054:1090686 forward MW:24016
    MSTLHKVKAYFGMAPMEDYDDEYYDDRSPTHGYGRSRFEEGYGRYEGRDYSDLRGDPTGYLPLGYRGGYGDEHRFRPREF (SEQ ID NO:102)
    DRPDLSRPRLGSWLRNSTRGALAMDPRRMAMLFDEGSPLSKITTLRPKDYSEARTIGERFRDGTPVIIDLVSMDNADAKR
    LVDFAAGLAFALRGSFDKVATKVFLLSPADVDVSPEERRRIAETGFYAYQ
    >BL;ML0921, ML.tab 1090811:1091101 forward MW:10769
    LALFYQILGLALFVFWLLLIARVVVEFIRSFSRDWRPNGVTVVILETIMSITDPPVKLLRRLIPQLTIGAVRFDLSIMVL (SEQ ID NO:103)
    LLVAFIGMQLALSAAA
    >BL;ML0923, ML.tab 1092221:1092613 forward MW:13650
    MLIIALVLALIGLVVLVFAVATSNLLMAWVCIGASVLGVLLLIVDAVREHQCIDAANNEDKEDTDQDDGAVYVDYLDEVP (SEQ ID NO:104)
    AGTSTEAPDAGSQEGDTNSGELSGYWGRLTIDTGEQSAVAADDHDNDRAT
    >BL;ML0984, ML.tab 1151024:1151473 reverse MW:16902
    VAIAELTEASVQGVENIRTVEVFLAALQDAGLRNRIRDVGRQPRVYQNVGLPTIHGRSKTITLWRKMADCIGFEIKIHRI (SEQ ID NO:105)
    AAVAIAVLCERADAVIVGPLWMQFWVCGTFEVQNKRIMLWPNYFDLFDLFKATMRSLVALRIPSLNAAF
    >BL;ML0986, ML.tab 1152702:1152905 forward MW:7514
    LAGVRLTEFHERVVLRFGAAYGASVLVDHVLTGFDGRTVAQAIEDGVELRDVWRALCVDFDVPRDQW (SEQ ID NO:106)
    >BL;ML0990, ML.tab 1157281:1157910 forward MW:22743
    MNEEPNIVDFPDSNPLQAALEAEELRVVREIDSGAKIFVLIAVLVFMLLGSFILPHTGQVRGWDVLFDSHGAGAAAVALP (SEQ ID NO:107)
    LRIFAWLSLVFGVGFSMLALMTRRWVLAWIALAGAANASIVGLLAVWSRQTVAVGQPGPGVGLIVAWITLILLTFHWARV
    VWSSTIVQLATEEQRRRVVAQQQSKTLLDGLYSAGNRDTRTRSDPQVGS
    >BL;ML0994, ML.tab 1162620:1163318 forward MW:23576
    VLSAIAIVPSAPVLVPELTGAAAAEVADLRSAVLAVAACLPPCWIVVGTGRADDVVGPGGCLGTFAGFGADVRVRLSPQV (SEQ ID NO:108)
    GGEAELLVDFPVCALIAAWVRGQSQLDASAQVRVYCGDHDPDMALACGRQLRVEIEQAPDPIGVLVVADGATTLTSSSPG
    GYDPSAADAELVLDDALASGDVAALTRLSCQISGRVAFQVLAGLVEPGPRLAKELYRGAPYGVGYFVGVWQP
    >BL;ML1001, ML.tab 1172599:1172874 reverse MW:10150
    MPDPVVMPVPCPTSGFTQYSPYYRGAQITLLQQTILAKLNQKYYNNRYRVDVEMVLSHTGVEADSAASHTILGLSSSILP (SEQ ID NO:109)
    PYGCRTKKQRS
    >BL;ML1004, ML.tab 1176008:1176502 forward MW:17108
    MLVIYAVPPLIGNVRHPMSRPILGPRCGSGESAGSRRPAPSRSASAPMRYSGASVANLVAPHRGRTVSLAKTIGLALLAG (SEQ ID NO:110)
    MITLWLGLMADVSQVIDGDATGFVTHVPNRLAVVRVEAGESLQDVAARVAPDAPVRQVSERIRELNVLDSSMLVAGQTLI
    APVG
    >BL;ML1009, ML.tab 1179519:1180499 reverse MW:36153
    MSHSHYQDPDDEQHYQPGQPGMYVLEFPAPQLLASDGRGPVLIHALEGFSDAGHAIRLAATHLKAALNTELVASFAIDEL (SEQ ID NO:111)
    LDYRSRRPLMTFKTDHFTHYDDPELSLYALRDSVGTPFLLLAGMEPDLKWERFITAVRLLAERLGVRQTISLGTVPMAVP
    HTRPITLTAHSNNGELIADFTPWITEIQVPGSASNLLEYRMGQHGHEVVGFTVHVPHYLTQTDYPAAAQALLEQVAKTGA
    LQLPLSALAEAAAEIRAKIDEQVQASTEVAQVVAALERQYDAFIDAQENRSLLRRDEDLPSGDELGAEFERFLAQQAEKK
    RDDDLT
    >BL;ML1015, ML.tab 1185456:1185875 reverse MW:15761
    VGKLSTAPNRGTTDTFDDNSRPVLITTAAPSYEEERRTRVRKYMTLMAFRIPALMLTTVAYSAWHNGLISLLIVAASVPL (SEQ ID NO:112)
    PWMAVLIANDRPLRRTEEPRRFDSRRRRTPLLLTTEQPAFKSLRRPPPKPTSLATDSRS
    >BL;ML1016, ML.tab 1185903:1186226 forward MW:11848
    VSGFCFSVGRVRRHNVTMLGRHNVTMLGMQTQTIEHTYTDEHVDDGTGSDTPKYFHYVKKDKIVESAVMGSNVVALCGEV (SEQ ID NO:113)
    FPVTRAAKPGSPVCSDCKRVYDMLKKG
    >BL;ML1O2S, ML.tab 1192722:1193372 reverse MW:22931
    VVTQITEGTAFDKHGRPFRRRNARPAIFVVVFLVIVAGVSWTIALTRPAKVREPEVCNPPTQSTGSVPTQLGKQVPRTEM (SEQ ID NO:114)
    TDVTPAKLSDTKVHVLNASGRDGQAADIAGALRDLGFAQPTAANDPMYADTLLNCQGQLRFGTAGQATVAAVWLVAPCTE
    LLHDNRTDDSVDLALGTDFTALAHNDDIDAVLASLRPGATEPSDPALLQKIHANSC
    >BL;ML1026, ML.tab 1193568:1193870 forward MW:10969
    MPTDYDAPRRTETDNVPEDSLEELKARRNEAASAVVDVDESESAESFELPGADLSGEELSVRVIPKQADEFTCSSCFLVQ (SEQ ID NO:115)
    NRSRLASEKNGVMICTDCTA
    >BL;ML1027, ML.tab 1193875:1194348 reverse MW:17131
    VSGTPVAPHNVRYRERLWVPWWWWPLAFALASLIAFEVNLSGATLPSWLPFAVAAGTLLWLGRVEIQVIADAPLGGSVEL (SEQ ID NO:116)
    WAGNAMLPITAIAQSAAISRSAKSAALGRQLDPAAYVLHRAWVGPMILVVLDDPDDPTPYWLVSCRHPERVLSALRS
    >BL;ML1029, ML.tab 1194835:1195656 forward MW:29018
    VTADDDAERSDEDGAAVMATFGKRTGKDGASRTLTEPADPEATELPAASEPDSEEVDELEGPFDIDDFEDPAVAVLARLD (SEQ ID NO:117)
    LGSVLIPLPEGSQLQVELTDVGVPNAVWVVTANGRFTITAYAAPKTGGLWREVAGELADSLRNDSAKVTVKDGPWGREVV
    GTNTGVVRFIGVDGYRWMIRCVVNGPLETIDVLSEEARAALADTVVRRGDTPLPVRTPLPVQLPEQMAEQLREAAVAQQS
    AQHADARQQSRELAPRRGAAGSAMQQLHNTTGG
    >BL;ML1030, ML.tab 1195701:1196399 reverse MW:23579
    VAVDLRNVTTVLLPGTGSDDDYVYRAFSGPLHRVGAAVLTPPPQPNRLIDGYLSALDDAARAGPIGVGGVSIGAAVAAAW (SEQ ID NO:118)
    ALAPERAVAVLAALPAWNGAPESAPAALAARYSASHLRRDGLAATTLQMQASSPPWLADELARSWCGQWPLLPDANEEA
    AAYIAPSCAELARLATPLGVAAAVDDPIHPLQVGVDWVTAAPHAALQTVTLNQIGTNAAALGTACLAALALT
    >BL;ML1037, ML.tab 1200579:1201133 reverse MW:19903
    VSHEYWSTAVSCNPGIHHIVRLDVAJ4TPRTTQTYRHSMLAEDIAEDFPAISINSSALDAARMLAEHGLPGLLVTDMSDKP (SEQ ID NO:119)
    YAVLPASQVVRFIVPRYIQDDPSLAGVLNESTADQAAEKLSSKKVRDVLPDHLVNVSPVNADDTIIEVAATMSRQRSPLL
    AVVKGGQLLGVITASRLLRAALKH
    >BL;ML1O41, ML.tab 1206538:1207128 reverse MW:21153
    VAPVTAAEPTPFREAVAAMNAFTVRPEIELGPIRPPQRLAPYSYALGAQVKHPELDIVPEQSEDNAFGRLILLYDPDGSD (SEQ ID NO:120)
    AWDGTIRLVAYIQSDLDSREAIDPLLPEVAWSWLIEALESRIDHVTALGGTVTATTSVRYGDISGPPRAHQLELRASWTA
    TTPEVGVNVKAFCEVLENAAGLPPAGVIDLGSRSRS
    >BL;ML1053, ML.tab 1220374:1220673 forward MW:10117
    MPLFLNAEPQALTAAANTLEGLSAATVASNAAAAQLTTEIAPPAADDVSILLAHFFSGHGRQYQAHASQGATNHQDLIQS (SEQ ID NO:121)
    LLTSSSAYAGTETANIHDSL
    >BL;ML1055, ML.tab 1221433:1221735 forward MW:11298
    MTAAHFMTDPQAMRDMARKFDMHAQNVRDESHKNFMSSMDIAGAGWSGTAQLTSHDTMGQINQAFRHIVTLLQDVRDQLG (SEQ ID NO:122)
    TAADRYEHQEENSRKILSGS
    >BL;ML1056, ML.tab 1221787:1222074 forward MW:10260
    MGNINYQFGEIDAHGAAIRAQAAALETTHQAILATVRDAAEFWGGQGSTAHEMFIADLGRNFQMIYEQANSHGQKVQRAS (SEQ ID NO:123)
    SSMADTDRSVSSAWS
    >BL;ML1065, ML.tab 1230644:1230988 forward MW:11933
    VALVLLYLVVLVLVAIVLFGAASLLFGRGERLPPLPRGTTATVLPAHGVTGADVDAVKFTQVLRGYKPSEVDWVLDRLGR (SEQ ID NO:124)
    ELEALRGQLAAIADAEADADVSNVPSGDDGQDVT
    >BL;ML1067, ML.tab 1231777:1232004 forward MW:7998
    MLGAEWVREGGPARVWREHTMAAMKPRTGDGPLEATKEGRGIVMRVPLEGGGRLVVELTPDEAAALSDELKGVTS (SEQ ID NO:125)
    >BL;ML1077, ML.tab 1240278:1240697 forward MW:15219
    VMADRGQVFRRVFSWLPAQFASQNDAPVGAPRRFGSTEHLSVEAIAAFVDGELRMNAHLRAAHHISLCAQCAAEVDDQSR (SEQ ID NO:126)
    TRAALRDSHPIRIPSTLFGLLTAIPRCSPDYTSPVSEPFSEGSVSDRFVDGVAREQGKR
    >BL;ML1079, ML.tab 1242373:1242735 forward MW:13348
    VFANIGWGEMLVLVVVGLVVLGPERFPGAIRWTLGALRQTRDYLSGVTNQLREDIGPEFDDLRGQFGELQKLRGMTPRAA (SEQ ID NO:127)
    LTKHLLDGDDSLFTGNFDRPAAAKQQDRDNHQTPFDTDAT
    >BL;ML1093, ML.tab 1257729:1258586 forward MW:29736
    MRVGRLAALLLAGVGVFVAGGCATDRGDRHPELVVGSKPDSESTLLAAIYVAALRSYGFGARGETGADPMAMLDSGGFTV (SEQ ID NO:128)
    VPGFTGKVLQILQPRAAVLSAARVYRANVSALPEGIAAGDYTTAAEDKPTLVVTPDTAKAWSGSOLSLVLSHCNELVVGI
    VAGTHTPSAVGSCRLPAAREFPDYPTMFAALRAGQLTAGWTTTANPDLPADLIVLTDGKATLIQAENVVPLYRRNVLTDR
    QMLAINEVAGVLDTAALIEMRRQVIRGADSQAIADGWLAEHPMGR
    >BL;ML1096, ML.tab 1263932:1264606 reverse MW:23505
    LAQVIERSVWIQGPAAEAYVARLRRTHPSASPTEIVAKLEKHYLAALTASGAVVGSVATLPGIGTLAAVSANAGETVFFL (SEQ ID NO:129)
    EATAVFVLTIASVYGIPANHRERRRALVLAVLAGDDTRLTIGELIGPGRTNGGWLLEGMASLPLSTWSQLHTRMLRYAAK
    RCTVRRGALMFGKILPIGIGAAVGGAGNRVVGKKIISNTRNAFGTAPSRWPATLILLPTVHNAG
    >BL;ML1098, ML.tab 1266648:1270106 reverse MW:126012
    VFVTDETIVYSASDLAAASRCEYALLRDFDARLGRGPVVATTEDELFARTSALGADHEQRHLDQLRHEFGDAVAVIGRPA (SEQ ID NO:130)
    YTYAGFAAAAEATQRAIANRAPAVYQAANFDGRFVGFIDFLVRDGEQYRVVDTKLARSPKVTALLQLAAYADALAHSGVP
    VAPEAELRLGDGMVVSYRICDLIPVYRSQRSLLQRLLDRHYTAGTAVRWQDDEVRSCFRCPQCTEQLRATDDLLLIAGMR
    ISQRSKLLNVGITTIAELADHSGPVPDLSSSALSELTAQAKLQVQQRNTGTPQFEIVDPQPLALLPDPDPGDLFFDFEGD
    PLWTVDGQEWGLEYLFGVLDSEISGTFRPLWAHNRVEERKALTEFLKMVTKRRKQRPHMHVYHYAPYEKTALLRLAGRYG
    VCEDEVDELLRSGTLVDLYPLVSKSIRVGAESFSLKALEPLYMGKQLRSGDVTTATDSITCYGRYCELLSAGNFDEAATV
    LKEIEDYNHYDCRSTRELRNWLLLQAYEAGVVPVGAQPVPEGNTVKDDDELSAILSALSGFTGDVAVGDRTPEQTAIALV
    AAARGYHRREDKPFWWGHFDRLNFPVGEWADNTDVFVADDASIIIDWHTPPRARKPQRRVRLRGRLARGNLGSAVFALYD
    PPAPLANDVHPGRRAAGRAEVVEADDLSIPTEVVIVERVGNDGNTFHQLPFALTPGPPIATTALRDSIESTATTLAASLP
    QLPRTALIDILLRRIPRTHSGATLPRGTDTVADITAAVLDLDSSYLAVHGPPGTGKTHTAAHVITQLVSNHSWRIGVVAQ
    SHAAVENLLDGVITAGLDARQVAKKRHDRSAPPWQEIDGNDYPTFIADPMGCVIGGTAWDFANRNRVPPGSLDLLVIDEA
    GQFCLANTIAVAPAAANLMLLGDPQQLPQVSQGTHPEPVNTSALDWLVEGQRTLPNERGYFLDRSYRMHPAICAAVSTLS
    YEGKLHAHTEYTAARRLNEYQPGVHVLAVHHQGNSTESPEEAGAITAEIERLLGTPWTDEHGTRPLDVSDILVLAPYNAQ
    VALVRQQLMSAGFSGVRVGTVDKFQGGQAPVVFISMTSSSVEVVPRGISFLLNRNRLNVAVSRAQYAAVIVRSETLTEYL
    PATPVGLIDLGAFLTLTTFNGTGRLESRLDKP
    >BL;ML1099, ML.tab 1270157:1270765 reverse MW:20773
    VRDVWSLPCRKSLLGVAAVVLVSGTLTGCSSGDSTVAKTPVPPSTTTGTISTIISSAPSPPFATAAPPTSNTPPDDPCAV (SEQ ID NO:131)
    NLASPTIARVVSELPRDPRSAQPWNPEPLAGNYNECAQLSAVIIKANTNAVNPTTRAVLFHLGRFIPQGVPDTYGFNGID
    PAQTTGDTVALTYPSSIDGLATAVRFHWNGNAVELISNIAGG
    >BL;ML1105, ML.tab 1279262:1279951 forward MW:24905
    VLSGGAGSIPELNAQISVCRACPRLVDWREEVAVVKRRAFADQPYWGRPVPGWGSEQPRLLIVGLAPAAhGANRTGRMFT (SEQ ID NO:132)
    GDRSGDQLYAALHRAGLVNLPISMDAADGLQANQIRITAPVRCAPPGNAPTQAEWVTCSPWLEAEWRLVSEYVRAIVALG
    GFAWQIVLRLPGVSANRKPRFSHGVVAQLYAGVRLLGCYHPSQQNMFTGRLTPANLDDIFRDAKKLAGI
    >BL;ML1115, ML.tab 1291563:1292129 forward MW:19913
    VRCDVRALALAARGLIELMIVIPMVAGCSNAGSNKSVGTISSTPGNTEGHHGPMFPRCGGISDQTMSQLTKVTGLTNTAR (SEQ ID NO:133)
    NSVGCQWLAGGGIVGPHFSFSWYRGSPIGRERKTEELSRASVDDININGHSGFIAVGNEPSLGDSLCEVGIQFQDDFIEW
    SVSFSQKPFPSPCGIAKELTRQSIANSK
    >BL;ML1116, ML.tab 1292138:1292701 forward MW:19839
    MRLSVRGRRSVFAGVAVLVSAALVVTGCSRSIGGTAVKAGSHDVPRNNNSQQQYPNLLKECEVLTTDILAKTVGADSLDI (SEQ ID NO:134)
    QSTFVGAICRWQAANPASLIDITRFWFEQGSLANERKVADFLKYKVENRSIAGVDSIVMRPDDPNGACGVASDAAGVVGW
    WINPQASGIDACGQAIKLMELTLATNS
    >BL;ML1117, ML.tab 1292709:1293194 reverse MW:17617
    MRHAKSSYPRGFPDHIADHDRRLAPRGVREASLAGGWLRTNVPAIEKVLCSTAMRARETLTHSGIEAPVRYTERLYRADP (SEQ ID NO:135)
    DTVIKEIKAISDEVTTSLIVSHEPTISAVALALTGSGTNNDAAQRISTKFPTSGIAVLNVAGRWQHLELESAELVAFHVP
    R
    >BL;ML1119, ML.tab 1294763:1295914 forward MW:41281
    MRFLHTADWQLGMTRHFLAGDAQPRYSAARRDAVAGLGALAAEVGAEFVVVAGDVFEHNQLAPQVVSQSLEAIRAIGIPV (SEQ ID NO:136)
    YLLPGNHDPLDASSVYTSALFTAECFDNINVLDRAGVHQVRPGLEIVAAPWRSKAPTTDLVAEMLGGLTADIVTRVLVAH
    GSIDVFDPDRDKPSLIRLAGIDDALAGGAVHYVALGDRHSLTQVGSSGRVWYSGSPEVTNFDDIESNSGNVLVVEIDEND
    PRRPVTVTARHVGHWRFFTLHWQVDNGRDIADLDMNLDQMMDKDRSVVRLALTGSLTITDRAVLDACLDRYARLFAWLGL
    WERRSDLAVIPADGEFTDIGIGGFAAAAVDELVATAREGDTESAIDAQAALALLLRLADRGVA
    >BL;ML1120, ML.tab 1295911:1298532 forward MW:94011
    MKLHRLALTNYRGTARREIEFPDRGVILVCGANEIGKSSMIEALDLLLEFRDRSTKKEVKQVKPANADIGSEVCAEISSG (SEQ ID NO:137)
    TYRFVYRKRFNKKCETALTVLAPHREQLTGDEAHERVRAMLAETVDNDLWHAQRVLQAASTAAVDLSGCDALSRALDLAA
    GDHAELSGTEPLLIERIEAEYRRYFTSTGRPTGEWAVAISRLSDAETAVGECAAAVAEVDDRVRRHAVLTERVAGLAQQR
    FAAGPRLAVAQAAADKVAVLTRQAREAELVAAAATATNAAAVAAHTSRLRLLAEIDTRAVVLAATQDEAQEAVDAVSTMR
    ADAEASDAAVEESTEALMAAQQRADIARSTVDQLVDRQEADRLSTRLAKIDAIQGERDLICAELSAVTLTEQLLQRIENA
    AAIVDRTGEQLKLISAAVEFTATADIEISVGQQRVSLEAGQSWSTTATGPTEVEVLGVLTACVIPGATALDAQSKYVAAQ
    EELSVALADGGVVDLAAARCANQRRRELQSSLDQLSAALAGVCGDDQIDQLRARLEQLRDGYPGEPDLLAVDIGSARAEL
    EAAETVRAAVDFEREVCRRTAAAANCRLVETSARANFLLKKAETQRAELDQDIDQLAQQRASVSDEDLASAAEAGLRAVQ
    IAEQRVAKLTEELVAAEPEAVTAELVAATAAAESLRDQHEDAAGALREISIELSVFGTEGRQGKLDTAEAEREHAISQNT
    QIGRRARAAQLLRSVMARHRDTTRLRYVEPYRTELQRLGRPVFGPTFEVDIDSDLRIRSRTLDGITVPFESLSGGAKEQL
    GILARFAGATLVAKEDNVPVVVDDALGFTDPDRLAKMGEMFDTVGAHGQVIVLTCSPDRYDGFTGAHRIDLNV
    >BL;ML1138, ML.tab 1329962:1330423 forward MW:16168
    VTTPAQDAPLVLPAVAFRPVRLFIINIVLTGLANLAAGLSGHLMVGVFFGIGLLLGLLNALLVRCSVESITAQGHPLKRS (SEQ ID NO:138)
    MALNSASRLAIITVFGLIIAYAFPLAGLGVVFGLALFQVLLVLSTMLPVWRKFRFGEADGGVLKGSEGEEQQR
    >BL;ML1147, ML.tab 1337937:1338380 forward MW:16518
    MSAPMVGMVVLVVTLGAAVLALSYRLWKLRQGGTAGIMRDIPAVGGHGWRHGVIRYRGEAAAFYRLSSLRLWPDRRLSRR (SEQ ID NO:139)
    GVEIVARRGPRGDEFDIMTDKIVVLELRDTTQDRRSGYEIALDQGALAAFLSWLESRPSPRTRRRSV
    >BL;ML1159, ML.tab 1354280:1355185 forward MW:31923
    MAGAVDLSGLKQRARQKASTSDPASRATLGARGTGSSENTSVIEITEANFEDEVLVRSHEVPILVLVWSPRSDACVKLLE (SEQ ID NO:140)
    TLSGLAVADSGTWLLATVNVDAVPRVAQIFGVDAVPTVVALAAGQPLSSFQGMQSVDQLRRWLDSLLSVTAGKLRGPTRS
    EDSAEIDPAIAQARQQLEAGDFLTAKQSYHAILDADPASVEAKAAIRQIDFLTRATAQHPDAVAVADAAPGDIAAAFAAA
    DVQILNQDVTAAFERLIVLVRSTSGDERSSVRTRLIELFELFDPDDPNVIVGRRNLANALY
    >BL;ML1166, ML.tab 1364964:1365551 forward MW:21484
    VRKWKRVETANGPRFRSVVAPHEVALLKHLVGALLGLLNERESSSPLDELEVITGIKAGNAQRPEDPTLRRLLPDFYTPD (SEQ ID NO:141)
    DKDQLDPAALDAVDSLNAALRSLHEPEIVDAKRSAAQQLLDTLPESDGRLELTEASANAWIAAVNDLRLALGVILEIDRP
    APERVPAGHPLSVIIFDVYQWLTVLQEYLVLALMAT
    >BL;ML1176, ML.tab 1372485:1372844 reverse MW:13792
    MTRPETPQAPDFDFEKSRTALLGYRIMAWTTGIWLIALCYEIVSNLVFHHEIRWIEVVHGWVYFVYVLTAFNLAIKVRWP (SEQ ID NO:142)
    IGKTVGVLLAGTVPLLGIIVEHFQTKflVKTRFGLRRSRT
    >BL;ML1177, ML.tab 1372841:1373221 reverse MW:14447
    VSTTRRRRPALVALVTIAACGCLALGWWQWTRFQSASGTFQNLGYALQWPLFAGFCLYTYHNFVRYEESPPQPRHMNCIA (SEQ ID NO:143)
    EIPPELLPARPKPEQQPPDDPALRKYNTYLAELAKQDAENHNRTTT
    >BL;ML1180, ML.tab 1380300:1380587 reverse MW:10260
    MGNINYQFGEIDAHGAAIRAQAAALETTHQAILATVRDAAEFWGGQGSTAHEMFIADLGRNFQMIYEQANSHGQKVQRAS (SEQ ID NO:144)
    SSMADTDRSVSSAWS
    >BL;ML1181, ML.tab 1380639:1380941 reverse MW:11298
    MTAAHFMTDPQAMRDMARKFDMHAQNVRDESHKMFMSSMDIAGAGWSGTAQLTSHDTMGQINQAFRHIVTLLQDVRDQLG (SEQ ID NO:145)
    TAADRYEHQEENSRKILSGS
    >BL;ML1182, ML.tab 1381004:1382269 reverse MW:43120
    MFDFAALSPETNSTRMYLGPGSSPILTAAAAWVVLAKELTAAAQGLQSAVEALLTTFEGESAAALAERVTPYEKWLTQNA (SEQ ID NO:146)
    ASAELTATQLTVAANAYETAFTMTVPPLMVFVNRAQACLLIMSNIFGQNSTAIAEKEAEYTEMWIQDAAAMTSYQASVLE
    AVGATKAFTAPPLGVNEVGLAQEVVEEVVEEVVEEVVEEVVEAEQAISQAALDQAVNEGMEATVVPQVDQQVNVDVATPQ
    TAVPDSSSAAAPQLWGGFAQHLSPINDTLSMINNHAGMANAGLSLVNGMGSANKSLAPTTTKAAESAFKANGSAVQSTGR
    GLLGSSSGGHVTAQLGRAASIGSLRVPQTWTTASQPVTAATRALSPARVAVATESESAPLLGGGLPMAPMVPGGGSGTGG
    VNTALRLQPRAFVMPRNPAAG
    >BL;ML1183, ML.tab 1382326:1382625 reverse MW:10117
    MPLFLNAEPQALTAAANTLEGLSAATVASNAAAAQLTTEIAPPAADDVSILLARFFSCHGRQYQAHASQCATNHQDLIQS (SEQ ID NO:147)
    LLTSSSAYAGTETANHDSL
    >BL;ML1190, ML.tab 1395291:1396010 forward MW:25342
    MSVSRRDVLKFATVTPGLLGLGVAAAALCAVPASTAGSLGTLLDYAAGVIPASQIRATGAVGAIRYVSDPRGTWAVGKPI (SEQ ID NO:148)
    QVTEARDLINNGLKIVSCYQYGKGNTADWLGGATAGLRHAQRGVQLHTAAGGPVSAPIYASIDSNPTYEQYKQQVAPYLR
    SWESVIIGHQRTGVYANSRTIAWALQDGLASYFWQHNWGSPKGYTHPAANLHQVEIDRRTVGGVGVDVNTILKPQFGQWA
    >BL;ML1221, ML.tab 1443565:1443807 forward MW:8793
    VVQDLPTPIGAGIYNIYTGVHRDELAGASMPTVAQLGLEPPRFCAECGRRMVVQVRPDGWRAKCSRHGQVDSVDMEAKR (SEQ ID NO:149)
    >BL;ML1222, ML.tab 1443804:1444400 forward MW:20601
    VTEHCASDISDVSCPPRGRVIVGVVLGLAGTGALIGGLWAWIAPPIHAVVGLTRTGERGHDYLGNESEHFFVAPCLMLGL (SEQ ID NO:150)
    LTVLAVTASVLAWQLRQHRGPGMVIGLAIGLMICAATAAAVGALLVWMRYGALNFDAVPLSYDHKVAHVIQAPPVFFAHG
    LLQVAATVLWPAGIAALVYAVLAAANGRDDLGGRLCSR
    >BL;ML1232, ML.tab 1465612:1466688 reverse MW:38687
    MKRLLATTLAALTVGTVSGFGSTVASSEPGEPWLPPSPVPVRENSPAKIVYALGGARPPTFDWDYYTIRAGDEFFPDVNR (SEQ ID NO:151)
    KLIDYPARAPFRYVPTFLVPGPRDEVTIGEAIAVATKNLNQAIHRGTEPAAVVGLSQGSLALDTEQEQLATDPTAPPPDQ
    LTFNTFGDPSGYHGFGKSVLASIFRPGDYIPLIDYTMPQRMDSQYDSNRVVAAYDGLSEFPDRADNLLAQLNCFAGGAIS
    HTPSGFFNPEDVPPQNIRTTVNSRGAKTTTYLIPVNHLPLTLPLRYLGWSDALVDQIDAVLQPKIDAAYAYNDNPLNKPI
    SVDPVNGMDPIAGIDAELRDSILNVFAQLRSILPPPPG
    >BL;ML1233, ML.tab 1466853:1467545 reverse MW:24400
    MWITILLMAIAISLEPFRIGMTVLMLNRPRPTLQLLVFLCSGFTMGMTVGFVVLFVFRRRLMASMQLTLPKVQILIGVLA (SEQ ID NO:152)
    LLVAAVLTVQVCISSEPPAESPVDSASGPPKPSKWAPRPLARLLNGDSLWVAGVAGLGIALPSVDYLAALAVILTSGAAA
    TTQVGALLMFNVVAFALIEIPLAAYLLAPDTTRAWTAALNNWIRSRRRLEVATLLAGVSCLLLAVGIAGL
    >BL;ML1244, ML.tab 1482817:1484292 forward MW:52449
    MADSVEGIGPFDELGALDYLLHRGEANPRTRAGIMAVELLDTTPDWNRFRSRIEDVSQRVLRLRQKVVVPTLPTAAPRWV (SEQ ID NO:153)
    VDPDFELDFHVRRVRVPDPGTLREVFDLAEVIQQSPMDVSRPLWTATLVEGLAAGRAANLLQISHAITDGVGSVEMFAENI
    YDLERDPPSRPRSPQPIPQDLSRNDLMLQGINHLPVALAGGVXTGGLSGVASVAGRAILRPASTVSGVVGYVRSGIRVLSQ
    AAEPSPLLRQRSLATRTEAIEIQLSDLHKAAKAGDGSINDAYLAGLVGALRRYNEALGVSISTLPMAVPVNVRTEADVVG
    SNRFVGVTLAAPLGTNDPAARMQKIRSQMTQRRDEPAMNIIGSLAPLMTVLPASVLDFIVDSVASSDVNASNIPAYPGDT
    YFAGAKILRQYGIGPRPGVAMMAVLMSRGGFCTVTVRYDRASVKSEALFARCLLEGFDEVLALAGDPTPHAVPASFAARS
    SGSPAGWLSSS
    >BL;ML1249, ML.tab 1490899:1495767 forward MW:177878
    MTIDPGATHVAELCTTFTQGADVPDWISKAYIDSYRGSHGDVREAPETSRVNPNALVTPAMLSAHYRLGQCRPNGRNCVR (SEQ ID NO:154)
    VYPADDPAGFGPALQIVTDHGGMVMDSITVLLHRLGVTYTAMMTPVFMVLRSPTGELLGVEPRASSTSHSIEGTWVGEVW
    IYIQLLPAVDSKSLAEVEQLLPRTLVDVQRVAADAAALNATLSGLAADVKTNKEGHFSASDRDDVAALLHWLGNGNFLLL
    GYQRCRVHYGLVSCDRSTGLGVLRARTGSRPRLTDDNELLVLAQAAVGNYLRYGAYPYAIAVREYDDGGDCGIIEHRFVG
    LFTVAAMNADVLEIPSISHRVRAALAMANSDPIYPGQLLLDVIQTVPRSELFTLSAERLFTMAKEVVDLGSGRRALLFLR
    ADRLQYFVSCLVYVPRDRYTTGVRLQIEDILVREFGGTQVEFTARVSESPWALMHFMVRLSEGAATGSVDVSEGNRIRIQ
    AMLSEAARTWSDRLIAAAASFSEGSVSYAEAEHYAATFSETYKQAVTPADAIDHIAIIKELADDSVKLVFFERKADGFAQ
    LTWFLGGRSASLSQLLPMLQSMGVVVLEERPFTVARTDGLPVWIYQFKISPHPTIPLASTANERELTAKRFSDAVTAIWQ
    GRVEIDRFNELVMRARLTWQQVVLLRAYAKYLRQAGFNYSQSYIESVLNEHPSTARSLVALFEALFDPSPLSSSTNCDAQ
    AAAAAVAADIDALVSLDTDRILRAFASLVQATLRTNYFVTQKFSARSKGVLVLKLDAQLINELPLPRPKFEIFVYSPRVE
    GVHLRFGAVARGGLRWSDRLDDFRTEILGLVKAQAVKNAVIVPVGAKGGFVLKRPPLPTGDAAADRDAMRAEGIACYQLF
    ISGLLDITDNVDHATGKVNAPPQVVRRDSDDAYLVVAADKGTATFSDIANDVAKSYGFWLGDAFASGGSVGYDHKAMGIT
    AKGAWEAVKRHFREMGVDTQNEDFTVVGIGDMSGDVFGNGMLLSKHIRLIAAFDHRHVFLDPDPDAAVSWAERQRMFDLP
    RSSWDDYNKSLISEGGGVYSREQKAIPTSPQVRTALGIDGEVTEMAPPNLIRAILQAPVDLLFNGGIGTYIKAETESVAD
    VGDRANDPVRVNANQVRAKVIGEGGNLGVTALGRVEFDLSGGRINTDAMDNSAGVDCSDHEVNIKILIDSLVTAGKVKVE
    ERKHLLESMTDEVARLVLTDNEDQNDLIGTSRANAANMLSVHAMQIKYLVDERGVNRELEALPSEKEIQRRSEAGIGLTS
    PELSTLMAHVKLALKEQMLATELPDQOVFVSRLPRYFPKPLRERFTPEIRSHQLRREIVTTMLINDLVDTAGISYAFRIA
    EDIGVGPIOAIRTYVATDAIFGVGOVLRRIRAANLSVVLSDRMTLDTRRLIORAGRWLLNYRPQPLAVGAEINRFAAKVK
    ALTPRMSEWLRGODQAIVEQQATEFVSQGAPEDLAYRVAVGLYRYSLLDIIDIADITELDPAEVADTYFSLMDRLGTDGL
    LTAVSKLPQNDRWHSLARLAIRDDIYASLRSLCFDVLAVGEPDESGEEKIAEWEHISASRVERARLMLAEIHASGEKDLA
    TLSVAARQIRRMTRTSGRGSSG
    >BL;ML1255, ML.tab 1499768:1500259 forward MW:16842
    MGNQSSQSEVAPVVRGDVVTELPKGWVITTSGRVSGVTEPGDRSVHYPFPIKDLVALDDALTYSSRASHARFAVYLGDLG (SEQ ID NO:155)
    NDTAALAREILAQVPTPDDAVLVAVSPNQCAIEVVYGSQVRGRGAESAAPLGVAAASSAFEQGNLIDGLISAVRVLSAGI
    SRS
    >BL;ML1270, ML.tab 1513725:1514522 forward MW:27833
    VMAPDIKSARAGRLTIQIAQLLLVVAAGALWMAARLPWVVIRSFDGLGPPKEVALSGASWSAVLLPLALLMLAATVAAIA (SEQ ID NO:156)
    VRGWPLRVLAGLLAVASFLVGYLGVSLWVLPDVTVRGAVLAHVSLLSLVGSQRHHLGAGAAVAASGCTLIAAVLLMRSAS
    VIGSARQGTSKYVVPAQRRSIARRDGAATAISQMSERMIWDALDEDRDPTDRLREPDTEGRWWTACRRSLPFMNVVEIGG
    CTGSVAGRWVTSGKGNDTHVSGNCA
    >BL;ML1296, ML.tab 1545740:1546075 forward MW:12349
    MYRFGMRYLDSMTVDRHVAGNEFTVEEISTGIFASGYGQVGDGRSFSFHIEHWSLWEIYRTRLAGLVPQTEEVVPRA (SEQ ID NO:157)
    IRGLVNIDLTDERSLAAAVRDLVARTLTVSG
    >BL;ML1299, ML.tab 1547791:1548381 forward MW:21454
    MARAIHVFRTPDRFVAGTVGQPGNRTFYIQAVHDSRVVSVVLEKQQVAVLAERIGALLLEVHRRFGTPVPPEPAEINDLN (SEQ ID NO:158)
    PLVMPVDAEFRVGTMGLGWDSEAQTVVVELLAVTDAEFDASVVLDDTDEGPDAVRVFLTPESARQFATRSNRVILAGRPP
    CPLCDEPLDPEGHVCARTNGYKRSALLGPKDDDTEW
    >BL;ML1300, ML.tab 1548392:1549180 forward MW:28681
    VLRNGELTVLGRIRSASNATFLCESTLDQRSVHCVYKPVSGEQPLWDFPEGTLAGRELSAYLVSTDLGWNIVPYTVIRDG (SEQ ID NO:159)
    PAGPGMLQLWVQQPGDVADSAPRSGPDMVDLFPADKLQSGYLPVLRSYNYAGDEVILMHADDTQLRRLAVFDVLINNADR
    KGGHILYGLDGHVYGVDHGVSLHVEDKLRTVLWGWAGKPIDNQTLEEVAGLADALSGPLADTLAGQITWAEIIALRRRAY
    ANLDNPVMPGPNRDRAIPWPAF
    >BL;ML1306, ML.tab 1555819:1556643 reverse MW:30377
    VAAFEGWNDASDAASGALEHLNAVWEADPIVEIDDEAYYDYQVNRPVIRQVDGVTRELVWPAMRISYCRPPGSDRNVVLM (SEQ ID NO:160)
    HGVEPNMRWRTFCTELLTIADRLNVDTVVILGALLADTPHTRPVPVSGAAYSPESARRFGLEETRYEGPTGIAGVFQDAC
    VAARIPAVMFWAAVPHYVSHPPNPKATVALLRRVEDVLDVEVPLADLPTQAEDWEQAITEIAAEDDELAEYVHSLEQRGD
    AEVDVNDALGKIDGDALAAEFERYLRRRRPGFGR
    >BL;ML1315, ML.tab 1567372:1567956 reverse MW:20428
    VSRWTHRTFFIALSAIVTTAGFGSSGCAHGNSSTSESAVPSTFPGISSSITAPPATGLPAPEVLTNVLSRLADPNIPGID (SEQ ID NO:161)
    KLPLIESATPDSAVTLDKFSNALRONGYLPMTFTANNIAWSNKNPSDVLATISVNIAQTNNSVFSFPMEFTPFPPPQQSW
    QLSKRTADMLLEFGNSSGLTNPAPIKAPTPTPSH
    >BL;ML1321, ML,tab 1575493:1575684 forward MW:7067
    MAQEQTRRGGGGDDDEFTSSTSVGQERREKLTEETDDLLDEIDDVLEENAEDFVRAYVQKGGQ (SEQ ID NO:162)
    >BL;ML1334, ML.tab 1587322:1588140 forward MW:29047
    MSEPQGSDPGKQWQSPGEGVENHSSDQPTQAASPWQQQPSTQDSTWHPPAYASPECYNYPQLTEPVYPHQYPSATPGYGQ (SEQ ID NO:163)
    PGYFGAQFSQCGIPGQYPQSGSPGQYGSPGQYGPPGQYGPPGQYGPPGQYGPPGQYGPPGQYGPPGQYSQQFQPYEQPGT
    KGFVALIGSIAGVIGVLIFAAILVTGFLWPAWLVTTKLDVNKAQASVQQVLTDETNGYGAKNVKDVKCNNGADPTVKKGD
    TFDCSVSIDGMQKRVTVTFQDDKGTYEVGRPQ
    >BL;ML1338, ML.tab 1595449:1596771 reverse MW:50163
    VYGALVTAADSTQTGLRNWLLAVFHPRTHTPSTATIVRSALWPAAILSVLHRSTVITTNGNITDDFKPVYRAVLNFRHGW (SEQ ID NO:164)
    DIYNEHFDYVDPHYLYPPGGTLLMAPFGYLPFAPSRYLFILINTGAILIAWYLILRLFKYTLSSVAAPTLLLAMFCTETV
    TSTLVFTNINGCIMLLEVLFLWWLINGSEPKTVSQQWWAGGAIGLTLVLKPLLGPLLCLPLLNRQWQALVPAIALPVVIN
    LAALPLVSHPMDFFTRTVPYILGTRDYFNSSIEGNGVYFGLPTWLIVFLRLLFTVLAICSLWLLNRYYRTRDPLFWFTCS
    TGVLLLWSWLVLPLAQGYYSMMLFPFLMTVVLPNSLIRNWPAWLGIYGFLTLDRWLLFNWMRYGRALEYLKITYGWSLLL
    IVVSTVLCFRYLDAKAENRLDHGIDPAWLTAERERASVNA
    >BL;ML1357, ML.tab 1617916:1618101 forward MW:6609
    MTIDPDQIRAEIDALLAQLPDFADLEDSVSGLSLAQLEEVALRFSEVHSVLLQALESAEKG (SEQ ID NO:165)
    >BL;ML1361, ML.tab 1621823:1623004 forward MW:42405
    MRMSALLSRNNSRPGLVGTARVDRNIDRLLRRICPGDIVVLDVLDLDRITADALVEADIVAVVNASPSVSGRYPNLGPEV (SEQ ID NO:166)
    LVNNGVTLIDETGPEVFKKIKDGAKIRLHEGGVYSGDRRLICGTERTDHDIADLMREAKSGLATHLEAFAGNTIEFIKSE
    SPLLIDGIGIPDIDVDLRRRHVVIVADEPSAADDLKSLKPFIKEYQPVLVGVSGGADVLRKAGYRPQLIVGDPEQISTEA
    LRCGAHVVLPADADGHAPGLERIQDLGVGAMTFPAAGSATDLALLLADHHGAALLVTAGHTANIETFFDRTRTQSNPSTF
    LTRLRVGEKLVDAKAVATLYRNHISFGAIALLALIMLIAVIVALWVSRTDGVVLNGVIDYWNRFSLWIQRLIA
    >BL;ML1362, ML.tab 1623026:1623979 forward MW:32360
    MISLRQHAFSLAAVFLALAVGVVLGSGFLSDTLLSSLRDEKRDLYTQISGLNDQKNMLNEKVSAANNFDNQLLGRIVHDV (SEQ ID NO:167)
    LGGTSVVVFRTPDAKDDDVAAVSKIVVQAGGTVTGTVSLTQEFVDANSTEKLRSVVNSSILPAGAQLSTKLVDQGSQAGD
    LLGITLLVNANPAVPNVGDAQRSTVLVALRDTGFITYQTYNRNDHLGAANAALVITGGLLPQDAGNQGVSVARFSAALAP
    HGSGTLLAGRDGSATGVAAVAVARADAGMAATISTVDNVDAEPGRITAILGLHDLLSGGHTGQYGVGHGATSITVPQ
    >BL;ML1389, ML.tab 1665174:1666757 reverse MW:57894
    VTSIMSVSALEQSAADVGDNSARQHAHGALPDSLAIAMLATVISGAWASRPSLWFDEAATISASASRTVPELWRLLSHID (SEQ ID NO:168)
    AVHGLYYLLMHGWFAIFPSTEFWSRVPSCLAIGAAAAGVTVFTRQFATRTTAVYAGIVFAILPRITWAGIEARSSALSVA
    AANWLTVLLVASVQRNRPRLWLCYALTLMLSILLNLTLATLVLVYAVILPWLAPNKFRNSPFIWWAVTSVVALGTITPFI
    LFAHGQVWQVDWIFRVSWHYVFDITQRQYFDHSVSFAIATAVIIVPAIATRLAGLRAPAGDLRSLVIICTAWIVIPTTLM
    VGYSAVIEPVYYPRYLILTAPAAAIVIAVCIVTVARKPWPIAGVLVLFAVAAFPNYLFTQRGRYAKEGWDYSQVADVISS
    QAAPGDCLIVDNTVPWRPGPIRALLAARPAAFRSLIDIERGFYGPTVGTLWDGHVPVWLVTAKINKCSTVWTVSDRDTSL
    PDHQAGQLLSPGLILGRAPAYQFPSYLGFRIVERWQFHYSQVIKSTR
    >BL;ML1399, ML.tab 1679214:1680188 forward MW:34653
    LPPSAKSTYPGQVEGAPHDGTPSAPQEPDEDTVTVPAPALIRRSSVSMPNAAQWLHTTNRSPRLVANVRRARRLLPGDPD (SEQ ID NO:169)
    FGDPLSTAGEGGPRAAARAADRLLGDRGAASREVSLSVLQVWQALTEAIARRPVNPEVTLVFTDLVGFSGWSLQAGDEAT
    LALLRQVARAVESPLLDAGGHIVKRMGDGIMAVFRDPSVAVQAVLAATEAMKSVEVGGYTPRIRVGIHTGRPQRLAADWL
    GVDVNIAARVMERATKGGIMISGPTLDLIPQSDLKELGIITRRVRKPMFTSKFTGIPPDMVIYRIKARRELTASDETAQT
    NSLT
    >BL;ML1439, ML.tab 1733347:1733682 forward MW:12946
    MADRVLRGSRLGAVSYETDRNHDLAPRQIARYRTDNGEEFEVPFADDADIPGTWLCRNCMEGTLIEGDLPEPKMVKPPRT (SEQ ID NO:170)
    HWDMLLERRSIEELEELLKERLDLIRSRRRG
    >BL;ML1444, ML.tab 1738595:1739293 forward MW:25220
    MTKIQIDAPDGPIDALLSVPPGPEPWPGVVVIHDAIGYEPDKESTNNHIAMAGYVAITPNLYSRGSRARCITRVMRELLT (SEQ ID NO:171)
    KRGRAFDDILATRDYLLAMPKCSGRVGIAGFCMGGRFALVMSPKGFDASAPFYGTPLPRNLSETLNGACPIVASFGGRDP
    LGIGAPKRLRQATQTRHITTDIKVYPDAGHSFANKLPGQPLMRITGFGYNQAATEDAWSRVFAFFDKHLRTD
    >BL;ML1446, ML.tab 1740098:1740484 reverse MW:13769
    VTPTFADLAKAKYILLTTFTKDGRPKPTPIWAAADGDRLLAISAGKAWKVKRIRNNPRITLATCNVRGCATSAGVQGNAT (SEQ ID NO:172)
    ILDKLQTGSVYDAICKQYGIQGRLFNFVSKLRGGMQNNVGLELRVSGS
    >BL;ML1470, ML.tab 1768618:1768989 reverse MW:12909
    MTDSPGEHGPQKPLPSADPWKSFAGVMAAILFLEAIVVLLALPVLGASGGLTLSALSFLIGLAGLLIVLVGLQRKAWAIW (SEQ ID NO:173)
    VNLGVQVVVLVGCAVYPVLGFVGVLFAGLWALIVYFRAEVSRR
    >BL;ML1485, ML.tab 1787915:1788538 reverse MW:23064
    MPEKASVKYQADLWFDPLCPWCWITSRWILEVEKVRDVEVHFHVMSLAILNENREDLTENYLENITKAWGPARVVIAAEQ (SEQ ID NO:174)
    ANGASVLDPLYTAMGIRIHNEDNKNLDEVIKRSLADTGLPAELAAAAQSNAYDDALRESHHAGMDPVGDDVGTPTVHVNG
    VAFFGPVLSKIPRGEEAGKLWDASLTLAAYPHFFELKRTRTEPPQFA
    >BL;ML1494, ML.tab 1801370:1801723 reverse MW:12353
    MRIVVLVLFAADGVLSAVVGANLMPLYIGSVPFPISGLISGLVNAVLVWAARLWTRSPWLVALPLWVWLLTVGLLSLGGP (SEQ ID NO:175)
    GVDVVSGQSVMASGALWLILLGVSPPACVLWRCNRYG
    >BL;ML1503A, ML.tab 1815091:1815375 forward MW:10624
    MTVLTDEQVDAALLDLNDWKHTDGALCRSIKFPTFLAGIDAVCRVAEHAETKDHHPDIDIRYRTVTFILVTHYADGITKK (SEQ ID NO:176)
    DITMARDIDRLIGD
    >BL;ML15OS, ML.tab 1816758:1817306 forward MW:17516
    MATIWTYLRATAIVVGSSAALLTGGIAHADTAPAPAPAPAPAPAPALNIPQQLISSAANAPQILQNLATALGATPPVTPS (SEQ ID NO:177)
    APGISFPGLTPAAATVPTSSAATLPSLPGIMAPAISNTPTTPGLPASTPGFPQARVDMPAMPPLPVSVPPQISLPGDLQA
    LASSASAAAAPVAAPTLLSALP
    >BL;ML1506, ML.tab 1817334:1818380 forward MW:34620
    LKTGGFVTSAWNLPKGLVAVVTASTAAFGLCQNAAADPANPYGTPPNPTQQLPGLPALAQLSPIVQQAANNPQQATQLLM (SEQ ID NO:178)
    EAVSALTQNPTAPIASKNLATSVSQFMQEPNNPNPGASALDIPTSGVPAPAANGITPLDVVLVPHLPSAGAEPGAQAHLP
    TGIDPVHAAGPATAATPTPGSPTNRTAAPPTPVASPAPTTPELPATTPGFGPDAPPTQDFIYPSISTNCLADGSSSIATA
    LSVAGPAKIPLPGPGPGQAAYVFTAVGTPGPADVQKLPLNVTWVNLTTGKSGSATLKPRPDINPEGPTTLTVIADTGSGS
    IMSTIFGQVTTKEKQCQFMPTIGSTVVP
    >BL;ML1508, ML.tab 1819557:1820048 reverse MW:18221
    MRFGASLLRVRRRLYGMGSQVFDDKLLAVISGNSIGVLATIKRDGRPQLSNVQYHFDPRDLAVRVSITEPGVKTRNLRRD (SEQ ID NO:179)
    PRASILVDVDDGWSYAVAEGTAELTPPAAAPDDDTVEALIVLYRNIVGEHLDWDEYRQAMVTDRRVLLTLPILHVYGLPP
    GIR
    >SL;ML1525, ML.tab 1840011:1840466 reverse MW:15892
    MTKTLLVVHHTPSPTTRELLEAVLAGANDSEIDGVEVVSRPALAATIPDMLNADGYLFGTTANFGYMSGALKHFFDTVYY (SEQ ID NO:180)
    PILDNVSGRPYGLWVHGMNDTVGAAVAVGKLATGLSLTHAADVLEVVGPVDAMVCERAHELGGTLAAMLME
    >BL;ML1526, ML.tab 1840474:1840956 reverse MW:17670
    MNDTVMTKRSLYILYIQLLIAALCFANLAYLVLLGRMAVANIGSGQAAAVSLGLALLIMPVIGLWANIATLRAGFAHQKL (SEQ ID NO:181)
    ARLIAADGMELDTSVLLRRPSGRIQRDAADALFATVRAELAGDPDNWRCWYRLARAYDYAGDRRRAREANKTALELHGRD
    >BL;ML1537, ML.tab 1853559:1854764 reverse MW:43686
    MKAQRRLGLALSWSRVTTVFVVAIVVLVLASHVPELWQAGHHVAWCVGVGITVVVMVLVLVSYHGITLMSGLATWVWDCF (SEQ ID NO:182)
    ADPRAALAAGCTPAIDHQRRFGRDVVGVREYKGRLVTVIAVDDGEDDPVGRHRHRTTPAGLPVQAVADGLRQFDIRLDSI
    DIVSVKIRRGGNAAKFSALDNWGSEEWGLVCACPPTYQRCTWLVLRMNPQHNVVAVAARDSLASTLVAATERLAQDLDGQ
    NCAARPLAAGELAEVDSAVLADLEPTWSYPGWRHIKYVNGFATSFWVTPSDIDSETLNELWLSDLPDIKATVITIRLASR
    SCQTRLSAWVRHHSETRLSKEACRGLNQLTGRQLAAVRASLPAPATRPVLVVPSRELSDHDELVLPVGQGREGSASLFAG
    Q
    >BL;ML1540, ML.tab 1858295:1859197 reverse MW:32551
    MDHQSTRTDITVNVDGFWLLQALLDIRHVAPELRCRPFVSTDSNDWLHEHPGMAVMREQGIVVNGNVNEHVATRMRVFAA (SEQ ID NO:183)
    PDLEVVALLSRGKLLYGAVNDENQPPGSRDIPENEFRVVLVRRGSHWASAVRVGNDITIDDVAIADSASITSLVMDGLES
    IHHADPAAINAVNVPLEEMLEATKSWQDAGFNVFSGRDLRRMGISAATVAALGQALSDPAAEAAVYARQYRDDAKGPSAS
    VLSLKDSSSGRIAIYQQARTAGLGDAWLAICPATPQLVQLGLKTVLDTLPYGDWKTHSRV
    >BL;ML1544, ML.tab 1866369:1867889 reverse MW:53849
    VAEESSGRRGSEYGLGLSTRTQVTGYQFLARRTAMALTRWRVRMEVEPGRRQTLAVVASVSAALLGCLGALLWSFISPSG (SEQ ID NO:184)
    QLNESPIIIDRDSGALYVRVGDRLYPALNLASARLITGRPDNPHAVRSSQIATLPHGPLVGIPGAPSELSPETPQTSSWL
    VCDTVATSTGIGSSSGVTVTVIDGSPDLSGHRRVLTGSDAVVLHYGGDAWVIRQGRRSRIDAMNRSVLLPLGLTPEQVSQ
    ARPMSRALFDALPVGPDLVVPDVPNEGNPASFPGAPGPVGTVIVTPQISGPQQYSLVLADGVETVSPLVAQIMQNAGKPG
    NTKLITVAPSVLVKMPVVNKLDLSVYPDTPLQVVDLRENPSTCWWWERTAGESRSRIQVITGSTIPINSADVKKVVSLVK
    ADTTGREADQVYFGSNYANFVAVTGNNPAAQTTESLWWVTRTGARFGVEDTKDVRDALGLNGTPNLAPWVALRLLSQGPT
    LSRADALMEHDTLPMDMTPAELVVPK
    >BL;ML1548, ML.tab 1872638:1873603 reverse MW:37427
    VAKQEPMCGVEPTLWAISDLHTGHVGNKPVAESLYPLSPDDWLIVAGDVAECTDEIRWTLELLRRRFAKVIWVPGNHELW (SEQ ID NO:185)
    TTNRDPMQIFGRARYDYLINMCDQMGVVTSEHPFPLWTERGGPATIVPMFLLYDYTFLPTGADSKAKGLAIARERNVVAT
    DEYLLSSEPYATREAWCRDRLDVTRSRLEQLDWMTPTVLVNNFPLVREPCDALFYPEFSLWCGTTKTADWHIRYNAVCSV
    YGHLHIPRTTWYNEVRFEEVSVGYPREWRRRKPYSWLRQVLPDPQYAPGYLNDFGGHFVITSEMRAQAVQFRERLRQKQS
    R
    >BL;ML1557, ML.tab 1883016:1883336 reverse MW:11540
    VRTCVGCRKRELAVELLRVVAPSTGKGSYAVIVDTASSLSGRGAWLHPDMQCVQQAIRRRAFTGALRIAGSPDTSAVVEH (SEQ ID NO:186)
    IEFLSELDRPGNRTGSKEHEHTVKSR
    >BL;ML1560, ML.tab 1885239:1885775 forward MW:17494
    MLLVPSAVPVINRRGVLAGGATLTVLGVCFSACSKSPSKTPEIEELLGPLDQARHDSALASAAAAAIGNLPQITAALAVV (SEQ ID NO:187)
    ATQFAAHARALVTEISRATGKLASSSSDTTSPGLSPASPPSKPPPPVSDVIDALRTSAEGAGRLVSTASGYRAGLLASIA
    ASCTASYTVALVSGGPSI
    >BL;ML1561, ML.tab 1885772:1886269 forward MW:17495
    MTSIEPSAPTPVATPKRTPVSQDSDNAGLSEALVVEHSTIYGYGIVLALSPPNANSLVVDALIQHRQRRDDIIVMLTARR (SEQ ID NO:188)
    VSPPVAASGYQLPMLVGSAADAARLAVRMENDGATAWRAVAEHAETADDRTFAAMALAQSAVMAARWNKMLGAWPITTTF
    PGSNE
    >BL;ML1584, ML.tab 1909590:1909844 forward MW:9465
    VASTEGEHNAGVDPAEVPSVAWGWSRINHHTWHIVGLFAIGLLLANLRGNHIGHVENWYLIGFAALVFFVLIRDLLGRRR (SEQ ID NO:189)
    GWIR
    >BL;ML1607, ML.tab 1932700:1932990 reverse MW:11018
    MTTHKAMTRVQLEANGEVFAVDNLTRMGLRGLHCNWRCRYGECDVIASETAHRTVVSRLRSIAATVMEGSRRSAPEQKVR (SEQ ID NO:190)
    WLRWLAGLWPANQDEF
    >BL;ML1610, ML.tab 1935020:1935325 reverse MW:12258
    MSAEDLEKYETEMELSLYREYKDIVGQFSYVVETERRFYLANSVEMMPRNTDGEVYFELRLADAWVWDMYRPARFVKQVR (SEQ ID NO:191)
    VVTFKDVNIEEVEKPELRLPE
    >BL;ML1624, ML.tab 1947637:1949427 forward MW:65207
    MTQSDHRHTRPSSYGGTVLTQRVSQATVEDSRPLRGWQRRAMVKYLASQPRDFLAVATPGSGKTTFALRVMTELLNSHAV (SEQ ID NO:192)
    EQVTVVVPTEHLKVQWTRAAATHGLALDPKFSNTNPRTSPEYHGVTMTYAQVAAHPTLHRVRTEGRRTLVIFDEIHHCGN
    AKAWGDAIREAFSDATRRLALTGTPFRSDDKPIPFVTYALDADGLMHSQADHTYSYAEGLADGVVRPVVFLVYSCQARWR
    NSAGEEHAARLGEPLSAEQTARAWRTALDPSGEWMPAVISAADQRLRQLRTHVPDAGGMIIASDQTAARAYANLLAQMTS
    ETPTLVLSDDPGSSARITEFAKNTSQWLIAVRMVSEGVDIPRLSVGIYATSASTPLFFAQAIGRFVRSRHPGETASIFVP
    SVPNLLQLASELETQRNHVLGKPHRESTDNPLGGNPATMTQTEQDDTEKYFTAIGADAELDQIIFDGSSFGTATPAGSEE
    EAYYLGIPGLLDADQMRALLHRRQNEQLQKRTAAQQASSTPDRTSGAPASVHGQLRELRRELNSLVSIAHHHTGKPHGWI
    HNELRRRCGGPPIAAATHDQLKARIDAVRQLNAEPS
    >BL;ML1638, ML.tab 1975122:1975820 reverse MW:25842
    LSKLDDELSRIAHRANYLPQREAYERMRVERTGANDRLVAVQIALEDVDTQVFLLESEIDAMRQREDRDRLLLNSGATDA (SEQ ID NO:193)
    KQLSDLQPEFGTWQRRKNSLEDSLREVMKRRGELQDQLTAELGAIERMQTDLVGARQTLDVAPAEIDQVGQPHSSQCDVL
    IAELAPALSAPYERLCAGGGLGVGQLQGHRCGACRSEIGRGELSCISVDVDDEVVKYPESGAIQLLDKGFFQ
    >BL;ML1644, ML.tab 1978961:1979773 forward MW:30049
    MRHLALLLRPGWIALTLVVTAFTYLCFMVLAPWQLGKNTRMSRENNQIEYSLNTPPVPVKTLLSHQDLSTSKSQWRQVTA (SEQ ID NO:194)
    TGRYLPDVQVLARLRVVDSGQAFEVLAPFVVDDGPTVLVDRGYVRPEPGSHVPPIPRPPNEAVSITARLRDSEPVMKDKE
    PFSRDGVQQVYSINIEQVARLTKIPLAGSYLQLVDNQPGGLGVIDIPHLDAGPFLSYGIQWISFGIIAPIGLGYLAYAEI
    RTHRQEKLAKPSQAPMAVEEKLADRYGHPR
    >BL;ML1649, ML.tab 1987829:1988251 reverse MW:15144
    VVAADHTPSFARKLGIQQGQVVQEWGWDEDTDDDIRASVEEACGGELLDEDTDEVVDVVLLWWRDGDGDLVDTLMDAITP (SEQ ID NO:195)
    RAEDGVIWVLTPKTGKPGHVPPAEIAEAAPTAGLMLTSSVNLGDWSASRLVQPKSRIGKR
    >BL;ML1652, ML.tab 1992060:1993304 forward MW:44873
    VNNNHFVPAPFRRLPLELLDTVPDSLLRRLKQYSGRLATEAVTAMQERLPFFADLEASQRASVTLVVQTAVVNFVQWMQN (SEQ ID NO:196)
    PHSDVSYTAQAFELVPQDLARRIALRHTVDMVRVTMEFFEEVVPLLARSEEQLTALTVGILKYSRDLAFTAATAYADAAE
    ARGTWDSRMEASVVDAVVRGDTGPELLSRAAALNWDTTAPATVVVGTPTPNHDGPNGQVSSERASQEVREIAARHGRAAL
    TDVHGTWLVAIISGQLAPTDKFFSDLLHAFSDGPVVIGPTAPMLTAAYHSASEAVSGMNAVAGWSGAPRPVQARELLPER
    ALMGDASAIVALNTDVMLPLADAGPTLIETLDAYLDCGGAIEACARKLFVHPNTVRYRLKRITDFTGHDPTLPRDAYVLR
    VAATVGKLNYPTHH
    >BL;ML1660, ML.tab 2001607:2002260 reverse MW:23449
    VTVALALRDGCRRISTMTRQYGVTTQRHLISPVVFDITPLGRRPGAIIALQKTVPSLARIGLELVVIEWGAPINLDLRVE (SEQ ID NO:197)
    SVSEDVLVAGTVTAPTVSECVRCLTAVHGHVQVTLNQLFAYPYSATKVTTEEDAVGHVVDGTIDLEQSIIDAVGIELPFA
    PMCRSDCPGLCAECGTSLVVEPGHPHDRIDPWWAKLTDMLAPDVPQTSETDGSRSEW
    >BL;ML1666, ML.tab 2009601:2010245 reverse MW:23370
    VSAQPVERPGDLKPAPASVLPMPVPTAWWVLIAGVIGLVASMMLTVEKIRILLNSAYVPSCNVNPIVACGSVMSTPQASV (SEQ ID NO:198)
    LGFPNPLLGIVGFTLVTVTGVLSVAEVSLPQWYWIGLAVGTLAGVGFVHWLIFQSLYRIGALCAYCMVIWAVSVSLLVVV
    TAIVFRPLLEVLPGRTSAIARGIYQWRWSIATLWFITVFLLIMVRFWNYWQTLL
    >BL;ML1677, ML.tab 2021235:2021810 forward MW:19668
    VTSNSDAGSAVDAGGPPRTVIIAAVVLTAATIGTILVLAATLHEPPQPVVITAVPAPQATTAACRSLTQALPQRLGDYER (SEQ ID NO:199)
    APVAQPAPDAVAAWRTGSDTEPVVLRCGLDGPAEFVVGSPIQAVDQVQWFEVDAKPKPAIDAGRSTWYTVDRPVYVALTL
    PSGSGPTPIQELSDVIDRTLAAIPISPAQSH
    >BL;ML1698, ML.tab 2046984:2047817 reverse MW:29424
    VTGQSHDEHWRRPGECPEPIPGRPASASLVDPEDDLTPVGYPGDFGTTTVIPYSDPDHLKGPGGTGYNLLDQQEPLPYVQ (SEQ ID NO:200)
    PQARHAVAEPTEIDSDQDNERLHTVGRRGTQHLGLLVLRVGLGVVLAAQGLHKLFGWWGGQGLTGFKNSLTQVGYQHADI
    LAYVSAGGEAVAGVLLVLGLFAPVVAAGALAFLINGLLAAWPHSPLFSFFLPDGNEHQITLIVMDVTVILCGPGRYGLDA
    GRRWAYRPFIGSFIVLIAGIAAGIAVWVLLNGVNPLA
    >BL;ML1704, ML.tab 2055043:2055741 forward MW:24598
    VEMPLTQRYATVLAVPSYLLRIELADRPGSLGSLAVALGSVGGDILSLDVVERSGGYAIDDLVIEVPSGAMPDKLITAFE (SEQ ID NO:201)
    SLPGVRVDSVRPHSGLLEAHRELELLDQVAAADDNASKLQVLADEAPKVLRVSWCTVLRSSQGKLLRLAASVGAPETRAN
    SAPWLPIERAAPLDGTAEWVPQSLRDMNTTMIAAPLGDPHTAVVLGRPGPEFRPSEVARLGYLAGIVATMLR
    >BL;ML1706, ML.tab 2057887:2058900 reverse MW:34564
    MSVFATASGVGSWPGSSPYPAAKVVVGELAGALAHIVELPARGVGADMLGRAGALLIDVAIDTVPRGYRIAARPGAVTRR (SEQ ID NO:202)
    AFSLLDEDMDAFEAAWEMAGLRGRGRVVKVQAPGPITLAAGLELANGHRAITDSCAVRDLAESLAEGVAAHRAALARRLD
    TQVVVQFDEVSLPAALGGLLTGVTAFSPVAPLDETLAATLFDSCVATVGADVLLHSCAAELPWNFLQRSAIRAVSVDVNV
    LRTGDLDGIAAFVESGRTVVLGVVPATAPQRLPSVEQVAAAVVGVTDRLGFGRSALRDRIGVSPACGLAGATPHWACTAI
    ELARKTAEAFAQDPDAI
    >BL;ML1720, ML.tab 2076101:2077195 forward MW:38298
    LAAGPALSARGYLAMNAQTQAGCSLMEWENNDNGRQRWCVRLVQGGGFGGPLFDGFENLYVGEPGTIFSFPMTQWTRWRQ (SEQ ID NO:203)
    PVIGMPSTPRFLGNGQLLVTTHLGQVLVFDAHRGMVVGSPLDLVDGVNPTDPTRGLADCVSAQRGCPVASAPAYSPASOT
    VVLDIWQPGAPTAGLIGLKYHSRQTPLLARAWTSDAIGAGVLASPVLSADGSTVYVNGRDQHLWALHAANGKPKWSVPLE
    FLAQTPPTVTPQGLIVSGGGPDTRLAAFKDAGDHAQQIWRRDDLTPLSTSSLAGVSVGYTVVSSSPAADAPGMSLLAFDP
    RNGHTLNSYPLPAATGYPVGVSIANNRRVITVTSDGQLYSFAPT
    >BL;ML1723, ML.tab 2079775:2080758 reverse MW:36615
    MTRSTEISANAVPNPHATAEQVAAARKDSKLAQVLYHDWEAENYDEKWSISYDQRCVDYVRHCFDAIVPDELFTELPYDC (SEQ ID NO:204)
    ALELGCGTGFFLLNLIQSGVARRGSVTDLSPGMVKIATRNGQSLGLDINGRVADAEGIPYDDNTFDLVVGHAVLHHIPDV
    ELSLREVLRVLKPGGRFVFAGEPTDVGNRYARVFADLTWKVTIRVVQLPGLSAWRRTQVEIDENSRAAALEWVVDLHTFE
    PKVLETMATNAGAVQVKTVTEEFTAAMLGWPLRTFESTMPPSKLGWGWARFAFTSWKTLSWVDANVWRRVIPKSWFYNII
    ITGVKPS
    >BL;ML1781, ML.tab 2157673:2158185 reverse MW:18049
    MRASNQFADATAGVVYVHASPAAVCPHVEWALSSTLQTKAINLVWTPQPAMPGQLRAVTNWTGPVGTGARLANALRSWSVL (SEQ ID NO:205)
    RFEVTEDPSPGVDGQRFSHTPQLGLWSGSMSANGDIMVGEMRLRANMAHGADTLAAELDSVLGTAWDDALEVYRDGGDVG
    EVTWLSRGVG
    >BL;ML1782, ML.tab 2158324:2159145 reverse MW:29017
    MVALDALDDWPVPTTAAAVVGPTGVLAARGDTEQVFPLASVTKPLVARAVQIAIEEGVVDLDTVAGPPGSTIRHLLAHAS (SEQ ID NO:206)
    GLAMHSKYVMAPPGTRRIYSNYGFRVLAETVQREAGIGFSRYLTEAVLEPLAMTATKLEDGTWAAGFGATSTVADLAAFA
    NDLLRPATVSAQIHAEATSVQFPDLDGVLPGHGVQRPNDWGLGYEIKNSKLPHWTGTLNSARTYGHFGQSGGFIWADPEA
    ELALVVLTDRDFGEWALQLWPAISDAVISEYAR
    >BL;ML1791, ML.tab 2165620:2166063 reverse MW:16468
    LGKIFIMLPTVTHQAITCTVRRVRWIVDAMNVIGTRPDCWWKDRRGAMVRLVGKLERWASTERNHVTVVFERPPSPSIRS (SEQ ID NO:207)
    SVIVIAHAPKAFPDSADDEIVRLVQADPEPQGICVVTSDSALTDRVQEVGALAYPAARFRKHIDSID
    >BL;ML1813, ML.tab 2194277:2194849 reverse MW:20227
    MTGQDVVVQQPQTIPMLPIYIPQDVDMTVVKSEVAAAGVSASPAAMPGLLEVVSHAQAEGINLKIVLLDHNLPNDTPLRD (SEQ ID NO:208)
    IATVVGADYPDVTVLTLSPNYVGSYSTHYPRVTLEAGEDISKTGNPVQSAQNFLGELNVPEFPWTVLTIVLLIGVLVAAI
    GTRFMQLRSKRLATSLDAAGILAEDVNRAD
    >BL;ML1908, ML.tab 2293144:2293644 reverse MW:18864
    VALKTDIRGMVWRYSDYFIVGREQCREFARAIKCDHPAYFSEDAAAELGYDAIVAPLTFVTIFAKYVQLDFFRNVDVGME (SEQ ID NO:209)
    TNQIVQVDQRFVFHKPVLVGDKLWARMDIHSVSERFGADIVVTKNSCTSDDGELVMEAYTTLMGQQGDNSSQLKWDKESG
    QVIRSA
    >BL;ML1909, ML.tab 2293648:2294076 reverse MW:14875
    MARREFSSVKVGDLLPEKTYPLTRQDLVNYAGVSGDLNPIHWDDEIAKVVGLDTAIAHGMLTMGIGGGYVTSWVGDPGAV (SEQ ID NO:210)
    IEYNVRFTAVVPVPNDGQGAVLVFSGKVKSVDPDTKSVTIALSATTGGKKIFGRAIASAKLA
    >BL;ML1910, ML.tab 2294063:2294542 reverse MW:17608
    VGLTTNIVGMHYRYPDHYEVEREKIREYAVAVQNEDTSYFEEDAAAELGYKGLLAPLTFICLFGYKAQSAFFKHANIAVT (SEQ ID NO:211)
    DQQIVQIDQVLKFVKPIVAGDKLYCDVYVDSMREAHGTQIIVTKNVVTNEVGDIVQETYTTLAGRVGEGGEEGFSDGAA
    >BL;ML1911A, ML.tab 2295156:2295371 reverse MW:7998
    MLKKVEIEVDDDLVQEVIRRYGLLGRREAVHLALKALLGEPGVGGLSEQDPEYDEFSNPDAWRTRRSSDTG (SEQ ID NO:212)
    >BL;ML1918, ML.tab 2301835:2302626 reverse MW:27133
    VLDLEPRGPLPTEIYWRRRGLAVGITVIVIVIAAIVAVVGNGAAAQPANVDKPGSSQNHPGSATPKVLPPNGHEGNLAPA (SEQ ID NO:213)
    PPQGRNPESSTSTAAVQPPPVLREGDDCPDSTLAVKGLTNVPQYFLGDQPKFTMVVTNIGLVSCKRDVGAAVLAAYVYSL
    DNKRLWSNLDCAPSNETLVKTFTPGEQVTTAVTWTGMGSSPHCPLPRPAIGPGTYNLVVQLGNLHSMPVPFILNQPPPPP
    GSSGPALAPSPEAPPANVPVSGG
    >BL;ML1926, ML.tab 2311558:2312061 reverse MW:17296
    LVDTVGLVNKCVPDSSGLPLRAMVMVLLFLGVIFLLLGWQALGSSGNSDDYSALPMSSMPNTPTTPAATSTSSTSAANQA (SEQ ID NO:214)
    EVRVYNISSKEGIAARTRDQLTTAGFKVTEVDNLVVSDVSATTVYYSDAEGEYATADAVGQKLGAPVEPRIAAITNQPPG
    VIVLVTS
    >BL;ML1927, ML.tab 2312092:2312400 reverse MW:11799
    MDGAMARAHRAGDDVEIVDGLTRREHDILAFERQWWKFAGVKEEAIKELFSMSATRYYQVLNALVDRPEALAVDPMLVKR (SEQ ID NO:215)
    LRRLRASRQKARAARRLGFEVT
    >BL;ML1937, ML.tab 2323320:2324552 forward MW:46582
    MERPNEYMARQRSILNKVFTGFSAYCRYGQHVSKQQARSTVESTYRSILPNIPGVPWWAALLIATTASAIGYAIDAGNTD (SEQ ID NO:216)
    LTTVFTGFYITGCVAAVLAVRQSGLFTAVIQPPLILFCAVPAAYWLFHGSKIKSLKDLLINCGYPLIERFPLMLGTAGSV
    LLIGLVRWFFQLMYRTTASSNSEDDTVSKPNSLISGITAVLNSILCIYSNDQNHRANQDTADTELMHSDPPLRTRQTARD
    NRSARTHSGQARRVVEYTSEPLVEPWQHSSQRSSEQARDFDAGESPRRSRRQPTPQSDPELRSQPPREIRRDAYGHRSGP
    YEWPTNHSSHLEPYRRYKQPGPPEHFTEHGQLYERYKQPRRRATPPRASSVNPISQVRYRGSTARDDPRVDRQRSQTPRR
    PVTESWEFDV
    >BL;ML1945, ML.tab 2331776:2332549 reverse MW:27316
    MVNDCPRSRSATWSWALAVNQQGWDTRRVTFEWQPNSEVANKPGSVSWSAKPRLLQDGRDMFWSLVPLVVGCILLAGMAG (SEQ ID NO:217)
    TCTFAPGGTTKSTVSSYDAAAALRADARALGFPVRLPELPTGWRSNSGSRGSIEDGRMDLSTGKRLPAVTSTVGYITPTG
    MYLSLTQSNADEDRLVASIHPSSHPTGTVDVAGTKWVVYQGSDQKKDHSGAAAEPVWTSRFASPVGAAQIAITGAGCSSQ
    FRMLASATQSQQPLPAR
    >BL;ML1983, ML.tab 2367418:2367885 forward MW:16955
    MSNRKFSFEVTRTSSASAAVLFRLVTDGANWAKWAKPIVLQSSWARLGDLRPGGIGAVRKIGIWPILVREETVEYEQDRR (SEQ ID NO:218)
    HLYKLIGPPNPAKDYLGEVLLAPNAAGGTNIHWSGSFTENIPGTGPVMRAALKGAVRCLTVRLVKTAERESDGVQ
    >BL;ML1988, ML.tab 2375705:2376418 reverse MW:25568
    MDCEVAREALSARLDGEREAVPSVRVDEHLGECSACRAWFDQVADQARDLRQLVDSRPAITPVDALGIVAPPRRRRPLMT (SEQ ID NO:219)
    WQRWALLCVGIAQIVLATVQGLGVSVGLTHDRAMSFGSYLLHESTAWSASLGVIMMAAVLWPGVAAGLAGVLTVFVGLLT
    VYVVVDVVAGATITLRILMHLPVAIGAVLAIAVWRHSSTPRPTFDDEVDVDLDIVLPRNASRGRRRGHLWPTDGSAV
    >8L;ML1993, ML.tab 2380915:2381466 forward MW:20576
    MSAELAPSLQNAAESTNTFPMAEDLLGSILEPYSYKGCRYLIDAQYRASPDSVFAYGNFGIEESAYIRGTGHFNAVELML (SEQ ID NO:220)
    CFNQLGYSAYAQSVVNKDISALRGWSIADYCRNQLSGILIKNTSSRFKKLINPQKFSARLHVYDLRIVERTWRYLQLSNT
    IEFWDDNGGSAIGEFEVAILNIP
    >BL;ML1995, ML.tab 2383087:2383323 forward MW:8810
    VTETARERILTAVCEVLYIAESDLVDGDETDLRDLGLDSVRFTLLMKQLGLSQEAEMQSKLMDNFSIANWVRQLESST (SEQ ID NO:221)
    >BL;ML1997, ML.tab 2387532:2388164 reverse MW:23261
    MIDDLLLRWVTGLFVLSAAECGFACLACRRPWTLVPSNGLHFAMAIAMAVMAWPRGAQLPTTGTVVFCGLVGAWFVILA (SEQ ID NO:222)
    TVSSRRIAERAAYAYPALMMLANVWMYVIMDSHLHDHWATGHHTSPHTSMLGVDMTTTWPASGIPGWISIINWLWFAFF
    CIATVFWTYRSFATSRRNAGFSRYCSLHPSGQAMMSTGMAIMFGVLLFHV
    >BL;ML2010, ML.tab 2402973:2403434 forward MW:15613
    MWLTAAPAAARFVVASVIAASCAASTGVAGADPQSPSAPKTTIDHDGTYAVGTDIAPGTYSSAGPVGNGTCYWKRIDNPD (SEQ ID NO:223)
    GPIDNAMSKKPKIVQIEASNKAFKTTGCQPWQQTSNTTVSTDLPGPIAGIQLESNLGILNGLLASNGQQVPRS
    >BL;ML2022, ML.tab 2413644:2414168 reverse MW:18955
    MSGPSSSCRCLPCCPHDRSSQPRCGESLGWQGYGRVYLESPWPFGLKQILQILRYGAEYAGKILAQPSKPTDVSSGPRRK (SEQ ID NO:224)
    TQVFAKATVVPKILQPKETQMTFDPKNAVNAARDIATNFVEKASDIVENVSDIIKGDIAGGANDIVQNSIDIATHAVDKA
    KEIFIGKGEYDELE
    >BL;ML2023, ML.tab 2414264:2414668 reverse MW:14091
    MIRELLAISAIASGAVNSAPRAAANPHYDGDVPGMSYDASLSAPCFSWERYIFGRGPSGQAEACHFPPPNQFPPANTGYW (SEQ ID NO:225)
    VISYPLYGVQQAGAPCPKTQAAAQSADGLPMLCLGGQGWQPGWFTDKGFFPPAG
    >BL;ML2030, ML.tab 2420647:2421120 forward MW:16613
    LDMPGEMLDVRKLCKLFVKSAVVSGIVTASMALSTSTGMANAVPREPNWDAVAQCESGRNWRANTGNGFYGGLQFKPTIW (SEQ ID NO:226)
    ARYGGVGNPAGASREQQITVANRVLADQGLDAWPKCGAASDLPITLWSHPAQGVKQIINDIIQMGDTTLAAIALNGL
    >BL;ML2031, ML.tab 2421151:2421606 forward MW:17306
    MEGSVTVHMAAPADKVWNLIADVRNTGRFSPETFEAEWLDDVTGPALNAKFRGHVRRNEIGPVYWTTCKVTACEPGREFG (SEQ ID NO:227)
    FTVLLGNKPVNNWHYRLVTSGDGTYVTESFRFNRSPLLTVYWLLGGFLRKRRNIRDMTKTLRRIKDVVEAE
    >BL;ML2048, ML.tab 2437805:2438062 forward MW:9877
    MTNLWDLKQKVIYSIQWLWNSLGHQLPRTMLETIRRKTGQPWRTAAGVHPVDNQFGMVCENSEYSDYVYNIKANTAVRT (SEQ ID NO:228)
    HKSKI
    >BL;ML2054, ML.tab 2442182:2442481 reverse MW:10350
    MDVMAATEYLARSTTLTSVGWIGYIIIGGIAGWIAGKIVQGGGSGILMNIVIGVVGALIGGFLLSFFVNTAAGGWWFTLF (SEQ ID NO:229)
    TSILGSVILLWVVGRVRKT
    >BL;ML2063, ML.tab 2450656:2451084 forward MW:16160
    MAKLTRLGDLERAVMDHLWSRQEPQTVRQVHEALSARRDLAYTTVMTVLQRLAKKNLVSQIRNNRAHRYAPVHGRDELVA (SEQ ID NO:230)
    GLMVDALDQAEDSDSRQAALVHFVERVGADEADALRRALAELETHQRHVRHLVALQRTTEGD
    >BL;ML2064, ML.tab 2451089:2452039 forward MW:32995
    VSALAFTILAVLLVGPTPTLVARSTWPLRAPRAAMVLWQTIALAAALSTFSAGIAIASRVLMPGPDGRLLTASVIGAAGRL (SEQ ID NO:231)
    GWPLWAAYVAAFALTVLVGARLIVAIVRVAIATRRRRAHHRMVVDLVGVGHNAALAQPCARARDLRVLEVAQPLAYCLPG
    VRSRVVVSEGALTKLNDTEVTAILTHERAHLRARHDLVLEAFTAVHAAFPRLVRSSAALSAVRLLVELLADDAAVRAAGR
    TPLARALVACASGQAPSGALAAGGNTTVLRVRRLSGRSNSAVVSAAAYLAAAIVLLVPTVALAVPWLTELQRLFNI
    >BL;ML2070, ML.tab 2460317:2462518 forward MW:77018
    MTKLGAEFKPDQTRINRKAANTGMGRHSMPDPEDSIDQPSNQFAASGPDQSDEIDHGYQSRMGYPEPVFEPAATGSPSYR (SEQ ID NO:232)
    SYPHGAEHPADSTPEALDETIDYQSYWAEDRNEDLFVDGAADDHPDFPPRPAGSSTSSQAPTSLSHLFKASHRSVGKWQG
    GHRSDGGRRGVSIGVIATLVAVVVLVGAVIMWSFLGHILNNRKHQAAARCVGGHQTVAVVADPSIADYLQEFAQSYNASA
    RPVGDHCMMVTVKPVGSEAALTGFNDSWPANLGDKPALWIPGSSISAARLAVTADQKTISESHSLVTSPVLLAVRPEFEQ
    ALANKGWAALPGLQTNPNSLADLNLPAWGSLRLALPMNGNSDATFLAGEAVATASVPAGAPAIQGVGAVRTLMSAQPKLA
    DSTWAEAMSTLLKPGDVATAPVHAVITTEQQLFQRGQSLSDAKSALGSWLPHGPAPVADYPAVLLNGSWLTQEQAAAASE
    FARFVQKPDQLAKLAKAGFRVNGVTPPSSSVTSFAAVPSTVSVGDDGMRATLVEEMIQPSSGVAATIMLDQSMPTDEGGK
    TRLANVVAALDDKINAMPPTSVMGLWTFDGHKGQTEVTTGQLADPVNGQPRSAALTAALDKQYSSNGGAVSFTTLRMIYQ
    EMLANYHVGQTNSVLVITAGPHTDQTLDGARLQDFIRTSADPAKPIAVNVIDFGTDPDQATWKAVAQISGGSYQNLSTSA
    SLDLATAINTFLS
    >BL;ML2073, ML.tab 2466445:2467140 reverse MW:24857
    MTHLVTRARSARGNTVSEQPRQGQLDLADYRDTPTATTHGDIGLNGPTAVSGPAQPGLFPDDSVPDELVGYRGPSACQIA (SEQ ID NO:233)
    GITYRQLDYWARTSLVVPSIRGAAGSGSQRLYSFKDILVLKIVKRLLDTGISLHNIRVAVDHLRQRGVQDLANITLFSDG
    TTVYECTSAEEVVDLLQGGQGVFGIAVSGANRELTGVIDDFRGERADGGESIAAPEDELASRRKHRDRKIG
    >BL;ML2075, ML.tab 2467984:2468739 reverse MW:26531
    VSAPDSPALVOMSIGAVLDLLRSDFPDVTISKIRFLEAEGLVTPQRSASGYRRFTAYDCARLRFILTAQRDHYLPLKVIR (SEQ ID NO:234)
    AQLDAQPDGELPSFGSPYVAPRLFSVTGGPGAGVGSGVGSDIPAVSPAGVRLSREDLLDRSGVADDLLTALLKAGVITTG
    PGGFFDEHAIVILQCARALSEYGVEPRHLRAFRSAADRQSDLIVQIAGPIVKAGKAGARDRADDLAREVAALAITLHTSL
    IKSAVRGVLHR
    >BL;ML2111, ML.tab 2512539:2512973 reverse MW:15031
    MIHRLRLGWLVAFFATIVLISVWIPWLTTKVNDEGWANAIGGTNGNLELPSGFGAGQLIVLLSSTLLVAGAMMGRGLSVK (SEQ ID NO:235)
    VASIAALIISLLIVVIVVWYYQLNVNPPWAECGLYLGAAGAVCAMVCSVWAVIAAVAAGRSSL
    >BL;ML2113, ML.tab 2513870:2514415 reverse MW:19748
    VTSRIKRMAKLTGSIDVPLPPNEAWMCASDLARFGEWLTIHRAWRSKLPEVVEKGTVIESYVEVKGMPNRIRWTVVRYKA (SEQ ID NO:236)
    PEANTLNGOGVGGVKVKLIAKVSPKDDGSVVSFDVNLGGSALFGPIGMIVAVALRTDIRESLQNFVTAFSRPEPGLIRSR
    ALVVDQHSRAVVEQRSASAGL
    >BL;ML2114, ML.tab 2514412:2514582 reverse MW:6182
    VLDKAKDILVQNADKVETVLDKAGEFVDEKAKGKYTDTIYQVAEETKKAASFDTFC (SEQ ID NO:237)
    >SL;ML2135, ML.tab 2537496:2538521 reverse MW:40179
    MARTRMVRRWRNNMEVRDDTDYVGMLTTLSEGSVRRNFNPYTDIDWESPAFAVKDNDPRWILPDTDPLGRHPWYLAQPEQ (SEQ ID NO:238)
    RKIEIGMWRQANVAKVGLHFESILVRGLMNYTFWMPNGSPEYRYCLHECVEECNHTMMFQEMVNRVGADVPGMPRRLRWL
    SPLVPLVAGPLPVAFFIGVLAGEEPIDHMQKNVLREGKSLHPIMERVMAIHVAEEARHISFAHEFLRKRLTHLTKRQLFW
    VSLYYPLTMRVLCNAIMVPPKAFWQEFNIPREVKKELFFRSPESRKLLRDIFADVRMLAYDTRLMETRSARLMWHICKID
    GQPSRYRGEPQRQHPATTSAA
    >BL;ML2137, ML.tab 2539983:2540738 forward MW:27365
    MRELKVVGLDPDSKTILCEGDIPGERFKLPADDRLRAAVRGDTTLLDQPQLDIQVTNMLSPKEIQARIRAGASVEQVANA (SEQ ID NO:239)
    SGSDIARIRRFAHPVLLERSRAAELATAAHPVLADGPAVLTLLETVSAALVKRGLEPDKLSWDAWRNEDSRWTVQLMWHA
    GRSDNLAHFCFTPGAHGGTVTASDDAANELIDPDFNRPLRPLARVAHLDFVEPATPATVTPDNQLVSSRRGKPTIPAWED
    VLLGVRSAGQP
    >BL;ML2141, ML.tab 2542620:2542895 forward MW:9766
    MLVEPDRSREPPPLPSMLLEVWPVIMVGALAWLIAVVAAFVVSSLQSWRPVALAGLVVGLFGTGIFVWQLAAARRGARGA (SEQ ID NO:240)
    QGGLETYLDPR
    >BL;ML2142, ML.tab 2543007:2543816 reverse MW:28190
    VTGPVEDSAVATVAEWPEELAAVLTNAADDARAAIEEFSGSVTVGDYLGVGYEDPNAATHRFLAHLPGYQGWQWAVVVAA (SEQ ID NO:241)
    YPGAEHATVSEVVLVPGPTALLAPEWVPWEQRVRPGDLGPGDLLAPTSEDLRLVPGYNASGDPAVDEIAAEIGLGRRWVM
    SVWGRSAAAERWHGGDYGPDSPMARSTKRVCRDCGFFLSLVGSLGANFGVCGNEMSADGHVVDKLYGCGAHSDTPAPAGS
    GSSVYEPYDDGVLDILEPSTVQLPESPAD
    >BL;ML2143, ML.tab 2543926:2545665 forward MW:61675
    VSGRRRNHPGRLASIPGLRTRTGSRNQHPGIANYPADSSDFRPAQQRRALEQREQQAGQLDPARRSPSMPSANRYLPPLG (SEQ ID NO:242)
    QQQSEPQHNSAPPCGPYPGERIKVTRAAAQRSREMGYRMYWMVQRAATADGADKSGLTALTWPVVTNFAVDSAMAVALAN
    TLFFAAASGESKSKVALYLLITIAPFAVIAPLIGPALDRLQHGRRVALATSFVLRTGLATLLIMNYDGATGSYPSMVLYP
    CALAMMVLSKSFSVLRSAVTPRVMPPSIDLVRVNSRLTVFGLLGGTIAGGAIAAGVEFVCAHLFKLPGALFVVAAITISG
    ALLSMRIPRWVEVTAGEIPATLSYRLHRKPLRQSWPEEVKKVSGRLRQPLGRNIITSLWGNCTIKVMVGFLFLYPAFVAK
    EHQANGWVQLGMLGLIGTAAAIGNFAGNFTSARLQLGRPAVLVVRCTIAVTVLALAASVAGNLLMTTIATLITSGSSAIA
    KASLDASLQNDLPEESRASGFGRSESTLQLAWVLGGALGVMVYTDLWVGFTAVSALLILGLAQTVVSFRGDSLIPGLGGN
    RPVMIEQESMRRAAAVSPQ
    >BL;ML2144, ML.tab 2545673:2546161 forward MW:18046
    VQRRVTVLLPAVVMLLAAAAGFGVWLLVREPDPQRPEISVYSHGHLTRVGPYLHCNMLNLDECQTPQAQGVLSADEHNPV (SEQ ID NO:243)
    QLSVPETISRAPWRLLRIYEDPTGTTSTLYRPNTRLAVTIPTLDPHRGRLTGIVVQLLTLVVDPAGEVHDVPHTEWLVRL
    TF
    >BL;ML21S1, ML.tab 2554745:2555269 forward MW:17666
    MSESYRKLTTSSIIVAKITFTGAMLDGSIALAGQASPATDSEWDQVARCESGGNWSINTGNGYLGGLQFSQGTWASHGGG (SEQ ID NO:244)
    EYAPSAQLATREQQIAVAERVLATQGSGAWPACGHGLSGPSLQEVLPAGMGAPWINGAPAPLAPPPPAEPAPPQPPADNF
    PPTPGDVPSPLARP
    >BL;ML2155, ML.tab 2556716:2556940 reverse MW:8095
    MKSVNYYVVADIAKSKAHKSRYVDNGWPTTDPDHHAVSELVTDCAGALSPFGDLVFPVPADDLPYVHPVTVVNR (SEQ ID NO:245)
    >BL;ML2156, ML.tab 2557038:2559299 forward MW:80254
    MTDNTPDIPLGSWLADLSDERLIQLLELRPDLAQPPPGSIAALAARAQARQSIKAATDELNFLQFAVIDALLVLQADSTP (SEQ ID NO:246)
    VPTTKLKALIGDRAPQADVVSALDNLRQRALAWGETTVRIAAAAAAALPWHPGQVTLEDISSTGEQIAELIARLSQTQRD
    VLQKLLEGSPLGRTRDAAPGAPPDRPVPQLLAMGLLRRIDADTVILPRRVGQVLRGEQSGPTQLTQPYPVVSVTTPNDAD
    AEAAGAVIEALHELDVLLETLGSAPVYELRNGGLGVREFKRLAKATGINEPRLGLLLEVTAAAGLIASGIPDPEPATGDS
    PYWAPTVATDRFTANPPAERWHLLASTWLDLQCRPALIGSRGPDAKSYGALSNSLYSTAAPLDRRLLLGMLAELPAGVGV
    EAAEASAALIWRRPRWARRLQPGPVADMLAEGHTMGLVGRGAISTPGRALLDEAIASADPAIAVAAMTRALPEPIDHFLV
    QADLTVVVPGPLQRNLAKELGTVATVESAGTANVYRISEQSIRHALDIGKTRDWMHALFTNHSKTPVPQRLTYLINDVAR
    RHGQLRIGMAASFVRCEDPALLTQTVAAAEELQLRALAPTVAVSPAPIAEVLVTLQSAGFAPAAEDSSGSIVDVRPRRAR
    LPTPQHRRPYRPLQRPNLETLNAVIAVLRKVAATPFGGIRVDPTVTMSLLQRATKEKTTLVIGYLDAAGIATQRMVSPIA
    IRGGQLVAFDPGTGRLRDFVIHRITSVVSSDSQ
    >BL;ML2193, ML.tab 2608113:2609048 reverse MW:33819
    MVLNWRFALSADEQRLVREIISAATEFDEVSPVGEQVLRELGYDRTEHLLVTDSRPYAPIIGYLNLSSPRDAGVANAELV (SEQ ID NO:247)
    VHPRERRRGVGAANVRAALAKTGGRNRFWAHGTLASARATASVLGLVPVRELVQMQRSLRTIPDPMVPDQLGVWVRTYVG
    TVDDAELLRVNNAAFAGHPEQGGWTATQLAERRSEPWFDPAGLFLAFGDSSSNQPGKLLGFHWTKVHAAHPGLGEVYVLG
    VDPSAQGRGLGQMLTSIGIASLAQRLVGPSAEPTVMLYVESDNVAAARTYERLGFTTYSVDTAYALARIDD
    >BL;ML2195, ML.tab 2609965:2610816 forward MW:30382
    MVKDATCIKVRHNMRMRKVLTSVIATVVTMAVLVVGVLGIDYGTSIYAEYLLSVNVRNAANLGSDPFVAILAFPFIPQAM (SEQ ID NO:248)
    RDHYTELEIKANAVDHANVGKASLEATMYSIDLTYASWLIKPDAKLPVDRLESRIIIDSMHLGQYLGISDLMVEAPHRET
    NNATGGTTESGISSGHGLVLSGTPKSANFDHRVSVLVDLSIAPEDQATLVFTPTGIATGPDTANQPVPDDKRNPVLRAFS
    ARMSDQRLPFGVAPTSEGARGSDVIIEGITQGVTITLDGFKQS
    >BL;ML2199, ML.tab 2612896:2613198 forward MW:10570
    MCSEPKQRLALPANVNLEKETVITGRVVDRKGQAVGGAFVRLLDSSNEFTAEVVTSATGDFRFFAAPGSWTLRALSSVGN (SEQ ID NO:249)
    GDAMMSPSGTGIHKVDVKIT
    >BL;ML2200, ML.tab 2613457:2614143 forward MW:24489
    VTSDEVRDGAGSPADSSKGNKCTAAGMFQAAKRSTVSAARNIPAFDDLPVPSDTANLREGANLNSTLLALLPLVGVWRGE (SEQ ID NO:250)
    GEGRGPNGDYHFGQQIVVSHDGGNYLNWEARSWRLNDAGEYQETSLRETGFWRFVSDPYDPTESQAIELLLAHSAGYVEL
    FYGRPRNASSWELVTDALACSKSGVLVGGAKRLYGIVEGGDLAYVEERVDADGGLVPNLSARLYRFAG
    >BL;ML2204, ML.tab 2619139:2619327 forward MW:7054
    MGRGRAKAKQTKVARELKYSSPQTDFQRLQRELSSTGAADPGQLDGDDRVSEDSWDEDAWRR (SEQ ID NO:251)
    >BL;ML2207, ML.tab 2622297:2622692 reverse MW:13959
    MAVCDRADPAKTRQAVLALADWLKDRTLPAPDRDAVATAVRLTVRTLATLAPGASVEVRIPPYVAVQCVSGPSHTRGTPP (SEQ ID NO:252)
    NVVETDSRTWLLVATGLMQLVEAVATGALRMSGSRAGDIEVWMPLINLRCT
    >BL;ML2219A, ML.tab 2636676:2636915 reverse MW:8613
    VARAVVMVMLRAEILDPQGQAIAGALGRLGHTGISDVRQGKRFELEIDDTVDDSELAMIAESLLANTVIEDWTITRESQ (SEQ ID NO:253)
    >BL;ML2228, ML.tab 2645990:2646610 forward MW:21778
    MNSRFLPYATSPGRLTIQLLSDIAVVMWTTFWVLVGIAVYNTISTIADTGAQVESGAHGIADNLASASHGMQLIPVLGNA (SEQ ID NO:254)
    VSKPLTLTSAAALDIADAGHSLNTTASWLAVLLALAVIALPILVAVVPWLVLRFWFFRHKWTVTTLAATPAGKQLLALRA
    LTLRSPSKLAAVSADPVGGWRREDPGTIRGLAALELQSSGITLRVH
    >BL;ML2253, ML.tab 2676319:2676534 reverse MW:8295
    MPNNIAFSRSYIGKRCYSEQEVGVFIDLAEQERTRHIEEDVEFRNRNAELRNQDGAPQPRSCADRARNCHV (SEQ ID NO:255)
    >BL;ML2258, ML.tab 2682528:2682830 reverse MW:11299
    VNRFLTSIVSWLRAGYPEGIPATDTFAVLALLARRLTNDEVKIVARELIRRGEFDKIDIGVMISHLTDELPSPQDIERVR (SEQ ID NO:256)
    TRLNAKGWLLDNARDNGEPT
    >BL;ML2259, ML.tab 2682860:2683150 reverse MW:10541
    LSPWFNYEATLKILLFSTLAGAALPGLFALGIRLQVNDAGDASTNNATPNRKPILVTLAWVIYALVLMVVILGVLYIVSR (SEQ ID NO:257)
    DFIAHHTHYPFLGIKP
    >BL;ML2261, ML.tab 2684489:2684905 reverse MW:15612
    MEILASRMLLRPTDYQRSLSFYRDQIGLAIAREYGTGTVFFAGQSLLELAGYVIQGAPDHSRGAFPGALWLQVRDIAVTQ (SEQ ID NO:258)
    ADLEGRGVSITREPRREPWGLHEMHVTDPDEITLIFVEVPANHPLRRDTRSERPRTPD
    >BL;ML2271, ML.tab 2695503:2696030 forward MW:19222
    VILSKSLLRILIHGRSDEPPSTRARVIMRWGRIAVLIVTGLITLQSVLLVAGAWRNDLTIQHNMGVAQAEVLSAGPRRST (SEQ ID NO:259)
    IEFVTPERVTYRPELGVLYLSELSTGMRIYVEYNKNDPNLVRVRHRNAGLAIIPAGSIAVVCWLAATVVLVALAVLDKRL
    DRHTESSAVPSQPTS
    >BL;ML2274, ML.tab 2698017:2698355 reverse MW:11815
    MKGTGLAANVAMAAAATVLAAPALADDYDAPFNAQLHSYGIYGAQDYNAWLGKIACQRLAKGVDGDVNKSATF IQRNLPL (SEQ ID NO:260)
    YTTEGQSLQFLGAAINHYCPNQIGILQRAGAR
    >BL;ML2289, ML.tab 2713408:2714178 reverse MW:26191
    VTADLLAPLMELPGVATASDRARDALGRAHRHRANLRGWPVTAAEAALRAARASSVLDGGPVRLDHLPGASPQAGGVSDP (SEQ ID NO:261)
    VFGGALRVAQALEGGAGPLVGVWQRAPLQALARLHVLAAADQVGDEWLGRPRMDAEVGLRLGLLVDVVSGRTFAAAPVVA
    AVVHGELLTLQPFGSADGVVARAVSRLVTIATGLDPHGLGVPEVSWMRRAAVYRDAACGFAGGTPKGVAAWLVLCCRALH
    AGAQEALSIAESLPSR
    >BL;ML2295, ML.tab 2720556:2721260 reverse MW:23836
    LVLRRGHWCILVALVAVLLAVVSMPAKTVFADGRLPMGGGAGIVINGDTMCTLTTIGTDSAAELIGFTSAHCGGPGAQVA (SEQ ID NO:262)
    AEGAENRGPMGTMIAGNDNLDYAVIKFDPAKVMPVAAYNGFVISGIGQDPAFGQIACKQGRTTGNSCGVAWGMGETSGTL
    VMQVCGRPGDSGAPVTVNNLLVGMIHGAFTDNLPVCITKFIPLHTPAVVMSMNAILADVNKNNRPGAGFVPQPV
    >BL;ML2296, ML.tab 2721464:2722009 forward MW:20041
    MSKGDRKNGVPSTLTTIPLVDPHAEPTEPSIGDLIKDATTQVSTLVRAEVELARAEIIRDVKKGLTGSVFFIAALVVLFY (SEQ ID NO:263)
    STFFFFLFLAELLDTWLWRWVALLIVFAIMVMVTAALALLGYVKIRRIRGPHQTIESVKETRTALTPGHDKAQARPRKLT
    GSGTNPENNPDRRTPADPSGW
    >BL;ML2306, ML.tab 2730213:2731358 forward MW:40804
    MTAPTSHRPPTLDMAAILADTSNRVVVCCGAGGVGKTTTAAAMALQAAEYGRTVVVLTIDPAKRLAQALGVNDLGNTPQR (SEQ ID NO:264)
    VPLAPEVPGELHAMMLDMRRTFDEMVVQYSGPERAQAILNSEFYQTVATSLAGTQEYMAMEKLGQLLSQDRWDLVVVDTP
    PSRNALDFLDAPKRLGNFMNSRLGRLLLTPGRGIGRLVTGANGLAMRALSTVLGSQMLADAATFVQSLDATFGGFRGKAD
    RTYALLKQRGTQFVVVSAAEPDALREASFFVDRLSQENMPLAGLMLNRTHPTLCALPVEQAIDASKTLQDEITNSAAASL
    ATAVLRINDRGQTAKREARLLSRFTGANPHVPVIGIPLLPFDVSDLEALRAIADRLTASH
    >BL;ML2307, ML.tab 2731463:2731708 reverse MW:9325
    LCRATDPDELFVRGAAQRKAAVICRHCPVMQECRADALDNKVEFGVWGGMTERQRRALLKQHPEVVSWADFFDTRKHRNV (SEQ ID NO:265)
    S
    >BL;ML2320, ML.tab 2747152:2747799 reverse MW:22771
    VSWVIRISAVVMSVGLGLGVPVASARPSEPGVVSYAVLGKGSVGNIIGRPMGWESLLTEPLQAYSVDLPMCNNWADIGLP (SEQ ID NO:266)
    EVYHDVDLASFNGAITQTSANDQTHFVKQAVGVFATNDAAVRAFHRVVDRTVGCSGQTTAMHLDNGTTQVWSFVGGTPTY
    ADANWTKQEAGTDRRCFVQTRLRENVLLQTKVCQPGNAGPAVNVLAGAMQNALGQ
    >BL;ML2330, MLtab 2761253:2761603 reverse MW:11931
    MQPGGDMSALLAQAQQMQQKLLETQQQLANAQVHGQGGGGLVEVVVKGSGEVVSVAIDPKVVDPGDIETLQDLIVGAMAD (SEQ ID NO:267)
    ASKQVTKLAQERLGALTSAMRPTAPPPTPPTYMAGT
    >BL;ML2332, ML.tab 2762489:2762926 reverse MW:15496
    MGPVSAVSTILVNVEPVATLAAVADYQKNRPKILSPQYNEYQVVQGGQGPGTVVKWKLQVTRSRVRDVQVNVDVAGHTVI (SEQ ID NO:268)
    EKDANSSMVTSWTVAPAGPGSSVTMKTAWTGAGGVKGFFEKTFAPLGLKKIQAEVLANLKNELER
    >BL;ML2337, ML.tab 2769442:2770194 forward MW:27248
    MGYKVATLWHASFSIGAGVLYFYFVLPRWPELIGETTHTLGTTLRIVTGVLFGLAALPVVFTLLRSQTSELGIPQLALSI (SEQ ID NO:269)
    RTWSIVAHVLSGVLIVSTAIGEIWLSSDTAVQCLFGIYGAAAASAVLGFVAFYLSFVAALPPPSPKPVKLKKANQRRIRR
    RKGRKDNEAEDEEADAGEHNEAETPAQAEEVTSENPQPAPESGAQKEPDELLANKTEETDEPRRGLHNRRPTGKVSHQRR
    RARSGIAVEN
    >BL;ML2366, ML.tab 2834617:2834958 reverse MW:11956
    MAFMTSNPSGPPSQPAPAVGLTPGERAVPVTRAGALWSALFAGFLILILLLIFIAQNTTSTPFTFFGWHWSLPLGVAIML (SEQ ID NO:270)
    SAVGGGLLAVAVGTARILQLRRTVKKRYVAAHR
    >BL;ML2377, ML.tab 2846366:2846830 forward MW:16863
    MSKRQRGKGISIFKLLSRIWIPLVILVVLVVGGFVVYRVHSYFASEKRESYADSNLGSSKPFNPKQIVYEVFGPPGTVAD (SEQ ID NO:271)
    ISYFDANSDPQRIDGAQLPWSLLMTTTLAAVMGNLVAQGNTDSIGCRIIVDGVVKAERVSNEVNAYTYCLVKSA
    >BL;ML2380, ML.tab 2850483:2850944 reverse MW:17491
    MSRLSTSLCKGAVFLVFGIIPVAFPTTAVADGSTEDFPIPRRQIATTCDAEQYLAAVRDTSPIYYQRYMIDMHNKPTDIQ (SEQ ID NO:272)
    QAAVNRIHWFYSLSPTDRRQYSEDTATNVYYEQMATHWGNWAKIFFNNKGVVAKATEVCNQYQAGDMSVWNWP
    >BL;ML2388, ML.tab 2858302:2858607 forward MW:10942
    VAAGDNRLIGNDTPEIAVGAIGGVATGYVLWLVVMSIGYNITTVSQWSLIVLILSMVSVFCSGMCGWWLRQRRKHAWGAF (SEQ ID NO:273)
    TFGLPVFPVVLTLAVLAKIYL
    >BL;ML2390, ML.tab 2861300:2861605 reverse MW:10840
    VSHIFLTLIADGELQYHGPDFGKASPMGLLVIVLLLVATLLLLWSMNRQLKKIPASFDSEHPELDQAADEGTELGGYLDE (SEQ ID NO:274)
    EPSDTDRNGPSLPPEPGADSG
    >BL;ML2392, ML.tab 2862579:2863013 forward MW:15303
    MNQAFTPLTETRYGRSRLPGRSRHRGVIALTVLAVAASTGIAVIGYQRLGTSDVAGSLASYRVLDDETVSVTISVMRSDP (SEQ ID NO:275)
    SRPVDCIVRVRAKDGSETGRREVLVAPAEATTVQVVTTVKSARPPVMADIYGCGTDVPGYLRPA
    >BL;ML2407, ML.tab 2878350:2878685 reverse MW:12141
    VSKGPNSICAADHNRDHLVVNVLLYAAARLLLVILLGSVIYGVARLLGVTQLPIVVAALFALIIAMPLGIWLFSPLRRA (SEQ ID NO:276)
    TAALAVVGERRRSEREQLRARLRGEPLPDEE
    >BL;ML2410, ML.tab 2881021:2882649 reverse MW:59195
    LMQVLMRLLAWVRNTWRALTSMGTALVLLFLLALGAIPGALLPQRDLNVGKVDDYVAAHPVIGSWLDQLQAFNVFSSVWF (SEQ ID NO:277)
    TAIYTLLFVSLVGCLTPRMIEHARSLRAMPVIAPRNLARLPKHASFQVIGDDKTLAGTIAGRLRGWRTVIRTQDGVVPET
    VVSAEKGYLREFGNLVFHFSLLGLLVAVAVDKLFGYEGNVVVIADGGPGFCSASPAAFDAFRAGNTVDGTSLHPICIRVN
    DFAAHYLPSGQAMSFTADIDYQDGHDLTVNSWRPYRLEVNHPLRVAGNRVYLQGHGYAPTFTVTFPDGQTRTSTVQWRPE
    NQQTLLSSGVVRIDPPAGSYPNMSERRQHEIAIQGLLAPTEQLDGTLLLSRFPALNAPAVAIDIYRGDTGLDSGRPQSLF
    TLDPRLINQGRLTKEKRVNLQAGEQVRLGQGPGAGTVVRFDGAVPFVNLQVSHDPGQAVFVFAIAMMVGLVVSLMVRRR
    RVWVRLTPAAGTVNVELGGLARTDNSGWGDEFERLTERLLAGLVAADRTLAAARRSSQMDVK
    >BL;ML2425, ML.tab 2901005:2901505 forward MW:18654
    MTVPLEAEGLIGKYRQLDHFQVGREKIREFAIAVKDDHPTHYNETAAFEAGYPALVAPLTFLAIACRRVQLEIFTKFNI (SEQ ID NO:278)
    PINVARVFHRDQKFRFYRTILAQDKLYFDTYLDSVIESHGTVIAEVRSEVTDTEGKAVVTSIVTMLCELARQDATAEETV
    AAIASI
    >BL;ML2428A, ML.tab 2904745:2904846 reverse MW:4145
    MGSVIKKRRKRMSKKKHRKLLRRTRVQRRKLGK (SEQ ID NO:279)
    >BL;ML2432, ML.tab 2907135:2907977 reverse MW:30442
    LRPVIKVGLSTASVYPLRAEAAFEYAAKLGYDGVELMVWGESVSQDIDAVKGLSRRYRVPVLSVHAPCLLISQRVWGANP (SEQ ID NO:280)
    VPKLERSVRAAEQLGAQTVVVHPPFRWQRRYAEGFSDQVAELEAASDVMIAVENPFPFRADRFFGADQSRERMRKRGGGP
    GPAISVFAPSFDPLAGNHAHYTLDLSHTATAGSDSLEMVRRMGSGLVHLHLCDGSGLPADEHLVPGRGTQPTAAVCQLLA
    GADFAGHVVLEVSTSSVRSATERETMLTESLQFARTYLLR
    >BL;ML2433, ML.tab 2908008:2909075 reverse MW:37938
    MTGPHNDTESPHARPISVAELLARNGTIGAPAVSRRRRRRTDSDAVTVAELTCDIPIIHDDHADEQHLAATHAHRANIGV (SEQ ID NO:281)
    RVVEPAAQSPLEPVCEGIVAEPPVDDHGHVPPGCWSAPEPRWPKSPPLTHLRTGLQRSACSRPLPHLGDVRHPVAPDSIA
    QKQSDAEGMSPDPVEPFADIPVDVMGSEVRAAELVAEESAYARYNLQMSAGALFSGHTLTNELAERRGDEHAAGGLLAVG
    IDLDEDHLDLHTDLAGITSPARGWQSRFEALWRGSLIVLQSILAVVFGAGLFVAFDQLWRWNSIVALVLSVLVILGLVVG
    VRVVRRTEDIASTLIAVVVGALITLGPLALSLQSG
    >BL;ML2435, ML.tab 2910195:2911028 forward MW:31007
    VSSCPESGSTFEYVANSHLEPVHPGEEVDLDFTREWVEFYDPDNSEQLIAADLTWLLSRWTCVFGTPACRGTVAGRPDDG (SEQ ID NO:282)
    CCSHGAFLSDDADRTRLDDAVKKLSHDDWQFREKGLGRKGYLELDEHDGQSQFRTRKHKNACIFLNRPGFPIGAGCALHS
    KALKLGVPPRTMKPDICWQLPIRHSQEWVTRPDGTEILKTTVTEYDRRSWGSGGADLHWYCTGDPASHVDSKQLWESLAD
    ELTELLGAKAYAKLAAICKRRNRLGIIAVHPATQEAK
    >BL;ML2442, ML.tab 2917372:2917926 reverse MW:20820
    MSTAWDTVWHACSVIEHALQASHLTYSEFSGVPDGLLRLVVELPGERRLKTNAILSIGEHSVNVEAFVCRKPDENHEGVY (SEQ ID NO:283)
    RFLLKRNRRLFCVSYTLDNVGDIYLVGRMSLASVDTDEIDRVLGQVLEAVESDFNTLLELGFRSSIQKEWDWRISRGESL
    NNLQAFAHLIDDEGDGDASIYARP
    >BL;ML2446, ML.tab 2921383:2922708 reverse MW:46863
    VIASTPRQNRESINRRVALTALGVGVFAPSVFVACAGSAIKPSEKKTTPAPHLTFQPATATDDVIPVAPISVQIADGWFQ (SEQ ID NO:284)
    RVTLTNPVGKVVAGVFNQDRTVYTITEPLGYDTTYTWNGSAVGHDGKAVPVTGKFSTVTPVKKVNGGFQLADGQTVGVAA
    PITIQFDAPISDKSAVEKALTVTTTPPVEGSWAWLPDEAKGARIHYRPREYYPAGTTVNVDAKLYGLPFGDGAYGLQDMS
    LNIQIGRRQVVKAEVSSHRIQVVTDAGVIMDFPCSYGEADQARNVTRNGIHVVTEKYSDFYMSNPAAGYSNVYERWAVRI
    SNNGEFIHANPASVGAQGNTNVTNGCINLSTGDAEQFYRSAIYGDPVEVTGSSIQLSYSDGDIWDWAVDWDTWVGMSALL
    SFPTVHQPATQIPVTAPVTPPGAPILSGTPTSGSGTARPGG
    >BL;ML2450, ML.tab 2925762:2926499 forward MW:26174
    LLRDPLAIVLILIIVVALVISGLIGAELFARHTANSKVARVVTCEIKDQATAKFGVTPLLLWQFATQHFTNISVETAGNQ (SEQ ID NO:285)
    IRDAKGMKIAIDIQNVQIRDTPTSRGTIGVLDAIITWSSDGIRQSVQNSIPVLGGVVTTSVTTHPTNGTIELKGMLNDIV
    AKPVVSNGGLQLQIVSFNTLGFSLPKETVQFTLDDFTTNLTKNYPLGIHADNVEVTSTGVTSHFSARNTNIPNSTGGQDP
    CFANL
    >BL;ML2452, ML.tab 2927236:2927607 reverse MW:13492
    MSSPLSPLYVLPFVDHTKWTRWRSLISLQAYSNLFGRTSAMQPDVAAGDEAWGDVLTLSPDADTADMHAQFICHGQFAEF (SEQ ID NO:286)
    VQPSNTSSNLEPWRPVVDDSEIFAAGCHPGISEGIQQADEGPR
    >BL;ML2453, ML.tab 2927710:2927997 reverse MW:10004
    MSHLVGTVMLVLQLAVLVTAVYAFVHAALQRPDAYTAAEKLTKPVWLVILGAAVSLTSILGFVFGVLGIVIAACAAGVYL (SEQ ID NO:287)
    VDVRPKLLDIQGKSR
    >BL;ML2454, ML.tab 2928117:2928683 reverse MW:20421
    MAENPNVDDLRAPLLAALGAADLALTTVNELVGNMRERAEETRIDTRSRVEESRARVAKLQEVLPEHLSELREKFTADEL (SEQ ID NO:288)
    RKAAEGYLEAATNRYNELVERGEAALERLRSRPVFEDASARAEGYVDQAVELTQEALGTVASQTRAVGGRAAKLVGIELP
    KKAAAPARKAPAKKAPAKKAPAKKVTQK
    >BL;ML2463, ML.tab 2936751:2937545 reverse MW:30332
    VSLDKIMMPVPEGHPDVFDREWPLRVGDIDRTGRLRLDAGVRHIQDIGQDQLREMGFEETHPLWIVRRTMVDLIRPVEFQ (SEQ ID NO:289)
    EMLRLRRWCSGTSNRWCEMRVRIDGRKGGLIESEAFWININRETQMPARIADDFLAGLHRTTSVDRLRWRGYLQPGSRDD
    ASEIHEFPVRVTDIDLFDHMNNSVYWSVIEDYLVSHSELLKGPLRTTIEHEAPVALGDKLEIVLHVHPAGSTDQFGPGLV
    DRSVITLTYTVGDETKAIAAIFAL
    >BL;ML2465, ML.tab 2939177:2939743 forward MW:21174
    MSGGTGTGPVGRIPPGSLRQLGPINWVIAKLAASLLRTSEMHLFTILGQRQLLFWAWLIYGGRLLRGKLPRVDTELVILR (SEQ ID NO:290)
    VAHLRTCEYELQHHRRMARKRGLDTKIQAMIPAWPDVPTGAGLSVRQQALLAATDEFVKDRKITSSSWQQLETHLDRRRL
    IEFCMLISQYDGLAATISSLDIPLDNSC
    >BL;ML2473, ML.tab 2948272:2948751 forward MW:17160
    MPDGFGVAVVREEGQWRCSAMASKSLTSLTAAETELRELRSVGAVFGLLDVDDEFFIILRPAPSGTRLLLSDATAALDYD (SEQ ID NO:291)
    IAAEILDSLDAEIDPEDLEDAYPFEEGDLGLLSDVGLPEATLGVILDQTDLYADEQLGHIAREMGFAEQLSAVINRLGR
    >BL;ML2489, ML.tab 2962275:2963135 reverse MW:32001
    MVPLWFTLSALCFVGAVVLLYVDIDRRRGRSRRRKSWARSHGFDYERESTEILQRWKRGVMSTVGDISAHNVVLGQIRGE (SEQ ID NO:292)
    AVYIFDLEEVATVIALHRKVGTNIVVDLRLKGLKEPRESDIWLLGAIGPRMVYSTNLDAARRACDRRMVTFAHTAPDCAE
    VMWNEQNWTLVSMPIGSTRVQWDEGLRTVRQFNDLLRVLPPLPADTSQEAGASARNAAPSRPLASVGRAELPPDRGVESD
    VAGLLGSGVQAGRSAEPISRDEGRWDGIRRPPSVERNGHQTTNYQY
    >BL;ML2491, ML.tab 2966697:2967698 forward MW:36545
    VTGPNSPNKTLQRFGISGTDLGIPWDNGDPTNHQVLMAFGDSFGYCSVKGQQRRYNILFRSSNQDLSHGIRIADGVPNDK (SEQ ID NO:293)
    YSGSPVWTTGLAKQVVNTIHRAPHETGIIPTTAISIGKTQYMNYMSIKKWGRDGEWTTNYSAIARSIDNGQSWGTYPGTI
    RTASPDAIPGTHFVPGNQNFQMGAFMRGNDGYLYSFGTPSGRSGAAYLARVPQNLVPDLSKYQYWNGNWVPNNPGAATPL
    FSGPVGEMSAQYNDYLKQYIILYSNGDSNDVVARTAPAPQGPWSPEQPLVSSFQMPGGIYAPMIHPWSSGRDLYFNLSLW
    SAYDVVLMHTVLP
    >BL;ML2518, ML.tab 2999816:3000208 reverse MW:14353
    VGEYSAFGFDPDDFDRLIKEGSEGLRDAFERISRFVGGPGVRTAWSAIFEDLSRRARPAQETADEAGDGVWAIYTVTGDG (SEQ ID NO:294)
    AARVEQVYATELDALRANKNNVDPKRKVRFLPYGIAVSVLDSHQESTQQL
    >BL;ML2522, ML.tab 3004590:3005246 reverse MW:22735
    MCRLIALLSAVVCAAWATLILAPIGAAAGAAWFANKVGNATQVVSVVSTGGSNAKMDIYQRTGTGWQPLKTGIPTYVGSA (SEQ ID NO:295)
    GLVAQAKSGYPATPMGVYSLDSAFGTAPNPGSQLPYTQVGPNHWWSGDDHSPTFNTMQVCQKSHCRFNTAESENLQIPSY
    KHAVVMGVNKAKVPGSGSAFFLHTTGGGPTEGCVAIDDVTLVQILRWLRPGAVIAITK
    >BL;ML2527, ML.tab 3009256:3010275 reverse MW:36773
    VSAHRSRPAAMWPGSSRITLALLAVMPALMAYPWWFTRSYWLLGIVALVVVVLFGWWRGLYLTTILRRRLAMMWRRGRPV (SEQ ID NO:296)
    SASGSATRTTVLLRLGPPVGGSDVIPLPLITRYLNCYGIRADSIRITSRNNESDGALCETWIGLTVSAAKNLAALQARSS
    RIPLQETAQVAARRLADHLREIGWEVSLAVPDGIPRLITAAGDETWRGMQQGSDYLTAYRVNVDDELPGTLDAVRLYPAR
    ETWTALEIACPDSSSNRNTIAAACAFLTDTAPQGAAPLAGLTPQHGNHRPALAVLDLFSAQRLDGHTDTDADLLTRLRWP
    APAAGVSSCTATRSPAVSA
    >BL;ML2529, ML.tab 3011710:3013167 reverse MW:49866
    MVYVFAEEFCEGPVTSGAVMPIVRVAILALSRLIEMALPTELPLREILPAVKRLVVPAASDNDSPLAANASLHLSLAPIG (SEQ ID NO:297)
    GAPFSLDASLDTVGVVDGDLLALQPVPVGPAAPGIVEDIADAAMIFSTARLQSWGPTHIRRGALAATTAVTFAATGLGVT
    YRAVTGALTGLLVVIVIAVLIALGGLVLRSRAARTGLVLSIAALVPIGAVFALAVPGIFGPAQVLLASAGVTAWSLIALI
    VPGPERVRIVAFFTATVVIGVAVMLEAGAALLWQLTPLTIGCGLILAALLVTVEAAQLSALWARFPLPVIPAPGDPTPSA
    PSFQVLEDLPRRVRISSAHQSGFIAAATLLSMLGSVAIALRPEAVSSVGWYLVAATAVAATLRARVWDSVACKAWLLAQP
    YLVASVLLGLYTATGRYVAASAALLVLVVVVLAWAVVALNPRIASSDSYSLPLRRLLGMVASGLDASLIPAMAYLVSLFS
    WVLNR
    >BL;ML2530, ML.tab 3013309:3014178 reverse MW:31518
    MKVDPNAVELTVDHAWFIAEVIGAGSFPWVLAITTPYRDAGERSAFVERQVDELTRMGLLVAENSVDPTVADWIRVVCFP (SEQ ID NO:298)
    DRWLDLRYLRSTSAVGDSELLRGMVAQRAGVSDKTVVALRSAQLITFTAMDIDDPLRLVPILGAGLAQRPPARFDEFSMP
    MRVGVRADERLRSGTSLAEVADYLGIPKSAQPVVESVFSGPRSYVEIVAGCRRDGKHATTEVGMSIVDTTTGRVLVNPSR
    AFDGEWVSTFSPGTPFAIAVGIEQLTATLPEGQWFPGQRLCRDFSGQTS
    >BL;ML2531, ML.tab 3014189:3014479 reverse MW:10392
    MTQIMYNYPAMLDHAGNMSACAGALQGVGIDIAAEQAALQACWGGDTGISYQAWQVQWNQATEEMVRAYHAMANTHQNNT (SEQ ID NO:299)
    LAMLTRDQAEAAKWGG
    >BL;ML2532, ML.tab 3014518:3014814 reverse MW:10191
    VSLLDVHIPQLVASESAFAAKAALMRSQINQAECEAISAQAFHQGESSAAFQSAHAQFVTAAEKINALLDIAQQHLGEAA (SEQ ID NO:300)
    ETYVATDATAASTYTTGL
    >BL;ML2534, ML.tab 3016103:3016411 reverse MW:10243
    MTLRVVPEKLAATSEAMKALTARLEAAHAAAFPCLVAVVPPAADPVSLQTAAGFSARGQEHALVAAQGVEELGRAGIGVG (SEQ ID NO:301)
    QSSTHYAISDALAASTYGIVES
    >BL;ML2536, ML.tab 3020432:3022090 reverse MW:57975
    MTSNELPGEWSGERRSFFSRTPVNDNPDKVVYRRGFVTRHQVTGWRFVMRRIASGIALHDTRMLVDPLRTQSRSVLVGAL (SEQ ID NO:302)
    LVITGLIGCFVFSFIRPNGAAGNNAVLADRSTAALYVRVGDELHPVLNLTSARLIVGRSVNPITVKSSELDRFPRGNLIG
    IPGAPERMVQNTTHDANWTVCDVVSGEGGHAAHSMGVTVIAGPPDSHGMRAAVLGSAHGVLVDAPSERGGsTWLLWDGKR
    SEIDLADHAVTDALGFGVGFAEVPAPRPIGAOLFNAIPEAPPLKAPVIPNAGATPSFGVRAPIGAVVVSFGLAALGKNPY
    DSVRYYAVLPDGLQPISPVLAAILRNINSYGLQQPPRLGADEVDKLPVSRMLDTERYPEQQISLIDAGYAPVSCAYWSKP
    AGAATSFLSLMSGAALPVPDAARAVELVSAPSRGDSSTASRVVLTPGTGYFAQTVGVGSAAPATASLFWVSDTGVRYGID
    TEADARSEATAGPGKIVEALGLKLPAVPIPWSILSLFAVGPTLSRADALLEHDGLAPDTRAGRTTTAYGEHR
    >BL;ML2557, ML.tab 3049294:3049590 forward MW:10997
    LYATTELAELHDLIGRMRRSVASFKARYGDSPNRRIAIDADRILSDIELLDADISELDLARATVQQSNEKIAIPDTQYD (SEQ ID NO:303)
    SDFWRDVDDEGVGGHSRS
    >BL;ML2566, ML.tab 3061369:3062271 forward MW:32889
    LTFGFVLRRLRRHFSVKENTVNQPSGLKNILRAIVGALPLLPRTDQLPSRTVTIEELPIDHTNVSAYASVTGLRYGNHVP (SEQ ID NO:304)
    LTYPFALTFPANMSLVTGFDFPFAANGSVHTENHITQYRPIAVTDVVGVQVHAENLREHRKGLLVDLVTDVSVGNDTAWH
    QVTTFLHLQRTSLSDEPKPPSQKQPKLLPPSAVLQITPRQIRRYAAVGGDHNPIHTNPIVAKLFGFPTTIAHGMFSAAAV
    LANIEARLPDAVHYSARFVKPVVLPATTGLYVDESAGNWDLTLRNIAKGYPHLAGTVQGV
    >BL;ML2569A, ML.tab 3065268:3065441 forward MW:5896
    MSRIVAPAAASVVVGLLLGAATIFGMTLMVQQDTKPPLPGGDPQSSVLNRVEYGNRT
    >BL;ML2570, ML.tab 3065557:3069774 forward MW:147681
    VAAMSRWWLVLVGVVAVALTFAQSPGQISPDTKLDLTTNPLRFLARATNLWNSDLPFGQVQNQAYGYLFPHGTFFLIGQL (SEQ ID NO:305)
    LGSPGWITQRLWWALLLTAGFWGLLRVAETLSIGSPTSRAIGAVAFALSPRVLTTLGSISSETLPMMLSPWVLLPTILAL
    QGAPGRSVRTRAAQAGLAVALMGAVNAIATLAGCLPAVIWWACHRPNRLWWRYTGWWLLALCLATLWWVVALVLLHGVSP
    PFLDFIESSGVTTQWSSLVEMLRGTDSWTPFVAQTATAGTPLVTESVAILGTCLVAAAGLAGLASTGMPARGRLVTMLVI
    GVVLLSAGYSGGLGSPLAQAVQAFLDSSGAALRNVHKLESVIRTPFALGIAGLLGRIPLPGSAPVLVWLSSFAHPERDKR
    VAATVAVLTALLVSTSSAWTGRLTPPGTFSAIPQYWNDTSDWLSEHNTGIPTPGRVLVVPGAPFATQVWGTSHDEPLQVL
    GNSPWGVRDSIPLTPPQAIRALDSVQRLFASGRPSVGLADTLARQGISYVVLRNDLDPDTSRSARPILVHRAIAGSPQLE
    KVAQFGAPVGTNMLKGFVADSELRPWYPAVEIYRVAVSDGTNPGKPYFADTDQLPRIDGGPEVLLRLDERRRLLGQPALG
    PALMTADAQFAGLPLPSRAEVTITDTPVARETDYGRVDQNSSAIRAVNDARHTFNRVPDYPVPGAEMVFGGWSGGRITAS
    SSSSDATSMPDVAPATSPAAAIDGDPATSWVSNALQPAVGQWLQVDFDHPVNNAVITVTPSATAVGAQVRRIEIETVNGT
    TNLRVDEAGKPLAVALPYGETPWVRITAAATDDGSSGVQFGITDLTITQYDASGFAHPVNLRHTALVPGSPPGWAVAGWD
    LGSELLGRPGCAPAPDNVRCAASMTLAPEEPVNFSRTLTVPYPISVTAMLWVRPRQGPKLADLIAEPKTTRAYGEADTVD
    ILGSAYAATDGNPATSWTAPQRVVQHKTPPTLTLVLPRPTEVNGLRLAPSRSALPARPTLVAVNLGNGPQVRELQAGEPQ
    ALSLKPRITDTVTISLLDWHDVIDRNALGFDQLKPPGLAEVTVLGTDGNPTAPANASENRIREVTVDCDHGPIIAVAGRF
    VHTSIRTTAAALLDGEPVAAVPCERAPIVLPAGQQELLISPGAAFIVDGAQLSTQDGTELPSARTISADTGKWGPSRREV
    RAPGSATSQVLVMPDSINPGWVAHTSTGVRLMPVAVNGWQQGWLVPAGNPGTITLTFTANSLYRPGLAAGLALLPLLALL
    ALWGRRNERAADAAAQPWTPGAWSAVAVLSAGAVIAGAAGVVVVGAALSLRYALRHQQRWRNGLTVGLSAGGLVLAGAAL
    SRQPWRSVDGYSGHSANVQLLALISLAALAASVVSPRCGSTGVAT
    >BL;ML2581, ML.tab 3081538:3082821 forward MW:46681
    VNRAVILRFTACGIIGLGAAFLIAALLLATYTSSRITKIPLDIDATLVSEGNGTALDSSSLSSEHIIVNQNVPLVSQQQI (SEQ ID NO:306)
    TVESPANVDVVTFQVGVSIRRTDKQKDTGLLLAVVDTVTLNRKTANAVSDDTHTGGSIQKPRGFTDENPPTAIPLRHDGL
    SYRFPFHTEKKTYPYFDPVAQKTFDVNYQNQEDINGLTTYRFTQNVGYDADGKLVAPITYPSLYASDEDGKITTTAJUWG
    LSGDPSEQITMTRYYAAQRTFWVDPVSGTIVKETEHVNIYFARDTLKPEVTLADYKVTSTEETIESQVNSARDERDRLAL
    WSRVLPITFTAVGLITLLSGGFLASFSLRTESALTESGLDRANRDAFGHCRTEEPVPGAEAETEKLPTQRPELRDSSILS
    VSAHRRRSSESSPPNSGPADPGHPERG
    >BL;ML2582, ML.tab 3082923:3084725 forward MW:61888
    VSRELYHRSMSWSRPSYALGMALLVVGPLMRPGYLLLRDAVSTPRSYLSDAALGLTSAPRSTPQDFAVAMASHLVDGGIV (SEQ ID NO:307)
    VKSALVLGLWLAGWGAARLVVTALPSAGVAGQFVASTLAVWNPYVAERLLQGHWSLLVGYGCLPWVAEAMLMLRSSDNAS
    RPGLLGFFALACWIALAGLTPTGLMLAATVALICVAVPVEGPGEPRPRWLCAAATLGSALGAALPWLTASAVGTSLTAHT
    VANTLGVTVFAPRAEPGLGTLASLASLGGIWNGEAVPTSRTTLFAVLSATVLLGVVVAGLPVAVRRPAVVPLLVLAAVAV
    ATPAALATGPGIDMLKAVVNAVPGLGVLRDGQKWVALAVPGYSLAGAGAVVTLGRWLRPSRPLSPVVTALACCLALILAL
    PDLAWGVWGKVQPVHYPSGWAAVAATINDRGEGPGWVAVLPAGTMRRFSWSGTAPVLDPLPRWVRDDVLTTGDLIISGVM
    VAGEGNHARAAQDLLLSGPNPSALTAAGVAWLVVESDTAGDMGASARTLAALQPTYRDDAIGLYRIGGSNAKTAPSPYRG
    LLIAAHLTWLVILVMAVVGMQITRHTHFRDVSSVALLSRR
    >BL;ML2595, ML.tab 3100808:3101356 forward MW:19619
    LPESQVAADDSGVTLNRSRLGRGWLTGIAVALLLAGCGIGTGGYCMLRYHQDSQAMARNDNAALKTALDCVAATQAPDTN (SEQ ID NO:308)
    TMAASEQKIIDCGTDAFHAQALLYTNMLVQAYQAANVHVQVSDMRAAVERHNNDGSIDVLVALRVKLSNDRAHNQETGYR
    LRVKNALAEGQYKISKLDQVTK
    >BL;ML2596, ML.tab 3101353:3102330 forward MW:35970
    VTVVVAKSQTAAVIPEPLSNRLAPWHLRLVALAVDVLPGLVAVSTMTLVVFTVPLRSAWWWLCMAVGGIVILSMLVNRLL (SEQ ID NO:309)
    LPTIIGWSLGRALCGISVIMRDGVAIGPWRLLLRDLTNLLDTAAVFAGWLWPLWDSRRRTFADILLRTEVRCVQAVERQR
    TIRWWASVALLTAAGVSLGGASVSWAVVYSHDRAIDQTRSEIAIQGPKMVAQMLTYNPKSLRDDFTHAQSLASDKYRRQL
    AAQQDVVKKGHPVINEYWPTAGAIQSATRDRATMLLFMQGRRGAAPGERYISATVRVSFAKGEHNHWLVDDLTVLTKPKT
    TGNGR
    >BL;ML2597, ML.tab 3102327:3102881 forward MW:20340
    MSPRRKFQAGEGLLLVSHTVASQRRWGLPLAATFAALVMVAAITASTLMSISHASRELAVAKDQQVLSYVKWFMTQFTTL (SEQ ID NO:310)
    DPYHANDYVARILAQATGDFAKQYNEKVNEILLQVAQAEPATGTVLDAGVERWNDDGSANVLVATEVTSKYPDEKQVLEN
    TNRWTATATRECNQWKISNLLQVI
    >BL;ML2598, ML.tab 3102971:3103525 forward MW:19619
    VAAAEGGGSWRNRRAGQRTAIAVVVAAVLFVGSAAFAGAAVQPYLADRATVAVKLEVARTAANAITVLWTYTPENMDTLA (SEQ ID NO:311)
    DRAATYLSGDFGAQYRKFVDAIVGPNKQAKITNSTEVTGVAVESLDASNAIAIVYTNTTSTSPLTKNIPALKYLSYRLFM
    KRSAVRWLVTRMTTITSLDLTPQL
    >BL;ML2604, ML.tab 3108446:3109195 forward MW:26859
    MTDNKMLARIAALLRQAEGTDNAHEADAFMATAQRLATAASIDLAVARSHVANRSTAQAPTQRTITIGTAGTRGLRTYVQ (SEQ ID NO:312)
    LFVLIAAANDVRCDVASNSTFLYAYGFAEDIDATHALYASLVVQMVRESDAYLASGAYRPTPTITARLNFQLGFGMRVGQ
    RLTEARDHIRSAVTEAWDRPTATAIALRDKEIELIDYYRSASKARGTWQAARASAGYSSAARNAGDQAGRRAWIDNSTEL
    PGARAALGR
    >BL;ML2605, ML.tab 3109192:3109698 forward MW:18602
    MNLLDSVRDAQRSKVYAAEEFIRTLFDRAVEHGSPAVEFFGAQLSLPPEARFGSVAAVQRYVDDVLALQAVRQRWPRMLP (SEQ ID NO:313)
    LTVRARRAATAAHYENLDGAGVIAVPGNNADWAMRELVVLHEVAHHLCKDPPPHGPEFVATICALTELVMGPELGYVFRV
    VYAKEGVR
    >BL;ML2614, ML.tab 3120828:3121502 forward MW:24144
    VNWPKTPGTLAAMPDEEQTELPVHKEFAGIADYSDPGLSDGSVFSQYGIASTVLAVLSAAAVVFGVVIWRAHHDNSAERA (SEQ ID NO:314)
    YLTHVMQTAFDWTGVLINMNTSNVDASLQRLHAGTVGELNTDFDAAVQPYRKVVEKLQTQSRGQIEAVAIESVHHDLDTQ
    PGVAHPVVTTKLLPPAARTDSVMLVATSVSENVGGKPTTVHWSLRLDVSDVDGKLMISHLESIR
    >BL;ML2615, ML.tab 3121499:3122188 forward MW:24416
    MRNRWRLLAFDVVAPLVAIAALVMIGVVLDWPRWWVSACSVLVLLIVEGVGVNFWLLRRDSVTIGTDDDAPGLRLAXIXISV (SEQ ID NO:315)
    CTAALCAAVLIGYMHWTSPDRDFSLDSREVVQIATGMAEAFVIASFTPSAPTSSIDRAAAMIMPDQAGVFKEQYRKSSADLA
    RRNVTAQASVLAAGVEAIGSSAASVAVILRVTQNTPGQPPSQAAPAVRVTLIKRGSDWLVTDVLSINAR
    >BL;ML2616, ML.tab 3122267:3122779 reverse MW:18682
    VTLADDHRRPAAPPEQPAADQGRYDPDQPVEFWSTAAIRSALHAGSIEIWKLITAAVKHDPYGRTAHQVEEVLEGTRPYG (SEQ ID NO:316)
    ICKALGEVLQRARTHLEINERAEVARHVRLLIDRSGLGHQEFASRIGVAPEGLASYLDGSTSPSAALMVRMRRVSDRFVK
    VKAARSANSD
    >BL;ML2621, ML.tab 3131780:3132367 reverse MW:21956
    MLIWDAPNLDMGLDAIVDHHHRNALERPCFDALGRWLFTCNTEVAVGYPDSTIGLKGTMFTNIAQASADVVRLWVDTLRN (SEQ ID NO:317)
    VEFVIFVKPKIDEDSHMLGRIKGRYNEGLAVQVVVSAYSQALRQTLERTAHAVIDVQMIGFREHTSWALASAILEFADLE
    DIAGVFRESLPRISLDSLPAQGEWCAPFPGRWLRY
    >BL;ML2627, ML.tab 3140261:3141280 forward MW:36081
    VTANGHAGRREGGPYFDDLSIGQVFDWAPAVTLTSGMAAVHQAILGDRMRLALDAELSTTVIGTHAMLAHPGLVDDVAIG (SEQ ID NO:318)
    QSTLVTQRVKANLFYRGLTFHRFPVIGDTLYTSTEVVGLQANSAKPGRPPTGMAALRITTTDQHDRLVLDFYRCAMLPAS
    AAWHPHDALNRNDDLANVGADAVASASDPTGQWDAAAFRERVPGPHFDAGITGAVLRSTGDIVSSAPDLARLTLNIASTH
    HDSRVRGLRLVYGGHTIGLALAQAGRMLPNLATVLNWRSCDHTGPVHEGDTLYSELHVESAEATEQGGVLGLRSLVYAVS
    AAGGSDHLVLDWRFTVLQF
    >BL;ML2629, ML.tab 3144572:3145042 reverse MW:17022
    LGSVPGYASPMPVMSKTVEVRATAASIMAIVTDFEAYPQWNDGVKGVWVLARYDDGRPSQLRLDTEIQGTKCTYIQAVYY (SEQ ID NO:319)
    PATNQIQTIMQQGDLFTKQEQLFSAVEIGAASLLTVDIDVESSMPVPAPMVKALLNNVLDNLAENLKLRAEQLAAN
    >BL;ML2630, ML.tab 3145226:3145597 reverse MW:12982
    LLTDGVLLPELLFGYLNKCCLLPQLFDTAINTSVGVTSPNESRAFNAADDLIGDGSVERAGLHRATSVPGESPEGLQRGH (SEQ ID NO:320)
    SPEPNDSPPWQRGSAQASQSGYRPSDPLTTTRQSNPAPGANVR
    >BL;ML2640, ML.tab 3159055:3159987 reverse MW:34454
    MRTHDDTWDIKTSVGTTAVMVAAARAAETDRPDALIRDPYAKLLVTNTGAGALWEAMLDPSMVAKVEAIDAEAAAMVEHM (SEQ ID NO:321)
    RSYQAVRTNFFDTYFNNAVIDGIRQFVILASGLDSRAYRLDWPTGTTVYEIDQPKVLAYKSTTLAEHGVTPTADRREVPI
    DLRQDWPPALRSAGFDPSARTAWLAEGLLMYLPATAQDGLFTEIGGLSAVGSRIAVETSPLHGDEWREQMQLRFRRVSDA
    LGFEQAVDVQELIYHDENRAVVADWLNRHGWRATAQSAPDEMRRVGRWGDGVPMADDKDAFAEFVTAHRL
    >BL;ML2664, ML.tab 3190775:3191530 forward MW:26919
    MYQAVRYLLVMAAIILMAVAESGSPSVAAIPALKPTPEVASVLPTNGAVVGVAHLVVVTFTAPVTDRSAAERSIRITSPN (SEQ ID NO:322)
    NMTGHFEWLDGDVVQWIPTKYWPAYTHVSVEVQALTTGFETGDALLGVASLSTHTFTVSRNGEVLRTMPASMGKPTRPTP
    IGKFTALSKERTVVMDSRTIGIPLNSPEGYLITAQYAVRVTWSGVYVHSAPWSVNSQGYTNVSHGCINLSPDDATWYFNT
    VNVGDPIEVVA
    >BL;ML2687, ML.tab 3234968:3236662 reverse MW:61392
    VINAQTHSTTISPRPLAADRQSADNRDCPSRTDYLGAALADAIGGPVGCHALIGRSWLMTPLRVMFLIGLVFLALGWSTK (SEQ ID NO:323)
    AACLQTTGTGPGGQRVPNWDNQRAYYELCYSDIVPLYGTELLSQGKFPYKSSWIETDSSGTPRTRYDGRLAVRYMEYPVL
    TGIYQYVSMAVAKSYTALSEPVSLPAVAEVVMFFDVVAFGLALAWLATIWATAGLAGLRIWDAALVAASPLVIFQVFTNF
    DALAIAFATGGLLAWSRCRPISAGVLIGLGAAAKLYPLLFLVPLFVLGVRTGRLGGVACAAVTAATTWLLVNLPVLLLFP
    RGWSEFFRFNTRRGDDMDSLYNVVKSLTGWRGFDTKLGFCELPLVLNTVVTVLFALCCAAVAYIALTAAQRPRVVQLAFL
    LVAVFLLTNKVWSPQFSLWLVPLAVLALPHRRVLLAWMTIDALVWVPRMYYLYGNPSRSLPEQWFTATVLLRDIAVVALC
    ALVIRQIYRPDEDPVRLGGRVDDPAGGPFDRAPYAPPSWLPDWLHPAGMRRVVTLAASSVTETELAAAATPSGPMHHPHA
    PSSI
    >BL;ML2689, ML.tab 3239183:3239599 reverse MW:15278
    VVNYSLRRRFLLAEVYSGRTGVSEVCDANPYLLRAAKFHGKPSQVMCPICRKEQLTLVSWVFGNQLGAISGSARTAEELV (SEQ ID NO:324)
    LLATRYEEFAVYVVEVCRTCSWNYLVRSYVLGAARSAPPPRGTPVTRTACNGARMAIE
    >BL;ML2699, ML.tab 3250667:3253060 forward MW:84667
    VTASRLRLAGSLSIALVVDIVASFAVLLVAPTATPHAAADEPRATSFVRVRIDKVTPDVVTTSSEPVVTVSGVVTNIGDR (SEQ ID NO:325)
    PVRDLMVRLEHESAVISSAVLRTYLDDGADQFQTAADFVTVAEELQRGQEAGFTLVAPIRSTTKPSMAIDQPGIYPVLVN
    VNGTPDYGTPARLDNARFLLPVAGVPPAKSDAMDSAVAPDITKPVWITMLWPLADRPRLSPGAPGGTIPVRLVDDDLASS
    LAPGGRLDILLTAAETATGRDVDPDGAVSRALCLAVDPDLLVTVNAMTGGYIVSNSPDGPAQQPGTPTHPGTGQDAAVIW
    LNRLRALAHRMCVASLPYAQADLDALQRINDTELSTTATTSVGDIVDHILDVTSIRGVTMLPDSPLTNRVVDLLNDNNST
    VAIAAAAFSAQDSTSGSLVDIDTEPRRLSPRVVVAPFDPAVGAALAAAGTDPIVPTYLDSSLNIRIVHDSDTARRQDALS
    SILWRALERDAAPRSQILVPPTSWHLQADDARVMLTTLSTVIRSGLAVARPLPTVIADALARTKLSDTVGSYTSARGRFN
    DDIIADIASQVGRLWGLTSALTADGRTGLTGVQYTAPLREDMLRALSQLEPPATRNGLAQQRLAVVSKTIKDLIGAVTIV
    NPGGSYTLATEHSPLPLALHNGLAVPIRVRLQVDAPPGMTVTDVSQIELPPGYLPLRVPIEVNFTQRVAVDVALQTPEGI
    QLGEPVRLLVHSNAYGKVLFEITLTAATILIVLAGRRLWHRFRIQTEGADSNRPDPLIVDAHPQHQYDDWVDEENRI
    >BL;PE, ML.tab 654129:654437 forward MW:10295
    MTLGVIPEGLEGASAVIEALTAHLATVHAEAAPFIMEVIPPGSGSVSVQNQVGFNVHGCQYVAMTAHGAEELGRWGVGVA (SEQ ID NO:326)
    ESGVSYALRDAFAVASYLGGGL
    >BL;desA2, ML.tab 2339270:2340097 reverse MW:31139
    MAQKPVPNALILQLEPVVKDNMARHFANEELWFAHDYVPFDRGENFAFLGGRDWDPSQATLAKAVTDACEILLILKDNLA (SEQ ID NO:327)
    GYHRELVEHFILEGWWGRWLGRWTAEEHLHAIALREYLVVTREVDPVANEQVRVEHVMKGYRVNSYTQIETLVYMAFLER
    SYAFFCGSLAAQIKEPALFGLINQIVKDEVRHEEFFANLVAHCLECNRDETVAAIAARAAGLDVLGADIDAYHDKVENIS
    AAGIFGSVELRQVISDRITAWGLINEPQLAQFVTS
    >BL;embA, ML.tab 139821:143156 reverse MW:118457
    VPHDGHEPPQRIIRLIAVGAGITGLLLCAVVPLLPVKQTTATIRWPQSATRDGWVTQITAPLVSGTPRALDISIPCSAMA (SEQ ID NO:328)
    TLPDSVGLVVSTLPSGGVDTGKSGLFVRANKNAVVVAFRDSVAAVAPRPAVAAGNCSVLHIWANTRGAGANFVGIPGAAG
    ILTAEKKPQVGGIFTDLKVPVQPGLSAHIDIDTRFITAPTAIKKIAVGVGAAAVLIAILALSALDRRNRNGHRLINWRVS
    MAWLAQWRVILATPPRAGGASRIADGGVLATLLLWHIIGATSSDDGYNLTVARVSSEAGYLANYYRYFGATEAPFDWYFT
    VLAKLASVSTAGVWMRIPATLAGIACWLIINHWVLRRLGPGTGGLSTNRVAVLTAGAMFLAAWLPFNNGLRPEPLIALGV
    LFTWVLVERAIALRRLASAATAAVVAILTATLAPQGLIAIAALLTGARAITQTIRRRRTTDGLLAPLLVLAASLSLITLV
    VFHSQTLATVGESARIKYKVGPTIACYQDFLRYYFLTVESNADGSMTRRFPVLVLLLCMFGVLVVLLRRSRVPGLASGPT
    WRLIGTTATSLLLLTFTPTKWAIQFGALAGLTGTFGAIAAFAFARISLHTRRNLTVYITALLFVLAWATAGINGWFGVSN
    YGVPWFDIQPVIAGHPVTSIFLTLSILTGLLAGGQHFRLDYAKHTEVKDTRRNRFLATTPLVVVATTMVLCEVGSLAKGA
    VARYPLYTTAKANLAALRSGLAPSVCAMADDVLTEPDPNAGMLQPVPGQIFGPTGPLGGMNPIGFKPEGVNDDLKSDPVV
    SKPGLVNSDASPNKPNVTFSDSAGTAGGKGPVGVNGSHVALPFGLDPDRTPVMGSYGENTLAASATSAWYQLPLHWKESI
    ADRPLVVVSAAGAIWSYKEDGNFIYGQSLKLQWGVTRPDGIIQPLAQVMPIDIGPQPAWRNLRFPLTWAPPEANVARVVA
    YDPNLSPDQWLAFTPPRVPVLQTLQQLLGSQTPVLMDIATAANFPCQRPFSEHLGIAELPQYRILPDHKQTAASSNLWQS
    SEAGGPFLFLQALLRTSTISTYLRDDWYRDWGSVEQYYRLVPADQAPEAVVKQGMITVPGWIRRGPIRALP
    >BL;embB, ML.tab 136573:139824 reverse MW:117159
    MSVIYRAHRVAIANRTASRNVRVARWVAAIAGLIGFVSSVVTPLLPVVQTTATLNWPQNGQLNSVTAPLISLTPVDITAT (SEQ ID NO:329)
    VPCAVVAALPPSGGVVLGTAPKQGKDANLNALFIDVNSQRVDVTDRNVVILSVPRNQVAGDAGAPGCSSIEVTSTHAGTF
    ATFVGVTDSAGNPLRGGFPDPNLRPQIVGVFTDLTGGAP5GLRLSATIDTRFSSTPTTLKRFAMMLAIITTVGALVALWR
    LDQLDGRRMRRLIPARWSMFTLVDVAVIFGFLLWHVIGANSSDDGYQMQMARTADHSGYMANYFRWFGSPEDPFGWYYNL
    LALMIHVSDASMWIRLPDLICGVACWLLLSREVLPRLGPAIVGFKPALWAAGLVLLAAWMPFNNGLRPEGQIALGALITY
    VLIERAITYGRMTPVALATLTAAFTIGIQPTGLIAVAALLAGGRPMLYILVRRHRAVGAWPLVAPLLAAGTVVLTVVFAE
    QTLSTVLEATKVRTAIGPAQAWYTENLRYYYLILPTVDGSLSRRFGFLITALCLFTAVLITLRRKQIPGVARGPAWRLIG
    TILGTMFFLTFAPTKWVHHFGLFAALGAAVAALTTVLVSHEVLRWSRNRMAFLAALLFVMTLCFATTNGWWYVSSYGVPF
    NSAMPRIDGITFSTIFFILFAIVALYAYYLHFTNTGHGEGRLIRTLTVSFWAPIPFAAGLMTLVFIGSMVAGIVRQYPTY
    SNGWANIRALTGGCGLADDVLVEPDSNAGYMTALPSNYGPLGPLGOVNAIGFTANGVPEHTVAEAIRITPNQPGTDYDWE
    APTKLKAPGINGSVVPLPYGLNPNKVPIAGTYTTGAQQQSRLTSAWYQLPKPDDRHPLVVVTAAGKITGNSVLHGHTYGQ
    TVVLEYGDPGPNGGLVPAGRLVPDDLYGEQPKAWRNLRFARSQMPFDAVAVRVVAENLSLTPEDWIAVTPPRVPELRSLQ
    EYVGSSQPVLLDWEVGLAFPCQQPMLHANGVTDIPKFRITPDYSAKKIDTDTWEDGANGGLLGITDLLLRAHVMSTYLAR
    DWGRDWGSLRKFDPLVDTHPAQLDLDTATRSGWWSPGKIRIKP
    >BL;embC, ML.tab 144115:147327 reverse MW:114723
    VSGAGANYWIARLLAVIAGLLGALLAMATPFLPVNQNTAQLNWPQNSTFESVEAPLIGYVATGLNVTVPCAAAAGLTGPQ (SEQ ID NO:330)
    SAGQTVLLSTVPKQAPKAVDRGLLIQRANDDLVLVVRNVPVVSAPMSQVLSPACQRLTFAAYFDKITAEFVGLTYGPNAE
    HPGVPLRGERSGYDFRPQIVGVFTDLSGPIPTGLNFSATIDTRYSSSPTLLKTIAMILGVVLTIVALVALHLLDTADGTQ
    HRRLLPSRWWSIGCLDGLVITILAWWHFVGANTSDDGYILTMARVSEHAGYMANYYRWFGTPEAPFGWYYDLLALWAHVT
    TTSAWMRVPTLAMALTCWWLISREVIPRLGHAAKASRAAAWTAAGMFLAVWLPLDNGLRPEPIIALGILLTWCSVERAVA
    TSRLLPVAVACIVGALTLFSGPTGIASIGALLVAVGPLLTILQRRSKQFGAVPLVAPILAASTVTAILIFRDQTFAGESQ
    ASLLKRAVGPSLKWFDEHIRYERLFMASPDGSVARRFAVLALLVALSVAVAMSLRKGRIPGLAAGPSRRIIGITVTSFLA
    MMFTPTKWTHHFGVFAGLAGSLGALAAVAVASAALRSRRNRTVFAAVVLFVVALSFASVNGWWYVSNFGVPWSNSFPKLR
    WSLTTALLELTVIVLLLAAWFHFVATTNGSAKTRFGVRIDRIVQSPIAIATWSLVIFEVASLTMAMIGQYPAWTVGKSNL
    QALTGQTCGLAEEVLVEQDPNAGMLLPVSTPVADALGSSLAEAFTANGIPADVSADPVMEPPGDRSFVKENGMTTGGEAG
    NEGGTNATPGINGSRAQLPYNLDPARTPVLGSWQSGIQVVARLRSGWYRLPARDKAGPLLVVSAAGRFDHHEVKLQWATD
    SGAASGQPGGAFQFSDVGASPAWRNLRLPLSAIPSMATQIRLVADDEDLAPQHWIALTPPRIPQLRTLQDVVGYQDPVFL
    DWLVGLAFPCQRPFDHQYGVDETPKWRILPDRFGAEANSPVMDNNGGGPLGVTELLLKATTVASYLKDDWSRDWGALQRL
    TPYYPNAQPARLSLGTTTRSGLWNPAPLRH
    >BL;1ppS, ML.tab 524929:526143 forward MW:43242
    VGTATRRVQPKAWRALLTLLVISVVMPGVACNRGGGNVPVNVIGDKGTPFADLLVPKLTASVTDGAVGVNVDMPVTVTVA (SEQ ID NO:331)
    DGVLAAVTMINDNGRMINGQFSPDGLRWSTTEPLGFNRCYTLSAKALGLGGVVNRQMTFQTSSPAHLTMPYVNPGNGEIV
    GIGEPVAIRFDENIANRLAAQKAITITANPPVEGAFYWLNNREVRWRPEHFWKSGTAVDVAVNTYGVDLGEGMFGEDNVK
    THFTIGDEVFATADDATKMLTVRVNGEVVKIMPTSMGKDSTPTANGIYIVGARFKHIIMDSSTYGVPVNSPNGYRADVDW
    ATQLSYSGVFLHSAPWSVGAQGHTNTSHGCLNVSPSNAQWFYDHVKRGDIVEVVNTVGDTLPGAEGLGDWNIPWEQWKAG
    NANI
    >BL;1ppX, ML.tab 188551:189252 forward MW:24411
    MNDRKWVTSSVMLVTLSACLALGLSGCSSTKPDAQEQSSSSSPASSDPALTAEIKQSLETTKALSSVHVVVQTTGKVDAL (SEQ ID NO:332)
    LGISNADVDVQANPLAVKGTCTYNDQPGVPFRVLGDNISVKLFDDWSNLGSISDLSTSHVLDPNTGITQVLSGVINLQAQ
    GTEVVDRIPTNKITGTVPTSSVKMLDPKAKGSKLATVWIAQDGSHHLVRASIDLGSGSIQLTQSKWNEPVNTN
    >BL;1pqB, ML.tab 918368:920137 forward MW:61768
    VMRGVLVIMRLLCLGMLFTGCAGVPNSSAPQAIGTVERPVPSNLPKPTPGMDPDVLLREFFKATADPANRHLAARQFLTQ (SEQ ID NO:333)
    SASNAWDDAGRALLIDHVVFVETRGAERVSATMRADILGSLSDMGVFETAEGVLPDPGPVELIKTSGCWRIDRLPNGVFL
    DWQQFQATYKRNTLYFADPTGKTVVPDPRYVAVLGHDQLATELVSKLLAGPRPEMAHAVRNLLAPPLRLRGPVTRADGSK
    SGIGRGYGGARIDLEKLSTTDPHSRQLLAAQIIWTLARADIRGPYVINADGAPLDDRFADGWTTSDVAATDPGVADGAGA
    GLHALVGGALVSLIGQNTTTVLGAFGRMGYQTGAALSRSGRQVASVVTLRRGAPDMAASLWIGDLGGEAVQSADGHSLSR
    PSWSLDDAVWVVVDTNNVLRAIPEPASGQPARIPVDSAAVASRFPGPITDLQLSRDGTRAAMVIGGQVILAGVEQTQAGQ
    FALTYPRRLGFGLGSSVVSLSWRTGDDIVVTRTDATHPVSYVNLDGVNSDAPARGLQVPLSVIAANPSTVYVAGPQGVLQ
    YSASVAESQQGWSEVAGLTVMGAEPVLPG
    >BL;1pqE, ML.tab 409442:409993 reverse MW:19242
    VSRFKISLPALATRVAVLGFLTLMASVLGGCGAGQISQTATQEPAVNGNRVTLNNLALRDIRIQAAQTGDFLQSGRTVDL (SEQ ID NO:334)
    MLVAINNSPYVTDRLVSITSDIGTVALNGYTQLPTNGMLFIGTSEGQRIKPPPLQSNNIAKAIVTLAKPITNGLTYNFTF
    NFEKAGQANVAVPVSAGLAPRQT
    >BL;1pqT, ML.tab 322399:323055 reverse MW:23455
    MQAIRLGLHTAAAVVTLSISAVSCGTKTPDYQLILSKSSTTTTTTPDKPIPLPQYLESIGVTGQQVAPSSLPGLTVSIPT (SEQ ID NO:335)
    PPGWSPYSNPNITPETLIIAKSGKYPTARLVAFKLRGDFDPTQVIKHGNDDAQLFENFRQLDVSTANYNGFPSAMIQGSY
    DLEGRRLHAWNRIVIPTGPPPSKQQYLVQLTITSLANEAVAQSNDIEAIIRGFVVAPK
    >BL;1prG, ML.tab 674679:675395 reverse MW:24874
    MQAPKHHRRLFAVLATLNTATAVIAGCSSGSNLSSGPLPDATTWVKQATDITKNVTSAHLVLSVNGKITGLPVKTLTGDL (SEQ ID NO:336)
    TTHPNTVASGNATITLDGADLNANFVVVDGELYATLTPSKWSDFGKASDIYDVASILNPDAGLANVLANFTGAKTEGRDS
    INGQSAVRISGNVSADAVNKIAPPFNATQPMPATVWIQETGDHQLAQIRIDNKSSGNSVQMTLSNWDEPVQVTKPQVS
    >BL;1sr2, ML.tab 305368:305706 forward MW:12164
    MAKKVTVTLVDDFDGAGAADETVEFGLDGVTYEIDLTNKNAAKLRGDLRQWVSAGRRVGGRRRGRSNSGRGRGAIDREQS (SEQ ID NO:337)
    AAIREWARRNGHNVSTRGRIPADVIDAFHAAT
    >BL;mihF, ML.tab 656895:657212 forward MW:11474
    VALPQLTDEQRAAALEKAAAARRARAELKDRLKRGGTNLTQVLKDAESDEVLGKMKVSALLEALPKVGKVKAQEIMTELD (SEQ ID NO:338)
    IAPTRRLRGLGERQRKALLEKFGSA
    >BL;mmpS3, ML.tab 1041502:1042383 forward MW:30891
    MSGPNPPGRENEESDSGNELSGELDPHNGVESVDELVPVPDSDLVTASDHTSETEVYSQAYSAPEAEHFTAVPYVPADLR (SEQ ID NO:339)
    LYDYDESSVYDEPGAAPRWPWVVGVAAILAAISLVVSVSLLFTRTDTSKLSTPTTGRSTPPVQDEITTVKPPPPSTETST
    ATETQTVTVTPLPPPSATSTAVPPSSVVPPPPTTPTTTVTTLTGPRQVTYSVTGTKAPGDIISVTYVDASCRRRTQHMVY
    IPWSMTVTPISQSDVGSVEAFSLFRVSKLNCLITTSDGTVLSSNSNDAPQTSC
    >BL;mtb12, ML.tab 753532:754035 forward MW:17130
    MTMKSIATYAALAIIGAAVDGLTSMAIPTGPAASHIQPVAFGVPLPQDPAPAADVPTAAELTSLLNKIVDPDVSFMHKSQ (SEQ ID NO:340)
    LVEGGIGSAEAHIGDRELKNAAQKGELPLLFSVTNIRPGTSGSATADVSVSGPKLNPPVTQNITFINKGSWVLSRHSAME
    LLQAAGR
    >BL;whiB1, ML.tab 953665:953919 reverse MW:9318
    MDWRHKAVCRDEDPELFFPVGNSGPAIAQIADAKLVCNRCPVTTECLAWALNTGQDSGVWGGMSEDERRALKRRNTRTKA (SEQ ID NO:341)
    RSGV
    >BL;whiB2, ML.tab 903227:903496 forward MW:10119
    VVPKALVAFEVESEPESSDQWQDRALCAQTDPEAFFPEKGGSTREAKKICLGCEVRHECLEYALAHDERFGIWGGLSERE (SEQ ID NO:342)
    RRRLKRGVI
    >BL;whiB3, ML.tab 475771:476079 reverse MW:11576
    MPQPKQLPGPNATIWNWQLQGLCRGVDSSMFFHPDGERGRARMQREQRAKEMCRRCPVIEECRAHALDVGEPYGVWGGLS (SEQ ID NO:343)
    ESERDLLLKGDLARSRSIPRSA
    H. tuberculosis proteins that are potential targets for the diagnosis,
    prophylaxis or treatment of mycobacterioses.
    >BL;RV0007, H37RV2.tab 9914:10825 forward MW:31041
    VTAPNEPGALSKGDGPNADGLVDRGGAHRAATGPGRIPDAGDPPPWQRAATRQSQAGHRQPPPVSHPEGRPTNPPAAADA (SEQ ID NO:344)
    RLNRFISGASAPVTGPAAAVRTPQPDPDASLGCGDGSPAEAYASELPDLSGPTPRAPQRNPAPARPAEGGAGSRGDSAAG
    SSGGRSITAESRDARVQLSARRSRGPVRASMQIRRIDPWSTLKVSLLLSVALFFVWMITVAPLYLVLGGMGVWAKLNSNV
    GDLLNNASGSSAELVSSGTIFGGAFLIGLVNIVLMTALATIGAFVYNLITDLIGGIEVTLADRD
    >BL;Rv0010C, H37RV2.tab 13136:13558 reverse MW:15166
    MQQTAWAPRTSGIAGCGAGGVVMAIASVTLVTDTPGRVLTGVAALGLILFASATWRARPRLAITPDGLAIRGWFRTQLLR (SEQ ID NO:345)
    NSNIKIIRIDEFRRYGRLVRLLEIETVSGGLLILSRWDLGTDPVEVLDALTAAGYAGRGQR
    >BL;Rv0011c, H37RV2.tab 13717:13995 reverse MW:10429
    MPKSKVRKKNDFTVSAVSRTPMKVKVGPSSVWFVSLFIGLMLIGLIWLMVFQLAAIGSQAPTALNWMAQLGPWNYAIAFA (SEQ ID NO:346)
    FMITGLLLTMRWH
    >BL;RV0020C, H37RV2.tab 23864:25444 reverse MW:56880
    MGSQKRLVQRVERKLEQTVGDAFARIFGGSIVPQEVEALLRREAADGIQSLQGNRLLAPNEYIITLGVHDFEKLGADPEL (SEQ ID NO:347)
    KSTGFARDLADYIQEQGWQTYGDVVVRFEQSSNLHTGQFRARGTVNPDVETHPPVIDCARPQSNHAFGAEPGVAPMSDNS
    SYRGGQGQGRPDEYYDDRYARPQEDPRGGPDPQGGSDPRGGYPPETGGYPPQPGYPRPRHPDQGDYPEQIGYPDQGGYPE
    QRGYPEQRGYPDQRGYQDQGRGYPDQGQGGYPPPYEQRPPVSPGPAAGYGAPGYDQGYRQSGGYGPSPGGGQPGYGGYGE
    YGRGPARHEEGSYVPSGPPGPPEQRPAYPDQGGYDQGYQQGATTYGRQDYGGGADYTRYTESPRVPGYAPQGGGYAEPAG
    RDYDYGQSGAPDYGQPAPGGYSGYGQGGYGSAGTSVTLQLDDGSGRTYQLREGSNIIGRGQDAQFRLPDTGVSRRHLEIR
    WDGQVALLADLNSTNGTTVNNAPVQEWQLADGDVIRLGHSEIIVRMH
    >BL;Rv0039C, H37RV2.tab 42007:42351 reverse MW:11292
    MFLAGVLCMCAAAASALFGSWSLCHTPTADPTALALRAMAPTQLAAAVMLAAGGVVAVAAPGHTALMVVIVCIAGAVGTL (SEQ ID NO:348)
    AAGSWQSAQYALRRETASPTANCVGSCAVCTQACH
    >BL;Rv0040c, H37RV2.tab 42434:43365 reverse MW:31923
    MIQIARTWRVFAGGMATGFIGVVLVTAGKASADPLLPPPPIPAPVSAPATVPPVQNLTALPGGSSNRFSPAPAPAPIASP (SEQ ID NO:349)
    IPVGAPGSTAVPPLPPPVTPAISGTLRDHLREKGVKLEAQRPHGFKALDITLPMPPRWTQVPDPNVPDAFVVIADRLGNS
    VYTSNAQLVVYRLIGDFDPAEAITHGYIDSQKLLAWQTTNASMANFDGFPSSIIEGTYRENDMTLNTSRRHVIATSGADK
    YLVSLSVTTALSQAVTDGPATDAIVNGFQVVAHAAPAQAPAPAPGSAPVGLPGQAPGYPPAGTLTPVPPR
    >BL;Rv0049, H37RV2.tab 52831:53241 forward MW:15000
    VDYTLRRRSLLAEVYSGRTGVSEVCDANPYLLRAAKFHGKPSRVICPICRKEQLTLVSWVFGEHLGAVSGSARTAEELIL (SEQ ID NO:350)
    LATRFSEFAVHVVEVCRTCSWNHLVKSYVLGAARPARPPRGSGGTRTARNGARTASE
    >BL;Rv0051, H37RV2.tab 55696:57375 forward MW:61209
    VTGALSQSSNISPLPLAADLRSADNRDCPSRTDVLGAALANVVGGPVGRHALIGRTRLMTPLRVMFAIALVFLALGWSTK (SEQ ID NO:351)
    AACLQSTGTGPGDQRVANWDNQRAYYQLCYSDTVPLYGAELLSQGKFPYKSSWIETDSNGTPQLRYDGQIAVRYMEYPVL
    TGIYQYLSMAIAKTYTALSKVAPLPVVAEVVMFFNVAAFGLALAWLTTVWATSGLAGRRIWDAALVAASPLVIFQIFTNF
    DALATGLATSGLLAWARRRPVLAGVLIGLGSAAKLYPLLFLYPLLLLGIRAGRLNALARTMAAAAATWLLVNLPVMLLFP
    RGWSEFFRLNTRRGDDMDSLYNVVKSFTGWRGFDPTLGFWEPPLVLNTVVTLLFVLCCAAIAYIALTAPHRPRVAQLTFL
    TVASFLLVNKVWSPQFSLWLVPLAVLALPHRRILLAWMTIDALVWVPRMYYLYGNPSRSLPEQWFTTTVLLRDIAVMVLC
    GLVWQIYRPGRDLVRTGGPGALPACGGVDDPVGGVFANAAPPGRLPSWLRPRLGDEHRERTPDAGRDRTFSGQHRA
    >BL;RV0093C, H37RV2.tab 102818:103663 reverse MW:29599
    VLAQATTAGSFNHHASTVLQGCRGVPAAMWSEPAGAIRRHCATIDGMDCEVAREALSARLDGERAPVPSARVDEHLGECS (SEQ ID NO:352)
    ACRAWFTQVASQAGDLRRLAESRPVVPPVGRLGIRRAPRRQHSPMTWRRWALLCVGIAQIALGTVQGFGLDVGLTHQHPT
    GAGTHLLNESTSWSIALGVIMVGAALWPSAAAGLAGVLTAFVAILTGYVIVDALSGAVSTTRILTHLPVVIGAVLAIMVW
    RSASGPRPRPDAVAAEPDIVLPDNASRGRRRGHLWPTDGSAA
    >BL;RV0098, H37RV2.tab 107600:108148 forward MW:20528
    MSHTDLTPCTRVLASSGTVPIAEELLARVLEPYSCKGCRYLIDAQYSATEDSVLAYGNFTIGESAYIRSTGHFNAVELIL (SEQ ID NO:353)
    CFNQLAYSAFAPAVLNEEIRVLRGWSIDDYCQHQLSSMLIRKASSRFRKPLNPQKFSARLLCRDLQVIERTWRYLKVPCV
    IEFWDENGGAASGEIELAALNIP
    >BL;Rv0100, H37RV2.tab 109783:110016 forward MW:8660
    VRDRILAAVCDVLYIDEADLIDGDETDLRDLGLDSVRFVLLMKQLGVNRQSELPSRLAANPSIAGWLRELEAVCTEFG (SEQ ID NO:354)
    >BL;Rv0116c, H37Rv2.tab 140270:141022 reverse MW:26915
    MRRVVRYLSVVVAITLMLTAESVSIATAAVPPLQPIPGVASVSPANGAVVGVAHPVVVTFTTPVTDRRAVERSIRISTPH (SEQ ID NO:355)
    NTTGHFEWVASNVVRWVPHRYWPPHTRVSVGVQELTEGFETGDALIGVASISAHTFTVSRNGEVLRTMPASLGKPSRPTP
    IGSFHAMSKERTVVMDSRTIGIPLNSSDGYLLTAHYAVRVTWSGVYVHSAPWSVNSQGYANVSHGCINLSPDNAAWYFDA
    VTVGDPIEVVG
    >BL;Rv0146, H37Rv2.tab 172211:173140 forward MW:34016
    MRTHDDTWDIKTSVGATAVMVAAARAVETDRPDPLIRDPYARLLVTNAGAGAIWEAMLDPTLVAKAAAIDAETAAIVAYL (SEQ ID NO:356)
    RSYQAVRTNFFDTYFASAVAAGIRQVVILASGLDSRAYRLDWPAGTIVYEIDQPKVLSYKSTTLAENGVTPSAGRREVPA
    DLRQDWPAALRDAGFDPTARTAWLAEGLLMYLPAEAQDRLFTQVGAVSVAGSRIAAETAPVHGEERRAEMRARFKKVADV
    LGIEQTIDVQELVYHDQDRASVADWLTDHGWRARSQRAPDEMRRvGRWVEGVPMADDPTAFAEFVTAERL
    >BL;Rv0164, H37Rv2.tab 193626:194180 forward MW:20165
    MTAISCSPRPRYASRMPVLSKTVEVTADAASIMAIVADIERYPEWNEGVKGAWVLARYDDGRPSQVRLDTAVQGIEGTYI (SEQ ID NO:357)
    HAVYYPGENQIQTVMQQGELFAKQEQLFSVVATGAASLLTVDMDVQVTMPVPEPMVKNLLNNVLEHLAENLKQPAEQLAA
    S#GMCGLSRRLRSQPGPPSACVPHR
    >BL;Rv0175, H37Rv2.tab 206814:207452 forward MW:22324
    VKAADSAESDAGADQTGPQVKAADSAESDAGELGEDACPEQALVERRPSRLRRGWLVGIAATLLALAGGLGAAGYFALRS (SEQ ID NO:358)
    HQESQSIAREDLAAIEAAKDCVAATQAPDAGANSASMQKIIECGTGDFGAQASLYTSMLVEAYQAASVHVQVTDMRAAVE
    RNNNDGSVDVLVALRVKVSNTDSDAHEVGYRLRVRMALDEGRYKIAKLDQVTK
    >BL;Rv0176, H37Rv2.tab 207452:208417 forward MW:35405
    VTVVVEKTPTTLPQATPNGAAPWHVRAGAFAIDVLPGLAVAATMALTALTVPPGSAWRWLCACLLGLTILLLAVNRLLLP (SEQ ID NO:359)
    TITGWSLGRALTGIRVVRRDGSAIGPWRLLVRDLAHLVDTLSLFVGWLWPLWDSRRRTFADLLLRTEVRRVEPVQRPAVI
    RRLTAAVALAAAGACASATAVGAAVVYVNEWQTDHTRAQLATRGPKLVVDVLSYDPETVQRDFERARSLATDRYRPQLSI
    QQDSVRESGPVRNQYWVTDSAVLSATPAQATMLLFMQGERGTPPNQRYIQSTVRAIFQKSRGQWRLDDLAVVMKPRQPTG
    EK
    >BL;Rv0177, H37Rv2.tab 208417:208968 forward MW:20164
    MSPRRKFEPGEGALLAPQSIEPSRRWGLPLALTASAVVMAAAISACALMRISHESHQRAAHKDIVMLSDVRSFMTMFTSP (SEQ ID NO:360)
    DPFHANEYAERVLSHATGDFAKQYHERANDILIRISGVEPTTGTVLDAGVQRWNEDGSANVLVVTQITSKSADGKRVVSN
    ANRWLVTAKQEGNEWKISSLLPVI
    >BL;Rv0178, H37Rv2.tab 208938:209669 forward MW:25879
    VEDQQSASGDLTQKSVANGESTDTASAATEGHRGEIDAAGEPDERGAAVADSQADEDDSAATAARGGKTRARRSRGRRLA (SEQ ID NO:361)
    ITVGVAAALFVGSAAFAGATVEPYLSERAVVATKLMVARTAANAITTLWTYTPENMDTLADRAANYLSGDFAAQYRRFVD
    QIAAANKQAXITNDTEVTGAAVESLSGRDAVAIVYTNTTTTSPVTKNIPALKYLSYRLFMKRYDARWLVTRMTTITSLDL
    TPQV
    >BL;Rv0184, H37Rv2.tab 214969:215715 forward MW:26826
    MTNDKMLARIAALLRQAEGTDNPHEADAFMSTAQRLATAASIDLAVARSHAGNRSPAQAPTQRTITIGAAGTRGLRTYVQ (SEQ ID NO:362)
    LFVLIAAANDVRCDVASNSTFVYAYGFAEDIDTSHALYASLVVQMVRASDAYLASGAHRPTPTITARLNFQLAFGARVGQ
    RLADAREQTRQEATKDRDRPPGTAIALRDKDIELHEYYRRSSKARGAWRASRATAGYSSAARRAGDRAGRQARLGNNPEL
    PGARAALGR
    >BL;Rv0185, H37Rv2.tab 215715:216221 forward MW:18365
    VIGADVPRDSQRARVYAAEAFVRTLFDRvTAHGSPTVEFFGTQLTLPPEGRFGSVASVQRYVDDVLALPAVGQNWPTVSP (SEQ ID NO:363)
    VRVRARRAATAAHYENHGGTGTIAVPDRHTAGWANRELVVLHEVAHHLCQVPPPHGPEFVATVCTLTELVMGPEVGHVFR
    VVYAQEGVR
    >BL;Rv0199, H37Rv2.tab 236550:237206 forward MW:23520
    MPDGEQSQPPAQEDAEDDSRPDAAEAAAAEPKSSAGPMFSTYGIASTLLGVLSVAAVVLGAMIWSAHRDDSGERTYLTRV (SEQ ID NO:364)
    MLTAAEWTAVLINMNADNIDASLQRLHDGTVGQLNTDFDAVVQPYRQVVEKLRTHSSGRIEAVAIDTVHRELDTQSGAAR
    PVVTTKLPPFATRTDSVLLVATSVSENAGAKPQTVHWNLRLDVSDVDGKLMISRLESIR
    >BL;Rv0200, H37Rv2.tab 237206:237892 forward MW:24029
    MRNAWRLVVFDVLAPLATIAALAAIGVLLGWPLWWVSTCSVLVLLVVEGVAINFWLLRRDSVTVGTDDDAPGLRLAVVFL (SEQ ID NO:365)
    CAAAISAAVVTGYLRWTTPDRDFNRDSREVVHLATGMAETVASFSPSAPAAAVDRAAANMVPEHAGGFKEQYAKSSADLA
    RRGVTAQAATLAAGVEAIGPSAASVAVILRVSQSIPGQPTSQAARALRVTLTKRGSGWLVLDVTPINAR
    >BL;Rv0201c, H37Rv2.tab 237895:238395 reverse MW:18484
    VTLAAEPHPAPPQQPTVAWSEPDVDRRVEFWPTVAIRSALESGDIATWQRIAAALKRDPYGRTARQVEEVLEGIPATGIA (SEQ ID NO:366)
    NAFWEVLDRARTHLDANERAEVARQVGLLLDRSGLQRQEFASRIGVTAQDLTAYLDGIVSPSASLMIRMRRLSDRFVRAK
    SVRAADS
    >BL;Rv0207c, H37Rv2.tab 247387:248112 reverse MW:26175
    MSLTEDVTSQTSESLARHSVLAEDLSQDGLTSLGAPGARvLLVWDAPNLDMGLGSILGRRPTALERPRFDALGRWLLART (SEQ ID NO:367)
    AEIVAGRPGISTEPEATVFTNIAPGSAEVVRPWVDALRNVGFAVFAKPKVDEDSDVDRDMLAHIDERYREGLAALVVASA
    DGQAFRQPLEAVARSGTPVQVLGFREHASWALASDTLEFVDLEDIAGVFREPLPRIGLDSLPEQGAWLQPFRPLSSLLTS
    RV
    >BL;Rv0216, H37Rv2.tab 258913:259923 forward MW:35756
    VASGYGGIRvGGPYFDDLSKGQVFDWAPGVTLSLGLAAAHQSIVGNRLRLALDSDLCAAVTGMPGPLAHPGLVCDVAIGQ (SEQ ID NO:368)
    STLATQRVKANLFYRGLRFHRFPAVGDTLYTRTEVVGLRANSPKPGRAPTGLAGLRMTTIDRTDRLVLDFYRCANLPASP
    DWKPGAVPGDDLSRIGADAPAPAADPTAHWDGAVFRKRVPGPHFDAGIAGAVLHSTADLVSGAPELARLTLNIAATHHDW
    RVSGRRLVYGGHTIGLALAQATRLLPNLATVLDWESCDHTAPVHEGDTLYSELHIESAQAHADGGVLGLRSLVYAVSDSA
    SEPDRQVLDWRFSALQF
    >BL;Rv0226c, H37Rv2.tab 269837:271564 reverse MW:59107
    VRWFRPGYALVLVLLLAAPLLRPGYLLLRDAVSTPRSYVSANALGLTSAPRATPQDFAVALASHLVDGGVVVKALLLLGL (SEQ ID NO:369)
    WLAGWGAARLVATALPAAGAAGQFVAITLAIWNPYVAERLLQGHWSLLVGYGCLPWVATAMLTMRTTVGAGWFGLFGLAF
    WVALAGLTPSGLLLAATVAVVCVANPGAGRPRWQCGVAALGSALVGALPWLTASALGSSLTSHTAANQLGVTAFAPRAEP
    GLGTLGSLASLGGIWNGEAVPSSRTTLFAVASAVVLLANVAIGLPTVARRPVAVPLLTLAAVSVMVPAVLATGPGLHALR
    VVVDAAPGLGVLRDGQKWVALAVPGYTLSGAGTVLTLRRWLRPATAAVVCCLALVLTLPDLAWGVWGKVAPVHYPSGWAA
    VAAAINADPRTVAVLPAGTMRRFSWSGSAPVLDPLPRWVRADVLTTGDLVISGVTVPGEDAHARAVQELLLTGPHPSTLA
    AAGVGWLVVESDSAGDMGAAARTLGRLAAAHRDDELALYRVGGQTSGASSARLKATMLAHWAWLSMLLVGGAGAAGYWVR
    RHLHHCEDTPASRAQD
    >BL;Rv0227c, H37Rv2.tab 271577:272839 reverse MW:45528
    MLRFAACGAIGLGAALLIAALLLSTYTTSRIAEIPLDIDATLISDGTGTALDSASLATEHIVVNQDVPLVSQQQVTVESP (SEQ ID NO:370)
    ANADVVTLQVGSSLRRTDKQKDSGLLLAIVDTVTLNRKTAMAVSDDTHTGGAVQKPRGLNDENPPTAIPLRHDGLSYRFP
    FHTEKKTYPYFDPIAQKAFDANYEGEEDVNGLTTYRFTQNVGYTPEGKLVAPLKYPSLYAGDEDGKVTTSAANWGLPGDP
    NEQITMTRYYAAQRTFWVDPVSGTIVKETERANNYFARDPLKPEVTFADYOVTSTEETVESQVNAARDERDRLALWSRVL
    PITFTAAGLVALVGGGLFASFSLRTEGALMAASGDRDDHDYRRGGFEEPVPGAEAETEKLPTQRPDFPREPSGSDPPRLG
    SAQPPPPPDAGHPDPGPPERR
    >BL;Rv0236A, H37Rv2.tab 286898:287071 reverse MW:5833
    MNRIVAPAAASVVVGLLLGAAAIFGVTLMVQQDKKPPLPGGDPSSSVLNRvEYGNRS (SEQ ID NO:372)
    >BL;Rv0236c, H37Rv2.tab 282652:286851 reverse MW:146250
    VAPLSRKWLPVVGAVALALTFAQSPGQVSPDTKLDLTANPLRFLARATNLWNSDLPFGQAQNQAYGYLFPHGTFFVIGHL (SEQ ID NO:373)
    LGVPGWVTQRLWWAVLLTVGFWGLLRvAEALGVGGPSSRvVGAVAFALSPRVLTTLGSISSETLPMMLAPWVLLPTILAL
    RGTSGRSVRALAAQAGLAVALMGAVNAIATLAGCLPAVIWWACHRPNRLWWRYTAWWLLAMALATLWWVMALTQLNGVSP
    PFLDPIESSGVTTQWSSLVEVLRGTDSWTPFVAPNATAGAPLVTGSAAILGTCLVAAAGLAGLTSPAMPARGRLVTMLLV
    GVVLLAVGHRGGLASPVAHPVQAFLDAAGTPLRNVHKVGPVIRLPLVLGLAQLLSRVPLPGSAPRPAWLRAFAHPERDKR
    VAVAVVALTALMVSTSLAWTGRVAPPGTFGALPQYWQEAADWLRTHHAATPTPGRVLVVPGAPFATQVWGTSHDEPLQVL
    GDGPWGVRDSIPLTPPQTIRALDSVQRLFAAGRPSAGLADTLARQGISYVLVRNDLDPETSRSARPILLHRSIAGSPGLA
    KLAEFGAPVGPDPLAGFVNDSGLRPRYPAIEIYRVSAPANPGAPYFAATDQLARvDGGPEVLLRLDERRRLQGQPPLGPV
    LMTADARAAGLPVPQVAVTDTPVARETDYGRVDHHSSAIRAPGDARHTYNRVPDYPVPGAEPVVGGWTGGRITVSSSSAD
    ATAMPDVAPASAPAAAVDGDPATAWVSNALQAAVGQWLQVDFDRPVTNAVVTLTPSATAVGAQVRRILIETVNGSTTLRF
    DEAGKPLTAALPYGETPWVRFTAAATDDGSAGVQFGITDLAITQYDASGFAHPVQLRHTVLVPGPPPGSAIAGWDLGSEL
    LGRPGCAPGPDGVRCAASMALAPEEPANLSRTLTVPRPVSVTPMVWVRPRQGPKLADLIAAPSTTRASGDSDLVDILGSA
    YAAADGDPATAWTAPQRvVQHKTPPTLTLTLPRPTVVTGLRLAASRSMLPAHPTVVAINLGDGPQVRQLQVGELTTLWLH
    PRVTDTVSVSLLDWDDVIDRNALGFDQLKPPGLAEVVVLSAGGAPIAPADAARNRARALTVDCDHGPVVAVAGRFVHTSI
    RTTVGALLDGEPVAALPCEREPIALPAGQQELLISPGAAFVVDGAQLSTPGAGLSSATVTSAETGAWGPTHREVRVPESA
    TSRVLVVPESINSGWVARTSTGARLTPIAVNGWQQAWVVPAGNPGTITLTFAPNSLYRASLAIGLALLPLLALLAFWRTG
    RRQLADRPTPPWRPGAWAAAGVLAAGAVIASIAGVMVMGTALGVRYALRRRERLRDRvTVGLAAGGLILAGAALSRHPWR
    SVDGYAGNWASVQLLALISVSVVAASVVATSESRGQDRMQ
    >BL;2V0241c, H37Rv2.tab 289815:290654 reverse MW:30163
    VTQPSGLKNLLRAAAGALPVVPRTDQLPNRTVTVEELPIDPANVAAYAAVTGLRYGNQVPLTYPFALTFPSVMSLVTGFD (SEQ ID NO:374)
    FPFAAMGAIHTENHITQYRPIAVTDAVGVRVRAENLREHRRGLLVDLVTNVSVGNDVAWHQVTTFLHQQRTSLSGEPKPP
    PQKKPKLPPPAAVLRITPAKIRRYAAVCGDHNPIHTNPIAAKLFGFPTVIAHGMFTAAAVLANIEARFPDAVRYSVRFAK
    PVLLPATAGLYVAEGDGGWDLTLRNMAKGYPHLTATVRGL
    >BL;Rv02500, H37Rv2.tab 301738:302028 reverse MW:10878
    LSTTAELAELHDLVGGLRRCVTALKARFGDNPATRRIVIDADRILTDIELLDTDVSELDLERAAVPQPSEKIAIPDTEYD (SEQ ID NO:375)
    REFWRDVDDEGVGGHRY
    >BL;Rv0257, H37Rv2.tab 309699:310071 forward MW:13053
    MTRVSWLPDRCLPRLPACGRGLRGSLPGDSGGTAPDSHRLPASSSPDGKNIGMQSVDLHVERHLPSRGRSNRTVATVTCV (SEQ ID NO:376)
    TALGDIRSAQLSATGAWPAVLFPSWSWLCGIGGGVDLQKPSCRA
    >BL;Rv0283, H37Rv2.tab 344022:345635 forward MW:55943
    MTNQQHDHDFDHDRRSFASRTPVNNNPDKVVYRRGFVTRHQVTGWRFVMRRIAAGIALHDTRMLVDPLRTQSRAVLMGVL (SEQ ID NO:377)
    IVITGLIGSFVFSLIRPNGQAGSNAVLADRSTAALYVRVGEQLHPVLNLTSARLIVGRPVSPTTVKSTELDQFPRGNLIG
    IPGAPERMVQNTSTDANWTVCDGLNAPSRGGADGVGVTVIAGPLEDTGARAAALGPGQAVLVDSGAGTWLLWDGKRSPID
    LADHAVTSGLGLGADVPAPRIIASGLFNAIPEAPPLTAPIIPDAGNPASFGVPAPIGAVVSSYALKDSGKTISDTVQYYA
    VLPDGLQQISPVLAAILRNNNSYGLQQPPRLGADEVAKLPVSRVLDTRRYPSEPVSLVDVTRDPVTCAYWSKPVGAATSS
    LTLLAGSALPVPDAVHTVELVGAGNGGVATRVALAAGTGYFTQTVGGGPDAPGAGSLFWVSDTGVRYGIDNEPQGVAGGG
    KAVEALGLNPPPVPIPWSVLSLFVPGPTLSRADALLAHDTLVPDSRPARPVSAEGGYR
    >BL;Rv0288, H37Rv2.tab 351848:352135 forward MW:10390
    MSQIMYNYPMLGHAGDMAGYAGTLQSLGAEIAVEQAALQSAWQGDTGITYQAWQAQWNQANEDLVRAYHAMSSTHEANT (SEQ ID NO:378)
    MAMMARDTAEAAKWGG
    >BL;Rv0289, H37Rv2.tab 352149:353033 forward MW:31559
    MDATPNAVELTVDNAWFIAETIGAGTFPWVLAITMPYSDAAQRGAFVDRQRDELTRMGLLSPQGVINPAVADWIKVVCFP (SEQ ID NO:379)
    DRWLDLRYVGPASADGACELLRGIVALRTGTGKTSNKTGNGVVALRNAQLVTFTAMDIDDPRALVPILGVGLAHRPPARF
    DEFSLPTRvGARADERLRSGVPLGEVVDYLGIPASARPVVESVFSCPRSYVEIVAGCNRDGRHTTTEVGLSIVDTSAGRV
    LVSPSRAFDGEWVSTFSPGTPFAIAVAIQTLTACLPDGQWFPGQRvSRDFSTQSS
    >BL;Rv0290, H37Rv2.tab 353083:354498 forward MW:47944
    MSGTVMQIVRVAILADSRLTEMALPAELPLREILPAVQRLVVPSAQNGDGGQADSGAAVQLSLAPVGGQPFSLDASLDTV (SEQ ID NO:380)
    GVVDGDLLVLQPVPAGPAAPGIVEDIADAANIFSTSRLKPWGIAHIQRGALAAVIAVALLATGLTVTYRvATGVLAGLLA
    VAGIAVASALAGLLITIRSPRSGIALSIAALVPIGAALALAVPGKFGPAQVLLGAAGVAAWSLIALMIPSAERERVVAFF
    TAAAVVGASVALAAGAQLLWQLPLLSIGCGLIVAALLVTIQAAQLSALWARFPLPVIPAPGDPTPSAPPLRLLEDLPRRV
    RVSDAHQSGFIAAAVLLSVLGSVAIAVRPEALSVVGWYLVAATAAAATLRARVWDSAACKAWLLAQPYLVAGVLLVFYTA
    TGRYVAAFGAVLVLAVLMLAWVVVALNPGIASPESYSLPLRRLLGLVAAGLDVSLIPVMAYLVGLFAWVLNR
    >BL;Rv0292, H37Rv2.tab 355880:356872 forward MW:35932
    MNPIPSWPGRGRVTLVLLAVVPVALAYPWQSTRDYVLLGVAAAVVIGLFGFWRGLYFTTIARRGLAILRRRRRIAEPATC (SEQ ID NO:381)
    TRTTVLVWVGPPASDTNVLPLTLIARYLDRYGIRADTIRITSRVTASGDCRTWVGLTVVADDNLAALQARSARIPLQETA
    QVAARRLADHLREIGWEAGTAAPDEIPALVAADSRETWRGMRHTDSDYVAAYRVSANAELPDTLPAIRSRPAQETWIALE
    IAYAAGSSTRYTVAAACALRTDWRPGGTAPVAGLLPQHGNHVPALTALDPRSTRRLDGHTDAPADLLTRLHWPTPTAGAH
    RAPLTNAVSRT
    >BL;Rv0309, H37Rv2.tab 377931:378584 forward MW:22528
    MSRLLALLCAAVCTGCVAVVLAPVSLAVVNPWFANSVGNATQVVSVVGTGGSTAKMDVYQRTAAGWQPLKTGITTHIGSA (SEQ ID NO:382)
    GMAPEAKSGYPATPMGVYSLDSAFGTAPNPGGGLPYTQVGPNHWWSGDDNSPTFNSMQVCQKSQCPFSTADSENLQIPQY
    KHSVVMGVNKAKVPGKGSAFFFHTTDGGPTAGCVAIDDATLVQIIRWLRPGAVIAIAK
    >BL;Rv0313, H37Rv2.tab 382490:382873 forward MW:13916
    VGDYGPFGFDPDEFDRVIREGSEGLRDAFERIGRFLSSSGAGTGWSAIFEDLSRRSRPAPETAGEAGDGVWAIYTVDADG (SEQ ID NO:383)
    GARVEQVYATELDALRANKDNTDPKRKVRFLPYGIAVSVLDDPVDEAQ
    >BL;Rv0356c, H37Rv2.tab 434833:435474 reverse MW:22879
    VTDASVHPDELDPEYHHHGGFPEYGPASPGAGFGQFVATMRRLQDLAVAADPGDAVWDEAAERAAALVELLSPFEADEGK (SEQ ID NO:384)
    APAGRTPGLPGMGSLLLPPWTVTRYGTDGVEMRGSFSRFHVGGNSAVHGGVLPLLFDHMFGMISHAAGRPISRTAFLHVD
    YRRITPIDVPLIVRGRVTNTEGRKAFVCAELFDSDETLLAEGNGLMVRLLPGQP
    >BL;Rv0358, H37Rv2.tab 436860:437504 forward MW:23102
    MYTAENAPGVAVLLSGDADVPGPLTGLPTHQDNLDTVIGRYSRLIVVGADADLGAVLTRLLRTDRLDVEVGYVPRRRSPA (SEQ ID NO:385)
    TRAYRLPAGRRAARRARCGVARRVPLIRDETGSVIVGRAQWLPAEEQALIHGEAVVDDTVLFDGDVAGVCIEPTLTLPGL
    RAAVDGAGKWRRWIGGRAAQLGTTGAAVLRDGVAAPFPVRRSTFYRNVEGWLLVR
    >BL;Rv0360c, 1137Rv2.tab 438305:438739 reverse MW:15297
    VTKRTITPMTSMGDLLGPEPILLPGDSDAEAELLANESPSIVAAAHPSASVAWAVLAEGALADDKTVTAYAYARTGYHRG (SEQ ID NO:386)
    LDQLRRHGWKGRGPVPYSHQPNRGFLRCVAALARAAAAIGETDEYGRCLDLLDDCDPAARPALGL
    >BL;Rv0361, H37Rv2.tab 438822:439646 forward MW:29982
    MSNAPEPDRSAGESGSEPAGERSADPGEERTESYPLVPHDAETETVVITTSDNDAAVTQPEAQRERRFTAPGFDAKETQV (SEQ ID NO:387)
    IVTAHEAATEVFQTNQAPTTPPRMPTGMPPKTAVPQSIPPRTEATSVRQRTWGWALAVVVIVLALAAIAILGTVLLTRGK
    HSKMSQEDQVRQAIQSLDIAIQTGDLTALRSLTCGSTRDGYVDYDERDWAETYRRvSAAKQYPVIASIDQVVVNGAHAEA
    NVTTFMAFDPQVRSTRSLDLQFRDDQWKICQSSSN
    >BL;Rv0383c, H37Rv2.tab 458464:459315 reverse MW:31801
    MVPLWFTLSALCFVGAVVLLYVDIDRRRGRSRRRKSWARSHGFDYERESTEILKRWTRGVMSTVGDVAAHNVVLGQIRGE (SEQ ID NO:388)
    AVYIFDLEEVATVIALHRKVGTNVVVDLRLKGLKEPRESDIWLLGAIGPRMVYSTNLDAARRACDRRMVTFAHTAPDCAE
    IMWNEQNWTLVSMPIASTRAQWDEGLRTVRQFNDLLRVLPPLPQEMPQQTGVGPRGAAPGRPVAPGGPAELPPRRAQPDP
    ATTVLPDPARRAPEPIRRDEGRSEGVRRPPPAGRNGQQATNYQH
    >BL;Rv0401, H37Rv2.tab 479789:480157 forward MW:12641
    MRPRRALAGLAADVVAVLVFCAVGRRSHAEGLSVTGLAATAWPFLTGTGIGWVLARGWRRPTALAPTGVIVWLCTIWGM (SEQ ID NO:389)
    VLRKVSSAGVAASFVVVASAVTAVLLLGWRAAVALMAPHRADG
    >BL;Rv0416, H137Rv2.tab 502167:502370 forward MW:7367
    MIVVVNEQQVEVDEQTTIAALLDSLGFGDRGIAVALNFSVLPRSDWATKICELRKPVRLEVVTAVQGG (SEQ ID NO:390)
    >BL;Rv0430, H37Rv2.tab 518733:519038 forward MW:11723
    MDSAMARAIRSGDDAEVADGLTRREHDILAFERQWWKFAGVKEEAIKELFSMSATRYYQVLNALVDRPEALAADPMLVKR (SEQ ID NO:391)
    LRRLRASRQKARAARRLGFEVT
    >BL;Rv0431, H37Rv2.tab 519073:519564 forward MW:16905
    VLVTVGSMNERVPDSSGLPLRAMVMVLLFLGVVFLLLVWQALGSSPNSEDDSSAISTMTTTTAAPTSTSVKPAAPRAEVR (SEQ ID NO:392)
    VYNISGTEGAAARTADRLKAAGFTVTDVGNLSLPDVAATTVYYTEVEGERATADAVGRTLGAAVELRLPELSDQPPGVIV
    VVTG
    >BL;Rv0455c, H37Rv2.tab 545378:545821 reverse MW:16639
    MSRLSSILRAGAAFLVLGIAAATFPQSAAADSTEDFPIPRRMIATTCDAEQYLAAVRDTSPVYYQRYMIDFNNHANLQQA (SEQ ID NO:393)
    TINKANWFFSLSPAERRDYSEHFYNGDPLTFAWVNHMKIFFNNKGVVAKGTEVCNGYPAGDMSVWNWA
    >BL;Rv0463, H37Rv2.tab 554016:554306 forward MW:10111
    MTRRASTDTPQIIMGAIGGVTGYILWLAAISVGDGLTTVSQWSRVVLLLSVLVAVCGAAGGLRLRSRGKLAWSAFAFSL (SEQ ID NO:394)
    PIPPVVLTVAVLADIYL
    >BL;Rv0464C, H37Rv2.tab 554316:554885 reverse MW:21304
    MTGQNGQVARISPGKFRQLGPVNWLVAKLAARAVGAPQMHLFTTLGYRQYLFWTFAIYTGRLLHGRLPGVDTELVILRVA (SEQ ID NO:395)
    HLRSCEYELQHHRRMARRRGLDANTQATIFAWPDVPDGDGPRKVLSARQQALLQATDELIKDRTITAGTWERLATNLDPR
    LLIEFCLLATQYDAIAATITALAIPPDNPQ
    >BL;Rv0466, H37Rv2.tab 556458:557249 forward MW:30153
    VSLDKKLMPVPDGHPDVFDREWPLRVGDIDRAGRLRLDAACRHIQDIGQDQLREMGFEETHPLWIVRRTMVDLIRPIEFG (SEQ ID NO:396)
    DMLRCRRWCSGTSNRWCEMRVRVDGRKGGLIESEAFWIHVNRETEMPARIADDFLAGLHRTTSVDRLRWKGYLKPGSRDD
    ASEIHEFPVRVTDIDLFDHMNNAVYWSVIEDYLASHAELLRGPLRVTIEHEAPVALGDKLEIISHVHPAGSTEIFGPGLV
    DRAVTTLTYVVGDEPKAVASLFNL
    >BL;Rv0476, H37Rv2.tab 566508:566768 forward MW:9166
    MLVLLVAVLVTAVYAFVHAALQRPDAYTAADKLTKPVWLVILGAAVALASILYPVLGVLGMAMSACASGVYLVDVRPKLL (SEQ ID NO:397)
    EIQGKSR
    >BL;Rv0477, H37Rv2.tab 566776:567219 forward MW:15658
    MKALVAVSAVAVVALLGVSSAQADPEADPGAGEANYGGPPSSPRLVDHTEWAQWGSLPSLRVYPSQVGRTASRRLGMAAA (SEQ ID NO:398)
    DAAWAEVLALSPEADTAGMRAQFICHWQYAEIRQPGKPSWNLEPWRPVVDDSEMLASGCNPGSPEESF
    >BL;Rv0479C, H37Rv2.tab 567924:568967 reverse MW:37016
    VTNPQGPPNDPSPWARPGDQGPLARPPASSEASTGRLRPGEPAGHIQEPVSPPTQPEQQPQTEHLAASHAHTRRSGRQAA (SEQ ID NO:399)
    HQAWDPTGLLAAQEEEPAAVKTKRRARRDPLTVFLVLIIVFSLVLAGLIGGELYARHVANSKVAQAVACVVKDQATASFG
    VAPLLLWQVATRHFTNISVETAGNQIRDAKGMQIKLTIQNVRLKNTPNSRGTIGALDATITWSSEGIKESVQNAIPILGA
    FVTSSVVTHPADGTVELKGLLNNITAKPIVAGKGLELQIINFNTLGFSLPKETVQSTLNEFTSSLTKNYPLGIHADSVQV
    TSTGVVSRFSTRDAAIPTGIQNPCFSHI
    >BL;Rv0483, H372V2.tab 571710:573062 forward MW:47858
    VVIRVLFRPVSLIPVNNSSTPQSQGPISRRLALTALGFGVLAPNVLVACAGKVTKLAEKRPPPAPRLTFRPADSAADVVP (SEQ ID NO:400)
    IAPISVEVGDGWFQRVALTNSAGKVVAGAYSRDRTIYTITEPLGYDTTYTWSGSAVGHDGKAVPVAGKFTTVAPVKTINA
    GFQLADGQTVGIAAPVIIQFDSPISDKAAVERALTVTTDPPVEGGWAWLPDEAQGARVHWRPREYYPAGTTVDVDAKLYG
    LPFGDGAYGAQDMSLHFQIGRRQVVKAEVSSHRIQVVTDAGVIMDFPCSYGEADLARNVTRNGIHVVTEKYSDFYMSNPA
    AGYSHIHERWAVRISNNGEFIHANPMSAGAQGNSNVTNGCINLSTENAEQYYRSAVYGDPVEVTGSSIQLSYADGDIWDW
    AVDWDTWVSMSALPPPAAKPAATQIPVTAPVTPSDAPTPSGTPTTTNGPGG
    >BL;2V0487, H37Rv2.tab 576787:577335 forward MW:20684
    VTSSLPTVQRVIQNALEVSQLKYSQHPRPGGAPPALIVELPGERKLKINTILSVGEHSVRVEAFVCRKPDENREDVYRFL (SEQ ID NO:401)
    LRRNRRLYGVAYTLDNVGDIYLVGQMALSAVDADEVDRVLGQVLEVVDSDFNALLELGFRSSIQREWQWRLSRGESLQNL
    QAFAHLRPTTMQSAQRDEKELGG
    >BL;Rv0495c, H37Rv2.tab 585427:586314 reverse MW:32960
    VWRPAQGARWHVPAVLGYGGIPRRASWSNVESVANSRRRPVHPGQEVELDFAREWVEFYDPDNPEHLIAADLTWLLSRWA (SEQ ID NO:402)
    CVFGTPACQGTVAGRPNDGCCSHGAFLSDDDDRTRLADAVHKLTDDDWQFRAKGLRRKGYLELDEHDGQPQHRTRKHKGA
    CIFLNRPGFAGGAGCALHSKALKLGVPPLTMKPDVCWQLPIRRSQEWVTRPDGTEILKTTLTEYDRRGWGSGGADLHWYC
    TGDPAAHVGTKQVWQSLADELTELLGEKAYGELAANCKRRSQLGLIAVHPATRAAQ
    >BL;Rv0497, H37Rv2.tab 587377:588306 forward MW:33092
    MTGPHPETESSGNRQISVAELLARQGVTGAPARRRRRRRGDSDAITVAELTGEIPIIRDDHHHAGPDAHASQSPAANGRV (SEQ ID NO:403)
    QVGEAAPQSPAEPVAEQVAEEPTRTVYWSQPEPRWPKSPPQDRRESGPELSEYPRPLRHTHSDRAPAGPPSGAEHMSPDP
    VEHYPDLWVDVLDTEVGEAEAETEVREAQPGRGERHAAAAAAGTDVEGDGAAEARVARRALDVVPTLWRGALVVLQSILA
    VAFGAGLFIAFDQLWRWNSIVALVLSVMVILGLVVSVRAVRKTEDIASTLIAVAVGALITLGPLALLQSG
    >BL;Rv0498, H37Rv2.tab 588325:589164 forward MW:30433
    VRPAIKVGLSTASVYPLRAEAAFEYADRLGYDGVELMVWGESVSQDIDAVRKLSRRYRVPVLSVHAPCLLISQRVWGANP (SEQ ID NO:404)
    ILKLDRSVRAAEQLGAQTVVVHPPFRWQRRYAEGFSDQVAALEAASTVMVAVENMFPFRADRFFGAGQSRERMRKRGGGP
    GPAISAFAPSYDPLDGNHAHYTLDLSHTATAGTDSLDMARRMGPGLVHLHLCDGSGLPADEHLVPGRGTQPTAEVCQMLA
    GSGFVGHVVLEVSTSSARSANERESMLAESLQFARTHLLR
    >BL;RvO500B, H37Rv2.tab 591475:591573 forward MW:4145
    MGSVIKKRRKRMSKKKHRKLLRRTRVQRRKLGK (SEQ ID NO:405)
    >BL;Rv0504c, H37Rv2.tab 594805:595302 reverse MW:18360
    MTVPEEAQTLIGKHYRAPDHFLVGREKIREFAVAVKDDHPTHYSEPDAAAAGYPALVAPLTFLAIAGRRVQLEIFTKFNI (SEQ ID NO:406)
    PINIARVFHRDQKFRFHRPILANDKLYFDTYLDSVIESHGTVLAEIRSEVTDAEGKPVVTSVVTMLGEAAHHEADADATV
    AAIASI
    >BL;Rv0528, H37Rv2.tab 618305:619891 forward MW:57131
    MWRSLTSMGTALVLLFLLALAAIPGALLPQRGLNAAKVDDYLAAHPLIGPWLDELQAFDVFSSFWFTAIYVLLFVSLVGC (SEQ ID NO:407)
    LAPRTIEHARSLRATPVAAPRNLARLPKHANARLAGEPAALAATITGRLRGWRSITRQQGDSVEVSAEKGYLREFGNLVF
    HFALLGLLVAVAVGKLFGYEGNVIVIADGGPGFCSASPAAFDSFRAGNTVDGTSLHPICVRVNNFQAHYLPSGQATSFAA
    DIDYQADPATADLIANSWRPYRLQVNHPLRVGGDRVYLQGHGYAPTFTVTFPDGQTRTSTVQWRPDNPQTLLSAGVVRID
    PPAGSYPNPDERRKHQIAIQCLLAPTEQLDGTLLSSRFPALNAPAVAIDIYRGDTGLDSGRPQSLFTLDHRLIEQGRLVK
    EKRVNLRAGQQVRIDQGPAAGTVVRFDGAVPFVNLQVSHDPGQSWVLVFAITMMAGLLVSLLVRRRRVWARITPTTAGTV
    NVELGGLTRTDNSGWGAEFERLTGRLLAGFEARSPDMAEAAAGTGRDVD
    >BL;Rv0531, H37Rv2.tab 622329:622643 forward MW:11436
    VSEAPNDKTTRGVVDILVYATARLLLVVAVSAAIFGVARLIGLTEFPVVVATLFGLIIAMPLGIWVFSPLRRRATAALAV (SEQ ID NO:408)
    AGERRRAERERLRARLRGESLPEEQ
    >BL;Rv0543c, H37Rv2,tab 635576:635875 reverse MW:11279
    VNRFLTSIVAWLRAGYPEGIPPTDSFAVLALLCRRLSHDEVKAVANELMRLGDFDQIDIGVVITHFTDELPSPEDVERVR (SEQ ID NO:409)
    ARLAAQGWPLDDVRDREEHA
    >BL;2V0544c, H37Rv2.tab 635938:636213 reverse MW:9747
    VSAWFNYTATLKILIFSLLAGALLPGLFAVGVRLQAAGDGADATARRRPLLVAVSWAIFALVLAVVIIGVLYIARDFIAH (SEQ ID NO:410)
    HTGWAFLGATPK
    >BL;RvOS46c, H37Rv2.tab 637586:637969 reverse MW:14346
    MEILASRMLLRPADYQRSLSFYRDQIGLAIAREYGAGTVFFAGQSLLELAGYGEPDNSRGPFPGALWLQVRDLEATQTEL (SEQ ID NO:411)
    VSRGVSIAREPRREPWGLHEMHVTDPDGITLIFVEVPEGHPLRTDTRA
    >BL;Rv0556, H37Rv2.tab 647959:648471 forward MW:18725
    VISPKPLLHILIHGLSDELPDTRGRIVLRWLRIAVLIVTGLVTLQSVLLVAGAWRNDIAIQRNNGVAQAEVLSAGPRRST (SEQ ID NO:412)
    IEFVTPDRITYRPQLGVLYPSELSTGMRIYVEYNKRDPNLVRvQHRNAGLAIIPAGSIAVVAWLIAAAALVVLAVLDKRL
    ERRENSASATG
    >BL;Rv0559c, H37Rv2.tab 650410:650745 reverse MW:12116
    MKGTKLAVVVGMTVAAVSLAAPAQADDYDAPFNNTIHRFGIYGPQDYNAWLAKISCERLSRGVDGDAYKSATFLQRNLPR (SEQ ID NO:413)
    GTTQGQAFQFLGAAIDHYCPEHVGVLQRAGTR
    >BL;Rv0634A, H37Rv2.tab 731113:731364 forward MW:9408
    LGSDCGCGGYLWSMLKRVEIEVDDDLIQKVIRRYRVKGAREAVNLALRTLLGEADTAEHGHDDEYDEFSDPNAWVPRRSR (SEQ ID NO:414)
    DTG
    >BL;Rv0635, H37Rv2.tab 731930:732403 forward MW:17448
    VALSADIVGMHYRYPDHYEVEREKIREYAVAVQNDDAWYFEEDGAAELGYKGLLAPLTFICVFGYKAQAAFFKNANIATA (SEQ ID NO:415)
    EAQIVQVDQVLKFEKPIVAGDKLYCDVYVDSVREAHGTQIIVTKNIVTNEEGDLVQETYTTLAGRAGEDGEGFSDGAA
    >BL;Rv0636, H37Rv2.tab 732393:732818 forward MW:14934
    MALREFSSVKVGDQLPEKTYPLTRQDLVNYAGVSGDLNPIHWDDEIAKVVGLDTAIAHGMLTMGIGGGYVTSWVGDPGAV (SEQ ID NO:416)
    TEYNVRFTAVVPVPNDGKGAELVFNGRVKSVDPESKSVTIALTATTGGKKIFGRAIASAKLA
    >BL;Rv0637, H37Rv2.tab 732825:733322 forward MW:18929
    MALKTDIRGMIWRYPDYFIVGREQCREFARAVKCDHPAFFSEEAAADLGYDALVAPLTFVTILAKYVQLDFFRHVDVGME (SEQ ID NO:417)
    TMQIVQVDQRFVFHKPVLAGDKLWARMDIHSVDERFGADIVVTRNLCTNDDGELVMEAYTTLMGQQGDGSARLKWDKESG
    QVIRTA
    >BL;Rv0779c, H37Rv2.tab 872675:873292 reverse MW:21572
    MRSRFLPYATTPGRLLAQLISDITVAVWTTLWMLVGLAVHDAISIIGEAGRQIEIGSHGIAGNLAAAGQDAQRIPVVGDA (SEQ ID NO:418)
    LSNPITAASQAALDIAGAGHNLDTTAGWLAVVLALAVAATPILAVAMPWLFLRLRFCRRKWTVTTLAATPAGRQLLALRA
    LANRPPGKLAAVSTDPVGAWRREDPATMRALAALELRAAGIPLRGD
    >BL;Rv0807, H37Rv2.tab 901635:902021 forward MW:13480
    MSARDRVDPAKTRQVVLALADWLRDETLPAPDTDVLAAAVRLTARTLAALAPGASVEVRIPPFAAVQCISGPRHTRGTPP (SEQ ID NO:419)
    NVVQTDPRTWLLVATGLSGVAQARGSGALQLSGSRAGEIEAWLPLVDLG
    >BL;Rv0810c, H37Rv2.tab 904908:905087 reverse MW:6900
    MGRGRAKAKQTKVARELKYSSPQTDFQRLQRELSGTGTDRLDGDGPSDDDSWNDEDDWRR (SEQ ID NO:420)
    >BL;Rv0813C, H37Rv2.tab 907341:908018 reverse MW:23868
    VSSGAGSDATGAGGVHAAGSGDRAVAAAVERAKATAARNIPAFDDLPVPADTANLREGADLNNALLALLPLVGVWRGEGE (SEQ ID NO:421)
    GRGPDGDYRFGQQIVVSHDGGDYLNWESRSWRLTATGDYQEPGLREAGFWRFVADPYDPSESQAIELLLAHSAGYVELFY
    GRPRTQSSWELVTDALARSRSGVLVGGAKRLYGIVEGGDLAYVEERvDADGGLVPHLSARLSRFVG
    >BL;Rv0817C, H37Rv2.tab 910033:910842 reverse MW:28567
    MPMRKVLVGVTGAAIVVAVLIVGAVGADFGASIYAEYRLSTTVRKAANLRSDPFVAILRFPFIPQAMREHYAELEIKAFA (SEQ ID NO:422)
    VEHAGSGTATLEATMHSIDLSYASWLIRPDAKLPVGELESRIIIDSMHLGRYLGISDLMVAAPRQESNDATGGTTESGIS
    GSRGLVFSGTPISANFAHRVSVLVDLSVASDDRATLVITPTAVVTGPDTADQPVPDDKRDAVLHAFASKLPNQKLPFGVV
    PNTVGARGSDVIIEGITRGVTISLDEFKQS
    >BL;Rv0819, H37Rv2.tab 911736:912680 forward MW:33567
    VTALDWRSALTADEQRSVRALVTATTAVDGVAPVGEQVLRELGQQRTEHLLVAGSRPGGPIIGYLNLSPPRGAGGANAEL (SEQ ID NO:423)
    VVHPQSRRRGIGTAMARAALAKTAGRNQFWAHGTLDPARATASALGLVGVRELIQMRRPLRDIPEPTIPDGVVIRTYAGT
    SDDAELLRVNNAAFAGHPEQGGWTAVQLAERRGEAWFDPDGLILAFGDSPRERPGRLLGFHWTKVHPDHPGLGEVYVLGV
    DPAAQRRGLGQMLTSIGIVSLARRLGGRKTLDPAVEPAVLLYVESDNVAAVRTYQSLGFTTYSVDTAYALAGTDN
    >BL;Rv0862C, H37Rv2.tab 960345:962612 reverse MW:79667
    MTEHTPDIPLGSWLAALPDERLTQLLELRPDLAQPPPGSIAALAARAQARQSVKAATDELDFLRLAVFDALLVLQADTAP (SEQ ID NO:424)
    VPIVRLLAVIGDRAAQADVLGALADLKQRALAWGETAVRVATDAGTALPWHPGQVTLEGSSRSGDQLADLIAGLDPAQRD
    VLDKLLQGSPVGRTRDAAPGAPSDRPVPRLLAMGLLRRIDAETVILPRHVGQVLRGEQPGPMELTAPDPVVSTTTPDDAD
    AAAAGAVIDLLREVDVLLENLGATPVAELRSGGLGVREFKRLAKATGIDEPRLGLILEIAAAAGLIASGMPDPEPPHSDG
    PFWAPTVAADRFATMSPAERWHLLASAWLDLPGRPALIGTRGPDAKPYGALSDSLFSTAAPLDRRLLLGMLAELPAGAGV
    DASRASATLIWRRPRWARRLQPAPIADLLTEGHALGLVGRGAISTPARALLDEALEPATAPAAAVGVMARALPKPIDHFL
    VQADLTVVVPGPLQRELADDLTTVATVESAGTAMVYRVSEQSIRHALDVGKSRDWLQEFFANRSKTPVPQGLTYLIDDVA
    RRHGQLRIGMAASFVRCEDPTLLAQVVAAPEADGLALRALAPTVAVSPAPISEVLVTLRCAGFAPAAEDSTGAVVDVRTR
    GARVPTPQRRRPYRPPPRPNSEALKAVVAVLREVTAAPFANVRVDPAVTMSLLQRAAKDQATLVISYLDAAGVATQRVVA
    PITLRGGQLVAFDSSSGRLRDFAIHRITLVVSAHDR
    >BL;Rv0863, H37Rv2.tab 962599:962877 forward MW:10079
    VCSVIADQRRPDQPCGVGGCKTCQNGFVADIAEGKARKTRYVDHGWPTTDPDDHAVSELVTDRTGALSPFGELTFPVPSD (SEQ ID NO:425)
    DLPYIHPVTVINR
    >BL;Rv0875c, H37Rv2.tab 973809:974294 reverse MW:17800
    VKRGVATLPVILVILLSVAAGAGAWLLVRGHGPQQPEISAYSHGHLTRVGPYLYCNVVDLDDCQTPQAQGELPVSERYPV (SEQ ID NO:426)
    QLSVPEVISRAPWRLLQVYQDPANTTSTLFRPDTRLAVTIPTVDPQRGRLTGIVVQLLTLVVDHSGELRDVPHAEWSVRL
    IF
    >BL;Rv0876C, H37Rv2.tab 974294:975937 reverse MW:57938
    MAPTPGRRTRNGSVNGHPGMANYPPDDANYRRSRRPPPMPSANRYLPPLGEQPEPERSRVPPRTTRAGERITVTRAAAMR (SEQ ID NO:427)
    SREMGSRMYLLVHRAATADGADKSGLTALTWPVMANFAVDSAMAVALANTLFFAAASGESKSRVALYLLITIAPFAVIAP
    LIGPALDRLQHGRRvALALSFGLRTALAVVLIMNYDGATGSFPSWVLYPCALANMVFSKSFSVLRSAVTPRVMPPTIDLV
    RVNSRLTVFGLLGGTIAGGAIAAGVEFVCTHLFQLPGALFVVVAITIAGASLSMRIPRWVEVTSGEVPATLSYHRDRGRL
    RRRWPEEVKNLGGTLRQPLGRNIITSLWGNCTIKVMVGFLFLYPAFVAKAHEANGWVQLGMLGLIGAAAAVGNFAGNFTS
    ARLQLGRPAVLVVRCTVLVTVLAIAAAVAGSLAATAIATLITAGSSAIAKASLDASLQHDLPEESRASGFGRSESTLQLA
    WVLGGAVGVLVYTELWVGFTAVSALLILGLAQTIVSFRGDSLIPGLGGNRPVMAEQETTRRGAAVAPQ
    >BL;Rv0877, H37Rv2.tab 976075:976860 forward MW:27437)
    VTGPTEESAVATVADWPEGLAAVLRGAADQARAAVVEFSGPEAVGDYLGVSYEDGNAATHRFIAHLPGYQGWQWAVVVAS (SEQ ID NO:428)
    YSGADHATISEVVLVPGPTALLAPDWVPWEQRvRPGDLSPGDLLAPAKDDPRLVPGYTASGDAQVDETAAEIGLGRRWVM
    SAWGRAQSAQRWHDGDYGPGSAMARSTKRVCRDCGFFLPLAGSLGAMFGVCGNELSADGHVVDRQYGCGAHSDTTAPAGG
    STPIYEPYDDGVLDIIEKPAES
    >BL;Rv0879c, H37Rv2.tab 978484:978756 reverse MW:9512
    MSVENSQIREPPPLPPVLLEVWPVIAVGALAWLVAAVAAFVVPGLASWRPVTVAOLATGLLGTTIFVWQLAAARRGARGA (SEQ ID NO:429)
    QAGLETYLDPK
    >BL;Rv0883C, H37Rv2.tab 980509:981267 reverse MW:27373
    MRELKVVGLDADGKNIICQGAIPSEQFKLPVDDRLRAALRDDSVQPEQAQLDIEVTNVLSPKEIQARIRAGASVEQVAAA (SEQ ID NO:430)
    SGSDIARIRRFAHPVLLERSRAAELATAAHPVLADGPAVLTMQETVAAALVARGLNPDSLTWDAWRNEDSRWTVQLAWKA
    GRSDNLAHFRFTPGAHGGTATAIDDTAHELINPTFNRPLRPLAPVAHLDFDEPEPAQPTLTVPSAQPVSNRRGKPAIPAW
    EDVLLGVRSGGRR
    >BL;Rv0885, H37Rv2.tab 982762:983781 forward MW:39798
    MDRTRIVRRWRRNMDVADDAEYVEMLATLSEGSVRRNFNPYTDIDWESPEFAVTDNDPRWILPATDPLGRHPWYQAQSRE (SEQ ID NO:431)
    RQIEIGMWRQANVAKVGLHFESILIRGLMNYTFWMPNGSPEYRYCLHESVEECNHTMMFQEMVNRvGADVPGLPRRLRWV
    SPLVPLVAGPLPVAFFIGVLAGEEPIDHTQKNVLREGKSLHPIMERvMSIHVAEEARHISFAHEYLRKRLPRLTRMQRFW
    ISLYFPLTMRSLCNAIVVPPKAFWEEFDIPREVKKELFFGSPESRKWLCDMFADARMLAHDTGLMNPIARLVWRLCKIDG
    KPSRYRSEPQRQHLAAAPAA
    >BL;Rv0909, H37Rv2.tab 1014681:1014857 forward MW:6403
    MGILDKVKNLLSQNADKVETVINKAGEFVDEQTQGNYSDAIHKLHDAASNVVGMSDQQS (SEQ ID NO:432)
    >BL;Rv0910, H37Rv2.tab 1014866:1015297 forward MW:15754
    MAKLSGSIDVPLPPEEAWMhASDLTRYREWLTIHKVWRSKLPEVLEKGTVVESYVEVKGMPNRIKWTIVRYKPPEGMTLN (SEQ ID NO:433)
    GDGVGGVKVKLIAKVAPKEHGSVVSFDVHLGGPALLGPIGMIVAAALRADIRESLQNFVTVFAG
    >BL;Rv0912, H37Rv2.tab 1016236:1016682 forward MW:15438
    MTRRLRPGWLVALSAAVIAASTWMPWLTTTVGGGGWVNAIGGTHGSLELPHGFGPGQLIVLLSSTLLVVGAMAGRGLSVK (SEQ ID NO:434)
    LSSIAALVVSLLIVALTVWYYKLNVNPPVSAEYGLYFGAAGGVCAVGCSLWAAVSAASPGRRRHREVVR
    >BL;Rv0948C, H37Rv2.tab 1057649:1057963 reverse MW:11770
    MRPEPPHHENAELAAMNLEMLESQPVPEIDTLREEIDRLDAEILALVKRRAEVSKAIGKARMASGGTRLVHSREMKVIER (SEQ ID NO:435)
    YSELGPDGKDLAILLLRLGRGRLGH
    >BL;Rv0954, H37Rv2.tab 1065127:1066035 forward MW:30203
    MTYSPGNPGYPQAQPAGSYGGVTPSFAMADEGASKLPMYLNIAVAVLGLAAYFASFGPMFTLSTELGGGDGAVSGDTGLP (SEQ ID NO:436)
    VGVALLAALLAGVALVPKAKSHVTVVAVLGVLGVFLMVSATFNKPSAYSTGWALWVVLAFIVFQAVAAVLALLVETGAIT
    APAPRPKFDPYGQYGRYGQYGQYGVQPGGYYGQQGAQQAAGLQSPGPQQSPQPPGYGSQYGGYSSSPSQSGSGYTAQPPA
    QPPAQSGSQQSHQGPSTPPTGFPSFSPPPPVSAGTGSQAGSAPVNYSNPSGGEQSSSPGGAPV
    >BL;Rv0955, H37Rv2.tab 1066078:1067442 forward MW:46056
    VNRVSASADDRAAGARPARDLVRvAFGPGVVALGIIAAVTLLQLLIANSDMTGAWGAIASMWLGVHLVPISIGGRALGVM (SEQ ID NO:437)
    PLLPVLLMVWATARSTARATSPQSSGLVVRWVVASALGGPLLMAAIALAVIHDASSVVTELQTPSALRAFTSVLVVHSVG
    AATGVWSRvGRRALAATALPDWLHDSMRAAAAGVLALLGLSGVVTAGSLVVHWATMQELYGITDSIFGQFSLTVLSVLYA
    PNVIVGTSAIAVGSSAHIGFATFSSFAVLGGDIPALPILAAAPTPPLGPAWVALLIVGASSGVAVGQQCARRALPFVAAN
    AKLLVAAVAGALVMAVLGYGGGGRLGNFGDVGVDEGALVLGVLFWFTFVGWVTVVIAGGISRRPKRLRPAPPVELDADES
    SPPVDMFDGAASEQPPASVAEDVPPSHDDIANGLKAPTADDEALPLSDEPPPRAD
    >BL;Rv0966c, H37Rv2.tab 1077236:1077835 reverse MW:22210
    MSNSAQRDARNSRDESARASDTDRIQIAQLLAYAAEQGRLQLTDYEDRLARAYAATTYQELDRLRADLPGAAIGPRRGGE (SEQ ID NO:438)
    CNPAPSTLLLALLGGFERRGRWNVPKKLTTFTLWGSGVLDLRYADFTSTEVDIRAYSIMGAQTILLPPEVNVEIHGHRVM
    GGFDRKVVGEGTRGVPTVRIRGFSLWGDVGIKRKPRKPRK
    >BL;Rv0970, H37Rv2.tab 1081052:1081681 forward MW:22887
    MIHDLMLRWVVTGLFVLTAAECGLAIIAKRRPWTLIVNNGLHFANAVAMAVMAWPWGARVPTTGPAVFFLLAAVWFGATA (SEQ ID NO:439)
    VVAVRGTATRGLYGYHGLMMLATAWMYAAMNPRLLPVRSCTEYATEPDGSMPANDMTAMNMPPNSGSPIWFSAVNWIGTV
    GFAVAAVFWACRFVMERRQEATQSRLPGSIGQANMAAGMAMLFFAMLFPV
    >BL;Rv0996, H37Rv2.tab 1112384:1113457 forward MW:39519
    MPSIPQSLLWISLVVLWLFVLVPMLISKRDAVRRTSDVALATRvLNGGAGARLLKRGGPAAGHRWGYLPPEGQGDDPDWK (SEQ ID NO:440)
    PEEDWRDDPVEDGFADVEHDIDEDQEADDARRRGAVVMKVAAPQTAGADEPDYLDVDVVEEDSEALPVGAGAAVGESADE
    ADAEAADGVAGHADPEADPVEYEYEYEYVEDTCGLELEEDDQEAPPTVASGTSRRRRFDTKTAAAVSARKYTFRKRALIV
    MAVILVGSAAAAFELTPVAWWICGSATGVTVLYLAYLRRQTRIEEKVRRRRMQRIARARLGVENTRDREYDVVPSRLRRP
    GAVVLEIDDEDPIFTHLESAAPIRNYGWPRDLPRAVGQ
    >BL;Rv0998, H37Rv2.tab 1114748:1115746 forward MW:35608
    LDGIAELTGARVEDLAGMDVFQGCPAEGLVSLAASVQPLRAAAGQVLLRQGEPAVSFLLISSGSAEVSHVGDDGVAIIAR (SEQ ID NO:441)
    ALPGMIVGEIALLRDSPRSATVTTIEPLTGWTGGRGAFATMVHIPGVGERLLRTARQRLAAFVSPIPVRLADGTQLMLRP
    VLPGDRERTVHGHIQFSGETLYRRFMSARVPSPALMHYLSEVDYVDHFVWVVTDGSDPVADARFVRDETDPTVAEIAFTV
    ADAYQGRGIGSFLIGALSVAARVDGVERFAARMLSDNVPMRTIMDRYGAVWQREDVGVITTMIDVPGPGELSLGREMVDQ
    INRVARQVIEAVG
    >BL;Rv1000, H37Rv2.tab 1116531:1117148 reverse MW:22648
    MCDKLGGVAIAVQGALFEHNERRQLGDGAFIDIRSGWLTGGEELLDALLSTVPWRAERRQMYDRVVDVPRLVSFHDLTIE (SEQ ID NO:442)
    DPPHPQLARMRRRLNDIYGGELGEPFTTAGLCYYRDGSDSVAWHGDTIGRGSTEDTMVAIVSLGATRVFALRPRGRGPSL
    RLPLAHGDLLVMGGSCQRTFEHAVPKTSAPTGPRVSIQFRPRDVR
    >BL;Rv1024, H37Rv2.tab 1145858:1146541 forward MW:24570
    MPEAKRPESKRRSPASRPGKAGDSVRGGRATKPSAKPSTPAPHASRKTTRTPHEHIVEPIKRAITESVEKRSEQRLGFTA (SEQ ID NO:443)
    RRAAILAAVVCVLTLTIARPVRTYFAQRAEMEQLAATEANLRRQIADLEEQQVKLADPAYIAAQARERLGFVMPGDIPFQ
    VQLPSTPLAPPQPGSDAATATNNEPWYTALWHTIADDPHLPPAAPPAPEPGRPGPLPPASPNPEQPGG
    >BL;Rv1025, H37Rv2.tab 1146561:1147025 forward MW:16593
    VVTRQLGRAPRGVLAIAYRCPNGEPGVVKTAPRLPDGTPFPTLYYLTHPVLTAAASRLETTGLMREMNRRLGQDAELAAA (SEQ ID NO:444)
    YRRAHESYLSERDALEPLGTTVSAGGMPDRvKCLHVLIAHSLAKGPGLNPFGDEALALLAAEPRTAATLVAGQWR
    >BL;Rv1081c, H37Rv2.tab 1205987:1206418 reverse MW:15384
    MTHTPIPRPDARYGRPRLSRRARRRvAIALGVLVAAAGIVIAVIGYQRISTSAVTGSLVGYRLVDDETASVTISVTRSDP (SEQ ID NO:445)
    SRPVACIVRVRATNGSETGRRELLVPPSEATTVQVTTTVKSSQPPVMADVYGCGTEVPSYLRLP
    >BL;Rv1083, H37Rv2.tab 1207383:1207646 forward MW:9263
    VNQILLSVIAEGGPGNTGPDFGKASPVGLLVIVLLVIATLFLVRSMNQQLKKVPKSFDRDHPELDQAADEGTDRDGPARP (SEQ ID NO:446)
    PGPPHESG
    >BL;Rv1100, H37Rv2.tab 1228683:1229381 forward MW:24562
    MVGDCPRSRTVRWSWDTGHVTAEPQPTPRPAKPRLLQDGRDMFWSLAPLVVGCILLAGLVGMCSFQLGGTKRGPIPSYDA (SEQ ID NO:447)
    AQALRADAKTLGFPIRLPQLPGGWTPNSGGRGGIENGRADPATGQRRNAATSIVGFISPTGRYLSLTQSNADEDKLVGSI
    HPSMYPTGTVDVGGTRWVVYEGSDENGAVEPVWTTRLTGPGGATQLAITGAGSIDQFRTLASATQSQPPLPAR
    >BL;Rv1109c, H37Rv2.tab 1235460:1236095 reverse MW:22957
    MATAPYGVRLLVGAATVAVEETMKLPRTILMYPMTLASQAAHVVMRFQQGLAELVIKGDNTLETLFPPKDEKPEWATFDE (SEQ ID NO:448)
    DLPDALEGTSIPLLGLSDASEAKNDDRRSDGRFALYSVSDTPETTTASRSADRSTNPKTAKHPKSAAKPTVPTPAVAAEL
    DYPALTLAQLRARLHTLDVPELEALLAYEQATKARAPFQTLLANRITRATAK
    >BL;Rv1111c, H37Rv2.tab 1237212:1238192 reverse MW:36985
    VSAQRARSAVQASHRSIHPHIPGVPWWAAILIAVTATAIGYAIDAGSGHKALTLVFTGCYIAGCVGAVLAVRQSDLFTAL (SEQ ID NO:449)
    VQPPLILFCAVPGAYWLFHGGTIGKFKDLLINCGYSLIERFPLMLGTAAGVLLIGLVRWYLGTALFDSIARKLSSLMTGD
    SDDDGGRRSAQRPARTRSRHARPPSEDNREPIAERRSRRRPRPQNDPHPRRNAMERPAPRSSRFDSYRSYQPSEPSGPAE
    PVNRYERRGARYQPYARYEPTYEPQRRRARPSEPTNPTHHPISQVRYRCSATRDARRDNYREEQRFDRRDRSRAPRRPPA
    ESWEYDV
    >BL;Rv1155, H37Rv2.tab 1281429:1281869 forward MW:16300
    MARQVFDDKLLAVISGNSIGVLATIKHDGRPQLSNVQYHFDPRKLLIQVSIAEPRAKTRNLRRDPRASILVDADDGWSYA (SEQ ID NO:450)
    VAEGTAQLTPPAAAPDDDTVEALIALYRNIAGEHSDWDDYRQAMVTDRRvLLTLPISHVYGLPPGMR
    >BL;Rv1157c, H37Rv2.tab 1283059:1284171 reverse MW:36448
    VRRLTNTEHRENTTVASTWSVCKGLAAVVITSAAAFALCPNAAADPATPQPNPTQQLPGLPALAQLSPIIQQAAMNPAQA (SEQ ID NO:451)
    TQLLMAAASAFAGNPAVPTESKNVASSVNQFVAEPTNPDSAALGVPAPHGVALPEAIPVPHVPPLGAEPGVQAHLPTGID
    PSHAAGPAPAVAPTVTPPVAAPPASAPAPAPDAAQPVAVPGPPPAPPAPRAAAPAPASAAPAPAAAPAPASGFGADAPPT
    QDFMYPSIGPNCVADGSNSIATALSVAGPAKIPLPGPGPGQTAYVFTAVGTPGPADVQRLPLNVTWVNLTTGKSGSATLR
    PRSDINPDGPTTLTVIADTGSGSIMSTIFGQVTTKDRQCQFMPTIGSTVVP
    >SL;Rv1158c, H37Rv2.tab 1284182:1284862 reverse MW:21401
    MPTIWTFVRAAAVLVGSSAALLTGGIAHADPAPAPAPAPNIPQQLISSAANAPQILQNLATALGATPPLSAPKVAEPAPA (SEQ ID NO:452)
    APGITATFPGLTPAAPAAAAAPALTPSIPGVNAPIPGITPAAPALPVTAPAAAPTIPGVNAPIPGITAPAPAAAAVPASV
    PGVPSAKVDLPQLPYLPLQVPQQLSLPADLPALASGVIPAAPIAPTPPAPGAPALPPGPPSLLAALP
    >BL;Rv1159A, H37Rv2.tab 1286284:1286568 reverse MW:10379
    MAVLTDEQVDAALHDLNGWQRAGGVLRRSIKFPTFMAGIDAVRRVAERAEEVNHHPDIDIRWRTVTFALVTHAVGGITEN (SEQ ID NO:453)
    DIAMAHDIDANFGA
    >BL;Rv1171, H37Rv2.tab 1301307:1301744 forward MW:15185
    VGHRVDTLSDRQRANLTTGATDRAIRLVVLALLTVDGVVSALAGALLMPWYIGSAPFPISALISGLVNAALVWAAARWTT (SEQ ID NO:454)
    SSRVAALPLWAWLLTVAAMSFGGPGDDVILGGQGLLVYGALVFVVAGAVPPAWVLWRRRVQADGSG
    >BL;Rv1184c, H37Rv2.tab 1324535:1325611 reverse MW:37818
    MKRvIAGAFAVWLVGWAGGFGTAIAASEPAYPWAPGPPPSPSPVGDASTAKVVYALGGARMPGIPWYEYTNQAGSQYFPN (SEQ ID NO:455)
    AKHDLIDYPAGAAFSWWPTMLLPPGSHQDNMTVGVAVKDGTNSLDNAIHHGTDPAAAVGLSQGSLVLDQEQARLANDPTA
    PAPDKLQFTTFGDPTGRHAFGASFLARIFPPGSHIPIPFIEYTMPQQVDSQYDTNEVVTAYDGFSDFPDRPDNLLAVANA
    AIGAAIAHTPIGFTGPGDVPPQNIRTTVNSRGATTTTYLVPVNHLPLTLPLRYLGMSDAEVDQIDSVLQPQIDAAYARND
    NWFTRPVSVDPVRGLDPLTAPGSIVEGARGLLGSPAFCG
    >BL;Rv1209, H37Rv2.tab 1353157:1353522 forward MW:13089
    VALVLVYLVVLVLVAIVLFAAASLLFGRGEQLPPLPRATTATTLPAFGVTRADVDAVKFTQVLRGYKTSEVDWVLERLGR (SEQ ID NO:456)
    ELEALRSQLGAIHASSEDAEAESDASNPSRGETVVHYRSDPA
    >BL;Rv1211, H37Rv2.tab 1354243:1354467 forward MW:7810
    MLGADQARAGGPARIWREHSMAAMKPRTGDGPLEATKEGRGIVMRVPLEGGGRLVVELTPDEAAALGDELKGVTS (SEQ ID NO:457)
    >BL;Rv1222, H37Rv2.tab 1365344:1365805 forward MW:16250
    MADPGSVGHVFRRAFSWLPAQFASQSDAPVGAPRQFRSTEHLSIEAIAAFVDGELRMNAHLRAAHHLSLCAQCAAEVDDQ (SEQ ID NO:458)
    SRAPAALRDSHPIRIPSTLLGLLSEIPRCPPEGPSKGSSGGSSQGPPDGAAAGFGDRFADGDGGNRGRQSRVRR
    >BL;Rv1249c, H37Rv2.tab 1393197:1393982 reverse MW:27571
    MSARRIRSWKRFDNRSANAAEPDPQLAGTGGRPKVSTRALAQVIERSSRIQGPAAQAYVARLRRAHPGASPAKIVAKLEK (SEQ ID NO:459)
    RFLSVVTASGAAVGAAATLPGIGTLAAWFAAAGEVVVFLEATALFVLALASVHAIPLDHRERRRALVLAVLVGDNTTAVA
    DLLGPGRTSGGWVSETMASLPLPAISSLNSRMLKYVVKRFALKRGALMFGKLVPMGIGAIIGAIGNRLVGKKLVRNARSA
    FGTPPARWPVTLNVLPTVRDAS
    >BL;Rv1251c, H37Rv2.tab 1395824:1399240 reverse MW:123118
    VFVTGDSIVYSASDLAAAARCQYALLREFDAKLGRGPAVAVDDELMARAAVLGSAHEGRRLDQLRHEFGDAVAIIGRPAY (SEQ ID NO:460)
    TPAGLAAAADATRRAIANHAPVVYQAAMFDGRFVGFADFLIRDGHRYRVADTKLARSPTVTALLQLAAYADALVHSGVPV
    AADAELELGDGTIVRYRVGELIPVYRSQPALLQRLLDGHYTAGTAVRWDDERVQACFRCPQCTERLRASDDLLLVGGMRV
    RQRDKLLEAGITTIAELADHTAPVPGLTTNALGKLTAQAKLQIRQRDTGAPQFEIVDPRPLTLLPEPNPGDLFFDFEGDP
    LWTADGKQWGLEYLFGVLEAGRAGVFRPLWAHDRTAERQALTDFLAIVARRRRRHPNMNIYHYAPYEKTALLRLVGRYGI
    GEDDVDDLLRNGVLVDLYPLVRKSIRVGTDSFSLKALEPLYLGTQPRSGDVTTAADSINSYARYCELRAAGRIDEAATVL
    KEIEGYNHYDCRSTRALRDWLLMRAWEAGVTPIGAQPVPDADPIDDGDSLASVLSKFTGDAAAGERTPEQTAVALLAAAR
    GYHRREDKPFWWAHFDRLNYPVDEWSDSTDVFLASEASVTVDWHMPPRARKPQRRVRLTGELARGDLNGNVFALYEPPAP
    PGMTDNPDRRAAGPAAVVETDDPTVPTEVVIVERTGSDGNTFQQLPFALAPGPPVPTTALRESIESTAAAVASGSPQLPS
    TALMDVLLRRPPRTRSGAALPRSSDPVTDIAAAALDLDSSYLAVHGPPGTGKTYTAARVIAELVTEHAWRIGVVAQSHAT
    VENLLEGVISAGLDPGQVAKKPHDHTAGRWQSIDGSQYTEFIRDTAGCVIGGTAWDFANGNRvPKASLDLLVIDEAGQFC
    LANTIAVAPAATNLLLLGDPQQLPQVSQGTHPEPVDTSALSWLVDGQHTLPDERGYFLDRSYRMHPAVCAAVSALSYEGR
    LCSHTERTAVRRLDGYPPGVHTRGVHHKGNSIESPEEAEAILAELRQLLGSPWTDEHGTRPLAASDVLVLAPYNAQVALV
    RRRLASAGLGGADGVRVGTVDKFQGGQAPVVFISMTASSADDVPRGISFLLNRNRLNVAVSRAQYAAVIVRSELLTQYLP
    ATPDGLVDLGAFLGLTSTS
    >BL;Rv1259, H37Rv2.tab 1407339:1408235 forward MW:31783
    MNIAAESSAKPVWGPPNFCAAAARMQDVRVLMHPKTGRAFRSPVEPGSGWPGDPATPQTPVAADAAQVSALAGGAGSICE (SEQ ID NO:461)
    LNALISVCRACPRLVSWREEVAVVKRRAFADQPYWGRPVPGWGSKRPRLLILGLAPAAHGANRTGRMFTGDRSGDQLYAA
    LHRAGLVNSPVSVDAADGLRANRIRITAPVRCAPPGNSPTPAERLTCSPWLNAEWRLVSDHIRAIVALGGFAWQVALRLA
    GASGTPKPRFGHGVVTELGAGVRLLGCYHPSQQNMFTGRLTPTMLDDIFREAKKLAGIE
    >BL;Rv1276c, H37Rv2.tab 1425441:1425914 reverse MW:16461
    MRHAKSAYPDGIADHDRPLAPRGIREAGLAGGWLRANLPAVDAVLCSTATRARQTLAHTGIDAPARYAERLYGAAPGTVI (SEQ ID NO:462)
    EEINRVGDNVTTLLVVGHEPTTSALAIVLASISGTDAAVAERISEKFPTSGIAVLRvAGHWADVEPGCAALVGFHVFR
    >BL;Rv1277, H37Rv2.tab 1426164:1427414 forward MW:44758
    VSPRPGPAGRGPAPCRCADLHSLCVDSHALRRDGMRFLHTADWQLGMTRHFLAGDAQPRYSAARRDAVAGLKALAADVGA (SEQ ID NO:463)
    EFVVVAGDVFEHNQLAPQIVGQSLEANRVIGLPVYLLPGNHDPLDASSVYTSTLFRAERPDNVVVLDRAGVHEVRPGVQI
    VAAPWRSKAPTTDPVAEVLAGLPTDAAIRLLVAHGGVDALDPDHDKPSLIRLAALDDALTRQAIHYVALGDKHSLTQVGS
    SGRVWYSGAPEVTNFDDVEPDPGHVLVVDIDESDPRHPVTVDARRIGRWRFVTLHHQVDTSRDIADLDLNLDLMTDKDRT
    VVRLALTGSLTVTDRAALDTCLDKYARLFAWLGLWERNTDLAVIPVDAEFTDLGIGGFAAAAVDELVATARGGODESAVD
    AQAALALLLRLADRGAA
    >BL;Rv1278, H37Rv2.tab 1427414:1430038 forward MW:93319
    VKLHRLALTNYRGIAHRDVEFPDHGVVVVCGANEIGKSSMVEALDLLLEYKDRSTKKEVKQVKPTNADVGSEVIAEISSG (SEQ ID NO:464)
    PYRFVYRKRFHKRCETELTVLAPRREQLTGDEAHERVRTMLAETVDTELWHAQRVLQAASTAAVDLSGCDALSRALDLAA
    GDDAALSGTESLLIERIEAEYARYFTPTGRPTGEWSAAVSRLAAAEAAVADCAAAVAEVDDGVRRHTELTEQVAELSQQL
    LAHQLRLEAARVAAEKIAAITDDAREAKLIATAAAATSGASTAAHAGRLGLLTEIDTRTAAVVAAEAKARQAADEQATAR
    AEAEACDAALTEATQVLTAVRLRAESARRTLDQLADCEEADRLAARLARIDDIEGDRDRVCAELSAVTLTEELLSRIERA
    AAAVDRGGAQLASISAAVEFTAAVDIELGVGDQRVSLSAGQSWSVTATGPTEVKVPGVLTARIVPGATALDFQAKYAAAQ
    QELADALAAGEVADLAAARSADLCRRELLSRRDQLTATLAGLCGDEQVDQLRSRLEQLCAGQPAELDLVSTDTATARAEL
    DAVEAARIAAEKDCETRRQIAAGAARRLAETSTRATVLQNAAAAESAELGAAMTRLACERASVGDDELAAKAEADLRVLQ
    TAEQRVIDLADELAATAPDAVAAELAEAADAVELLRERHDEAIRALHEVGVELSVFGTQGRKGKLDAAETEREHAASHHA
    RVGRRARAARLLRSVMARHRDTTRLRYVEPYRAELHRLGRPVFGPSFEVEVDTDLRIRSRTLDDRTVPYECLSGGAKEQL
    GILARLAGAALVAKEDAVPVLIDDALGFTDPERLAKMGEVFDTIGADGQVIVLTCSPTRYGGVKGAHRIDLDAIQ
    >BL;Rv1303, H37Rv2.tab 1459766:1460248 forward MW:16863
    VTTPAQDAPLVFPSVAFRPVRLFFINVGLAAVAMLVAGVFGHLTVGMFLGLGLLLGLLNALLVRRSAESITAKEHPLKRS (SEQ ID NO:465)
    NALNSASRLAIITILGLIIAYIFRPAGLGVVFGLAFFQVLLVATTALPVLKKLRTATEEPVATYSSNGQTGGSEGRSASD
    D
    >BL;Rv1312, H37Rv2.tab 1467688:1468128 forward MW:16594
    MSAPMIGMVVLVVVLGLAVLALSYRLWKLRQGGTAGIMRDIPAVGGHGWRHGVIRYRGGEAAFYRLSSLRLWPDRRLSRR (SEQ ID NO:466)
    GVEIISRRAPRGDEFDIMTDEIVVVELCDSTQDRRVGYEIALDRGALTAFLSWLESRPSPRARRRSM
    >BL;Rv1324, H37Rv2.tab 1487161:1488072 forward MW:32138
    VTRPRPPLGPAMAGAVDLSGIKQRAQQNAAASTDADRALSTPSGVTEITEANFEDEVIVRSDEVPVVVLLWSPRSEVCVD (SEQ ID NO:467)
    LLDTLSGLAAAAKGKWSLASVNVDVAPRVAQIFGVQAVPTVVALAAGQPISSFQGLQPADQLSRWVDSLLSATAGKLKGA
    ASSEESTEVDPAVAQARQQLEDGDFVAARKSYQAILDANPGSVEAKAAIRQIEFLIRATAQRPDAVSVADSLSDDIDAAF
    AAADVQVLNQDVSAAFERLIALVRRTSGEERTRvRTRLIELFELFDPADPEVVAGRRNLANALY
    >BL;Rv1332, H37Rv2.tab 1500926:1501579 forward MW:24054
    MPPVCGRRCSRTGEIRGYSGSIVRRWKRVETRDGPRFRSSLAPHEAALLKNLAGAMIGLLDDRDSSSPSDELEEITGIKT (SEQ ID NO:468)
    GHAQRPGDPTLRRLLPDFYRPDDLDDDDPTAVDGSESFNAALRSLHEPEIIDAKRVAAQQLLDTVPDNGGRLELTESDAN
    AWIAAVNDLRLALGVMLEIGPRGPERLPGNHPLAAHFNVYQWLTVLQEYLVLVLMGSR
    >BL;Rv1342c, H37Rv2.tab 1508187:1508546 reverse MW:13382
    MTAPETPAAQHAEPAIAVERIRTALLGYRIMAWTTGLWLIALCYEIVVRYVVKVDNPPTWIGVVNGWVYFTYLLLTLNLA (SEQ ID NO:469)
    VKVRWPLGKTAGVLLAGTIPLLGIVVEHFQTKEIKARFGL
    >BL;Rv1343c, H37Rv2.tab 1508546:1508923 reverse MW:14241
    VSTTRRRRPALIALVIIATCGCLALGWWQWTRFQSTSGTFQNLGYALQWPLFAWFCVYAYRNFVRYEETPPQPPTGGAAA (SEQ ID NO:470)
    EIPAGLLPERPKPAQQPPDDPVLREYNAYLAELAKDDARKQNRTTA
    >BL;Rv1390, H37Rv2.tab 1565093:1565422 forward MW:11810
    VSISQSDASLAAVPAVDQFDPSSGASGGYDTPLGITNPPIDELLDRvSSKYALVIYAAKRARQINDYYNQLGEGILEYVG (SEQ ID NO:471)
    PLVEPGLQEKPLSIALREIHADLLEHTEGE
    >BL;Rv1417, H37Rv2.tab 1592150:1592611 forward MW:16351
    VTAAPNDWDVVLRPHWTPLFAYAAAFLIAVAHVAGGLLLKVGSSGVVFQTADQVAMGALGLVLAGAVLLFARPRLRVGSA (SEQ ID NO:472)
    GLSVRNLLGDRIVGWSEVIGVSFPGGSRWARIDLADDEYIPVMAIQAVDKDRAVAANDTVRSLLARYRPDLCAR
    >DL;Rv1476, H37Rv2.tab 1666204:1666761 forward MW:19601
    MTGPYFPQTIPFLPSYIPQDVDMTAVKAEVAALGVSAPPAATPGLLEVVQHARDEGIDLKIVLLDHNPPNDTPLRDIATV (SEQ ID NO:473)
    VGADYSDATVLVLSPNYVGSYSTQYPRvTLEAGEDHSKTGNPVQSAQNFVHELSTPEFPWSALTIVLLIGVLAAAVGARL
    MQLRGRRSATSTDAAPGAGDDLNQGV
    >BL;Rv1590, H37Rv2.tab 1791334:1791570 forward MW:8602
    MVEIVAGKQRAPVAAGVYNVYTGELADTATPTAARMGLEPPRFCAQCGRRMVVQVRPDGWWARCSRHGQVDSADLATQR (SEQ ID NO:474)
    >BL;Rv1591, H37Rv2.tab 1791570:1792232 forward MW:23151
    VTEPPGFGGPSEPSGAPRTSRTRAVLFVMLGLSATGVLVGGLWAWIAPPIHAVVAITRAGERVHEYLGSESQNFPIAPFM (SEQ ID NO:475)
    LLGLLSVLAVVASALMWQWREHRGPQMVAGLSIOLTTAAAIAAGVGALVVRLRYGALDFDTVPLSRGDHALTYVTQAPPV
    FFARRPLQIALTLMWPAGIASLVYALLAAGTARDDLGGYPAVDPSSNARTEALETPQAPVS
    >BL;Rv1610, H37Rv2.tab 1809443:1810147 forward MW:24586
    VAANAGSVRPNRRARPMIGIAQLLLVVAAGALWMAARLPWVVIGSFDELGPPKEVTLTGASWSTALLPLALLMLAAAVAA (SEQ ID NO:476)
    LAVRGWPLRALAVLLAAASFAVGYLGISLWVVPDVAARGADLAHVPVVTLVGSARHYWGAVAAVLAAVCALLAAVFLMSS
    AAIRGSAGEDMARYAAPRARRSIARRQHSNAAGRAAPQDDGPDMGPRMSERMIWEALDEGRDPTDREQESDTEGR
    >BL;Rv1635c, H37Rv2.tab 1840575:1842242 reverse MW:60035
    MNASRPGAPPHAGLPSRRTAGDQDHRADPKVTRIMSASTLEQPAAAHVDELVARMRGRLLDPLAIAVLAAVISGAWASRP (SEQ ID NO:477)
    SLWFDEGATISASASRTLPELWSLLGHIDAVHGLYYLLMHGWFAIFPPTELWSRLPSCLAIGAAAAGVVVFAKQFSGRTT
    AVCAGAVFAILPRVTWAGIEARSSALSVAAAVWLTVLLVAAVRCNTQRRWLLYALVLMLSILVSINLALLVPAYATMVPL
    LASGKSRKSPVIWWTVVTAAALGAMTPFILFAMGQVWQVGWIAGLNRNIILDVIHRQYFDHSVPFAILAGLIVAAGIAAH
    LAGARGPGGDTHRLVLVSAAWIVVPTAVVLIYSATVEPIYYPRYLILTAPAAAVILAVCVVTIARKPWLIAGVVFLLAAA
    AFPNYFFTQRGPYAKEGWDYSQVADVISAHAKPGDCLLVDNTAGWRPGPIRALLATRPAAFRSLIDVERGTYGPKVGTLW
    DGHVAVWLTTAKIDKCPTLWTIANRDKSLPDHQVGEMLSPGTGFGRTPVYRFPSYLGFRIVERWQFHYSQVVKSTR
    >BL;Rv1647, H37Rv2.tab 1856774:1857721 forward MW:33939
    LAGSARTTYPCHVEVGPQDSESGAPDETATAMASPVPRQRSALRWLRTVNRSPGLVSFIHRARRLLPGDPEFGDPLSTAG (SEQ ID NO:478)
    EGGPRAAARAADRLLRDRDAASREVGLSVLQVWQALTEAVSRRPANPEVTLVFTDLVGFSTWSLHAGDDATLTLLRQVAR
    AVESPLLDAGGHIVKRLGDGIMAVFRNPTVALRAVLVAQDAVKSLEVQGYTPRMRIGIHTGRPQRLAADWLGVDVNIAAR
    VMERATKGGIMISQPTLDLIPQSELDALGVVARRVRKPVFASKPTGIPPDLAIYRIKTVSESTAADNFDEMSPDAQ
    >BL;Rv1693, H37Rv2.tab 1917756:1917929 forward MW:6094
    MTIDPDQIRAEIDALLASLPDPADAENGPSLAELEGIARRLSEAHEVLLAALESAEKG (SEQ ID NO:479)
    >BL;Rv1697, H37Rv2.tab 1921542:1922720 forward MW:42423
    MRMSALLSRNTSRPGLIGIARVDRNIDRLLRRvCPGDIVVLDVLDLDRITADALVEAEIAAVVNASSSVSGRYPNLGPEV (SEQ ID NO:480)
    LVTNGVTLIDETGPEIFKKVKDGAKVRLYEGGVYAGDRRLIRGTERTDHDIADLMREAKSGLVAHLEAFAGNTIEFIRSE
    SPLLIDGIGIPDVDVDLRRRHVVIVADEPSGPDDLKSLKPFIKEYQPVLVGVGTGADVLRKAGYRPQLIVGDPDQISTEV
    LKCGAQVVLPADADGHAPGLERIQDLGVGANTFPAAGSATDLALLLADHHGAALLVTAGHAANIETFFDRTRvQSNPSTF
    LTRLRVGEKLVDAKAVATLYRNHISGGAIALLALTMLIAIIVALWVSRTDGVVLHWIIDYWNRFSLWVQHLVS
    >BL;Rv1698, H37Rv2.tab 1922745:1923686 forward MW:32391
    MISLRQHAVSLAAVFLALAMGVVLGSGFFSDTLLSSLRSEKRDLYTQIDRLTDQRDALREKLSAADNFDIQVGSRIVHDA (SEQ ID NO:481)
    LVGKSVVIFRTPDAHDDDIAAVSKIVGQAGGAVTATVSLTQEFVEANSAEKLRSVVNSSILPAGSQLSTKLVDQGSQAGD
    LLGIALLSNADPAAPTVEQAQRDTVLAALRETGFITYQPRDRIGTANATVVVTGGALSTDAGNQGVSVARFAAALAPRGS
    GTLLAGRDGSANRPAAVAVTRADADMAAEISTVDDIDAEPGRITVILALHDLINGGNVGHYGTGHGAMSVTVSQ
    >BL;Rv1754c, H37Rv2.tab 1984982:1986670 reverse MW:60608
    MYRYQVRVQQRRSEMNRWVATRSRRHTYQWITDHKSPRDHYRHISELRTSIATSSPGRCDMSPIPRIVSVSLAWAAAIGL (SEQ ID NO:482)
    MVPIGLAPPAMAAPCSGDAANAPPPPSAIVTDPGATALGPVRPGHGPIPTGRKPRGANDRAPLPKLGPLISALLNPGARN
    AAPLQQQALVPRANPGPNPAPNPPATGPQPPNATQLTPNFAPAPDPAPAAAPDPGATLAGATTSLAEWVTGPDSPNKTLE
    RFGISGTDLGIPWDNGDPANRQVLMIFGDTFGYCAVDGHQWRYNTLFRSQDRDLGNGVHVTSGDASNRYSGSPVRQPGFS
    KQLINSIKWARDETGIIPTAGIAVGKTQYVNFMSIRNWGRDGEWTTNYSGIAVSKDNGQTWGVFPGTIRASGPDSGGKAR
    FVPGNENFQMGAYLKSNDGYLYSFGTPPGRGGSAYLARvPQRFVPDLTKYQYWNGDSNSWVPNKPDAATPVIPGPVGEMS
    VQYNTYLKQYLALYTNGMNDVVARTAPAPQGPWSAEQMLVSSWQMPGGIYAPMMHPWSTGKDVYFNLSLWSAYNVNLMHT
    VLP
    >BL;Rv1782, H37Rv2.tab 2017740:2019257 forward MW:53689
    VAEESRGQRGSGYGLGLSTRTQVTGYQFLARRTANALTRWRVRMEIEPGRRQTLAVVASVSAALVICLGALLWSFISPSG (SEQ ID NO:483)
    QLNESPIIADRDSGALYVRVGDRLYPALNLASARLITGRPDNPHLVRSSQIATMPRGPLVGIPGAPSSFSPKSPPASSWL
    VCDTVATSSSIGSLQGVTVTVIDGTPDLTGHRQILSGSDAVVLRYGGDAWVIREGRRSRIEPTNRAVLLPLGLTPEQVSQ
    ARPMSRALFDALPVGPELLVPEVPNAGGPATFPGAPGPIGTVIVTPQISGPQQYSLVLGDGVQTLPPLVAQILQNAGSAG
    NTKPLTVEPSTLAKMPVVNRLDLSAYPDNPLEVVDIREHPSTCWWWERTAGENRARVRVVSGPTIPVAATEMNKVVSLVK
    ADTSGRQADQVYFGPDHANFVAVTGNNPGAQTSESLWWVTDAGARFGVEDSKEARDALGLTLTPSLAPWVALRLLPQGPT
    LSRADALVEHDTLPMDMTPAELVVPK
    >BL;Rv1794, H37Rv2.tab 2031066:2031965 forward MW:32399
    MDQQSTRTDITVNVDGFWMLQALLDIRHVAPELRCRPYVSTDSNDWLNEHPGMAVMREQGIVVNDAVNEQVAARMKVLAA (SEQ ID NO:484)
    PDLEVVALLSRGKLLYGVIDDENQPPGSRDIPDNEFRVVLARRGQHWVSAVRvGNDITVDDVTVSDSASIAALVMDGLES
    IHHADPAAINAVNVPMEEMLEATKSWQESGFNVPSGGDLRRMGISAATVAALGQALSDPAAEVAVYARQYRDDAKGPSAS
    VLSLKDGSGGRIALYQQARTAGSGEAWLAICPATPQLVQVGVKTVLDTLPYGEWKTHSRV
    >DL;Rv1797, H37Rv2.tab 2035483:2036700 forward MW:44178
    MKAQRSFGLALSWPRVTAVFLVDVLILAVASHCPDSWQADHHVAWWVGVGVAAVVTLLSVVSYHGITVISGLATWVRDWS (SEQ ID NO:485)
    ADPGTTLGAGCTPAIDHQRRFGRDTVGVREYNGRLVSVIEVTCGESGPSGRHWHRKSPVPMLPVVAVADGLRQFDIHLDG
    IDIVSVLVRGGVDAAKASASLQEWEPQGWKSEERAGDRTVADRRRTWLVLRMNPQRNVAAVACRDSLASTLVAATERLVQ
    DLDGQSCAARPVTADELTEVDSAVLADLEPTWSRPGWRHLKHFNGYATSFWVTPSDITSETLDELCLPDSPEVGTTVVTV
    RLTTRVGSPALSAWVRYHSDTRLPKEVAAGLNRLTGRQLAAVRASLPAPTHRPLLVIPSRNLRDHDELVLPVGQELEHAT
    SSFVGQ
    >BL;Rv1828, H37Rv2.tab 2073081:2073821 forward MW:26411
    VSAPDSPALAGMSIGAVLDLLRPDFPDVTISKIRFLEAEGLVTPRRASSGYRRFTAYDCARLRFILTAQRDHYLPLKVIR (SEQ ID NO:486)
    AQLDAQPDGELPPFGSPYVLPRLVPVAGDSAGGVGSDTASVSLTGIRLSREDLLERSEVADELLTALLKAGVITTGPGGF
    FDEHAVVILQCARALAEYGVEPRHLRAFRSAADRQSDLIAQIAGPLVKAGKAGARDRADDLAREVAALAITLHTSLIKSA
    VRDVLHR
    >BL;Rv1830, H37Rv2.tab 2074841:2075515 forward MW:23988
    VTQLVTRARSARGSTLGEQPRQDQLDFADHTGTAGDGNDGAAAASGPVQPGLFPDDSVPDELVGYRGPSACQIAGITYRQ (SEQ ID NO:487)
    LDYWARTSLVVPSIRSAAGSGSQRLYSFKDILVLKIVKRLLDTGISLHNIRVAVDHLRQRGVQDLANITLFSDGTTVYEC
    TSAEEVVDLLQGGQGVFGIAVSGAMRELTGVIADFNGERADGGESIAAPEDELASRRKHRDRKIG
    >BL;Rv1836c, H37Rv2.tab 2082606:2084636 reverse MW:69677
    MGRHSKPDPEDSVDDLSDGNAAEQQNWEDISGSYDYPGVDQPDDGPLSSEGHYSAVGGYSASGSEDYPDIPPRPDWEPTG (SEQ ID NO:488)
    AEPIAAAPPPLFRFGHRGPGDWQAGHRSADGRRGVSIGVIVALVAVVVMVAGVILWRFFGDALSNRSHTAAARCVGGKDT
    VAVIADPSIADQVKESADSYNASAGPVGDRCVAVAVTSAGSDAVINGFIGKWPTELGGQPGLWIPSSSISAARLTGAAGS
    QAISDSRSLVISPVLLAVRPELQQALANQNWAALPGLQTNPNSLSGLDLPAWGSLRLANPSSGNGDAAYLAGEAVAAASA
    PAGAPATAGIGAVRTLMGARPKLADDSLTAANDTLLKPGDVATAPVHAVVTTEQQLFQRGQSLSDAENTLGSWLPPGPAA
    VADYPTVLLSGAWLSQEQTSAASAFARYLHKPEQLAKLARAGFRvSDVKPPSSPVTSFPALPSTLSVGDDSMRATLADTM
    VTASAGVAATIMLDQSMPNDEGGNSRLSNVVAALENRIKAMPPSSVVGLWTFDGREGRTEVPAGPLADPVNGQPRPAALT
    AALGKQYSSGGGAVSFTTLRLIYQEMLANYRVGQANSVLVITAGPHTDQTLDGPGLQDFIRKSADPAKPIAVNIIDFGAD
    PDRATWEAVAQLSGGSYQNLETSASPDLATAVNIFLS
    >BL;Rv1845c, H37Rv2.tab 2095221:2096168 reverse MW:32704
    VSALAFTILAVLLAGPTPALLARATWPLRAPRAANVLWQAIALAAVLSSFSAGIAIASRLLMPGPDGRPTTSFVGAAGRL (SEQ ID NO:489)
    GWPLWAAYITVFALTVLVGARLAVAVVRVATATRRRRAHHRMVVDLVGVGHNGALAQPCARARDLRVLDVAQPLAYCLPG
    VRSRVVVSEGTLTALADAEVAAILTHERAHLRARHDLVLEAFTAVHAAFPRLVRSANALGAVQLLVELLADDAAVRAAGR
    TPLARALVACASGRAPSGALAVGGPSTVLRVRRLSGRGNSAVLSAAAYLAAAAVLVVPTVALAVPWLTQLQRLFIA
    >BL;Rv1846c, H37Rv2.tab 2096186:2096599 reverse MW:15211
    MAKLTRLGDLERAVMDHLWSRTEPQTVRQVHEALSARRDLAYTTVMTVLQRLAKKNLVLQIRDDRAHRYAPVHGRDELVA (SEQ ID NO:490)
    GLMVDALAQAEDSGSRQAALVHFVERVGADEADALRRALAELEAGHGNRPPAGAATET
    >BL;Rv1861, H37Rv2.tab 2109165:2109467 forward MW:10330
    MDITATTEFSAMNLDGKTGIGWLGYIVIGGIAGWLASKIVKGGGSGILMNVVIGVVGAFGAGLVLNALGVDVNHGGYWFT (SEQ ID NO:491)
    FFVALGGAVVLLWIVCMVRKT
    >BL;Rv1871c, H37Rv2.tab 2121498:2121884 reverse MW:14663
    LNAAMNLKREFVNRVQRFVVNPIGRQLPMTMLETIGRKTGQPRRTAVGGRVVDNQFWMVSEHGEHSDYVYNIKANPAVRV (SEQ ID NO:492)
    RIGGRWRSGTAYLLPDDDPRQRLRGLPRLNSAGVRANGTDLLTIRVDLD
    >BL;Rv1883c, H37Rv2.tab 2133234:2133692 reverse MW:17280
    MCLDQVMEGSATVHMAAPPDKIWTLIADVRNTGRFSPETFEAEWLDGATGPALGARFRGHVRRNGIGPVYWTVCEPGREF (SEQ ID NO:493)
    GFAVLLGDRPVNNWHYRLTPTADGTEVTESFRLPPSVLTTVYYRVFGGWLRQRRNIRDMTKTLQRIKDLVEAG
    >BL;Rv1891, H37Rv2.tab 2139741:2140145 forward MW:14108
    MIRELVTTAAITGAAIGGAPVAGADPQRYDGDVPGMNYDASLGAPCSSWERFIFGRGPSGQAEACHFPPPNQFPPAETGY (SEQ ID NO:494)
    WVISYPLYGVQQVGAPCPKPQAAAQSPDGLPMLCLGARGWQPGWFTGAGFFPPEP
    >BL;Rv1893, H37Rv2.tab 2140486:2140701 forward MW:7467
    MSFNPKDAVDAVRDIAANAVEKASDIVENAGHIIRGDIAGGASGIVKDSIDIATHAVDRTKEVFTGKTDDEG (SEQ ID NO:495)
    >BL;Rv1906c, H37Rv2.tab 2152428:2152895 reverse MW:15536
    MRLKPAPSPAAAFAVAGLILAGWAGSVGLAGADPEPAPTPKTAIDSDGTYAVGIDIAPGTYSSAGPVGDGTCYWKRMGNP (SEQ ID NO:496)
    DGALIDNALSKKPQVVTIEPTDKAFKTHGCQPWQNTGSEGAAPAGVPGPEAGAQLQNQLGILNGLLGPTGGRVPQP
    >BL;Rv1919c, H37Rv2.tab 2171064:2171525 reverse MW:16803
    MSGRKFSFEVTKTSSAPAATLFRLVTDGGNWATWAKPIVAQSSWARRGDPAPGGIGAIRKLGMWPVFVQEETVEYEQDRR (SEQ ID NO:497)
    HVYKLVGARTPVQDYFGEVVLTPNASGGTDLRWSGSFTEKVRGTGPVMRAALGGAVRFFAGQLVKAAEREAVRR
    >BL;Rv1976c, H37Rv2.tab 2218847:2219251 reverse MW:14997
    VRWIVDGMNVIGSRPDGWWRDRHRANVMLVERLEGWAITKARGDDVTVVFERPPSTAIPSSVVEVAHAPKAAANSADDEI (SEQ ID NO:498)
    VRLVRSGAQPQEIRVVTSDKALTDRVRDLGAAVYPAERFRDLIDPRGSNAARRTQ
    >BL;Rv2050, H37Rv2.tab 2307821:2308153 forward MW:12971
    MADRvLRGSRLGAVSYETDRNHDLAPRQIARYRTDNGEEFEVPFADDAEIPGTWLCRNGMEGTLIEGDLPEPKKVKPPRT (SEQ ID NO:499)
    HWDMLLERRSIEELEELLKERLELIRSRRRG
    >BL;Rv2054, H37Rv2.tab 2313125:2313835 forward MW:25183
    MTTIEIDAPAGPIDALLGLPPGQGPWPGVVVVHDAVGYVPDNKLISERIARAGYVVLTPNMYARGGRARCITRVFRELLT (SEQ ID NO:500)
    KRGRALDDILAARDHLLANPECSGRVGIVGFCMGGQFALVLSPRGFGATAPFYGTPLPRHLSETLNGACPIVASFGTRDP
    LGIGAANRLRKVTAAKNIPADIKSYPGAGHSFANKLPGQPLVRIAGFGYNEAATEDAWRRVFEFFGQHLRAGSPGEP
    >BL;Rv2061c, H37Rv2.tab 2316684:2317085 reverse MW:14782
    VTPTFSDLAEAQYLLLTTFTKDGRPKPVPIWAALDTDRGDRLLVITEKKSWKVKRIRNTPRVTLATCTLRGRPTSEAVEA (SEQ ID NO:501)
    TAAILDESQTGAVYDAIVKRYGIQGKLFTFVSKLRGGMRNNIGLELKVAESETG
    >BL;Rv2091c, H37Rv2.tab 2348561:2349292 reverse MW:26019
    MSGPQGSDPRQPWQPPGQGADHSSDPTVAAGYPWQQQPTQEATWQAPAYTPQYQQPADPAYPQQYPQPTPGYAQPEQFGA (SEQ ID NO:502)
    QPTQLGVPGQYGQYQQPGQYGQPGQYGQPGQYAPPGQYPGQYGPYGQSGQGSKRSVAVIGGVIAVMAVLFIGAVLILGFW
    APGFFVTTKLDVIKAQAGVQQVLTDETTGYGAKNVKDVKCNNGSDPTVKKGATFECTVSIDGTSKRVTVTFQDNKGTYEV
    GRPQ
    >BL;Rv2111c, H37Rv2.tab 2370601:2370792 reverse MW:6944
    MAQEQTKRGGGGGDDDDIAGSTAAGQERREKLTEETDDLLDEIDDVLEENAEDFVRAYVQKGGQ (SEQ ID NO:503)
    >BL;Rv2125, H372V2.tab 2386293:2387168 forward MW:31808
    VTPSEGNAPLPELHNTVVVAAFEGWNDAGDAAGDAVAHLAASWQALPIVEIDDEAYYDYQVNRPVIRQVDGVTRELQWPA (SEQ ID NO:504)
    MRISHCRPPGSDRDVVLMCGVEPNMRWRTFCDELLAVIDKLNVDTVVILGALLADTPHTRPVPVSGAAYSAASARQFGLQ
    ETRYEGPTGIAGVFQSACVGAGIPAVTFWAAVPHYVSHPPNPKATIALLRRvEDVLDVEVPLADLPAQAEAWEREITETI
    AEDHELAEYVQTLEQHGDAAVDMNEALGNIDGDALAAEFERYLRRRRPGFGR
    >BL;Rv2133c, H37Rv2.tab 2393854:2394639 reverse MW:28284
    VLADGELTVLGRIRSASNATFLCESTLGLRSLHCVYKPVSGERPLWDFPDGTLAGRELSAYLVSTQLGWNLVPHTIIRDG (SEQ ID NO:505)
    PAGIGMLQLWVQQPGDAVDSDPLPGPDLVDLFPAHRPRPGYLPVLRAYDYAGDEVVLMHADDIRLRRMAVFDVLINNADR
    KGGHILCGIDGQVYGVDHGLCLHVENKLRTVLWGWAGKPIDDQILQAVAGLADALGGPLAEALAGRIAAAEIGALRRRAQ
    SLLDQPVMPGPNGHRPIPWPAF
    >BL;Rv2134c, H37Rv2.tab 2394653:2395237 reverse MW:21217
    MARAIHVFRTPDRFVAGTVGQPGNRTFYLQAVHDSRvVSVVLEKQQVAVLAERIGALLFEVNRRFGTPVPPEPTEIDDLS (SEQ ID NO:506)
    PLIMPVDAEFRVGTMGLGWDSEAQSVVVELLAVTDAEFDASVVLDDTEEGPDAVRVFLTPESARQFATRSYRVISAGRPP
    CPLCDEPLDPEGHICARTNGYRRDVLLGSGDDPAG
    >BL;Rv2137c, H37Rv2.tab 2396905:2397315 reverse MW:14965
    MRNMKSTSHESESGKLLSISSCRPREMVLQRYSLGMTVTADRHLADKREEFAVEDISTGIFASGYGQVGDGRSFSFHIEH (SEQ ID NO:507)
    RSLVVEIYRPRvAGPVPQAEDVVAMAVRGLVDIDLTDERSLAAAVRDSVASAAPVSR
    >BL;Rv2144c, H37Rv2.tab 2404168:2404521 reverse MW:12027
    MLIIALVLALIGLLALVFAVVTSNQLVAWVCIGASVLGVALLIVDALRERQQGGADEADGAGETGVAEEADVDYPEEAPE (SEQ ID NO:508)
    ESQAVDAGVIGSEEPSEEASEATEESAVSADRSDDSAK
    >BL;Rv2146c, H37Rv2.tab 2405669:2405956 reverse MW:10804
    LVVFFQILGFALFIFWLLLIARvVVEFIRSFSRDWRPTGVTVVILEIIMSITDPPVKVLRRLIPQLTIGAVRFDLSIMVL (SEQ ID NO:509)
    LLVAFIGMQLAFGAAA
    >BL;Rv2147c, H37Rv2.tab 2406121:2406843 reverse MW:27629
    VNSHCSHTFITDNRSPRARRGHAMSTLHKVKAYFGMAPMEDYDDEYYDDRAPSRGYARPRFDDDYGRYDGRDYDDARSDS (SEQ ID NO:510)
    RGDLRGEPADYPPPGYRGGYADEPRFRPREFDRAEMTRPRFGSWLRNSTRGALANDPRRMAMMFEDGHPLSKITTLRPKD
    YSEARTIGERFRDGSPVIMDLVSMDNADAKRLVDFAAGLAFALRGSFDKVATKVFLLSPADVDVSPEERRRIAETGFYAY
    Q
    >BL;Rv2164c, H37Rv2.tab 2427087:2428238 reverse MW:39647
    MRAKREAPKSRSSDRRRRADSPAAATRRTTTNSAPSRRIRSRAGKTSAPGRQARVSRPGPQTSPMLSPFDRPAPAKNTSQ (SEQ ID NO:511)
    AKARAKARKAKAPKLVRPTPMERLAARLTSIDLRPRTLANKVPFVVLVIGSLGVGLGLTLWLSTDAAERSYQLSNARERT
    RMLQQHKEALERDVREAASAPALAEAARRQGMIPTRDTAHLVQDPDGNWVVVGTPKPADGVPPPPLNTKLPEDPPPPPKP
    AAVPLEVPVRVTPGPDDPAPPARSGPEVLVRTPDGTATLGGATHLPTQAGPQLPGPVPIPGAPGPMPAPPLGAVPSPAPA
    ENPVPLQVGAAPPACLPGPAPVAATPGLSGGSQPMVAPPAPVPANGEQFGPVTAPVPTAPGAPR
    >BL;Rv2169c, H37Rv2.tab 2431568:2431969 reverse MW:14571
    MPLSDHEQRMLDQIESALYAEDPKFASSVRGGGFRAPTARRRLQGAALFIIGLGMLVSGVAFKETMIGSFPILSVFGFVV (SEQ ID NO:512)
    MFGGVVYAITGPRLSGRMDRGGSAAGASRQRRTKGAGGSFTSRMEDRFRRRFDE
    >BL;Rv2170, H37Rv2.tab 2432235:2432852 forward MW:22926
    LAIFLIDLPPSDMERRLGDALTVYVDAMRYPRGTETLRAPMWLEHIRRRGWQAVAAVEVTAAEQAEAADTTALPSAAELS (SEQ ID NO:513)
    NAPMLGVAYGYPGAPGQWWQQQVVLGLQRSGFPRLAIARLMTSYFELTELHILPRAQGRGLGEALARRLLAGRDEDNVLL
    STPETNGEDNRAWRLYRRLGFTDIIRGYHFAGDPRAFAILGRTLPL
    >BL;Rv2172c, H37Rv2.tab 2433634:2434536 reverse MW:33007
    VTLNTIALELVPPNLEGGKERAIEDARKVVQYSAASGLDGRIRHVMMPGMIAEDDDRPIPMQPKLDVLDFWSIIKPELAG (SEQ ID NO:514)
    VHGLCTQVTAFMDEPSLHRRLVDLSDAGMEGIVFVGVPRTMQDGEGSGVAPTDALSLYRQLVANRGVIVIPTRDGEQGRL
    NFKCSRGATYGMTQLLYSDAIVGFLREFARTTEHRPEILLSFGFVPKVETRIGLINWLIQDPGNAAVADEQAFVQKLAGS
    EPARRRRLMVDLYKRVLDGVADLGFPLSIHLEATYGVSAAAFETFAEMLAYWSPAEPGKPD
    >BL;Rv2175c, H37Rv2.tab 2437449:2437886 reverse MW:15743
    MPGRAPGSTLARVGSIPAGDDVLDPDEPTYDLPRvAELLGVPVSKVAQQLREGHLVAVRRAGGVVIPQVFFTNSGQVVKS (SEQ ID NO:515)
    LPGLLTILHDGGYRDTEIMRWLFTPDPSLTITRDGSRDAVSNARPVDALHAHQAREVVRRAQAMAY
    >BL;Rv2179c, H37Rv2.tab 2441814:2442317 reverse MW:19488
    VRYFYDTEFIEDGNTIELISIGVVAEDGREYYAVSTEFDPERAGSWVRTHVLPKLPPPASQLWRSRQQIRLDLEEFLRID (SEQ ID NO:516)
    GTDSIELWAWVGAYDHVALCQLWGPMTALPPTVPRFTRELRQLWEDRGCPRMPPRPRDVHDALVDARDQLRRFRLITSTD
    DAGRGAAR
    >BL;Rv2183c, H37Rv2.tab 2445418:2445810 reverse MW:13322
    VSGAHTDVRPELRKLAQAILDGIDPAVRvAAAMASGGGPGTGKCQQVWCPLCALAALVTGEQHPLLTVIADHSLALLEVI (SEQ ID NO:517)
    RAIVDDIDRSAKPPPEGPPGGGQTGASGGENTNGEGSMKSHYQAIPVTIEE
    >BL;Rv2185c, H37Rv2.tab 2447069:2447500 reverse MW:16292
    VADKTTQTIYIDADPGEVMKAIADIEAYPQWISEYKEVEILEADDEGYPKRARMLMDAAIFKDTLIMSYEWPEDRQSLSW (SEQ ID NO:518)
    TLESSSLLKSLEGTYRLAPKGSGTEVTYELAVDLAVPMIGMLKRKAERRLIDGALKDLKKRVEG
    >BL;Rv2186c, H37Rv2.tab 2447608:2447994 reverse MW:14573
    MNSIQIADETYVAADAARvSAAVADRCSWRRWWPDLRLQVTEDRADKGIRWTVTGALTGTMEIWLEPSMDGVLLHYFLHA (SEQ ID NO:519)
    EPTGVAAWQLARMNLARMTHHRRVAGKKMAFEVKTVLERSRPIGVSPVT
    >BL;Rv2197C, N37Rv2.tab 2461507:2462148 reverse MW:22480
    MVSRYSAYRRGPDVISPDVIDRILVGACAAVWLVFTGVSVAAAVALMDLGRGFHEMAGNPHTTWVLYAVIVVSALVIVGA (SEQ ID NO:520)
    IPVLLRARRMAEAEPATRPTGASVRGGRSIGSGHPAKRAVAESAPVQHADAFEVAAEWSSEAVDRIWLRGTVVLTSAIGI
    ALIAVAAATYLMAVGHDGPSWISYGLAGVVTAGMPVIEWLYARQLRRVVAPQSS
    >BL;Rv2199c, H37Rv2.tab 2463236:2463652 reverse MW:14865
    MHIEARLFEFVAAFFVVTAVLYGVLTSMFATGGVEWAGTTALALTGGMALIVATFFRFVARRLDSRPEDYEGAEISDGAG (SEQ ID NO:521)
    ELGFFSPHSWWPIMVALSGSVAAVGIALWLPWLIAAGVAFILASAAGLVFEYYVGPEKH
    >BL;Rv2203, H37Rv2.tab 2468231:2468920 forward MW:24371
    MPGPHSPNPGVGTNGPAPYPEPSSHEPQALDYPHDLGAAEPAFAPGPADDAALPPAAYPGVPPQVSYPKRRHKRLLIGIV (SEQ ID NO:522)
    VALALVSAMTAAIIYGVRTNGANTAGTFSEGPAKTAIQGYLNALENRDVDTIVRNALCGIHDGVRDKRSDQALAKLSSDA
    FRKQFSQVEVTSIDKIVYWSQYQAQVLFTMQVTPAAGGPPRGQVQGIAQLLFQRGQVLVCSYVLRTAGSY
    >BL;Rv2206, H37Rv2.tab 2470958:2471329 forward MW:13988
    MMAGEEAYLLPRDRGPVRRYVRDVVDSRRNLLGLFMPSALTLLFVMFAVPQVQFYLSPAMLILLALMTIDAIILGRKVGR (SEQ ID NO:523)
    LVDTKFPSNTESRWRLGLYAAGRASQIRRLRAPRPQVERGGDVG
    >BL;Rv2219, H37Rv2.tab 2486235:2486984 forward MW:26864
    MAKPRNAAESKAAKAQANAARKAAARQRRAQLWQAFTLQRKEDKRLLPYMIGAFLLIVGASVGVGVWAGGFTMFTMIPLG (SEQ ID NO:524)
    VLLGALVAFVIFGRRAQRTVYRKAEGQTGAAAWALDNLRGKWRVTPGVAATGNLDAVHRVIGRPGVIFVGEGSAARVKPL
    LAQEKKRTARLVGDVPIYDIIVGNGDGEVPLAKLERHLTRLPANITVKQMDTVESRLAALGSRAGAGVMPKGPLPTTAKM
    RSVQRTVRRK
    >BL;Rv2229c, H37Rv2.tab 2502738:2503472 reverse MW:26851
    MKAGVAQQRSLLELAKLDAELTRIAHRATHLPQRAAYQQVQAEHNAANDRMAALRIAAEDLDGQVSRFESEIDAVRKRGD (SEQ ID NO:525)
    RDRSLLTSGATDAKQLADLQHELDSLQRRQASLEDALLEVLERREELQAQQTAESRALQALRADLAAAQQALDEALAEID
    QARHQHSSQRDMLTATLDPELAGLYERQRAGGGPGAGRLQGHRCGACRIEIGRGELAQISAAAEDEVVRCPECGAILLRL
    EGFEE
    >BL;Rv2235, H37Rv2.tab 2507637:2508449 forward MW:29762
    MPRLAFLLRPGWLALALVVVAFTYLCFTVLAPWQLGKNAKTSRENQQIRYSLDTPPVPLKTLLPQQDSSAPDAQWRRVTA (SEQ ID NO:526)
    TGQYLPDVQVLARLRvVEGDQAFEVLAPFVVDGGPTVLVDRGYVRPQVGSHVPPIPRLPVQTVTITARLRDSEPSVAGKD
    PFVRDGFQQVYSINTGQVAALTGVQLAGSYLQLIEDQPGGLGVLGVPHLDPGPFLSYGIQWISFGILAPIGLGYFAYAEI
    RARRREKAGSPPPDKPMTVEQKLADRYGRRR
    >BL;Rv2239c, H37Rv2.tab 2511179:2511652 reverse MW:16962
    MPIATVCTWPAETEGGSTVVAADHASNYARKLGIQRDQLIQEWGWDEDTDDDIRAAIEEACGGELLDEDTDEVIDVVLLW (SEQ ID NO:527)
    WRDGDGDLVDTLMDAIGPLAEDGVIWVVTPKTGQPGHVLPAEIAEAAPTAGLMPTSSVNLGNWSASRLVQPKSRAGKR
    >BL;Rv2242, H37Rv2.tab 2515304:2516545 forward MW:44606
    VNDNQLAPVARPRSPLELLDTVPDSLLRRLKQYSGRLATEAVSAMQERLPFFADLEASQRASVALVVQTAVVNFVEWMHD (SEQ ID NO:528)
    PHSDVGYTAQAFELVPQDLTRRIALRQTVDMVRVTMEFFEEVVPLLARSEEQLTALTVGILKYSRDLAFTAATAYADAAE
    ARGTWDSRMEASVVDAVVRGDTGPELLSRAAALNWDTTAPATVLVGTPAPGPNGSNSDGDSERASQDVRDTAARHGRAAL
    TDVHGTWLVAIVSGQLSPTEKFLKDLLAAFADAPVVIGPTAPMLTAAHRSASEAISGMNAVAGWRGAPRPVLARELLPER
    ALMGDASAIVALHTDVMRPLADAGPTLIETLDAYLDCGGAIEACARKLFVHPNTVRYRLKRITDFTGRDPTQPRDAYVLR
    VAATVGQLNYPTPH
    >BL;Rv2256c, H37Rv2.tab 2529344:2529874 reverse MW:18896
    VEPKEQQMRASNQFADVTSGVVYIHASPAAVCPHVEWALSSTLQAKANLVWTPQPALPPQLRAVTNWVGPVGTGARLANA (SEQ ID NO:529)
    LRSWSVLRFEVTEDPSPGVDGQRFSHTPQLGLWSGAMSANGDIMVGEMRLRAMMAQGADTLAAELDSVLGTAWDQALEVY
    RDGGDAGEVTWLSRGVG
    >BL;Rv2257c, H37Rv2.tab 2530007:2530822 reverse MW:28385
    MTALEVLGGWPVPAAAAAVIGPAGVLATHGDTARvFALASVTKPLVARAAQVAVEEGVVNLDTPAGPPGSTVRHLLAHTS (SEQ ID NO:530)
    GLAMHSDQALARPGTRRMYSNYGFTVLAESVQRESGIEFGRYLTEAVCEPLGMVTTRLDGGPAAAGFGATSTVADLAVFA
    GDLLRPSTVSAQMHADATTVQFPGLDGVLPGYGVQRPNDWGLGFEIENSKSPHWTGECNSTRTFGHFGQSGGFIWVDPKA
    DLALVVLTARDFGDWALDLWPAISDAVLAEYT
    >BL;Rv2342, H37Rv2.tab 2620272:2620526 forward MW:9187
    LIGYVAVLGLGYVLGAKAGRRRYEQIASTYRALTGSPVARSMIEGGRRKIANRISPDAGFVTLAEIDNQTAVVQRGVERQ (SEQ ID NO:531)
    PKTAR
    >BL;Rv2347c, H37Rv2.tab 2626226:2626519 reverse MW:10977
    MATRFMTDPHAMRDMAGRFEVHAQTVEDEARRMWASAQNISGAGWSGMAEATSLDTMAQMNQAFRNIVNMLHGVRDGLVR (SEQ ID NO:532)
    DANNYEQQEQASQQILSS
    >BL;Rv2365c, H37Rv2.tab 2646750:2647088 reverse MW:11130
    MMRRPITLAEQLDAEDAKLVVLARAAMARAEAGAGAAVRDVDGRTYAAAPVALSALELTGLQAAVAAAVSSGATGLQAAV (SEQ ID NO:533)
    LVAGSVDDPGIAAVRELAPTAAIIVTDRAGNPL
    >BL;Rv2376c, H37Rv2.tab 2655612:2656115 reverse MW:16635
    MKMVKSIAAGLTAAAAIGAAAAGVTSIMAGGPVVYQMQPVVFGAPLPLDPASAPDVPTAAQLTSLLNSLADPNVSFANKG (SEQ ID NO:534)
    SLVEGGIGGTEARIADHKLKKAAEHGDLPLSFSVTNIQPAAAGSATADVSVSGPKLSSPVTQNVTFVNQGGWMLSRASAN
    ELLQAAGN
    >BL;Rv2413c, H37Rv2.tab 2710354:2711301 reverse MW:33113
    LHLVLGDEELLVERAVADVLRSARQRAGTADVPVSRMRAGDVGAYELAELLSPSLFAEERIVVLGAAAEAGKDAAAVIES (SEQ ID NO:535)
    AAADLPAGTVLVVVHSGGGRAKSLANQLRSMGAQVHPCARITKVSERADFIRSEFASLRvKVDDETVTALLDAVGSDVRE
    LASACSQLVADTGGAVDAAAVRRYHSGKAEVRGFDIADKAVAGDVAGAAEALRWAMMRGEPLVVLADALAEAVHTIGRVG
    PQSGDPYRLAAQLGMPPWRvQKAQKQARRWSRDTVATAMRLVAELNANVKGAVADADYALESAVRQVAELVADRGR
    >BL;Rv2446c, H37Rv2.tab 2745770:2746138 reverse MW:13311
    MTDRSREPADPWKGFSAVMAATLILEAIVVLLAIPVVDAVGGGLRPASLGYLVGLAVLLILLTGLQRRPWAIWVNLGAQP (SEQ ID NO:536)
    VLVAGFAVYPGVCFIGVLFAALWVLIAYLRAEVRRRRDYRVSQ
    >BL;Rv2466c, H37Rv2.tab 2768264:2768884 reverse MW:23035
    MLEKAPQKSVADFWFDPLCPWCWITSRWILEVAKVRDIEVNFHVMSLAILNENRDDLPEQYREGMARAWGPVRVAIAAEQ (SEQ ID NO:537)
    AHGAKVLDPLYTAMGNRIHNQGNHELDEVITQSLADAGLPAELAKAATSDAYDNALRKSHHAGMDAVGEDVGTPTIHVNG
    VAFFGPVLSKIPRGEEAGKLWDASVTFASYPHFFELKRTRTEPPQFD
    >BL;Rv2468c, H37Rv2.tab 2771647:2772147 reverse MW:17288
    MTHRSSRLEVGPVARGDVATIEHAELPPGWVLTTSGRISGVTEPGELSVHYPFPIADLVALDDALTYSSRACQVRFAIYL (SEQ ID NO:538)
    GDLGRDTAARAREILGKVPTPDNAVLLAVSPNQCAIEVVYGSQVRGRGAESAAPLGVAAASSAFEQGELVDGLISAIRVL
    SAGIAPG
    >BL;Rv2476c, H37Rv2.tab 2777391:2782262 reverse MW:176902
    MTIDPGAKQDVEAWTTFTASADIPDWISKAYIDSYRGPRDDSSEATKAAEASWLPASLLTPAMLGAHYRLGRHRAAGESC (SEQ ID NO:539)
    VAVYRADDPAGFGPALQVVAEHGGMLMDSVTVLLHRLGIAYAAILTPVFDVHRSPTGELLRIEPKAEGTSPHLGEAWMHV
    ALSPAVDHKGLAEVERLLPKVLADVQRVATDATALIATLSELAGEVESNAGGRFSAPDRQDVGELLRWLGDGNFLLLGYQ
    RCRVADGMVYGEGSSGMGVLRGRTGSRPRLTDDDKLLVLAQARVGSYLRYGAYPYAIAVREYVDGSVVEHRFVGLFSVAA
    MNADVLEIPTISRRVREALAMAESDPSHPGQLLLDVIQTVPRPELFTLSAQRLLTMARAVVDLGSQRQALLFLRADRLQY
    FVSCLVYMPRDRYTTAVRMQFEDILVREFGGTRLEFTARVSESPWALMHFMVRLPEVGVAGEGAAAPPVDVSEANRIRIQ
    GLLTEAARTWADRLIGAAAAAGSVGQADAMHYAAAFSEAYKQAVTPADAIGDIAVITELTDDSVKLVFSERDEQGVAQLT
    WFLGGRTASLSQLLPMLQSMGVVVLEERPFSVTRPDGLPVWIYQFKISPHPTIPLAPTVAERAATANRFAEAVTAIWHGR
    VEIDRFNELVMRAGLTWQQVVLLRAYAKYLRQAGFPYSQSYIESVLNEHPATVRSLVDLFEALFVPVPSGSASNRDAQAA
    AAAVAADIDALVSLDTDRILRAFASLVQATLRTNYFVTRQGSARCRDVLALKLNAQLIDELPLPRPRYEIFVYSPRVEGV
    HLRFGPVARGGLRWSDRRDDFRTEILGLVKAQAVKNAVIVPVGAKGGFVVKRPPLPTGDPAADRDATRAEGVACYQLFIS
    GLLDVTDNVDHATASVNPPPEVVRRDGDDAYLVVAADKGTATFSDIANDVAKSYGFWLGDAFASGGSVGYDHKAMGITAR
    GAWEAVKRHFREIGIDTQTQDFTVVGIGDMSGDVFGNGMLLSKHIRLIAAFDHRHIFLDPNPDAAVSWAERRRMFELPRS
    SWSDYDRSLISEGGGVYSREQKAIPLSAQVRAVLGIDGSVDGGAAEMAPPNLIRAILRAPVDLLFNGGIGTYIKAESESD
    ADVGDRANDPVRVNANQVRAKVIGEGGNLGVTALGRVEFDLSGGRINTDALDNSAGVDCSDHEVNIKILIDSLVSAGTVK
    ADERTQLLESMTDEVAQLVLADNEDQNDLMGTSRANAASLLPVHAMQIKYLVAERGVNRELEALPSEKEIARRSEAGIGL
    TSPELATLMAHVKLGLKEEVLATELPDQDVFASRLPRYFPTALRERFTPEIRSHQLRREIVTTMLINDLVDTAGITYAFR
    IAEDVGVTPIDAVRTYVATDAIFGVGHIWRRIRAANLPIALSDRLTLDTRRLIDRAGRWLLNYRPQPLAVGAEINRFAAM
    VKALTPRMSEWLRGDDKAIVEKTAAEFASQGVPEDLAYRVSTGLYRYSLLDIIDIADIADIDAAEVADTYFALMDRLGTD
    GLLTAVSQLPRHDRWHSLARLAIRDDIYGALRSLCFDVLAVGEPGESSEQKIAEWEHLSASRVARARRTLDDIRASGQKD
    LATLSVAARQIRRMTRTSGRGISG
    >BL;Rv2484c, H37Rv2.tab 2791022:2792494 reverse MW:52309
    MAESGESPRLSDELGPVDYLMHRGEANPRTRSGIMALELLDGTPDWDRFRTRFENASRRVLRLRQKVVVPTLPTAAPRWV (SEQ ID NO:540)
    VDPDFNLDFHVRRVRVSGPATLREVLDLAEVILQSPLDISRPLWTATLVEGMADGRAAMLLHVSHAVTDGVGGVEMFAQI
    YDLERDPPPRSTPPQPIPEDLSPNDLMRRGINHLPIAVVGGVLDALSGAVSMAGRAVLEPVSTVSGILGYARSGIRVLNR
    AAEPSPLLRRRSLTTRTEAIDIRLADLHKAAKAGGGSINDAYLAGLCGALRRYHEALGVPISTLPMAVPVNLRAEGDAAG
    GNQFTGVNLAAPVGTIDPVARMKKIRAQMTQRRDEPAMNIIGSIAPVLSVLPTAVLEGITGSVIGSDVQASNVPVYPGDT
    YLAGAKILRQYGIGPLPGVAMMVVLISRGGWCTVTVRYDRASVRNDELFAQCLQAGFDEILALAGGPAPRVLPASFDTQG
    AGSVPRSVSGS
    >BL;Rv2507, H37Rv2.tab 2822438:2823256 forward MW:28520
    MNDPRRPQRFGPPLSGYGPTGPQVPPNPPTADPAYADQSPYASTYGGYVSPPWSPGGPPPRPPQWPPGPHEASPTQQLPQ (SEQ ID NO:541)
    YWQYDQPPPGGFPPDGLTPPPPQGPRTPRWLWFAAGSAVLLVVALVIALVIANGSVKKQTAIEPLPPMPGPSPTRPTTTT
    PTPPSPSAAPAPTTTTGTPSETVAGAMQTVVYDVTGEGRAISITYMDSGNVIQTEFNVALPWRKEVSLSKSSLHPASVTI
    VNIGHNVTCSVTVAGVQVRQRTGAGLTICDAPS
    >BL;Rv2520c, H37Rv2.tab 2837391:2837615 reverse MW:8341
    VVDRDPNTIKQEIDQTRDQLAATIDSLAERANPRRLADDAKTRVIAFLRKPIVTVSLVGIGSVVVVVVIHKIRNR (SEQ ID NO:542)
    >BL;Rv2525c, H37Rv2.tab 2849855:2850574 reverse MW:25369
    MSVSRRDVLKFAAATPGVLGLGVVASSLRAAPASAGSLGTLLDYAAGVIPASQIRAAGAVGAIRYVSDRRPGGAWMLGKP (SEQ ID NO:543)
    IQLSEARDLSGNGLKIVSCYQYGKGSTADWLGGASAGVQHARRGSELHAAAGGPTSAPIYASIDDNPSYEQYKNQIVPYL
    RSWESVIGHQRTGVYANSKTIDWAVNDGLGSYFWQHNWGSPKGYTHPAAHLHQVEIDKRKVGGVGVDVNQILKPQFGQWA
    >BL;Rv2536, H37Rv2.tab 2860452:2861141 forward MW:24626
    MTNWMLRGLAFAAAMVVLRLFQGALINAWQMLSGLISLVLLLLFAIGGVVWGVMDGRADAKASPDPDRRQDLAMTWLLAG (SEQ ID NO:544)
    LVAGALSGAVAWLISLFYKAIYTGGPINELTTFAAFTALIVFLVGIVGVAVGRWLVDRQLAKAPVRHHGLAAEHERAADT
    DVFSAVRADDSPTGEMQVAQPEAQTAAVATVEREAPTEVIRTTESDTPTEVIRTDTEADQTKPGDEPKKD
    >BL;Rv2588C, H37Rv2.tab 2915849:2916193 reverse MW:12966
    MESFVLFLPFLLIMGGFMYFASRRQRRAMQATIDLHDSLQPGERVHTTSGLEATIVAIADDTIDLEIAPGVVTTWMKLAI (SEQ ID NO:545)
    RDRILPDDDIDEELNEDLDKDVDDVAGERRVTNDS
    >BL;Rv2609c, H37Rv2.tab 2936813:2937865 reverse MW:38096
    MTWLVLAGAVLLVVLVAFGAWGYQTANRLNRLNVRYDLSWQSLDSALARRAVVARAVAIDAYGGAPQGSRLAALADAAEG (SEQ ID NO:546)
    APRHARENAENELSAALANVNPASLPAALIAELADAEARVLLARRFHNDAVRDTLALGERRLVRLLRLGGTAVLPTYFEI
    VERPHALVNGDQGASGRRTSARVVLLDDSGAVLLLCGSDPANPAFRDGAAPKWWFTVGGQVRPGERLAQAAARELAEETG
    LRVAPADMIGPIWRRDEVFEFNGSLIDSEEFYLVHRTRRFEPAVQGRTELERRYIRDARWCDANDIAQLVAAGERWPLQ
    LGELLPAANRLVDVALDNGAARDAGVPQPIR
    >BL;Rv2673, H37Rv2.tab 2989290:2990588 forward MW:48883
    VYGALVTAADSIRTGLGASLLAGFRPRTGAPSTATILRSALWPAAVLSVLHRSIVLTTNGNITDDFKPVYRAVLNFRRGW (SEQ ID NO:547)
    DIYNEHFDYVDPHYLYPPGGTLLMAPFGYLPFAPSRYLFISINTAAILVAAYLLLRMFNFTLTSVAAPALILAMFATETV
    TNTLVFTNINGCILLLEVLFLRWLLDGRASRQWCGGLAIGLTLVLKPLLGPLLLLPLLNRQWRALVAAVVVPVVVNVAAL
    PLVSDPMSFFTRTLPYILGTRDYFNSSILGNGVYFGLPTWLILFLRILFTAITFGALWLLYRYYRTGDPLFWFTTSSGVL
    LLWSWLVMSLAQGYYSMMLFPFLMTVVLPNSVIRNWPAWLGVYGFMTLDRWLLFNWMRWGRALEYLKITYGWSLLLIVTF
    TVLYFRYLDAKADNRLDGGIDPAWLTPEREGQR
    >BL;Rv2680, H37Rv2.tab 2996104:2996733 forward MW:22555
    LTSAGDDAERSDEEERRLTSAEPALFREAVAANNAVTVRPEIELGPIRPPQRLAPYSYALGAEIKHPELDVIPERSEGDA (SEQ ID NO:548)
    FGRLIMLYDPDGSDAWDGTIRLVAYVQADLDSSEAVDPLLPEVAWSWLVDALTARTDQVRALGGTVTATTSVRYGDISGP
    PRAHQLELRASWTATTPDLGAHVQAFCDVLEHAAGLPPAGVTDLGSRSRA
    >BL;Rv2683, H37Rv2.tab 3000111:3000605 forward MW:17729
    MKVNIDPTAPTFATYRRDMRAEQMAEDYPVVSIDSDALDAARMLAEHRLPGLLVTAGAGKQYAVLPASQVVRFIVPRYVQ (SEQ ID NO:549)
    DDPLLAGVLNESTADRCAERLSGKKVRDVLPDHLVEVPPANADDTIIEVAAVMARLRSPLLAVVKDGSLLGVVTASRLLA
    AALKT
    >BL;Rv2695, H37Rv2.tab 3011915:3012619 forward MW:24154
    MAVDLDGVTTVLLPGTGSDNDYVRRAFSAPLRRAGAVLVTPVPHPGRLIDGYRAALDDAARDGPVVVGGVSLGAAVAAAW (SEQ ID NO:550)
    ALEHPDRAVAVLAALPAWTGEPELAPAAQAARYTAARLRCDGLAATTTRMRASSPVWLAEELTRSWRVQWPELPDAMEEA
    AAYVAPSRAELARLVAPLAVAAAVDDPIHPLQVAADWVSVAPHAALRTVTLDEIGADAAALGSACLAALAEVSGA
    >BL;Rv2696c, H37Rv2.tab 3012831:3013607 reverse MW:27216
    MAFGRRTGKDGGKRKAGHAPVQPADEHVRPEDTVVASAAAASGVEDQEELQGPFDIDDFDDPSVAVLARLDLGSVLIPMP (SEQ ID NO:551)
    AAGQVQVELTESGVPSAVWVITPNGRYSIAAYAAPKTGGLWREVAGELADSLRKDSAKVSIKDGPWGREVIGIAAGVVRF
    IGVDGYRWNIRCVVNGPQETVDALTEEAREALADTVVRRGDTPLPVRTPLPVHLPEPMAAQLREAAAAQADTQRQAAAGV
    ARRGAQGSAMQQLRSTTGG
    >BL;Rv2698, H37Rv2.tab 3014172:3014654 forward MW:17530
    VSGTRLAPHSVRYRERLWVPWWWWPLAFALAALIAFEVNLGVAALPDWVPFATLFTVAAGTLLWLGRVEIRVTAGSADGA (SEQ ID NO:552)
    GVKLWAGPAHLPVAVIARSAEIPATAKSAALGRQLDPAAYVLHRAWVGPMVLVVLDDPNDPTPYWLVSCRHPERVLSALR
    S
    >BL;Rv2699c, H37Rv2.tab 3014665:3014964 reverse MW:10915
    MPTDYDAPRRTETDDVSEDSLEELKARRNEAASAVVDVDESESAESFELPGADLSGEELSVRVVPKQADEFTCSSCFLVQ (SEQ ID NO:553)
    HRSRLASEKNGVMICTDCAA
    >BL;Rv2700, H37Rv2.tab 3015202:3015849 forward MW:22627
    VVAQITEGTAFDKHGRPFRRRNPRPAIVVVAFLVVVTCVMWTLALTRPPDVREAAVCNPPPQPAGSAPTNLGEQVSRTDM (SEQ ID NO:554)
    TDVAPAKLSDTKVHVLNASGRGGQAADIAGALQDLGFAQPTAANDPIYAGTRLDCQGQIRFGTAGQATAAALWLVAPCTE
    LYHDSRADDSVDLALGTDFTTLAHNDDIDAVLANLRPGATEPSDPALLAKIHANSC
    >BL;Rv2708c, H37Rv2.tab 3021550:3021795 reverse MW:8962
    MSGMQTQTIERTDADERVDDGTGSDTPKYFHYVKKDKIAESAVMGSHVVALCGEVFPVTRAPKPGSPVCPDCKRIYDTLK (SEQ ID NO:555)
    KG
    >BL;Rv2709, H37Rv2.tab 3021838:3022281 forward MW:16810
    MWDSRVNKHGLRLGFNGQFDDFDDFDDKGRPVLITAAAPSYEVEHRTRVRKYLTLMAFRVPALILAAIAYGAWHNGLISL (SEQ ID NO:556)
    LIVAASVPLPWMAVLIANDRPPRRADEPRRFDVARRRIPLFPTAERPALEPRRQPAERSAPRGFADHG
    >BL;Rv2714, H37Rv2.tab 3027064:3028035 forward MW:35520
    MARDQGADEAREYEPGQPGMYELEFPAPQLSSSDGRGPVLVHALEGFSDAGHAIRLAAAHLKAALDTELVASFAIDELLD (SEQ ID NO:557)
    YRSRRPLMTFKTDHFTHSDDPELSLYALRDSIGTPFLLLAGLEPDLKWERFITAVRLLAERLGVRQTIGLGTVPMAVPHT
    RPITMTAHSNNRELISDFQPSISEIQVPGSASNLLEYRMAQHGHEVVGFTVHVPHYLTQTDYPAAAQALLEQVAKTGSLQ
    LPLAVLAEAAAEVQAKIDEQVQASAEVAQVVAALERQYDAFIDAQENRSLLTRDEDLPSGDELGAEFERFLAQQAEKKSD
    DDPT
    >BL;Rv2715c, H37Rv2.tab 3031042:3031536 reverse MW:17324
    MTPVRPPHTPDPLNLRGPLDGPRWRRAEPAQSRRPGRSRPGGAPLRYHRTGVGMSRTGHGSRPVPPATTVGLALLAAAIT (SEQ ID NO:558)
    LWLGLVAQFGQMITGGSADGSADSTGRvPDRLAVVRvETGESLYDVAVRvAPNAPTRQVADRIRELNGLQTPALAVGQTL
    IAPVG
    >BL;Rv2722, H37Rv2.tab 3034634:3034879 forward MW:9077
    MPCLARQPVDLPPWAGPRCGPYCPRARITLLQRTTIAKSNRKYYENGYPADVKLMPGHAAVVSNRAAARAGFALPCRKRQ (SEQ ID NO:559)
    PD
    >BL;Rv2728c, H37Rv2.tab 3040768:3041460 reverse MW:23455
    VLSAIGIVPSAPVLVPELAGAAAAELADLGAAVIAAASLLPKSWIAVGTGRADDVVRPTDVGTFAGFGADVRVGLAPQDG (SEQ ID NO:560)
    DGVAVPVELPLCALLTAWVRGQARPEARAQVHVYASDHGSDAAVARGRQLRADIDREPDPIGVLVVADGLNTLTPRAPGG
    YDPDGAGMQRALDDALASGDLAVLTRLPAQVLGRvAFQVLAGLAEPGPRSAKEFYRGAPHGVGYFAGVWQP
    >BL;Rv2732c, H37Rv2.tab 3044377:3044988 reverse MW:21989
    MMSHEHDAGDLDALRAEIEAAERRvAREIEPGARALVVAILVFVLLGSFILFHTGSVRGWDVLFSSHGAGRAAVALPSRV (SEQ ID NO:561)
    FAWLALVFGVGFSMLALLTRRWALAWVALAGSANASGTGLLAVWSRQTVAAGHPGPGIGLIVAWITAIVLTFXWAQVVWS
    RTIVQLAAEERRRRVVAQQQCKTLLDHVQTDSEAGTTPDRGTDR
    >BL;Rv2738c, H37Rv2.tab 3051808:3052011 reverse MW:7551
    MLAGVRLTEFHERVALHFGAAYGSSVLLDHVLTGFDGRSAAQAIEDGVEPRDVWRALCADFDVPHDRW (SEQ ID NO:562)
    >BL;Rv2740, H37Rv2.tab 3053232:3053678 forward MW:16593
    MAELTETSPETPETTEAIRAVEAFLNALQNEDFDTVDAALGDDLVYENVGFSRIRGGRRTATLLRRMQGRVGFEVKIHRI (SEQ ID NO:563)
    GADGAAVLTERTDALIIGPLRvQFWVCGVFEVDDGRITLWRDYFDVYDMFKGLLRGLVALVVPSLKATL
    >BL;Rv2771c, H37Rv2.tab 3080583:3081032 reverse MW:16000
    VRRLLIVHHTPSPHMQEMFEAVVSGATDPEIEGVEVVRRPALTVSPIEMLEADGYLLGTPANLGYISGALKHAFDVCYYL (SEQ ID NO:564)
    CLDTTRGRSFGAYIHGNEGTEGAERAVDAITTGLGWVQAAETVVVMGKPSKADIEACWNLGATVAAQLMG
    >BL;Rv2772c, H37Rv2.tab 3081121:3081591 reverse MW:17326
    MTRRTLYVQLIIAFMCVAMVAYLVMLGRvAVAMIGSGRAAAAGLGLALLILPVIGLWANIATLRAGFAYQRLARLIAEDG (SEQ ID NO:565)
    LDIDASALPRRASGRIQRDAADALFAAVRTELEDDADDWRRWYRLARAYDYAGDRRRAREANKTALQLEGRARPGAR
    >BL;Rv2795c, H37Rv2.tab 3103939:3104910 reverse MW:37568
    VTWKGSGQETVGAEPTLWAISDLHTGHLGNKPVAESLYPSSPDDWLIVAGDVAERTDEIRWSLDLLRRRFAKVIWVPGNH (SEQ ID NO:566)
    ELWTTNRDPMQIFGRARYDYLVNMCDEMGVVTPEHPFPVWTERGGPATIVPMFLLYDYSFLPEGANSKAEGVAIAKERNV
    VATDEFLLSPEPYPTRDAWCHERVAATRARLEQLDWMQPTVLVNHFPLLRQPCDALFYPEFSLWCGTTKTADWHTRYNAV
    CSVYGHLHIPRTTWYDGVRFEEVSVGYPREWRRRKPYSWLRQVLPDPQYAPGYLNDFGGHFVITPEMRTQAAQFRERLRQ
    RQSR
    >BL;Rv2840c, H37Rv2.tab 3147961:3148257 reverse MW:10601
    VRTCVGCRKRGLAVELLRvVAVSTGNGNYAVIVDTATSLPGRGAWLHPLRQCAQQAIRRAFARALRIAGSPDTSAVVEY (SEQ ID NO:567)
    LESLGELEPPGNRTGSNRT
    >BL;2V2843, H37Rv2.tab 3150170:3150712 forward MW:17735
    VLPAAPVINRLTNRPISRRGVLAGGAALAALGVVSACGESAPKAPAVEELRSPLDQARHDGALAAAAATAIGIPPQVAAA (SEQ ID NO:568)
    LTVVATQRTSHARALATEIARAAGKLVSATSETSSSSPSPTDPAAPPPAVSDVIDSLRTSAGEASRLVATTSGYRAGLLA
    SIAASCTASYTVALVPSGPSI
    >BL;Rv2844, H37Rv2.tab 3150712:3151197 forward MW:16940
    MTSSEPAHGATPKRSPSEGSADNAALCDALAVEHATIYGYGIVSALSPPGVNFLVADALKQHRHRRDDVIVMLSARGVTA (SEQ ID NO:569)
    PIAAAGYQLPMQVSSAANAARLAVRMENDGATAWRAVVEHAETADDRvFASTALTESAVMATRWNRvLGAWPITAAFPGG
    DE
    >BL;Rv2876, H37Rv2.tab 3187662:3187973 forward MW:11805
    MFGQWEFDVSPTGGIAVASTEVEHFAGSQHEVDTAEVPSAAWGWSRIDHRTWHIVGLCIFGFLLAMLRGNHVGHVEDWFL (SEQ ID NO:570)
    ITFAAVVLFVLARDLWGRRRGWIR
    >BL;Rv2898c, H37Rv2.tab 3207944:3208327 reverse MW:14223
    MTTLKTMTRVQLGAMGEALAVDYLTSMGLRILNRNWRCRYGELDVIACDAATRTVVFVEVKTRTGDGYGGLAHAVTERKV (SEQ ID NO:571)
    RRLRRLAGLWLADQEERWAAVRIDVIGVRVGPKNSGRTPELTHLQGIG
    >BL;Rv2901C, H37Rv2.tab 3211805:3212107 reverse MW:12225
    MSAEDLEKYETEMELSLYREYKDIVGQFSYVVETERRFYLANSVEMVPRNTDGEVYFELRLADAWVWDMYRPARFVKQVR (SEQ ID NO:572)
    VVTFKDVNIEEVEKPELRLPE
    >BL;Rv2917, H37Rv2.tab 3226362:3228239 forward MW:68334
    VRVTRLVDAESTRCDVGPAPKSVANLHFTAATSRFRLGRERANSVRSDGGWGVLQPVSATFNPPLRGWQRRALVQYLGTQ (SEQ ID NO:573)
    PRDFLAVATPGSGKTSFALRIAAELLRYHTVEQVTVVVPTEHLKVQWAHAAAAHGLSLDPKFANSNPQTSPEYHGVMVTY
    AQVASHPTLHRVRTEARKTLVVFDEIHNGGDAKTWGDAIREAFGDATRRLALTGTPFRSDDSPIPFVSYQPDADGVLRSQ
    ADHTYGYAEALADGVVRPVVFLAYSGQARWRDSAGEEYEARLGEPLSAEQTARAWRTALDPEGEWMPAVITAADRRLRQL
    RAHVPDAGGMIIASDRTTARAYARLLTTMTAEEPTVVLSDDPGSSARITEFAQGTSRWLVAVRMVSEGVDVPRLSVGVYA
    TNASTPLFFAQAIGRFVRSRRPGETASIFVPSVPNLLQLASALEVQRNHVLGRPHRESAHDPLDGDPATRTQTERGGAER
    GFTALGADAELDQVIFDGSSFGTATPTGSDEEADYLGIPGLLDAEQMRALLHRRQDEQLRKRAQLQKGATQPATSGASAS
    VHGQLRDLRRELHTLVSIAHHRTGKPHGWIHDERRRRCGGPPIAAATRAQIKARIDALRQLNSERS
    >BL;Rv2926c, H37Rv2.tab 3240550:3241170 reverse MW:22378
    VDLGGVRRRISLMARQHGPTAQRHVASPMTVDIARLGRRPGAMFELHDTVHSPARIGLELIAIDQGALLDLDLRVESVSE (SEQ ID NO:574)
    GVLVTGTVAAPTVGECARCLSPVRGRVQVALTELFAYPDSATDETTEEDEVGRVVDETIDLEQPIIDAVGLELPFSPVCR
    PDCPGLCPQCGVPLASEPGHRHEQIDPRWAKLVEMLGPESDTLRGER
    >BL;Rv2949c, H37Rv2.tab 3299973:3300569 reverse MW:22587
    MTECFLSDQEIRKLNRDLRILIAANGTLTRVLNIVADDEVIVQIVKQRIHOVSPKLSEFEQLGQVGVGRVLQRYIILKGR (SEQ ID NO:575)
    NSEHLFVAAESLIAIDRLPAAIITRLTQTNDPLGEVMAASHIETFKEEAKVWVGDLPGWLALHGYQNSRKRAVARRYRVI
    SGGQPIMVVTEHFLRSVFRDAPHEEPDRWQFSNAITLAR
    >BL;Rv2968c, H37Rv2.tab 3323073:3323702 reverse MW:23100
    VVAARPAERSGDPAAVRVPVPSAWWVLIGGVIGLFASMTLTVEKVRILLDPIYVPSCNVNPIVSCGSVMTTPQASLLGFP (SEQ ID NO:576)
    NPLLGIAGFTVVVVTGVLAVAKVPLPRWYWIGLAVGILVGVAFVHWLIPQSLYRIGALCPYCMVVWAVIATLLVVVASIV
    FGPMRENRGSQERvGARLLYQWRWSLATLWFTTVFLLIMVRFWDYWSTLI
    >BL;Rv2980, H37Rv2.tab 3335959:3336501 forward MW:18752
    VTGESDGPPRAVLIAAAALAAAVIGVILVVAANRQPPERPVVIPAVPAPQATGPGCKALLAALPQRLGEYPRAPVAEPTT (SEQ ID NO:577)
    AGATAWRTGPNSTPVILRCGLDRPAEFVVGSAIQVVDRVQWFQVAAQNPDEPGRSTWYTVDRPVYVALTLPSGSGPTAIQ
    ELSDVIDHTIPAVPIOPAPAR
    >BL;Rv3005c, H37Rv2.tab 3363695:3364531 reverse MW:28827
    VTSSNDSHWQRPDDSPGPMPGRPVSASLVDPEDDLTPARYAGDFGSGTTTVIPPYDAASSGVGNSGYSLIEAAEPLPYVQ (SEQ ID NO:578)
    PQPGRQVPAGSAGIDMDDDERVRAAGRRGTQNLGLLILRVGLGAVLIAHGLQKLFGWWDGQGLAGFQNSLSDIGYQHAEI
    LAYVSAGGEIVAGVLLVLGLFTPLAAAGALAFLINGLLAGISAQHSRPVAYFLQDGHEYQITLVVMAVAVILSGPGRYGL
    DAARGWAHRPFIGSFVALLGGIAAGIAVWVLLNGANPLA
    >BL;Rv3013, H37Rv2.tab 3371814:3372467 forward MW:22967
    VRSYLLRIELADRPGSLGSLAVALGSVGADILSLDVVERGNGYAIDDLVVELPPGAMPDTLITAAEALNGVRVDSVRPHT (SEQ ID NO:579)
    GLLEAHRELELLDHVAAAEGATARLQVLVNEAPRVLRVSWCTVLRSSGGELHRLAGSPGAPETRANSAPWLPIERAAALD
    GGADWVPQAWRDMDTTMVAAPLGDTHTAVVLGRPGPEFRPSEVARLGYLAGIVATMLR
    >BL;Rv3015c, H37Rv2.tab 3374653:3375663 reverse MW:34212
    VSVFATATGIGSWPGTAAREAAQVVVGELAGALAYLTELPARGVGADMLGRAGGLLVDVAIDTVPRGYRIAARPGAVTRR (SEQ ID NO:580)
    AASLLDEDMDALEEAWETAGLRGCGRAVKVQAPGPVTLVAGLELANGHRAITDPGAVRDLAASLAEGVAAHRAALARRLD
    TPVVVQFDEPSLPAALGGRLTGVTALSPVAPLDETVAEALLDTCIAAVDADVALHSCSPDLPWDLLQRSRISAVSVDAST
    LQAADLDAVAAFVESGRTVVLGLVPVTAPERAPSMEEVAAAAVAVTDRLGVPRSALRDRLGVSPACGLANATGQWARTAV
    GLARDVAEAFARDPEAI
    >BL;Rv3035, H37Rv2.tab 3395378:3396457 forward MW:37305
    LAAGPALSARGYLALNGQTPAGCSLMEWQNDNNGRQRWCVRLVQGGGFAGPLFDGFDNLYVGQPGAIISFPPTQWTRWRQ (SEQ ID NO:581)
    PVIGMPSTPRFLGHGRLLVSTHLGQLLVFDTRRGMVVGSPVDLVDGIDPTDATRGLADCAPARPGCPVAAAPAFSSVNGT
    VVVSVWQPGEPAAKLVGLKYHAEQLVREWTSDAVSAGVLASPVLSADGSTVYVNGRDHRLWALNAADGKAKWSAPLGFLA
    QTPPALTPHGLIVSGGGPDTALAAFRDAGDHAEGAWRRDDVTALSTASLAGTGVGYTVISGPNHDGTPGLSLLVFDPANG
    HTVNSYPLPGATGYPVGVSVGNDRRvVTATSDGQVYSFAP
    >BL;Rv3038c, H37Rv2.tab 3398427:3399407 reverse MW:36049
    MTRSSNIPADATPNPHATAEQVAAARHDSKLAQVLYHDWEAENYDEKWSISYDQRCVDYARGRFDAIVPDEVIAQLPYDR (SEQ ID NO:582)
    ALELGCGTGFFLLNLIQAGVARRGSVTDLSPGMVKVATRNGQALGLDIDGRvADAEGIPYDDDAFDLVVGHAVLHHIPDV
    ELSLREVVRVLKPGGRFVFAGEPTTVGDGYARTLSTLTWRVVTNATKLPGLRGWRRPQGELDESSRAAALEALVDLHTFT
    PQDLQRIAHNAGAVEVQTATEEFTAANLGWPLRTFECTVPPGRLGWGWARFAFTSWKTLGWVDANVWRHVVPKGWFYNVM
    ITGVKPS
    >BL;Rv3195, H37Rv2.tab 3564363:3565778 forward MW:49325
    VSTGEVMGDLPFGFSSGDDPPEDPSGRDKRGKDGADSGSGANPLGAFGIGGEFNMADLGQIFTRLGEMFGGVGTAMAAGK (SEQ ID NO:583)
    TSGPVNYDLARQVASSSIGFIAPIPAATNSAIADAVHLADTWLDGATSLPAGATKAVGWSPTDWVDNTLATWKRLCDPMA
    QQISTVWASSLPEEAKSMAGPLLSIMSQMGGIAFGSQLGQALGRLSREVLTSTDIGLPLGPKGVAAILPGAVESFAAGLE
    QPRSEILTFLATREAAHHRLFSHVPWLASQLLGAVEAYAMGMKIDMTGIEELARDINPTSLADPAAMEQLLSQGVFEPKA
    TPAQTQALERLETLLALIEGWVQTVVTAALGERIPGEAALSETLRRRRASGGPAEQTFATLVGLELRPRKLREAGALWER
    LTRAVGMDARDAVWQHPDLLPATDDLDDPAAFIDRvIGGDTSGIDEAIAELERDQQARGADDSGHDGGPVDN
    >BL;Rv3205c, H37Rv2.tab 3581629:3582504 reverse MW:31352
    MGSTRLTGVNVEPPPEHVLVAFGLAGAQPILLGAGWEGGWRCGEVVLSMVADNARAAWSARvRETLFVDGVRLARPVRST (SEQ ID NO:584)
    DGRYVVSGWRADTFVAGAPEPRHDEVVSAAVRLHEATGKLERPRFLTQGPAAPWAEIDVFVAADRAGWEERPLQSVPPGV
    PTAPPAADPQRSIDLINQLAGLRKPTKSPNQLVUGDLYGTVLFAGTAPPGITDITPYWRPASWAAGVAVVDALSWGAADD
    GLIERWNALPEWPQMLLRALMFRLAVYALHPRSTAEAFPGLAHTAALVRLVL
    >BL;2V3207c, H37Rv2.tab 3583803:3584657 reverse MW:31034
    VSTYGWRAYALPVLMVLTTVVVYQTVTGTSTPRPAAAQTVRDSPAIGVVGTAILDAPPRGLAVFDANLPAGTLPDGGPFT (SEQ ID NO:585)
    EAGDKTWRvVPGTTPQVGQGTVKVFRYTVEIENGLDPTMYGGDNAFAQMVDQTLTNPKGWTHNPQFAFVRIDSGKPDFRI
    SLVSPTTVRGGCGYEFRLETSCYNPSFGGMDRQSRVFINEARWVRGAVPFEGDVGSYRQYVINHEVGHAIGYLRHEPCDQ
    QGGLAPVMMQQTFSTSNDDAAKFDPDFVKADGKTCRFNPWPYPIP
    >BL;Rv3208c, H37Rv2.tab 3585679:3585948 reverse MW:9400
    VEVKIGITDSPRELVFSSAQTPSEVEELVSNALRDDSGLLTLTDERGRRFLIHTARIAYVEIGVADARRvGFGVGVDAAA (SEQ ID NO:586)
    GSAGKVATSG
    >BL;Rv3209, H37Rv2.tab 3586273:3586830 forward MW:19118
    VALGAVATAVIINSGDSTSTKAIVGAPAPRTVISTSPRPTAPTSTSPHPSPSTLRPQLPPETVTTVAPPGTGPTTVPTRT (SEQ ID NO:587)
    PTAAPPQTAVPPPAPLNPRTVVYRvTGTKQLFDLVNVVYTDARGFPVTDFNVSLPWTKMVVLNPGVQTESVVATSLYSRL
    NCSIVNTGAQTVVASTNNAIIATCTR
    >BL;Rv3212, H37Rv2.tab 3589393:3590613 forward MW:42506
    MVKPERRTKTDIAAAATIAVVVAVAASLIWWTSDARATISRPAAVAVPTPAPAREVPTSLKQLWTAASPATRVPVVVGGT (SEQ ID NO:588)
    VATGDGRQVDGRDPATGESLWSYARDTDLCGVTWVYHYAVAVYRYDRGCGQVSTIDGSTGRRGAARSGYADPRVRLPSDG
    TTVLSAGDTRLELWRSDMVRMLAYGEIDARVKPSNRGLQSGCTLESAAASSAAVSVLEACTNQADLRLVLLRPGKEDDEP
    IQRIVPEPGVRPGSGARVLVVSQNNTAVYLPARSGAQPRVDVIDETGATVSSTLLAKPPSTSAVASRTGNLVTWWTGDAL
    LVFDAGNLTQRYTIAAGETTAPVGPGVMMAGQLLVPVTGGIGVYDPVSGANNRYIPVTRPPSTSAVIPAVSGSRVIEQRG
    DTLVALG
    >BL;Rv3217C, H37Rv2.tab 3593806:3594234 reverse MW:14260
    VPVRAPAAVRGAGLIVAVQGGAALVVAAALLVRGLAGADQHIVNGLGTAGWFVLVGGAVLAAGCRLAVGKLWGRGLAVFA (SEQ ID NO:589)
    QLLLLPVAWYLIVGSHQPAIGIPVGIIALGVLVLLFSPPSIRWAAGRDQRGAASAANRGPDSR
    >BL;Rv3242C, H37Rv2.tab 3621572:3622210 reverse MW:22481
    VLDLVLPLECGGCGAPATRWCAACAAELSVAAGEPHVVSPRVDPQVPVFALGRYAGVRRQAILAMKEHGRRDLVAPLACA (SEQ ID NO:590)
    LIVGVDHLLSWGMLENPLTMVPAPTRRWAARRRGGDPVSRMARIAGATLGRHHDVTVVPALRMRALARDSVGLGASARER
    NITGRVLLRGQRPRNEVVLVDDIITTGATARESVRVLQAAGVRVGAVLAVAAA
    >BL;Rv3256c, H37Rv2.tab 3636277:3637314 reverse MW:35277
    VNVARAIDLEDTEGLIAADRGALLRAASMAGAQVRAIAAAADEGELDLLRGSDRPRSVIWVTGRGTAETAGTILASTLGA (SEQ ID NO:591)
    GAAEPIVLASAAPPWVGPLDVLIVAGDDPGDPALVGAAAIGVRRGARVVVVAPYEGPLRDSTAGRVAVLEPRLRVPDEFG
    LSRYLAAGLAALQTVDPKLRIDLASLADELDAEALRNSAGREVFTNPAKALAARVSGCQLALAGDNAATLALARHGSSVM
    LRIANQVVAATRLSDAVVALRAGTPPDALFHDEEIDGPAPQRLRvLALALAGERTVVAARVAGLDDAYLVAAEDVPELLD
    APVGSGGAVLAVRLEMAAVYLRLVRG
    >BL;2V3258c, H37Rv2.tab 3638813:3639301 reverse MW:16810
    MRVSGASAALVHDSLSVVNVPRRCCRPGCPHYAVATLTFVYSDSTAVIGPLATAREPHSWDLCVGHAGRITAPRGWELVR (SEQ ID NO:592)
    HAGPLPSHPDEDDLVALADAVREGGPSAGRRHHPGGNGAPLHGFDDFPAAATGAPTGGGVLAPPEPGAGRRRGHLRVLPD
    PAD
    >BL;Rv3259, H37Rv2.tab 3639424:3639840 forward MW:15649
    MRGPLLPPTVPGWRSRAERFDMAVLEAYEPIERRWQERVSQLDIAVDEIPRIAAKDPESVQWPPEVIADGPIALARLIPA (SEQ ID NO:593)
    GVDVRGNATRARIVLFRKPIERRAKDTEELGELLHEILVAQVAIYLDVDPSVIDPTIDD
    >BL;Rv3269, H37Rv2.tab 3650233:3650511 forward MW:9750
    MAIQVFLAKATTTVITGLAGVTAYEILKKAAAKAPLRQTAVSAAALGLRGTRKAEEAAESARLKVADVMAEARERIGEES (SEQ ID NO:594)
    PTPAISDLHDHDH
    >BL;Rv3277, H37Rv2.tab 3659877:3660692 forward MW:30079
    MNEVTAGVRELATAIMVSRHLTGVLAGHGSQTVTYHFASILCSSVHSLVVSFADATIARLPGVVQPYAQRHHELIKFAIV (SEQ ID NO:595)
    GGTTFIIDTAIFYTLKLTVLEPKPVTAKVIAGIVAVIASYVLNREWSFRDRGGRERHHEALLFFAFSGVGVLLSMAPLWF
    SSYILQLRVPTVSLTMENIADFISAYIIGNLLQMAFRFWAFRRWVFPDEFARNPDKALESALTAGGIAEVFEDVLEGGFE
    DGNVTLLRAWRNRANRFAQLGDSSEPRvSKTS
    >BL;Rv3278C, H37Rv2.tab 3660653:3661168 reverse MW:19820
    MSYPENVLAAGEQVVLHRHPHWNRLIWPVVVLVLLTGLAAFGSGFVNSTPWQQIAKNVIHAVIWGIWLVIVGWLTLWPFL (SEQ ID NO:596)
    SWLTTHPVVTNRRvMFRHGVLTRSGIDIPLARINSVEFRDRIFERIFRTGTLIIESASQDPLEFYNIPRLREVHALLYHE
    VFDTLGSDESPS
    >BL;Rv3281, H37Rv2.tab 3663688:3664218 forward MW:19013
    MGTCPCESSERNEPVSRVSGTNEVSDGNETNNPAEVSDGNETNNPAEVSDGNETNNPAPVSRVSGTNEVSDGNETNNPAP (SEQ ID NO:597)
    VSRvSGTNEVSDGNETNNPAPVTEKPLHPHEPHIEILRGQPTDQELAALIAVLGSISGSTPPAQPEPTRWGLPVDQLRYP
    VFSWQRITLQEMTHMRR
    >BL;Rv3311, H37Rv2tab 3698120:3699379 forward MW:45732
    MVADLVPIRLSLSAGDRYTLWAPRWRDAGDEWEAFLGKDDDLYGFESVSDLVAFVRTDTENDLVDHPAWQDLTGAHAHNL (SEQ ID NO:598)
    NPAEDNQFDLVVVEELLAEKPTAESVAALAASLAIVSAIGSVCELAAVSKFFNGNPILGTVSGGLEHFTGKAGNKRWNSI
    AEVIGRSWDDVLAAIDEIISTPEVDAELSEKVAEELAEEPEGAEEVAAEVEATQDTQEAAESDDEEADAPGDSVVLGGDR
    DFWLQVGIDPIQIMTGTATFYTLRCYLDDRPIFLGRNGRISVFGSERALARYLADEHDHDLSDLSTYDDIRTAATDGSLA
    VAVTDDNVYVLSGLVDDFADGPDAVDREQLDLAVELLRDIGDYSEDSAVDKALETTRPLGQLVAYVLDPHSVGKPTAPYA
    AAVREWEKLERFVESRLRRE
    >BL;Rv33S4, H37Rv2.tab 3769110:3769496 forward MW:12987
    MNLRRHQTLTLRLLAASAGILSAAAFAAPAQANPVDDAFIAALNNAGVNYGDPVDAKALGQSVCPILAEPGGSFNTAVAS (SEQ ID NO:599)
    VVARAQGMSQDMAQTFTSIAISMYCPSVMADVASGNLPALPDMPGLPGS
    >BL;Rv3368c, H37Rv2.tab 3780337:3780978 reverse MW:23733
    MTLNLSVDEVLTTTRSVRKRLDFDKPVPRDVLMECLELALQAPTGSNSQGWQWVFVEDAAKKKAIADVYLANARGYLSGP (SEQ ID NO:600)
    APEYPDGDTRGERMGRVRDSATYLAEHMHRAPVLLIPCLKGREDESAVGGVSFWASLFPAVWSFCLALRSRGLGSCWTTL
    IILLDNGEHKVADVLGIPYDEYSQGGLLPIAYTQGIDFRPAKRLPAESVTHWNGW
    >BL;Rv3412, H37Rv2.tab 3831725:3832132 forward MW:15269
    VRDHLPPGLPPDPFADDPCDPSAALEAVEPGQPLDQQERMAVEADLADLAVYEALLAHKGIRGLVVCCDECQQDHYHDWD (SEQ ID NO:601)
    MLRSNLLQLLIDGTVRPHEPAYDPEPDSYVTWDYCRGYADASLNEAAPDADRFRRR
    >BL;Rv3415c, H37Rv2.tab 3833696:3834520 reverse MW:28627
    VNETPHAPVVEQVLVAAAFGNQPGSWPLPTAITPHHLWLRAVAAGGQGRYAHAYGDLSVLRRLVPAGPLASLAHSTQGSL (SEQ ID NO:602)
    LRQLGWHTLARGWDGRALALAGADREAGADALIGLAADALGVGRFAAAGALLDRADPLVVSPLVADRLAVRRRWVAAELA
    MATGDGATAVRHAEEAVELTQAMAVASARHRvKSDVVLAAALCSAGAVARARAVGEEALDATARFGLLPLRWALACLLID
    IGTVTFSAQQLRELTKIRNICAGQVRRAGGCWRTA
    >BL;Rv3438, H37Rv2.tab 3857396:3858235 forward MW:29209
    VPRIRKLVAALHRRGPHRVLRGDLAFAGLPGVVYTPEAGLHLPGVAFGHDWLTGTSRYSGLLEHLASWGIVAAAPDSERG (SEQ ID NO:603)
    LAPSVLNLAFDLGVALDIVAGVRLGPGKISVHPAKLGLVGHGFGGSAAVFAAAGLTGTHVKSVAAIFPTVTNPAAEQPAA
    TLDVPGLILTAPGDPKTLTSNALGLSRAWDKATLRIVSKARAGGLVEGRRLTKVLGLPGPHRRTQRSVRALLTGYLLYTL
    GGDKTYRRFADPDLQLPKTDPIDPEAPPITPGEKIVTLLK
    >BL;Rv3587c, H37Rv2.tab 4028971:4029762 reverse MW:27067
    VLDLEPRGPLPTEIYWRRRGLALGIAVVVVGIAVAIVIAFVDSSAGAKPVSADKPASAQSHPGSPAPQAPQPAGQTEGNA (SEQ ID NO:604)
    AAAPPQGQNPETPTPTAAVQPPPVLKEGDDCPDSTLAVKGLTNAPQYYVGDQPKFTMVVTNIGLVSCKRDVGAAVLAAYV
    YSLDNKRLWSNLDCAPSNETLVKTFSPGEQVTTAVTWTGMGSAPRCPLPRPAIGPGTYNLVVQLGNLRSLPVPFILNQPP
    PPPGPVPAPGPAQAPPPESPAQGG
    >BL;Rv3603c, H37Rv2.tab 4045210:4046118 reverse MW:31104
    MERFDGLRPARLKVGIISAGRVGTALGVALQRADHVVVACSAISHASRRRAQRRLPDTPVLPPLDVAASAELLLLAVTDS (SEQ ID NO:605)
    ELAGLVSGLAATSAVRPQTIVAHTSGANGIGILAPLAQQGCIPLAIHPAMTFTGSDEDISRLPDTCFGITAADDVGYAIG
    QSLVLEMGGEPFCVREDARILYHAALAHASNHIVTVLADALEALRAALSGGELLGQQTVDDQPGGIVERIVGPLARAALE
    NTLQRGQAALTGPVARGDAAAVADHLAALADVDAALAQAYRINALRTAQRAHAPADVVEVLTA
    >BL;Rv3604c, H37Rv2.tab 4046306:4047691 reverse MW:49862
    VPRAASAMAEPAMGVGRRRCWPGGRPGMRGCLRGEFGRTAYPAKPCGNRRTGATRGLTSPGYSQAMTVLSRGARVRRGGR (SEQ ID NO:606)
    RPGWVLLTALLVLAIGASSALVFTDRVELLKLAVLLALWAAVAGAFVSVLYRRQSDVDQARVRDLKLVYDLQLDREISAR
    REYELTLESQLRRELASELRAPAADEVAALRAELAALRTSLEILFDADLEHRPALGTVEKEARAARALDGESPPADWVSS
    DRVMAVRGGDGASRTDEASIIDVPEVGVPPVSGGPRHYEAPPPPQPEPLFEPRHRPPPLPPQQERPVWQPVTSHGQWLPA
    ETPGSQWASVEPETTPAAPPPGRRRRARHASPADQAYNPPAYVELAAQYGESGRRSRHSAEHRDHDIGGSGAGTGERPPS
    PPMAPPPPAEPTRRHRTADTPPDDSGGLHARDPLTGGQSVADLMARLQVESTGGGRRRRRGE
    >BL;Rv3605c, H37Rv2.tab 4047708:4048181 reverse MW:16789
    MGPTRKRDLTAAVVGAAAVGYLLVAVLYRWFPPITVWTGLSLLAVAVAEALWARYVRVKISDGEIGDGPGWLHPLVVARS (SEQ ID NO:607)
    LMVAKASAWVGALVTGWWIGVLAYFLPRRSWLRAAAEDTTGTVVAAGSALALVVAALWLQHCCKSPQDPTEHADGAES
    >BL;Rv3614c, H37Rv2.tab 4054145:4054696 reverse MW:19802
    VDLPGNDFDSNDFDAVDLWGADGAEGWTADPIIGVGSAATPDTGPDLDNAHGQAETDTEQEIALFTVTNPPRTVSVSTLM (SEQ ID NO:608)
    DGRIDHVELSARvAWMSESQLASEILVIADLARQKAQSAQYAFILDRMSQQVDADEHRvALLRKTVGETWGLPSPEEAAA
    AEAEVFATRYSDDCPAPDDESDPW
    >BL;Rv3615c, H37Rv2.tab 4054815:4055123 reverse MW:10795
    MTENLTVQPERLGVLASHHDNAAVDASSGVEAAAGLGESVAITHGPYCSQFNDTLNVYLTAHNALGSSLHTAGVDLAKSL (SEQ ID NO:609)
    RIAAKIYSEADEAWRKAIDGLFT
    >BL;Rv3616c, H372V2.tab 4055200:4056375 reverse MW:39888
    MSRAFIIDPTISAIDGLYDLLGIGIPNQGGILYSSLEYFEKALEELAAAFPGDGWLGSAADKYAGKNRNHVNFFQELADL (SEQ ID NO:610)
    DRQLISLIHDQANAVQTTRDILEGAKKGLEFVRPVAVDLTYIPVVGHALSAAFQAPFCAGAMAVVGGALAYLVVKTLINA
    TQLLKLLAKLAELVAAAIADIISDVADIIKGTLGEVWEFITNALNGLKELWDKLTGWVTGLFSRGWSNLESFFAGVPGLT
    GATSGLSQVTGLFGAAGLSASSGLAHADSLASSASLPALAGIGGGSGFGGLPSLAWVHAASTRQALRPRADGPVGAAAEQ
    VGGQSQLVSAQGSQGMGGPVGMGGMHPSSGASKGTTTKKYSEGAAAGTEDAERAPVEADAGGGQKVLVRNVV
    >BL;Rv3619c, H37Rv2.tab 4059987:4060268 reverse MW:9832
    MTINYQFGDVDAHGAMIRAQAGSLEAEHQAIISDVLTASDFWGGAGSAACQGFITQLGRNFQVIYEQANAHGQKVQAAGN (SEQ ID NO:611)
    NMAQTDSAVGSSWA
    >BL;Rv3632, H37Rv2.tab 4071236:4071577 forward MW:13068
    MNWIQVLLIASIIGLLFYLLRSRRSARSRAWVKVGYVLFVLAGIYAVLRPDDTTVVANWFGVRRGTDLMLYALVIVIAFSFT (SEQ ID NO:612)
    TLSTYMRFKDLELRYARIARALALEGAQAPEQCR
    >BL;Rv3647c, H37Rv2.tab 4087613:4088188 reverse MW:20314
    VSQLSFFAAESVPPAVADLSGVLAGPGQIVLVGCGARLSVVVAESWRASALAEMIQEAGLVPEVARTDENTPLVRTAVDP (SEQ ID NO:613)
    LLCGIAAEWTRGAVKTVPPRWLPGPRELRAWTLAAGSPEADRYLLGLDPHAPDTHS PLASALMRvGIAPTLIGTRGTRPA
    LRISGRRRLSRLVENVGEPPDGAEAWVQWPRT
    >BL;Rv3662c, H37Rv2.tab 4101268:4102035 reverse MW:26338
    VTVDPLAPLMELPGVAAASDRVRDALSRvHRHRANLRGWPVAAAEASLRAARASSVLDGGPARLHDAGAPTSGKPALSDP (SEQ ID NO:614)
    VFAGALRVGQALEGGAGPVVGVWRRAPLQALARLHMLAAADQVDDDRLGRPRSDADVGPRLELLALVVTHPTLASAPVVA
    AVAHGELLTLRPFGCADGVVARAVSRLVTIATGLDPHGLGVPEVIWMRQPAEYHDAARRFAGGTPDGVAGWLLLCCGAML
    DGAREALSIAESLSPG
    >BL;Rv3668c, H37Rv2.tab 4109786:4110481 reverse MW:23102
    LQTAHRRFAAAFAAVLLAVVCLPANTAAADDKLPLGGGAGIVVNGDTMCTLTTIGHDKNGDLIGFTSAHCGGPGAQIAAE (SEQ ID NO:615)
    GAENAGPVGIMVAGNDGLDYAVIKFDPAKVTPVAVFNGFAINGIGPDPSFGQIACKQGRTTGNSCGVTWGPGESPGTLVM
    QVCGGPGDSGAPVTVDNLLVGMIHGAFSDNLPSCITKYIPLHTPAVVMSINADLADINAKNRPGAGFVPVPA
    >BL;Rv3669, H37Rv2.tab 4110827:4111342 forward MW:18887
    VSKIDRKNGVPSTLTTIPLADPHAGPAEPSIGDLIKDATTQMSTLVRAEVELARAEITRDVKKGLTGSVFFISSLVVGFY (SEQ ID NO:616)
    STFFFFFFVAELLDTWIWRWVAFLLVFAIMVVVTAVLALLGFLKVRRIRGPRQTIASVKETRTALTPGHDKTPVTPKPVT
    SDRATPVDPSGW
    >BL;Rv3680, H37Rv2.tab 4119795:4120952 forward MW:41405
    MSVTPKTLDMGAILADTSNRVVVCCGAGGVGKTTTAAALALRAAEYGRTVVVLTIDPAKRLAQALGINDLGNTPQRVPLA (SEQ ID NO:617)
    PEVPGELHAMMLDMRRTFDEMVMQYSGPERAQSILDNQFYQTVATSLAGTQEYMAMEKLGQLLSQDRWDLIVVDTPPSRN
    ALDFLDAPKRLGSFMDSRLWRLLLAPGRGIGRLITGVMGLAMKALSTVLGSQMLADAAAFVQSLDATFGGFREKADRTYA
    LLKRRGTQFVVVSAAEPDALREASFFVDRLSQESMPLAGLVFNRTHPMLCALPIERAIDAAETLDAETTDSDATSLAAAV
    LRIHAERGQTAKREIRLLSRFTGANPTVPVVGVPSLPFDVSDLEALRALADQLTTVGNDAGRAAGR
    >BL;Rv37OSc, H37Rv2.tab 4148321:4148962 reverse MW:22359
    MRIAAAVVSIGLAVIAGFAVPVADAHPSEPGVVSYAVLGKGSVGNIVGAPMGWEAVFTRPFQAFWVELPACNNWVDIGLP (SEQ ID NO:618)
    EVYDDPDLASFNGATTQTSATDQTHLVKQAVGVFASNDAADRAFHRvVDRTVGCSGQTTAIHLDDGTTQVWSFAGGPSTG
    TDEAWTKQEAGTDRRCFVQTRLRENVLLQAKVCQSGNAGPAVNVLAGAMQNTLG
    >BL;Rv3716c, H37Rv2.tab 4160515:4160913 reverse MW:13357
    MQPGGDMSALLAQAQQMQQKLLEAQQQLANSEVHGQAGGGLVKVVVKGSGEVIGVTIDPKVVDPDDIETLQDLIVGAMRD (SEQ ID NO:619)
    ASQQVTKMAQERLGALAGANRPPAPPAAPPGAPGMPGMPGMPGAPGAPPVPGI
    >BL;Rv3718c, H37Rv2.tab 4161818:4162258 reverse MW:15661
    MGQVSAASTILINAEPTATLDALADYETVRPKILSPHYSEYQVLEGGKGRGTVAKWRLQATQSRVRDVQVNVDVAGHTVI (SEQ ID NO:620)
    EKDMNSSMVTNWTVAPAGPGSSVTVKTTWTGAGGVKGFFEKTFAPLGLKKIQAEVLSNLKTELEGDA
    >BL;Rv3723, H37Rv2.tab 4168536:4169297 forward MW:27367
    MGRKVAVLWHASFSIGAGVLYFYFVLPRWPELMGDTGHSLGTGLRIATGALVGLAALPVVFTLLRTRKPELGTPQLALSM (SEQ ID NO:621)
    RIWSIMAHVLAGALIVGTAISEVWLSLDAAGQWLFGIYGAAAAIAVLGFFGFYLSFVAELPPPPPKPLKPKKPKQRRLRR
    KKTAKGDEAEPEAAEEAENTELAAQEDEEAVEAPPESIESPGGEPESATREAPAAETATAEEPRGGLRNRRPTGKTSHRR
    RRTRSGVQVAKVDE
    >BL;Rv3753c, H37Rv2.tab 4199724:4200221 reverse MW:17917
    MQRPAADTPDGFGVAVVREEGRWRCSPMGPKALTSLRAAETELRELRSAGAVFGLLDVDDEFFVIVRPAPSGTRLLLSDA (SEQ ID NO:622)
    TAALDYDIAAEVLDNLDAEIDPEDLEDADPFEEGDLGLLSDIGLPEAVLGVILDETDLYADEQLGRIAREMGFADQLSAV
    IDRLGR
    >BL;Rv3760, H37Rv2.tab 4205538:4205837 forward MW:10533
    VPGSVPGKAPEEPPVKFTRAAAVWSALIVGFLILILLLIFIAQNTASAQFAFFGWRWSLPLGVAILLAAVGGGLITVFAG (SEQ ID NO:623)
    TARILQLRRAAKKTHAAALR
    >BL;Rv3779, H37Rv2.tab 4224985:4226982 forward MW:71763
    VGLWFGTLIALILLIAPGAMVARIAQLRWPVAIAVGPALTYGVVALAIIPYGALGIPWNGWTALAALAVTCAVATGLQLL (SEQ ID NO:624)
    LARFRDLDAEALAVSRWPAVTVAAGVLLGALLIGWAAYRGIPHWQSIPSTWDAVWHANTVRFILDTGQASSTHMGELRNV
    ETHAPLYYPSVFHGLVAVFCQLTGAAPTTGYTLSSLAASVWLFPVSAAVLTWRAVRSHPGALWSASCASAEWRAAGAAGT
    AAALSASFTAVPYVEFDTAAMPNLAAYGIAVPTMVLITSTLRHRDRIPVAVLALVGVFSLHITGGIVVALLVSAWWLFEA
    LRHPVRSRLADLLTLAGVAAMAGLVMLPQFLSVRQQEDIIAGHAFPTYLSKKRGLFDAVFQHSRHLNDFPVQYALIVLAA
    IGGLILLVKKIWWPLAVWLLLIVMNVDAGTPLGGPIGGVAGALGEFFYHDPRRIAAATTLLLMLMAGVALFATVNLLVAA
    AKRLTDRFRPQPVSVWASATATLLIGATLVSAWHYFPRHRFLFGDKYDSVMIDQKDLDANAYLASLPGARDTLIGNANTD
    GTAWMYAVAGLHPLWTHYDYPLQQGPGYHRFIFWAYGRNGESDPRvLEAIQVLRIRYILTSTPTVRGFAVPDGLVSLETS
    RSWAKIYDNGEARIYEWRGTAAATHS
    >BL;Rv3780, H37Rv2.tab 4226989:4227522 forward MW:19484
    VRKRMVIGLSTGSDDDDVEVIGGVDPRLIAVQENDSDESSLTDLVEQPAKVMRIGTMIKQLLEEVRAAPLDEASRNRLRD (SEQ ID NO:625)
    IHATSIRELEDGLAPELREELDRLTLPFNEDAVPSDAELRIAQAQLVGWLEGLFHGIQTALFAQQMAARAQLQQMRQGAL
    PPGVGKSGQHGHGTGQYL
    >BL;Rv3792, H37Rv2.tab 4237932:4239860 forward MW:69516
    MPSRRKSPQFGHEMGAFTSARAREVLVALGQLAAAVVVAVGVAVVSLLAIARVEWPAFPSSNQLHALTTVGQVGCLAGLV (SEQ ID NO:626)
    GIGWLWRHGRFRRLARLGGLVLVSAFTVVTLGMPLGATKLYLFGISVDQQFRTEYLTRLTDTAALRDMTYIGLPPFYPPG
    WFWIGGRAAALTGTPAWEMFKPWAITSMAIAVAVALVLWWRMIRFEYALLVTVATAAVMLAYSSPEPYAAMITVLLPPML
    VLTWSGLGARDRQGWAAVVGAGVFLGFAATWYTLLVAYGAFTVVLMALLLAGSRLQSGIKAAVDPLCRLAVVGAIAAAIG
    STTWLPYLLRAARDPVSDTGSAQHYLPADGAALTFPMLQFSLLGAICLLGTLWLVMRARSSAPAGALAIGVLAVYLWSLL
    SMLATLARTTLLSFRLQPTLSVLLVAAGAFGFVEAVQALGKRGRGVIPMAAAIGLAGAIAFSQDIPDVLRPDLTIAYTDT
    DGYGQRGDRRPPGSEKYYPAIDAAIRRVTGKRRDRTVVLTADYSFLSYYPYWGFQGLTPHYANPLAQFDKRATQIDSWSG
    LSTADEFIAALDKLPWQPPTVFLMRHGAHNSYTLRLAQDVYPNQPNVRRYTVDLRTALFADPRFVVEDIGPFVLAIRKPQ
    ESA
    >BL;Rv38O2c, H37Rv2.tab 4263358:4264365 reverse MW:35448
    MAKNSRRKRHRILAWIAAGAMASVVALVIVAVVIMLRGAESPPSAVPPGVLPPGPTPAHPHKPRPAFQDASCPDVQMISV (SEQ ID NO:627)
    PGTWESSPQQNPLNPVQFPKALLLKVTGPIAQQFAPARVQTYTVAYTAQFHNPLTTDNQMSYNDSRAEGTRAMVAAMTDM
    NNRCPLTSYVLIGFSQGAVIAGDVASDIGNGRGPVDEDLVLGVTLIADGRRQQGVGNQVPPSPRGEGAEITLHEVPVLSG
    LGLTMTGPRPGGFGALDGRTNEICAQGDLICAAPAQAFSPANLPTTLNTLAGGAGQPVHAMYATPEFWNSDGEPATEWTL
    NWAHQLIENAPHPKHR
    >BL;Rv3805c, H37Rv2.tab 4266956:4268836 reverse MW:68710
    MVRVSLWLSVTAVAVLFGWGSWQRRWIADDGLIVLRTVRNLLAGNGPVFNQGERVEANTSTAWTYLLYVGGWVGGPMRLE (SEQ ID NO:628)
    YVALALAMVLSLLGMVLLMLGTGRLYAPSLRGRRAIMLPAGALVYIAVPPARDFATSGLESGLVLAYLGLLWWMMVCWSQ
    PLRARPDSQMFLGALAFVAGCSVLVRPEFALIGGLALIMMLIAARTWRRRVLIVLAGGFLPVAYQIFRMGYYGLLVPSTA
    LAKDAAGDKWSQGMIYVSNFNRPYALWVPLVLSVPLGLLLMTARRRPSFLRPVLAPDYGRvARAVQSPPAVVAFIVGSGV
    LQALYWIRQGGDFMHGRvLLAPLFCLLAPVGVIPILLPDGKDFSRETGRWLVGALSGLWLGIAGWSLWAANSPGMGDDAT
    RVTYSGIVDERRFYAQATGHAHPLTAADYLDYPRMAAVLTALNNTPEGALLLPSGNYNQWDLVPMIRPSSGTAPGGKPAP
    KPQHAVFFTNMGMLGMNVGLDVRVIDQIGLVNPLAAHTERLKHARIGHDKNLFPDWVIADGPWVKWYPGIPGYIDQQWVT
    QAEAALQCPATRAVLNSVRAPITLHRFLSNVLHSYEFTRYRIDRVPRYELVRCGLDVPDGPGPPPRE
    >BL;Rv3807c, H37Rv2.tab 4269843:4270337 reverse MW:17218
    MVAVQSALVDRPGMLATARGLSHFGEHCIGWLILALLGAIALPRRRREWLVAGAGAFVAHAIAVLIKRLVRRQRPDHPAI (SEQ ID NO:629)
    AVNVDTPSQLSFPSAHATSTTAAALLMGRATGLPLPVVLVPPMALSRILLGVHYPSDVAVGVALGATVGAIVDSVGGGRQ
    RARKR
    >BL;Rv3808c, H37Rv2.tab 4270369:4272279 reverse MW:71507
    MSELAASLLSRVILPRPGEPLDVRKLYLEESTTNARRAHAPTRTSLQIGAESEVSFATYFNAFPASYWRRWTTCKSVVLR (SEQ ID NO:630)
    VQVTGAGRVDVYRTKATGARIFVEGHDFTGTEDQPAAVETEVVLQPFEDGGWVWFDITTDTAVTLHSGGWYATSPAPGTA
    NIAVOIPTFNRPADCVNALRELTADPLVDQVIGAVIVPDQGERKVRDHPDFPAAAARLGSRLSIHDQPNLGGSGGYSRVM
    YEALKNTDCQQILFMDDDIRLEPDSILRvLAMHRFAKAPMLVGGQMLNLQEPSHLNIMGEVVDRSIFMWTAAPHAEYDHD
    FAEYPLNDNNSRSKLLHRRIDVDYNGWWTCMIPRQVAEELGQPLPLFIKWDDADYGLRAAEHGYPTVTLPGAAIWHMAWS
    DKDDAIDWQAYFHLRNRLVVAAMHWDGPKAQVIGLVRSHLKATLKHLACLEYSTVAIQNKAIDDFLAGPEHIFSILESAL
    PQVHRIRKSYPDAVVLPAASELPPPLHKNKAMKPPVNPLVIGYRLARGIMHNLTAANPQHHRRPEFNVPTQDARWFLLCT
    VDGATVTTADGCGVVYRQRDRAKNFALLWQSLRRQRQLLKRFEEMRRIYRDALPTLSSKQKWETALLPAANQEPEHG
    >BL;Rv3821, H37Rv2.tab 4285973:4286683 forward MW:24627
    MWSTVLVLALSVICEPVRIGLVVLMLNRRRPLLHLLTFLCGGYTMAGGVANVTLVVLGATPLAGHFSVAEVQIGTGLIAL (SEQ ID NO:631)
    LIAFALTTNVIGKHVRRATHARVGDDGGRVLRESVPPSGAHKLAVRARCFLQGDSLYVAGVSGLGAALPSANYMGAMAAI
    LASGATPATQALAVVTFNVVAFTVAEVPLVSYLAAPRKTRAFMAALQSWLRSRSRRDAALLVAAGGCLMLTLGLSNL
    >BL;Rv3835, H37Rv2.tab 4309047:4310393 forward MW:47043
    MLDAPEQDPVDPGDPASPPHGEAEQPLPGPRWPRALRASATRRALLLTALGGLLIAGLVTAIPAVGRAPERLAGYIASNP (SEQ ID NO:632)
    VPSTGAKINASFNRVASGDCLMWPDGTPESAAIVSCADEHRFEVAESIDMRTFPGMEYGQNAAPPSPARIQQISEEQCEA
    AVRRYLGTKFDPNSKFTISMLWPGDRAWRQAGERRMLCGLQSPGPNNQQLAFKGKVADIDQSKVWPAGTCLGIDATTNQP
    IDVPVDCAAPHAMEVSGTVNLAERFPDALPSEPEQDGFIKDACTRMTDAYLAPLKLRTTTLTLIYPTLTLPSWSAGSRVV
    ACSIGATLGNGGWATLVNSAKGALLINGQPPVPPPDIPEERLNLPPIPLQLPTPRPAPPAQQLPSTPPGTQHLPAQQPVV
    TPTRPPESHAPASAAPAETQPPPPDAGAPPATQSPEATPPGPAEPAPAG
    >BL;Rv3843c, H37Rv2.tab 4315571:4316596 reverse MW:37353
    VIQVCSQCGTGWNVRERQRvWCPRCRGMLLAPLADMPAEARWRTPARPQVPTASDTRRTPPRLPPGFRWIAVRPGAAPPP (SEQ ID NO:633)
    RHGPRLRGPTPRYAGIPRWGLTDHVDQAPVPASAKAGPSPAAVRTTLLVSLLVFSIAVVVFVVRYVLLVINRNTLLNSVV
    ASASVWLGVLVSLAAIAAAGTTIVLLVRWLVARRAAAFMHQGLPERRSARELWAGCLLPMVNLLWAPLYVIELALVEDRY
    TRLRRPIVVWWIVWIVSNAISMFAFATSWVTDAQGIANNTTMMVLAYLCAAAAVAAAARVFEGFEQKPVERPAHRWVVVN
    TDGRSAPASSVAVELDGQEPAA
    >BL;Rv3847, H37Rv2.tab 4321538:4322068 forward MW:18278
    MGTGSGGPIGVSPFHSRGALKGFVISGRWPDSTKEWAQLLMVAVRvASLPGLLSTTTVFGAREELPDEPEPGTVGLVLAE (SEQ ID NO:634)
    GTVFGESAIQPGYFADHQPPALLMLHPPSETTPSLPECTGAASGCVLLPGLPYLGLEHRAAWVEAEADGTITSMVSRVGV
    DPISHPDTAILAMLLAA
    >BL;2V3849, H37Rv2.tab 4323499:4323894 forward MW:14708
    MSTTFAARLNRLFDTVYPPGRGPHTSAEVIAALKAEGITMSAPYLSQLRSGNRTNPSGATMAALANFERIKAAYFTDDEY (SEQ ID NO:635)
    YEKLDKELQWLCTMRDDGVRRIAQRAHGLPSAAQQKVLDRIDELRRAEGIDA
    >BL;Rv3850, M37Rv2.tab 4324015:4324668 forward MW:23811
    MGLFGKRKSRATRRAEARAIKARAKLEAKLSAKNEARRIKAAQRAESKALKAQLKARRDSDRAALKVAEAELKVAREGKL (SEQ ID NO:636)
    LSPTRIRRLLTVSRLLAPILTPVIYRAANAARGLIDQRRADQLGVPLAQIGRFSGHGARLSARvGGAERSLRMVQEKKPK
    DVETKQFVSAVTNRLTDLSAIWAAAEHMPAKRRRTAHSAISSQLDGIEADLMARLGLT
    >BL;Rv3867, H37Rv2.tab 4342770:4343318 forward MW:19945
    MVDPPGNDDDHGDLDALDFSAAHTNEASPLDALDDYAPVQTDDAEGDLDALHALTERDEEPELELFTVTNPQGSVSVSTL (SEQ ID NO:637)
    MDGRIQHVELTDKATSMSEAQLADEIFVIADLARQKARASQYTFMVENIGELTDEDAEGSALLREFVGMTLNLPTPEEAA
    AAEAEVFATRYDVDYTSRYKADD
    >BL;Rv3869, H37Rv2.tab 4345039:4346478 forward MW:51093
    MGLRLTTKVQVSGWRFLLRRLEHAIVRRDTRMFDDPLQFYsRSIALGIVVAVLILAGAALLAYFKPQGKLGGTSLFTDRA (SEQ ID NO:638)
    TNQLYVLLSGQLHPVYNLTSARLVLGNPANPATVKSSELSKLPMGQTVGIPGAPYATPVSAGSTSIWTLCDTVARADSTS
    PVVQTAVIANPLEIDASIDPLQSHEAVLVSYQGETWIVTTKGRHAIDLTDRALTSSMGIPVTARPTPISEGMFNALPDMG
    PWQLPPIPAAGAPNSLGLPDDLVIGSVFQIHTDKGPQYYVVLPDGIAQVNATTAAALRATQAHGLVAPPAMVPSLVVRIA
    ERvYPSPLPDEPLKIVSRPQDPALCWSWQRSAGDQSPQSTVLSGRHLPISPSAMNMGIKQIHGTATVYLDGGKFVALQSP
    DPRYTESMYYIDPQGVRYGVPNAETAKSLGLSSPQNAPWEIVRLLVDGPVLSKDAALLEHDTLPADPSPRKVPAGASGAP
    >DL;Rv3874, H37Rv2.tab 4352274:4352573 forward MW:10793
    MAEMKTDAATLAQEAGNFERISGDLKTQIDQVESTAGSLQGQWRGAAGTAAQAAVVRFQEAANKQKQELDEISTNIRQAG (SEQ ID NO:639)
    VQYSRADEEQQQALSSQMGF
    >BL;Rv3876, H37Rv2.tab 4353010:4355007 forward MW:70645
    MAADYDKLFRPHEGMEAPDDMAAQPFFDPSASFPPAPASANLPKPNGQTPPPTSDDLSERFVSAPPPPPPPPPPPPPTPM (SEQ ID NO:640)
    PIAAGEPPSPEPAASKPPTPPMPIAGPEPAPPKPPTPPMPIAGPEPAPPKPPTPPMPIAGPAPTPTESQLAPPRPPTPQT
    PTGAPQQPESPAPHVPSHGPHQPRRTAPAPPWAKMPIGEPPPAPSRPSASPAEPPTRPAPQHSRRARRGHRYRTDTERNV
    GKVATGPSIQARLRAEEASGAQLAPGTEPSPAPLGQPRSYLAPPTRPAPTEPPPSPSPQRNSGRRAERRVHPDLAAQNAA
    AQPDSITAATTGGRRRKRAAPDLDATQKSLRPAAKGPKVKKVKPQKPKATKPPKVVSQRGWRHWVHALTRINLGLSPDEK
    YELDLHARVRRNPRGSYQIAVVGLKGGAGKTTLTAALGSTLAQVRADRILALDADPGAGNLADRVGRQSGATIADVLAEK
    ELSHYNDIRAHTSVNAVNLEVLPAPEYSSAQRALSDADWHFIADPASRFYNLVLADCGAGFFDPLTRGVLSTVSGVVVVA
    SVSIDGAQQASVALDWLRNNGYQDLASRACVVINHIMPGEPNVAVKDLVRHFEQQVQPGRVVVMPWDRHIAAGTEISLDL
    LDPIYKRKVLELAAALSDDFERAGRR
    >BL;Rv3877, H37Rv2.tab 4355007:4356539 forward MW:53981
    LSAPAVAAGPTAAGATAARPATTRVTILTGRRMTDLVLPAAVPMETYIDDTVAVLSEVLEDTPADVLGGFDFTAQGVWAF (SEQ ID NO:641)
    ARPGSPPLKLDQSLDDAGVVDGSLLTLVSVSRTERYRPLVEDVIDAIAVLDESPEFDRTALNRFVGAAIPLLTAPVIGMA
    MRAWWETGRSLWWPLAIGILGIAVLVGSFVANRFYQSGHLAECLLVTTYLLIATAAALAVPLPRGVNSLGAPQVAGAATA
    VLFLTLMTRGGPRKRHELASFAVITAIAVIAAAAAFGYGYQDWVPAGGIAFGLFIVTNAAKLTVAVARIALPPIPVPGET
    VDNEELLDPVATPEATSEETPTWQAIIASVPASAVRLTERSKLAKQLLIGYVTSGTLILAAGAIAVVVRGHFFVHSLVVA
    GLITTVCGFRSRLYAERWCAWALLAATVAIPTGLTAKLIIWYPHYAWLLLSVYLTVALVALVVVGSMAHVRRvSPVVKRT
    LELIDGAMIAAIIPMLLWITGVYDTVRNIRF
    >BL;Rv3880c, H37Rv2.tab 4360202:4360546 reverse MW:12167
    VSMDELDPHVARALTLAARFQSALDGTLNQMNNGSFRATDEAETVEVTINGHQWLTGLRIEDGLLKKLGAEAVAQRVNEA (SEQ ID NO:642)
    LHNAQAASAYNDAAGEQLTAALSAMSRANNEGMA
    >BL;Rv3882c, H37Rv2.tab 4362035:4363420 reverse MW:50397
    MRNPLGLRFSTGHALLASALAPPCIIAFLETRYWWAGIALASLGVIVATVTFYGRRITGWVAAVYAWLRRRRRPPDSSSE (SEQ ID NO:643)
    PVVGATVKPGDHVAVRWQGEFLVAVIELIPRPFTPTVIVDGQAHTDDMLDTGLVEELLSVHCPDLEADIVSAGYRVGNTA
    APDVVSLYQQVIGTDPAPANRRTWIVLRADPERTRKSAQRRDEGVAGLARYLVASATRIADRLASHGVDAVCGRSFDDYD
    HATDIGFVREKWSMIKGRDAYTAAYAAPGGPDVWWSARADHTITRVRVAPGMAPQSTVLLTTADKPKTPRGFARLFGGQR
    PALQGQHLVANRHCQLPIGSAGVLVGETVNRCPVYMPFDDVDIALNLGDAQTFTQFVVRAAAAGAMVTVGPQFEEFARLI
    GAHIGQEVKVAWPNATTYLGPHPGIDRVILRHNVIGTPRHRQLPIRRvSPPEESRYQMALPK
    >BL;Rv3909, H37Rv2.tab 4394192:4396597 forward MW:83878
    VTALQLGWAALARVTSAIGVVAGLGMALTVPSAAPHHALAGEPSPTPFVQVRIDQVTPDVVTTSSEPHVTVSGTVTNTGDR (SEQ ID NO:644)
    PVRDVMVRLEHAAAVTSSTALRTSLDGGTDQYQPAADFLTVAPELDRGQEAGFTLSAPLRSLTRPSLAVNQPGIYPVLLVN
    VNGTPDYGAPARLDNARFLLPVVGVPPDQATDFGSAVAPETTAPVWITMLWPLADRPRLAPGAPGGTVPVRLVDDDLANS
    VNGTPDYGAPARLDNARFLLPVVGVPPDQATDFGSAVAPETTAPVWITMLWPLADRPRLAPGAPGGTVPVRLVDDDLANS
    LANGGRLDILLSAAEFATNREVDPDGAVGRALCLAIDPDLLITVNAMTGGYVVSDSPDGAAQLPGTPTHPGTGQAAASSW
    LDRLRTLVHRTCVTPLPFAQADLDALQRVNDPRLSAIATISPADIVDRILDVSSTRGATVLPDGPLTGRAINLLSTHGNT
    VAVAAADFSPEEQQGSSQIGSALLPATAPRRLSPRVVAAPFDPAVGAALAAAGTNPTVPTYLDPSLFVRIAHESITARRQ
    DALGAMLWRSLEPNAAPRTQILVPPASWSLASDDAQVILTALATAIRSGLAVPRPLPAVIADAAARTEPPEPPGAYSAAR
    GRFNDDITTQIGGQVARLWKLTSALTIDDRTGLTGVQYTAPLREDMLRALSQSLPPDTRNGLAQQRLAVVGKTIDDLFGA
    VTIVNPGGSYTLATEHSPLPLALHNGLAVPIRVRLQVDAPPGMTVADVGQIELPPGYLPLRVPIEVNFTQRVAVDVSLRT
    PDGVALGEPVRLSVHSNAYGKVLFAITLSAAAVLVTLAGRRLWHRFRGQPDRADLDRPDLPTGKHAPQRRAVASRDDEKH
    RV
  • [0236]
    Figure US20040121322A9-20040624-P00001
    Figure US20040121322A9-20040624-P00002
    Figure US20040121322A9-20040624-P00003
    Figure US20040121322A9-20040624-P00004
    Figure US20040121322A9-20040624-P00005
    Figure US20040121322A9-20040624-P00006
    Figure US20040121322A9-20040624-P00007
    Figure US20040121322A9-20040624-P00008
    Figure US20040121322A9-20040624-P00009
    Figure US20040121322A9-20040624-P00010
    Figure US20040121322A9-20040624-P00011
    Figure US20040121322A9-20040624-P00012
    Figure US20040121322A9-20040624-P00013
    Figure US20040121322A9-20040624-P00014
    Figure US20040121322A9-20040624-P00015
    Figure US20040121322A9-20040624-P00016
    Figure US20040121322A9-20040624-P00017
    Figure US20040121322A9-20040624-P00018
    Figure US20040121322A9-20040624-P00019
    Figure US20040121322A9-20040624-P00020
    Figure US20040121322A9-20040624-P00021
    Figure US20040121322A9-20040624-P00022
    Figure US20040121322A9-20040624-P00023
    Figure US20040121322A9-20040624-P00024
    Figure US20040121322A9-20040624-P00025
    Figure US20040121322A9-20040624-P00026
    Figure US20040121322A9-20040624-P00027
    Figure US20040121322A9-20040624-P00028
    Figure US20040121322A9-20040624-P00029
    Figure US20040121322A9-20040624-P00030
    Figure US20040121322A9-20040624-P00031
    Figure US20040121322A9-20040624-P00032
    Figure US20040121322A9-20040624-P00033
    Figure US20040121322A9-20040624-P00034
    Figure US20040121322A9-20040624-P00035
    Figure US20040121322A9-20040624-P00036
    Figure US20040121322A9-20040624-P00037
    Figure US20040121322A9-20040624-P00038
    Figure US20040121322A9-20040624-P00039
    Figure US20040121322A9-20040624-P00040
    Figure US20040121322A9-20040624-P00041
    Figure US20040121322A9-20040624-P00042
    Figure US20040121322A9-20040624-P00043
    Figure US20040121322A9-20040624-P00044
    Figure US20040121322A9-20040624-P00045
    Figure US20040121322A9-20040624-P00046
    Figure US20040121322A9-20040624-P00047
    Figure US20040121322A9-20040624-P00048
    Figure US20040121322A9-20040624-P00049
    Figure US20040121322A9-20040624-P00050
    Figure US20040121322A9-20040624-P00051
    Figure US20040121322A9-20040624-P00052
    Figure US20040121322A9-20040624-P00053
    Figure US20040121322A9-20040624-P00054
    Figure US20040121322A9-20040624-P00055
    Figure US20040121322A9-20040624-P00056
    Figure US20040121322A9-20040624-P00057
    Figure US20040121322A9-20040624-P00058
    Figure US20040121322A9-20040624-P00059
    Figure US20040121322A9-20040624-P00060
    Figure US20040121322A9-20040624-P00061
    Figure US20040121322A9-20040624-P00062
    Figure US20040121322A9-20040624-P00063
    Figure US20040121322A9-20040624-P00064
    Figure US20040121322A9-20040624-P00065
    Figure US20040121322A9-20040624-P00066
    Figure US20040121322A9-20040624-P00067
    Figure US20040121322A9-20040624-P00068
    Figure US20040121322A9-20040624-P00069
    Figure US20040121322A9-20040624-P00070
    Figure US20040121322A9-20040624-P00071
    Figure US20040121322A9-20040624-P00072
    Figure US20040121322A9-20040624-P00073
    Figure US20040121322A9-20040624-P00074
    Figure US20040121322A9-20040624-P00075
    Figure US20040121322A9-20040624-P00076
    Figure US20040121322A9-20040624-P00077
    Figure US20040121322A9-20040624-P00078
    Figure US20040121322A9-20040624-P00079
    Figure US20040121322A9-20040624-P00080
    Figure US20040121322A9-20040624-P00081
    Figure US20040121322A9-20040624-P00082
    Figure US20040121322A9-20040624-P00083
    Figure US20040121322A9-20040624-P00084
    Figure US20040121322A9-20040624-P00085
    Figure US20040121322A9-20040624-P00086
    Figure US20040121322A9-20040624-P00087
    Figure US20040121322A9-20040624-P00088
    Figure US20040121322A9-20040624-P00089
    Figure US20040121322A9-20040624-P00090
    Figure US20040121322A9-20040624-P00091
    Figure US20040121322A9-20040624-P00092
    Figure US20040121322A9-20040624-P00093
    Figure US20040121322A9-20040624-P00094
    Figure US20040121322A9-20040624-P00095
    Figure US20040121322A9-20040624-P00096
    Figure US20040121322A9-20040624-P00097
    Figure US20040121322A9-20040624-P00098
    Figure US20040121322A9-20040624-P00099
    Figure US20040121322A9-20040624-P00100
    Figure US20040121322A9-20040624-P00101
    Figure US20040121322A9-20040624-P00102
    Figure US20040121322A9-20040624-P00103
    Figure US20040121322A9-20040624-P00104
    Figure US20040121322A9-20040624-P00105
    Figure US20040121322A9-20040624-P00106
    Figure US20040121322A9-20040624-P00107
    Figure US20040121322A9-20040624-P00108
    Figure US20040121322A9-20040624-P00109
    Figure US20040121322A9-20040624-P00110
    Figure US20040121322A9-20040624-P00111
    Figure US20040121322A9-20040624-P00112
    Figure US20040121322A9-20040624-P00113
    Figure US20040121322A9-20040624-P00114
    Figure US20040121322A9-20040624-P00115
    Figure US20040121322A9-20040624-P00116
    Figure US20040121322A9-20040624-P00117
    Figure US20040121322A9-20040624-P00118
    Figure US20040121322A9-20040624-P00119
    Figure US20040121322A9-20040624-P00120
    Figure US20040121322A9-20040624-P00121
    Figure US20040121322A9-20040624-P00122
    Figure US20040121322A9-20040624-P00123
    Figure US20040121322A9-20040624-P00124
    Figure US20040121322A9-20040624-P00125
    Figure US20040121322A9-20040624-P00126
    Figure US20040121322A9-20040624-P00127
    Figure US20040121322A9-20040624-P00128
    Figure US20040121322A9-20040624-P00129
    Figure US20040121322A9-20040624-P00130
    Figure US20040121322A9-20040624-P00131
    Figure US20040121322A9-20040624-P00132
    Figure US20040121322A9-20040624-P00133
    Figure US20040121322A9-20040624-P00134
    Figure US20040121322A9-20040624-P00135
    Figure US20040121322A9-20040624-P00136
    Figure US20040121322A9-20040624-P00137
    Figure US20040121322A9-20040624-P00138
    Figure US20040121322A9-20040624-P00139
    Figure US20040121322A9-20040624-P00140
    Figure US20040121322A9-20040624-P00141
    Figure US20040121322A9-20040624-P00142
    Figure US20040121322A9-20040624-P00143
    Figure US20040121322A9-20040624-P00144
    Figure US20040121322A9-20040624-P00145
    Figure US20040121322A9-20040624-P00146
    Figure US20040121322A9-20040624-P00147
    Figure US20040121322A9-20040624-P00148
    Figure US20040121322A9-20040624-P00149
    Figure US20040121322A9-20040624-P00150
    Figure US20040121322A9-20040624-P00151
    Figure US20040121322A9-20040624-P00152
    Figure US20040121322A9-20040624-P00153
    Figure US20040121322A9-20040624-P00154
    Figure US20040121322A9-20040624-P00155
    Figure US20040121322A9-20040624-P00156
    Figure US20040121322A9-20040624-P00157
    Figure US20040121322A9-20040624-P00158
    Figure US20040121322A9-20040624-P00159
    Figure US20040121322A9-20040624-P00160
    Figure US20040121322A9-20040624-P00161
    Figure US20040121322A9-20040624-P00162
    Figure US20040121322A9-20040624-P00163
    Figure US20040121322A9-20040624-P00164
    Figure US20040121322A9-20040624-P00165
    Figure US20040121322A9-20040624-P00166
    Figure US20040121322A9-20040624-P00167
    Figure US20040121322A9-20040624-P00168
    Figure US20040121322A9-20040624-P00169
    Figure US20040121322A9-20040624-P00170
    Figure US20040121322A9-20040624-P00171
    Figure US20040121322A9-20040624-P00172
    Figure US20040121322A9-20040624-P00173
    Figure US20040121322A9-20040624-P00174
    Figure US20040121322A9-20040624-P00175
    Figure US20040121322A9-20040624-P00176
    Figure US20040121322A9-20040624-P00177
    Figure US20040121322A9-20040624-P00178
    Figure US20040121322A9-20040624-P00179
    Figure US20040121322A9-20040624-P00180
    Figure US20040121322A9-20040624-P00181
    Figure US20040121322A9-20040624-P00182
    Figure US20040121322A9-20040624-P00183
    Figure US20040121322A9-20040624-P00184
    Figure US20040121322A9-20040624-P00185
    Figure US20040121322A9-20040624-P00186
    Figure US20040121322A9-20040624-P00187
    Figure US20040121322A9-20040624-P00188
    Figure US20040121322A9-20040624-P00189
    Figure US20040121322A9-20040624-P00190
    Figure US20040121322A9-20040624-P00191

Claims (74)

What is claimed is:
1. A method for identification and the selection of essential genes for the survival or the virulence of mycobacterium species which comprises:
a. Aligning the genomic sequence of a first mycobacterium species on a genomic sequence of the genomic sequence of a second mycobacterium species,
b. Selecting a polypolynucleotide sequence highly conserved in both genomes with no counterparts in other bacterial genomic sequences and which corresponds to an essential gene for the survival or the virulence of mycobacterium species, and
c. Optionally, testing the polypolynucleotide selected in step b) for its capacity of virulence or involved in the survival of a mycobacterium species said testing being based on the activation or inactivation of said polypolynucleotide in a bacterial host or said testing being based on the activity of the product of expression of said polynucleotide in vivo or in vitro.
2. A method according to claim 1, wherein the first genomic sequence of mycobacterium belongs to Mycobacterium tuberculosis.
3. A method according to claim 1, wherein the second genomic sequence of mycobacterium belongs to Mycobacterium leprae.
4. A method according to any one of claims 1 to 3, wherein the complete genomic sequence of said mycobacterium species is analysed.
5. A method for the identification and the selection in silico of essential genes for the survival or the virulence of mycobacterium species according to any one of claims 1 to 4.
6. Purified polynucleotide molecule obtained by the method according to any one of claims 1 to 5.
7. A purified polynucleotide molecule of claim 6 which encodes essential proteins or fragments of proteins of Mycobacteium species.
8. A purified polynucleotide molecule of a formula selected from the group consisting of polynucleotidic sequences, which encode for polypeptides and regulatory sequences essential for the virulence and/or the survival of mycobacterium which are, in one hand, specific to Mycobacterium tuberculosis and, in the other hand, specific to Mycobacterium leprae, that is to say, said polynucleotidic sequences are not found in publicly accessible banks of non-Mycobacterium tuberculosis and non-Mycobacterium leprae genome.
9. A purified polynucleotide molecule according to claim 8 obtained by the method according to any one of claims 1 to 5.
10. A purified polynucleotide molecule that hybridizes to either strand of a denratured, double-stranded DNA comprising the purified polynucleotide sequence according to claims 6 to 9 under conditions of moderate stringency in 50% formamide and 6× SSC at 42° C. with washing conditions of 60° C., 0.5×SSC, 0.1% of SDS.
11. The purified polynucleotide molecule as claimed in claim 10, wherein said purified polynucleotide molecule is derived by mutagenesis.
12. A purified polynucleotide molecule degenerate from the purified polynucleotide molecule according to any one of claims 6 to 9 as a result of the genetic code.
13. A purified polynucleotide according to any one of claims 6 to 9 which encodes M. tuberculosis or M. leprae marker polypeptide.
14. A purified polynucleotide molecule according to any one of claims 6 to 9 which encodes an allelic variant of M. tuberculosis or M. leprae marker polypeptide according to claim 13.
15. A purified polynucleotide molecule according to any one of claims 6 to 9 which encodes a similar sequence of M. tuberculosis or M. leprae marker polypeptide DNA according to claim 13.
16. A purified polypeptide encoded by a polynucleotide molecule according to claim 8.
17. A purified polypeptide of a formula selected from the group consisting of SEQ ID NO: X to SEQ ID NO: Y.
18. A purified polypeptide according to claim 17 encoded by a polynucleotide molecule according to claims 6 or 9.
19. A purified polypeptide according to claim 16 in non-glycosylated form.
20. A purified polypeptide according to claim 16 in glycosylated form.
21. A purified polypeptide according to claim 17 in non-glycosylated form.
22. A purified polypeptide according to claim 17 in glycosylated form.
23. A purified polypeptide according to claim 18 in non-glycosylated form.
24. A purified polypeptide according to claim 18 in non-glycosylated form.
25. Process of screening of active molecules comprising:
a. Preparation of at least one purified polynucleotidic molecule or fragment thereof according to claims 6 to 9 in an acceptable medium,
b. Contacting the purified polynucleotide sequence or a fragment thereof corresponding to said essential gene of interest with an active molecule to be tested, and
c. Selecting the active molecule by inhibition or activation of the activity of the purified polynucleotide compared to the standard activity of the essential gene in absence of said active molecule.
26. Process of screening of an active molecule comprising:
a. Preparation of at least one purified polypeptide according to claims 16 to 24 or fragment thereof to be used as a target in an acceptable medium,
b. Contacting said purified polypeptide or fragment thereof obtained in step a) with an active molecule to be tested, and
c. Selecting the active molecule by inhibition or activation of the activity of the purified polypeptide obtainable after expression of the essential gene selected according to claim 1 and compared to the standard activity of said polypeptide.
27. A recombinant BAC containing a fragment of M. tuberculosis genome deposited on Feb. 20, 2001 at the C.N.C.M. under the accession number I-2625.
28. A recombinant BAC containing a fragment of M. tuberculosis genome deposited on Feb. 20, 2001 at the C.N.C.M. under the accession number I-2626.
29. A recombinant BAC containing a fragment of M. tuberculosis genome deposited on Feb. 20, 2001 at the C.N.C.M. under the accession number I-2627.
30. A recombinant BAC containing a fragment of M. tuberculosis genome deposited on Feb. 20, 2001 at the C.N.C.M. under the accession number I-2628.
31. A recombinant BAC containing a fragment of M. tuberculosis genome deposited on Feb. 20, 2001 at the C.N.C.M. under the accession number I-2629.
32. A recombinant cosmid containing a fragment of M. leprae genome deposited on Feb. 21, 2001 at the C.N.C.M. under the accession number I-2632.
33. A recombinant cosmid containing a fragment of M. leprae genome deposited on Feb. 21, 2001 at the C.N.C.M. under the accession number I-2633.
34. A recombinant purified vector that directs the expression of a polynucleotide molecule selected from the group consisting of purified polynucleotide molecule selected according to claims 1 or 6, 7, 8, 9, 13, 14 and 15.
35. A recombinant purified vector that directs the expression of a purified polynucleotide molecule according to claims 10 or 11.
36. A recombinant purified vector that directs the expression of a purified polynucleotide molecule according to claim 12.
37. A recombinant purified vector containing a part of the polynucleotide insert of claims 27 to 32 or claims 33 to 35 which is a plasmid.
38. A host cell transfected or transduced with the vector of claim 34.
39. A host cell transfected or transduced with the vector of claim 35.
40. A host cell transfected or transduced with the vector of claim 36.
41. A host cell transfected or transduced with the plasmid of claim 37.
42. A method for the production of mycobacterium purified marker polypeptide comprising culturing a host cell of claim 38 under conditions promoting expression, and recovering the polypeptide from the culture medium.
43. A method for the production of mycobacterium purified marker polypeptide comprising culturing a host cell of claim 39 under conditions promoting expression, and recovering the polypeptide from the culture medium.
44. A method for the production of mycobacterium purified marker polypeptide comprising culturing a host cell of claim 40 under conditions promoting expression, and recovering the polypeptide from the culture medium.
45. A method for the production of mycobacterium purified marker polypeptide comprising culturing a host cell of claim 41 under conditions promoting expression, and recovering the polypeptide from the culture medium.
46. The method according to any one of claims 42 to 45, wherein the host cell is selected from the group consisting of bacterial cells, yeast cells, plant cells, and mammalian cells.
47. An immunological complex comprising a Mycobacterium purified marker polypeptide produced by a method according to any one of claims 42 to 45 and an antibody that specifically recognizes said polypeptide.
48. A composition comprising at least a mycobacterium purified polypeptide marker produced by a method according to any one of claims 42 to 45.
49. A method for detecting infection by mycobacteria, said method comprises:
a. Providing a composition according to claim 48 with a biological sample suspected to be infected with a mycobacterium,
b. Assaying for the presence of said mycobacterium, and
c. Optionally, detecting the presence of mycobacteria in said biological sample if infected.
50. The method of claim 49, which in step b) the assay is performed by electrophoresis or by immunoassay with antibodies that are immunologically reactive with M. tuberculosis and/or M. leprae.
51. An in vitro diagnostic method for the detection of the presence or the absence of antibodies which bind to an antigen or fragment of antigen comprising a mycobacterium purified polypeptide molecule according to any one of claims 16 to 24, wherein the method comprises contacting the antigen or fragment of antigen with a biological fluid for a time and under conditions sufficient for the antigen and antibodies in the biological fluid to form an immunological complex, detecting the formation of the complex, and optionally measuring the formation of the immunologicalcomplex.
52. The method as claimed in claim 51, wherein the formation of the immunological complex is detected by immunoassay method based on western blot technique, ELISA, indirect immuno-fluorescense assay, or immunoprecipitation assay.
53. An in vitro diagnostic method for the detection of the presence or the absence of antibodies which bind to an antigen or fragment of antigen comprising a mycobacterium purified polypeptide molecule obtained by a method according to any one of claims 42 to 45, wherein the method comprises contacting the antigen or fragment of antigen with a biological fluid for a time and under conditions sufficient for the antigen and antibodies in the biological fluid to form an immunological complex, detecting the formation of the complex, and optionally measuring the formation of the immunological complex.
54. The method as claimed in claim 53, wherein the formation of the immunological complex is detected by immunoassay method based on western blot technique, ELISA, indirect immuno-fluorescence assay, or immunoprecipitation assay.
55. A kit for the in vitro diagnostics of mycobacterium infections comprising:
a. A mycobacterium purified polypeptide molecule according to any one of claims 16 to 24 or mixture thereof,
b. Antibodies capable of forming an immunological complex with said polypeptides, and
c. Acceptable medium to permit the detection of the formation of the complex thereof.
56. A kit as claimed in claim 55 useful for the detection of M. tuberculosis infections.
57. A kit as claimed in claim 55 useful for the detection of M. leprae infections.
58. An immunogenic composition comprising at least a purified polypeptide according to any one of claims 16 to 24 in an amount sufficient to induce an immunogenic or protective response in vivo, and a pharmaceutically acceptable carrier therefor.
59. A polynucleotidic probe comprising a purified polynucleotide molecule or fragment thereof according to any one of claims 6 to 15.
60. A polynucleotidic probe which is complementary to the full length sequence of a purified nucleic acid that hybridizes under conditions of moderate stringency in 50% formamide and 6× SSC at 42° C. with washing conditions of 60° C., 0.5×SSC, 0.1% SDS with a nucleic acid encoding a purified polypeptide according to any one of claims 6 to 24.
61. A method for the detection of the presence or the absence of mycobacteria in a sample comprising:
a. contacting a sample suspected to contain genetic material of mycobacteria with at least one probe according to claims 59 or 60,
b. Detecting the hybridization under conditions of moderate stringency in 50% formamide and 6× SSC at 42° C. with washing conditions of 60° C., 0.5×SSC, 0.1% SDS.
62. A method for the detection of the presence or the absence of mycobacteria according to claim 61, wherein said method is specific for the detection of M. tuberculosis infections.
63. A method for the detection of the presence or the absence of mycobacteria according to claim 61, wherein said method is specific for the detection of M. leprae infections.
64. A method for the detection of the presence or the absence of mycobacteria according to any one of claims 61 to 63, wherein the sample contains nucleic acids of at least one microorganism other than the mycobacteria.
65. A method of selection according to claim 1, wherein the comparison of the genetic informations of different types of organisms, wherein the method comprises:
a. Providing a database including sequence libraries for a plurality of types of organism, said libraries having multiple genomic sequences,
b. Providing one or more probe sequences according to claims 59 or 60,
c. Determining homologous matches between one or more of said probe sequences and one or more sequences of said sequences in said genomic libraries; and
d. Displaying the results of said determination.
66. A method according to claims 1 to 4, wherein the genomic sequence of a first mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 27.
67. A method according to claims 1 to 4, wherein the genomic sequence of a first mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 28.
68. A method according to claims 1 to 4, wherein the genomic sequence of a first mycobaterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 29.
69. A method according to claims 1 to 4, wherein the genomic sequence of a first mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 30.
70. A method according to claims 1 to 4, wherein the genomic sequence of a first mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 31.
71. A method according to claims 1 to 4, wherein the genomic sequence of the second mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 32.
72. A method according to claims 1 to 4, wherein the genomic sequence of the second mycobacterium species is the recombinant BAC deposited at the C.N.C.M. according to claim 33.
73. An in vitro diagnostic method for the detection of the presence or the absence of essential nucleotidic sequences for the survival or the virulence in mycobacterium by hybridization or amplification of said specific sequence comprising:
a. Providing a composition comprising a probe according to claims 59 or 60 with a sequence library of interest to be tested in an acceptable medium and in sufficient time to obtain an hybridization and/or an amplification of said sequence,
b. Purifying the sequence which hybridizes with said probe; and
c. Optionally, quantifying said sequence.
74. A method according to claim 1, wherein the first genomic sequence of mycobacterium belongs to Mycobacterium microti.
US10/080,170 2001-02-22 2002-02-22 Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses Abandoned US20040121322A9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/080,170 US20040121322A9 (en) 2001-02-22 2002-02-22 Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27012301P 2001-02-22 2001-02-22
US10/080,170 US20040121322A9 (en) 2001-02-22 2002-02-22 Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses

Publications (2)

Publication Number Publication Date
US20030129601A1 US20030129601A1 (en) 2003-07-10
US20040121322A9 true US20040121322A9 (en) 2004-06-24

Family

ID=23029995

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/080,170 Abandoned US20040121322A9 (en) 2001-02-22 2002-02-22 Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses
US10/468,356 Expired - Fee Related US7538206B2 (en) 2001-02-22 2002-02-22 Comparative mycobacterial geneomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/468,356 Expired - Fee Related US7538206B2 (en) 2001-02-22 2002-02-22 Comparative mycobacterial geneomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses

Country Status (6)

Country Link
US (2) US20040121322A9 (en)
EP (1) EP1401866A2 (en)
CN (1) CN1277843C (en)
AU (1) AU2002302919A1 (en)
CA (1) CA2438279A1 (en)
WO (1) WO2002074903A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053258A1 (en) * 2005-04-29 2009-02-26 Fusion Antibodies Limited Assays for diagnosis of tuberculosis and uses thereof
US9580758B2 (en) 2013-11-12 2017-02-28 Luc Montagnier System and method for the detection and treatment of infection by a microbial agent associated with HIV infection
US20190170746A1 (en) * 2007-11-10 2019-06-06 The Secretary Of State For Environment, Food And Rural Affairs Mycobacterium Antigens

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121322A9 (en) * 2001-02-22 2004-06-24 Cole Stewart T. Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses
US20040072990A1 (en) * 2002-09-20 2004-04-15 Shiou-Ru Tzeng Antimicrobial peptides with reduced hemolysis and methods of their use
CN101302556B (en) * 2002-12-18 2011-05-25 生物技术部 The characterization of hupb gene encoding histone like protein of mycobacterium tuberculosis
SE0300413D0 (en) * 2003-02-15 2003-02-15 Innate Pharmaceuticals Ab Methods to identify new virulence-associated genes
GB0307329D0 (en) * 2003-03-29 2003-05-07 Astrazeneca Ab Method
WO2006078164A2 (en) * 2005-01-18 2006-07-27 Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patientenzorg Mycobacteria with mannose cap-deficient lipoarabinomannan
EP1863914A1 (en) * 2005-04-01 2007-12-12 McGILL UNIVERSITY Tuberculosis vaccine and method for making same
WO2007091881A2 (en) * 2005-04-29 2007-08-16 Leiden University Medical Center Methods and means for detection of mycobacterium leprae infections
US8398991B2 (en) * 2005-06-22 2013-03-19 Institut Pasteur Modified ESAT-6 molecules and improved vaccine strains of Mycobacterium bovis BCG
EP1999471A2 (en) * 2006-03-13 2008-12-10 Oragenics, Inc. In vivo induced genes of mycobacterium tuberculosis
US20100242345A1 (en) 2006-05-19 2010-09-30 LS9, Inc Production of fatty acids & derivatives thereof
US8110670B2 (en) 2006-05-19 2012-02-07 Ls9, Inc. Enhanced production of fatty acid derivatives
GB0618127D0 (en) * 2006-09-14 2006-10-25 Isis Innovation Biomarker
FR2912422B1 (en) * 2007-02-09 2013-01-11 Centre Nat Rech Scient ENZYMES (3R) -HYDROXYACYL-ACP DESHYDRATASES INVOLVED IN THE BIOSYNTHESIS OF MYCOLIC ACIDS AND THEIR USE FOR SCREENING ANTIBIOTICS
US20100199548A1 (en) * 2007-07-06 2010-08-12 Ls9, Inc. Systems and methods for the production of fatty esters
WO2009028973A1 (en) * 2007-08-31 2009-03-05 BIOCANT PARK - Centro de Inovação em Biotecnologia Massive production of mycobacterial glucosyl-3-phosphoglycerate synthase and the use of this enzyme as a target for antimycobacterial substances
WO2009085278A1 (en) 2007-12-21 2009-07-09 Ls9, Inc. Methods and compositions for producing olefins
EP2818178A1 (en) * 2008-01-11 2014-12-31 The Government of The United States of America as represented by The Secretary, Department of Health and Human Services Polypeptide vaccine and vaccination strategy against mycobacterium
MX2010012192A (en) 2008-05-16 2011-04-26 Ls9 Inc Methods and compositions for producing hydrocarbons.
US20110160123A1 (en) * 2008-05-20 2011-06-30 The Uab Research Foundation Targeting the efflux systems of mycobacterium tuberculosis
US20100055715A1 (en) * 2008-06-02 2010-03-04 Michael James Pearce Nucleic and amino acid sequences of prokaryotic ubiquitin-like protein and methods of use thereof
CA2731499C (en) * 2008-07-25 2017-01-10 Glaxosmithkline Biologicals S.A. Composition and use thereof for treating or preventing latent tuberculosis
KR20110060891A (en) 2008-07-25 2011-06-08 글락소스미스클라인 바이오로지칼즈 에스.에이. Novel compositions and methods
CN106866801A (en) 2008-07-25 2017-06-20 葛兰素史密丝克莱恩生物有限公司 Tuberculosis RV2386C albumen, composition and application thereof
AR072999A1 (en) 2008-08-11 2010-10-06 Medarex Inc HUMAN ANTIBODIES THAT JOIN GEN 3 OF LYMPHOCYTARY ACTIVATION (LAG-3) AND THE USES OF THESE
WO2010022090A1 (en) * 2008-08-18 2010-02-25 Ls9, Inc. Systems and methods for the production of mixed fatty esters
MX2011003597A (en) * 2008-10-07 2011-06-20 Ls9 Inc Method and compositions for producing fatty aldehydes.
WO2010062480A2 (en) 2008-10-28 2010-06-03 Ls9, Inc. Methods and compositions for producing fatty alcohols
US8603739B2 (en) * 2008-11-25 2013-12-10 Center For Dna Fingerprinting & Diagnostics Inhibitors of Rv0256c
CA2747516C (en) 2008-12-23 2019-11-05 Ls9, Inc. Methods and compositions related to thioesterase enzymes
GB0906215D0 (en) * 2009-04-09 2009-05-20 Lalvani Ajit Diagnostic test
EP2417246A4 (en) * 2009-04-10 2015-11-04 Reg Life Sciences Llc Production of fatty acid derivatives
WO2010126891A1 (en) 2009-04-27 2010-11-04 Ls9, Inc. Production of fatty acid esters
WO2011007359A2 (en) 2009-07-16 2011-01-20 Vaxil Biotherapeutics Ltd. Antigen specific multi epitope -based anti-infective vaccines
US20110124071A1 (en) * 2009-11-17 2011-05-26 LS9, Inc Methods and compositions for producing hydrocarbons
EP2502076B1 (en) 2009-11-20 2018-04-18 Oregon Health and Science University Methods for detecting a mycobacterium tuberculosis infection
UA110103C2 (en) 2010-01-27 2015-11-25 Ґлаксосмітклайн Байолоджікалз С.А. Modified tuberculosis antigen
WO2011100667A1 (en) * 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
ITRM20100411A1 (en) * 2010-07-23 2012-01-24 Massimo Amicosante USE OF AMINO ACID SEQUENCES FROM MYCOBACTERIUM TUBERCULOSIS OR THEIR CORRESPONDING NUCLEIC ACIDS FOR DIAGNOSIS AND PREVENTION OF TUBERCULAR INFECTION, RELATED TO DIAGNOSTIC AND VACCINE KIT.
PL3604339T3 (en) 2011-01-14 2021-12-27 The Regents Of The University Of California Therapeutic antibodies against ror-1 protein and methods for use of same
WO2012164088A1 (en) * 2011-06-03 2012-12-06 Universite Montpellier 2 Sciences Et Techniques Diagnosis method of active tuberculosis
WO2013090897A1 (en) * 2011-12-15 2013-06-20 The Trustees Of The University Of Pennsylvania Using adaptive immunity to detect drug resistance
AR091649A1 (en) 2012-07-02 2015-02-18 Bristol Myers Squibb Co OPTIMIZATION OF ANTIBODIES THAT FIX THE LYMPHOCYTE ACTIVATION GEN 3 (LAG-3) AND ITS USES
CN107478849B (en) * 2013-05-31 2019-08-20 中国医学科学院病原生物学研究所 Albumen for diagnosis of tuberculosis and prevention
EP3178849B1 (en) 2013-09-20 2019-03-20 Bristol-Myers Squibb Company Combination of anti-lag-3 antibodies and anti-pd-1 antibodies to treat tumors
WO2015042704A1 (en) 2013-09-24 2015-04-02 University Of Guelph Biomarkers for mycobacterium avium paratuberculosis (map)
CN103675292B (en) * 2013-11-25 2015-10-28 广东体必康生物科技有限公司 The purposes of Rv0174, Rv1729c and/or Rv3835 albumen in the phthisical product of preparation diagnostic activities
CN103698530B (en) * 2013-11-25 2015-08-19 广东体必康生物科技有限公司 The purposes of Mycobacterium tuberculosis albumen in the phthisical product of preparation diagnostic activities
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
US20150259420A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
CN105218648A (en) * 2015-07-10 2016-01-06 邓林红 Negre antigen, nucleotide sequence and application thereof
CN105388300B (en) * 2015-12-01 2017-05-24 中国医学科学院病原生物学研究所 Tuberculosis immunodiagnosis molecular marker and vaccine use thereof
CN106198971A (en) * 2016-08-01 2016-12-07 中国疾病预防控制中心传染病预防控制所 The application of antigen of mycobacterium tuberculosis albumen Rv2351c
WO2018053294A1 (en) * 2016-09-16 2018-03-22 Infectious Disease Research Institute Vaccines comprising mycobacterium leprae polypeptides for the prevention, treatment, and diagnosis of leprosy
WO2018068064A2 (en) * 2016-09-22 2018-04-12 Nguyen Hiep Hoa T Mycobacterium tuberculosis proteins in diagnostic assays and devices for tuberculosis detection and diagnosis
CN106606774B (en) * 2016-11-24 2020-08-11 中国医学科学院病原生物学研究所 Tuberculosis immunodiagnosis molecular marker and application thereof in preparation of vaccine
AU2018277824A1 (en) 2017-05-30 2019-10-17 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
US11723975B2 (en) 2017-05-30 2023-08-15 Bristol-Myers Squibb Company Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody
CN107281465B (en) * 2017-06-02 2021-03-02 中国医学科学院病原生物学研究所 Tuberculosis vaccine candidate component and vaccine containing same
EP3438255A1 (en) * 2017-08-03 2019-02-06 Centre National de la Recherche Scientifique CNRS Hadd, a novel protein of the mycobacterial fatty acid synthase type ii
CN108096571B (en) * 2017-12-27 2021-08-17 河南科技大学 Tuberculosis polypeptide vaccine for preventing and treating tuberculosis and preparation method and application thereof
RU2695679C1 (en) * 2018-09-11 2019-07-25 Эгрикалчурал Текнолоджи Рисерч Инститьют Subunit vaccine against mycoplasma spp
EP3660158A1 (en) * 2018-11-29 2020-06-03 Evonik Operations GmbH Method for the fermentative production of l-lysine
CN110343706A (en) * 2019-01-25 2019-10-18 北京蛋白质组研究中心 Mycobacterium tuberculosis H37Rv encoding gene and its application
CN111286551A (en) * 2020-01-04 2020-06-16 昆明理工大学 Primer and kit for rapidly detecting mycobacterium tuberculosis and using method thereof
CN112646007B (en) * 2020-11-09 2022-07-01 中国人民解放军总医院第八医学中心 Combined protein for detecting mycobacterium tuberculosis and detection reagent
CN114990036B (en) * 2022-05-06 2024-06-04 中国科学院天津工业生物技术研究所 Method for producing 2-pyrone-4, 6-dicarboxylic acid by whole cell catalysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US197896A (en) * 1877-12-04 Improvement in ratchet-drills
US6294328B1 (en) * 1998-06-24 2001-09-25 The Institute For Genomic Research DNA sequences for strain analysis in Mycobacterium tuberculosis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183957B1 (en) * 1998-04-16 2001-02-06 Institut Pasteur Method for isolating a polynucleotide of interest from the genome of a mycobacterium using a BAC-based DNA library application to the detection of mycobacteria
US20040121322A9 (en) 2001-02-22 2004-06-24 Cole Stewart T. Comparative mycobacterial genomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US197896A (en) * 1877-12-04 Improvement in ratchet-drills
US6294328B1 (en) * 1998-06-24 2001-09-25 The Institute For Genomic Research DNA sequences for strain analysis in Mycobacterium tuberculosis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053258A1 (en) * 2005-04-29 2009-02-26 Fusion Antibodies Limited Assays for diagnosis of tuberculosis and uses thereof
US8475803B2 (en) * 2005-04-29 2013-07-02 Fusion Antibodies Limited Assays for diagnosis of tuberculosis and uses thereof
US20190170746A1 (en) * 2007-11-10 2019-06-06 The Secretary Of State For Environment, Food And Rural Affairs Mycobacterium Antigens
US10578617B2 (en) * 2007-11-10 2020-03-03 The Secretary Of State For Environment, Food And Rural Affairs Mycobacterium antigens
US9580758B2 (en) 2013-11-12 2017-02-28 Luc Montagnier System and method for the detection and treatment of infection by a microbial agent associated with HIV infection
US10525066B2 (en) 2013-11-12 2020-01-07 Luc Montagnier System and method for the detection and treatment of infection by a microbial agent associated with HIV infection

Also Published As

Publication number Publication date
US20030129601A1 (en) 2003-07-10
US7538206B2 (en) 2009-05-26
WO2002074903A3 (en) 2003-11-13
US20040197896A1 (en) 2004-10-07
CA2438279A1 (en) 2002-09-26
CN1599751A (en) 2005-03-23
EP1401866A2 (en) 2004-03-31
WO2002074903A2 (en) 2002-09-26
AU2002302919A1 (en) 2002-10-03
CN1277843C (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US7538206B2 (en) Comparative mycobacterial geneomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses
US8399650B2 (en) Mycobacterial antigens expressed during latency
US8747866B2 (en) Identification of virulence associated regions RD1 and RD5 leading to improve vaccine of M. bovis BCG and M. microti
AU2002314358A1 (en) Mycobacterial antigens expressed during latency
Domenech et al. Mycobacterium tuberculosis in the post-genomic age
US5783386A (en) Mycobacteria virulence factors and a novel method for their identification
US9855323B2 (en) Vaccine candidates against johne's disease
US5700683A (en) Virulence-attenuating genetic deletions deleted from mycobacterium BCG
US6583266B1 (en) Nucleic acid and amino acid sequences relating to mycobacterium tuberculosis and leprae for diagnostics and therapeutics
EP0756006A2 (en) Nucleotide sequence of the mycoplasma genitalium genome, fragments thereof, and uses thereof
AU7383500A (en) Virulence genes of m. marinum and m. tuberculosis
EP1348036A2 (en) Protection against mycobacterial infections
EP0736098A1 (en) Mycobacteria virulence factors and a method for their identification
AU690121B2 (en) Methods and compositions for detecting and treating mycobacterial infections using an inhA gene
Miller et al. Identification of two Mycobacterium tuberculosis H37Rv ORFs involved in resistance to killing by human macrophages
Coombes et al. Strategic targeting of essential host-pathogen interactions in chlamydial disease
JPH09501308A (en) Regulators of contact-mediated hemolysin
US20060134135A1 (en) Bacterial virulence genes
Allsopp et al. Ehrlichia
Glaser et al. Listeria genomics
Coombes et al. Strategic Targeting of Essential Host-pathogen Interactions in Chlamydial

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE