US20040105725A1 - Ultra-deepwater tendon systems - Google Patents

Ultra-deepwater tendon systems Download PDF

Info

Publication number
US20040105725A1
US20040105725A1 US10/634,639 US63463903A US2004105725A1 US 20040105725 A1 US20040105725 A1 US 20040105725A1 US 63463903 A US63463903 A US 63463903A US 2004105725 A1 US2004105725 A1 US 2004105725A1
Authority
US
United States
Prior art keywords
tendon
tendons
platform
steel
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/634,639
Inventor
Steven Leverette
Kent Davies
Stephen Kibbee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seahorse Equipment Corp
Original Assignee
Seahorse Equipment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seahorse Equipment Corp filed Critical Seahorse Equipment Corp
Priority to US10/634,639 priority Critical patent/US20040105725A1/en
Assigned to SEAHORSE EQUIPMENT CORPORATION reassignment SEAHORSE EQUIPMENT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIES, KENT B., KIBBEE, STEPHEN E., LEVERETTE, STEVEN J.
Publication of US20040105725A1 publication Critical patent/US20040105725A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs

Definitions

  • the present invention relates to mooring systems for offshore floating platforms.
  • TLPs Tension Leg Platforms
  • tendons typically fabricated from high strength, high quality steel tubulars, and include articulated connections on the top and bottom (tendon connectors) that reduce bending moments and stresses in the tendon system.
  • platform system resonance is attenuated by exerting a damping force through means connecting a computer controlled winch or hydraulic system on the platform to the seabed.
  • one tendon on each corner of the platform system is equipped with passive damping means to disrupt resonance in the platform system.
  • passive tuned oscillator(s) or active driven oscillator(s) are provided to disrupt resonance of the platform system.
  • FIG. 1 is a side view of a floating platform anchored to the seabed by the tendon system of the present invention
  • FIG. 2 is a longitudinal section view of a tendon of the present invention depicting a synthetic tendon located within a steel tendon;
  • FIG. 2A is a section view taken along line 2 A- 2 A of FIG. 2;
  • FIGS. 3 - 6 are top views illustrating single and multi-column platforms incorporating the tendon systems of the present inventions
  • FIG. 7 is a side view illustration of a tanker anchored to the seabed by a single anchor leg mooring incorporating the tendon system of the present invention
  • FIG. 7A is a section view taken along line 7 A- 7 A of FIG. 7;
  • FIG. 8 is a partial side view of a platform incorporating a dry computer controlled damping force system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention
  • FIG. 9 is a partial side view of a platform incorporating a wet computer controlled damping force system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention
  • FIG. 10 is a partial side view of a platform incorporating an adjustable passive system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention
  • FIG. 11 is side view of a platform incorporating passive tuned oscillator devices for exerting a damping force on the platform;
  • FIG. 11A is a top plan view of the system shown in FIG. 11;
  • FIG. 12 is a side view of a platform incorporating a driven oscillator damping device for exerting a damping force on the platform;
  • FIG. 12A illustrates a block diagram of the driven oscillator damping device shown in FIG. 12.
  • FIG. 1 a single column floating platform generally identified by the reference numeral 10 is shown.
  • the floating platform 10 is anchored to the seabed 12 by the tendon system of the present invention.
  • the floating platform 10 includes a column or hull 14 projecting above the water surface 16 . Pontoons 18 extend radially outward from the base of the hull 14 .
  • one or more steel tendons are utilized to secure the floating platform 10 to the seabed 12 .
  • the tendon system must be designed to limit the fatigue damage caused by each wave cycle. This is typically accomplished by increasing the cross-sectional area of the steel tendon. But this increases the weight of the tendon and reduces the payload carrying capacity of the platform 10 .
  • the floating platform 10 of the present invention is anchored to the seabed 12 by a composite tendon system including steel tendons 20 and tendons 22 fabricated of synthetic materials arranged in an array or tendon group connected to the distal ends of the pontoons 18 at the upper ends thereof and to the seabed 12 at the lower ends thereof.
  • the tendons 22 comprise high-strength, light-weight synthetic materials, such as carbon fiber composites (CFC), to serve as stiffness members for increasing the vertical stiffness of the tendon group.
  • CFC carbon fiber composites
  • the steel tendons 20 serve as the primary strength elements while the light-weight CFC tendons 22 provide additional stiffness for limiting the vertical spring of the tendon group.
  • the same principal applies to a conventional multi-column platform. In such designs, multiple steel tendons and one or more CFC tendons attach to the anchoring column or columns of the floating platform as best shown in FIGS. 3 - 6 .
  • an alternate embodiment of the present invention contemplates locating a CFC tendon 24 within the steel tendon 20 .
  • the CFC tendon 24 is coaxially positioned within the steel tendon 20 .
  • the CFC tendon is protected from the seawater and may integrate other non-strength functions such as fiber optic strands for monitoring tendon condition.
  • the CFC tendon 24 is locked off at the bottom of the steel tendon 20 at a lower internal termination shoulder 21 , pre-tensioned and then locked off at the top of the steel tendon 20 at an upper internal termination shoulder 23 .
  • a lower connector 25 connects the steel tendons 20 to anchor piles 27 secured in the seabed 12 .
  • the upper ends of the steel tendons 20 are connected to the pontoons 18 or columns 31 of the multi-column floating platform 30 , shown in FIGS. 5 and 6, by a connector 29 .
  • the upper end of the tendon 20 is closed off by a plug 33 or the like.
  • the tendon system of the present invention is likewise applicable to a single anchor leg mooring (SALM) tanker mooring as shown in FIG. 7.
  • SALM single anchor leg mooring
  • an active control system for avoiding the cost premiums associated with fatigue-driven tendon design.
  • the active control system disrupts resonance motions in the tendon system by applying a varying damping force on the platform system.
  • connection means may comprise steel cable, synthetic cable, synthetic tendon, or steel tendon identified by the reference numeral 36 and anchored to the seabed 12 at 37 .
  • a computer controlled damping force system such as a winch or hydraulic system
  • connection means may comprise steel cable, synthetic cable, synthetic tendon, or steel tendon identified by the reference numeral 36 and anchored to the seabed 12 at 37 .
  • One such active connection means is located on each pontoon 18 .
  • the damping force system 38 may be mounted above the waterline 16 with a system of sheaves 40 directing the cable 36 to the seabed 12 shown in FIG. 8.
  • an underwater damping force system 42 as shown in FIG. 9, may be installed on the pontoon 18 to more directly develop a damping force in the cable means 36 .
  • Power and control is provided to the damping force system 42 through an electrical or hydraulic line 39 connecting the damping force system 42 to a power source.
  • a damping force may also be developed in the cable means 36 by mounting a passive spring and dashpot 41 to the distal ends of the pontoons 18 as depicted in FIG. 10.
  • Another means of counteracting expected or unexpected vibrations in a platform system is to provide damping forces through a passive tuned resonant oscillator or actively driven oscillating mass system.
  • the tuned oscillator system is similar in function to such systems used to prevent swaying of tall building structures, but is composed of water mass and air chamber spring.
  • FIG. 11 One possible configuration is shown in FIG. 11.
  • the water mass 50 oscillates vertically against an air spring 51 within an open bottomed chamber 52 .
  • One or more vertical chambers 52 are mounted about the exterior surface of the hull 14 of the platform 10 as shown in FIG. 11A.
  • FIG. 12 In an alternate embodiment shown in FIG. 12, a similar water mass system driven by an active forcing system is shown.
  • the active forcing system the water mass 56 is driven by air pressure 55 , all contained withing an open bottomed chamber 57 .
  • the controlled forcing is provided by a computer control system 60 and air supply 58 .

Abstract

A tendon system for anchoring a floating platform to the seabed comprises composite tendon groups including one or more steel tendons in combination with tendons fabricated of synthetic materials. The synthetic composite tendons may be coaxially located within the steel tendons. Tendon resonance is inhibited by exerting damping forces through supplementary tendons/cables connecting a passive or active damping force system to the seabed. In another aspect of the invention, a passive tuned oscillator or an active driven mass oscillator provides damping of platform resonance motions.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application Serial No. 60/401,064, filed Aug. 5, 2002, which application is incorporated herein by reference.[0001]
  • BACKGROUND OF THE DISCLOSURE
  • The present invention relates to mooring systems for offshore floating platforms. [0002]
  • Offshore floating platforms, such as Tension Leg Platforms (TLPs), are held in place in the ocean by means of vertical mooring elements called tendons, which are typically fabricated from high strength, high quality steel tubulars, and include articulated connections on the top and bottom (tendon connectors) that reduce bending moments and stresses in the tendon system. Many factors must be taken into account during the design of the tendon system to keep the floating platform safely in place including: (a) limitation of stresses developed in the tendons during extreme storms and while the platform system is operating in damaged conditions; (b) avoidance of any slackening of tendons and subsequent snap loading of tendons as wave troughs and crests pass the platform hull; (c) allowance for fatigue damage which occurs as a result of the stress cycles in the tendons system throughout its service life; and (d) vibrations in the platform system arising from vortex-induced vibrations. [0003]
  • As water depth increases beyond about 4,000 ft, the platform system cost begins to be dominated by the cost of the tendon system due to the length and wall thickness of tendons and by fatigue considerations. To limit the amount of fatigue damage caused by each wave cycle, it is necessary to limit the vertical natural resonance periods of the platform system (heave, pitch and roll) to the 3-4 second range for a steel tendon by increasing the cross-sectional area of the tendon (ie, by stiffening the “spring” since the “mass” of the platform is set mainly by operational considerations). The increasing requirement for more steel cross-sectional area causes the tendon system to become heavier, thus reducing the payload carrying capacity of the platform system, i.e. more and more platform buoyancy is ‘consumed’ merely supporting its own mooring system. This combination of increasing tendon length and tendon wall thickness causes the tendon system to dominate total installed cost of the entire platform system in ultra-deepwater. [0004]
  • It is therefore an object of the present invention to provide a tendon system including tendon groups comprising multiple steel tendons and one or more tendons of synthetic materials for increasing vertical stiffness of each tendon group. [0005]
  • It is another object of the present invention to provide a tendon system including tendon groups comprising multiple steel tendons incorporating an inner tendon(s) of synthetic materials coaxially located within the steel tendon(s). [0006]
  • It is yet another object of the present invention to provide a tendon system including an active control system or passive damping system that exerts damping forces on the platform through supplementary synthetic tendon(s) connecting the platform to the seabed. [0007]
  • It is still another object of the present invention to provide a tendon system including a passive damping mechanism that can disrupt vertical resonance in the platform system by means of tuned oscillator(s). [0008]
  • It is yet another object of the present invention to provide a tendon system including an active damping system on the platform that can disrupt vertical resonance in the platform system by means of a driven mass-spring oscillator(s). [0009]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a tendon system for anchoring a floating platform to the seabed comprises one or more tendon groups including one or more steel tendons in combination with synthetic tendons, such as carbon fiber composite (CFC) tendons. In one aspect of the invention, the synthetic tendons are coaxially located within the steel tendons. [0010]
  • In another aspect of the invention platform system resonance is attenuated by exerting a damping force through means connecting a computer controlled winch or hydraulic system on the platform to the seabed. [0011]
  • In another aspect of the invention, one tendon on each corner of the platform system is equipped with passive damping means to disrupt resonance in the platform system. [0012]
  • In another aspect of the invention, passive tuned oscillator(s) or active driven oscillator(s) are provided to disrupt resonance of the platform system.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above recited features, advantages and objects of the present invention are attained can be understood in detail, a more particular description of the invention briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. [0014]
  • It is noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. [0015]
  • FIG. 1 is a side view of a floating platform anchored to the seabed by the tendon system of the present invention; [0016]
  • FIG. 2 is a longitudinal section view of a tendon of the present invention depicting a synthetic tendon located within a steel tendon; [0017]
  • FIG. 2A is a section view taken along [0018] line 2A-2A of FIG. 2;
  • FIGS. [0019] 3-6 are top views illustrating single and multi-column platforms incorporating the tendon systems of the present inventions;
  • FIG. 7 is a side view illustration of a tanker anchored to the seabed by a single anchor leg mooring incorporating the tendon system of the present invention; [0020]
  • FIG. 7A is a section view taken along [0021] line 7A-7A of FIG. 7;
  • FIG. 8 is a partial side view of a platform incorporating a dry computer controlled damping force system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention; [0022]
  • FIG. 9 is a partial side view of a platform incorporating a wet computer controlled damping force system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention; [0023]
  • FIG. 10 is a partial side view of a platform incorporating an adjustable passive system for exerting a damping force to disrupt vertical resonance in the Platform system of the invention; [0024]
  • FIG. 11 is side view of a platform incorporating passive tuned oscillator devices for exerting a damping force on the platform; [0025]
  • FIG. 11A is a top plan view of the system shown in FIG. 11; [0026]
  • FIG. 12 is a side view of a platform incorporating a driven oscillator damping device for exerting a damping force on the platform; and [0027]
  • FIG. 12A illustrates a block diagram of the driven oscillator damping device shown in FIG. 12.[0028]
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • Referring first to FIG. 1, a single column floating platform generally identified by the [0029] reference numeral 10 is shown. The floating platform 10 is anchored to the seabed 12 by the tendon system of the present invention. The floating platform 10 includes a column or hull 14 projecting above the water surface 16. Pontoons 18 extend radially outward from the base of the hull 14.
  • In a typical tendon design, one or more steel tendons are utilized to secure the [0030] floating platform 10 to the seabed 12. As exploration and production of oil reserves expands into deeper waters, the design of the tendon system becomes more critical and begins to dominate the platform costs. The tendon system must be designed to limit the fatigue damage caused by each wave cycle. This is typically accomplished by increasing the cross-sectional area of the steel tendon. But this increases the weight of the tendon and reduces the payload carrying capacity of the platform 10.
  • Referring still to FIG. 1, the [0031] floating platform 10 of the present invention is anchored to the seabed 12 by a composite tendon system including steel tendons 20 and tendons 22 fabricated of synthetic materials arranged in an array or tendon group connected to the distal ends of the pontoons 18 at the upper ends thereof and to the seabed 12 at the lower ends thereof. The tendons 22 comprise high-strength, light-weight synthetic materials, such as carbon fiber composites (CFC), to serve as stiffness members for increasing the vertical stiffness of the tendon group. In a typical mono-column TLP installation as shown in FIG. 1, two steel tendons 20 and one CFC tendon 22 are connected to the distal ends of the pontoons 18. The steel tendons 20 serve as the primary strength elements while the light-weight CFC tendons 22 provide additional stiffness for limiting the vertical spring of the tendon group. The same principal applies to a conventional multi-column platform. In such designs, multiple steel tendons and one or more CFC tendons attach to the anchoring column or columns of the floating platform as best shown in FIGS. 3-6.
  • Referring now to FIGS. 2 and 2A, an alternate embodiment of the present invention contemplates locating a [0032] CFC tendon 24 within the steel tendon 20. The CFC tendon 24 is coaxially positioned within the steel tendon 20. In such a configuration, the CFC tendon is protected from the seawater and may integrate other non-strength functions such as fiber optic strands for monitoring tendon condition. The CFC tendon 24 is locked off at the bottom of the steel tendon 20 at a lower internal termination shoulder 21, pre-tensioned and then locked off at the top of the steel tendon 20 at an upper internal termination shoulder 23. A lower connector 25 connects the steel tendons 20 to anchor piles 27 secured in the seabed 12. The upper ends of the steel tendons 20 are connected to the pontoons 18 or columns 31 of the multi-column floating platform 30, shown in FIGS. 5 and 6, by a connector 29. The upper end of the tendon 20 is closed off by a plug 33 or the like.
  • The tendon system of the present invention is likewise applicable to a single anchor leg mooring (SALM) tanker mooring as shown in FIG. 7. [0033]
  • In another aspect of the invention, an active control system is disclosed for avoiding the cost premiums associated with fatigue-driven tendon design. The active control system disrupts resonance motions in the tendon system by applying a varying damping force on the platform system. [0034]
  • One means to accomplish resonance disruption is to exert a damping force on the tendon system by means of a computer controlled damping force system, such as a winch or hydraulic system, that acts on an element connecting the damping force system to the seabed. Referring now to FIGS. 8 and 9, such connection means may comprise steel cable, synthetic cable, synthetic tendon, or steel tendon identified by the [0035] reference numeral 36 and anchored to the seabed 12 at 37. One such active connection means is located on each pontoon 18. The damping force system 38 may be mounted above the waterline 16 with a system of sheaves 40 directing the cable 36 to the seabed 12 shown in FIG. 8. Alternatively, an underwater damping force system 42, as shown in FIG. 9, may be installed on the pontoon 18 to more directly develop a damping force in the cable means 36. Power and control is provided to the damping force system 42 through an electrical or hydraulic line 39 connecting the damping force system 42 to a power source.
  • A damping force may also be developed in the cable means [0036] 36 by mounting a passive spring and dashpot 41 to the distal ends of the pontoons 18 as depicted in FIG. 10.
  • Another means of counteracting expected or unexpected vibrations in a platform system is to provide damping forces through a passive tuned resonant oscillator or actively driven oscillating mass system. The tuned oscillator system is similar in function to such systems used to prevent swaying of tall building structures, but is composed of water mass and air chamber spring. One possible configuration is shown in FIG. 11. The [0037] water mass 50 oscillates vertically against an air spring 51 within an open bottomed chamber 52. One or more vertical chambers 52 are mounted about the exterior surface of the hull 14 of the platform 10 as shown in FIG. 11A.
  • In an alternate embodiment shown in FIG. 12, a similar water mass system driven by an active forcing system is shown. In the active forcing system, the [0038] water mass 56 is driven by air pressure 55, all contained withing an open bottomed chamber 57. The controlled forcing is provided by a computer control system 60 and air supply 58.
  • While a preferred embodiment of the invention has been shown and described, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims which follow. [0039]

Claims (9)

1. A tendon system for anchoring a floating platform to the seabed, comprising a tendon array including one or more steel tendons and one or more synthetic tendons.
2. The tendon system of claim 1 wherein said synthetic tendons are coaxially located within said steel tendons.
3. The tendon system of claim 1 wherein said synthetic tendons are carbon fiber composite tendons.
4. The tendon system of claim 2 wherein said floating platform is a single anchor leg mooring buoy anchored to the seabed by a single composite steel and carbon fiber composite tendon.
5. The tendon system of claim 1 including damping force means for inhibiting platform resonance motions, said damping force means connected to the seabed through steel or synthetic supplementary tendons or cables.
6. The tendon system of claim 5 wherein said damping force means is active.
7. The tendon system of claim 5 wherein said damping force means is passive.
8. The tendon system of claim 1 including passive tuned oscillator means for inhibiting platform resonance motions.
9. The tendon system of claim 1 includes active driven mass oscillator means for inhibiting platform resonance motions.
US10/634,639 2002-08-05 2003-08-05 Ultra-deepwater tendon systems Abandoned US20040105725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/634,639 US20040105725A1 (en) 2002-08-05 2003-08-05 Ultra-deepwater tendon systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40106402P 2002-08-05 2002-08-05
US10/634,639 US20040105725A1 (en) 2002-08-05 2003-08-05 Ultra-deepwater tendon systems

Publications (1)

Publication Number Publication Date
US20040105725A1 true US20040105725A1 (en) 2004-06-03

Family

ID=32396878

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/634,639 Abandoned US20040105725A1 (en) 2002-08-05 2003-08-05 Ultra-deepwater tendon systems

Country Status (1)

Country Link
US (1) US20040105725A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060210362A1 (en) * 2003-02-28 2006-09-21 Wybro Pieter G Method of Installation of a Tension Leg Platform
US20150259044A1 (en) * 2012-10-08 2015-09-17 Iberdrola Ingenieria Y Construccion, S.A.U. Tension-leg floating platform that is particularly suitable for harnessing wind energy
JP2016501159A (en) * 2012-12-14 2016-01-18 アルストム・リニューワブル・テクノロジーズ Tension leg platform structure for wind turbines
CN112359725A (en) * 2020-11-20 2021-02-12 中国十七冶集团有限公司 Pile position calibration device used in bridge engineering pile foundation construction

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517517A (en) * 1968-09-19 1970-06-30 Pan American Petroleum Corp Encapsulated cable for marine use
US4069682A (en) * 1975-07-17 1978-01-24 Taylor Woodrow Construction Limited Articulated joints for deep water installations
US4793738A (en) * 1987-04-16 1988-12-27 Conoco Inc. Single leg tension leg platform
US4990030A (en) * 1984-12-21 1991-02-05 Conoco Inc. Hybrid composite mooring element for deep water offshore structures
US5660233A (en) * 1994-11-04 1997-08-26 Institut Francais Du Petrole Riser for great water depths
US6022174A (en) * 1995-06-07 2000-02-08 Aker Engineering As Method for installing a tension leg platform
US6431107B1 (en) * 1998-04-17 2002-08-13 Novellant Technologies, L.L.C. Tendon-based floating structure
US6439147B2 (en) * 2000-01-07 2002-08-27 Fmc Technologies, Inc. Mooring systems with active force reacting systems and passive damping
US6478511B1 (en) * 1999-05-04 2002-11-12 Institut Francais Du Petrole Floating system with tensioned lines
US20020170792A1 (en) * 1999-08-23 2002-11-21 Phelan R. Scott Cable stay damper band and method of use for reduction of fluid induced cable vibrations
US6782950B2 (en) * 2000-09-29 2004-08-31 Kellogg Brown & Root, Inc. Control wellhead buoy
US20050100414A1 (en) * 2003-11-07 2005-05-12 Conocophillips Company Composite riser with integrity monitoring apparatus and method
US20050244231A1 (en) * 2004-04-13 2005-11-03 Deepwater Marine Technology L.L.C. Hybrid composite steel tendon for offshore platform

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517517A (en) * 1968-09-19 1970-06-30 Pan American Petroleum Corp Encapsulated cable for marine use
US4069682A (en) * 1975-07-17 1978-01-24 Taylor Woodrow Construction Limited Articulated joints for deep water installations
US4990030A (en) * 1984-12-21 1991-02-05 Conoco Inc. Hybrid composite mooring element for deep water offshore structures
US4793738A (en) * 1987-04-16 1988-12-27 Conoco Inc. Single leg tension leg platform
US5660233A (en) * 1994-11-04 1997-08-26 Institut Francais Du Petrole Riser for great water depths
US6022174A (en) * 1995-06-07 2000-02-08 Aker Engineering As Method for installing a tension leg platform
US6431107B1 (en) * 1998-04-17 2002-08-13 Novellant Technologies, L.L.C. Tendon-based floating structure
US6478511B1 (en) * 1999-05-04 2002-11-12 Institut Francais Du Petrole Floating system with tensioned lines
US20020170792A1 (en) * 1999-08-23 2002-11-21 Phelan R. Scott Cable stay damper band and method of use for reduction of fluid induced cable vibrations
US6439147B2 (en) * 2000-01-07 2002-08-27 Fmc Technologies, Inc. Mooring systems with active force reacting systems and passive damping
US6782950B2 (en) * 2000-09-29 2004-08-31 Kellogg Brown & Root, Inc. Control wellhead buoy
US20050100414A1 (en) * 2003-11-07 2005-05-12 Conocophillips Company Composite riser with integrity monitoring apparatus and method
US20050244231A1 (en) * 2004-04-13 2005-11-03 Deepwater Marine Technology L.L.C. Hybrid composite steel tendon for offshore platform

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060210362A1 (en) * 2003-02-28 2006-09-21 Wybro Pieter G Method of Installation of a Tension Leg Platform
US7452162B2 (en) * 2003-02-28 2008-11-18 Modec International, Llc Method of installation of a tension leg platform and tendons therefor
US20150259044A1 (en) * 2012-10-08 2015-09-17 Iberdrola Ingenieria Y Construccion, S.A.U. Tension-leg floating platform that is particularly suitable for harnessing wind energy
US9573662B2 (en) * 2012-10-08 2017-02-21 Iberdrola Ingenieria Y Construccion, S.A.U. Tension-leg floating platform that is particularly suitable for harnessing wind energy
JP2016501159A (en) * 2012-12-14 2016-01-18 アルストム・リニューワブル・テクノロジーズ Tension leg platform structure for wind turbines
US9902468B2 (en) 2012-12-14 2018-02-27 Ge Renewable Technologies Wind B.V. Tension leg platform structure for a wind turbine
CN112359725A (en) * 2020-11-20 2021-02-12 中国十七冶集团有限公司 Pile position calibration device used in bridge engineering pile foundation construction

Similar Documents

Publication Publication Date Title
US6206614B1 (en) Floating offshore drilling/producing structure
US6899492B1 (en) Jacket frame floating structures with buoyancy capsules
EP2726362B1 (en) Offshore platform with outset columns
US6884003B2 (en) Multi-cellular floating platform with central riser buoy
US4793738A (en) Single leg tension leg platform
US9074428B2 (en) Connector for steel catenary riser to flexible line without stress-joint or flex-joint
US8251005B2 (en) Spar structures
US7059416B2 (en) Buoyancy can for offshore oil and gas riser
US20040182297A1 (en) Riser pipe support system and method
US6854933B2 (en) Vertically restrained centerwell SPAR
US6190091B1 (en) Tension control device for tensile elements
US8764346B1 (en) Tension-based tension leg platform
US8267032B2 (en) Dual column semisubmersible for offshore application
EP1540127B1 (en) Offshore platform with vertically-restrained buoy and well deck
US8813670B2 (en) Floating structure
US5054415A (en) Mooring/support system for marine structures
US6688250B2 (en) Method and apparatus for reducing tension variations in mono-column TLP systems
US20040105724A1 (en) Buoyant leg structure with added tubular members for supporting a deep water platform
US4471709A (en) Pretensioned catenary free deep sea mooring system
US6805201B2 (en) Internal beam buoyancy system for offshore platforms
US20040105725A1 (en) Ultra-deepwater tendon systems
KR20140046681A (en) Mooring system of tension leg platform
US6910438B2 (en) Oscillation suppression and control system for a floating platform
AU2004324515A1 (en) Oscillation suppression and control system for a floating platform
US20070212170A1 (en) Method and apparatus for reducing set-down of a tension leg platform

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEAHORSE EQUIPMENT CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEVERETTE, STEVEN J.;DAVIES, KENT B.;KIBBEE, STEPHEN E.;REEL/FRAME:014942/0139

Effective date: 20030910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION