US20040079476A1 - Print media coating device - Google Patents
Print media coating device Download PDFInfo
- Publication number
- US20040079476A1 US20040079476A1 US10/280,553 US28055302A US2004079476A1 US 20040079476 A1 US20040079476 A1 US 20040079476A1 US 28055302 A US28055302 A US 28055302A US 2004079476 A1 US2004079476 A1 US 2004079476A1
- Authority
- US
- United States
- Prior art keywords
- web
- fuser
- media path
- print media
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 138
- 239000011248 coating agent Substances 0.000 title claims abstract description 136
- 239000000463 material Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 230000000977 initiatory effect Effects 0.000 claims 2
- 239000010410 layer Substances 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/18—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
- B32B37/182—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
- B32B37/185—Laminating sheets, panels or inserts between two discrete plastic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/08—Treatment by energy or chemical effects by wave energy or particle radiation
- B32B2310/0806—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
- B32B2310/0843—Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/02—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
- B32B37/025—Transfer laminating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/08—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B37/1207—Heat-activated adhesive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/914—Transfer or decalcomania
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
- Y10T156/1702—For plural parts or plural areas of single part
- Y10T156/1705—Lamina transferred to base from adhered flexible web or sheet type carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
- Y10T156/1702—For plural parts or plural areas of single part
- Y10T156/1712—Indefinite or running length work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
- Y10T156/1702—For plural parts or plural areas of single part
- Y10T156/1712—Indefinite or running length work
- Y10T156/1741—Progressive continuous bonding press [e.g., roll couples]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/19—Delaminating means
- Y10T156/195—Delaminating roller means
- Y10T156/1956—Roller pair delaminating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24843—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] with heat sealable or heat releasable adhesive layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
Definitions
- the invention is directed to print media coating devices and methods.
- Duplex printing in which printed images are applied to both sides of a sheet of paper or other print media, is now very common.
- Many printers, copiers, multi-function peripherals and other printing devices offer duplex printing. Where a coating is desired on both sides of a sheet, such as might be the case with duplex printing, the sheet must pass twice through the coating module of a post print finishing device—once to coat the top of the sheet and once to coat the bottom of the sheet.
- the peel bar 2 protrudes slightly into media path 3 downstream from fuser 4 to apply pressure to coating material web 5 .
- Web 5 is threaded through fuser 4 from a supply spool 6 to a take-up spool 7 .
- Coating material web 5 and media sheet 8 are sandwiched together through fuser 4 with the coating material film part of web 5 facing sheet 8 .
- Fuser 4 applies heat and pressure to the web/sheet sandwich to affix the coating material film to the sheet 8 .
- the carrier portion of web 5 angles up off peel bar 2 to take-up spool 7 .
- the point pressure applied by peel bar 2 to web 5 helps the carrier portion of web 5 separate more cleanly from the coating film, now affixed to sheet 8 .
- the peel bars are placed directly opposite one another across the media path so that each carrier is peeled away from the coating film at the same time.
- the adhesion between the carrier and the coating film is such that each web tends to pull on the sheet as the carrier peels away from the coating film. This pull is not always the same on each side of the sheet.
- One side pulling harder than the other tends to relieve pressure on the weak side peel bar. This pressure relief can impede separation between the carrier and the coating film on the weak side which can, in turn, effect the quality of the coating film retained on that side of the sheet.
- the present invention was developed in an effort to maintain a more uniform pressure on each peel bar as a way to improve carrier/coating film separation.
- One embodiment of the present invention is directed to a print media coating device that includes first and second web supplies, first and second web take-ups, and a fuser defining a print media path therethrough.
- the first web supply and the first web take-up are positioned on one side of the media path and the second web supply and the second web take-up are positioned on the other side of the media path opposite the first web supply and the first web take-up.
- a first coating material web runs from the first web supply, along the media path through the fuser, to the first web take-up and a second coating material web runs from the second web supply, along the media path through the fuser, to the second web take-up.
- a first peel bar is positioned immediately adjacent to the print media path, downstream from the fuser on the first side of the media path.
- a second peel bar is positioned immediately adjacent to the print media path downstream from the fuser and downstream from the first peel bar.
- Another embodiment of the invention is directed to a method for coating print media that includes: providing first and second coating material webs, each web having a coating material and a carrier carrying the coating material; sandwiching the print media between the first and second coating material webs; fusing coating material to the print media; and peeling the carrier from the coating material on the first coating material web and then peeling the carrier from the coating material on the second coating material web.
- FIG. 1 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention.
- FIG. 2 illustrates a typical coating material web.
- FIG. 3 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention in which the device includes cooling rollers and peel bars.
- FIG. 4 illustrates a modular coating device according to one embodiment of the invention installed in a post print-finishing device.
- FIG. 5 is a more detailed illustration of a coating device such as the one shown in FIG. 4.
- FIG. 6 illustrates the fuser and cooler module and peel bars of a coating device such as the one shown in FIG. 4.
- FIG. 7 illustrates a modular coating device according to one embodiment of the invention installed in a post print-finishing device attached to a printer.
- FIG. 8 is a perspective view of an upper/top side-coating module according to one embodiment of the invention.
- FIG. 9 illustrates a drive train for the driven components of a modular coating device according to one embodiment of the invention.
- FIG. 10 is a detailed view of the peel bars shown in FIG. 6.
- FIG. 11 illustrates a conventional single side coating device.
- FIG. 1 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention.
- coating device 10 includes first/top side coating material web supply and web take-up spools 12 and 14 , respectively and second/bottom side coating material supply and take-up spools 16 and 18 , respectively.
- a first/top side coating material web 20 runs from top supply spool 12 through a fuser 22 to top take-up spool 14 .
- a second/bottom side coating material web 24 runs from bottom web supply spool 16 through fuser 22 to bottom web take-up spool 18 .
- Webs 20 and 24 represent generally any web that carries a coating film suitable for use with paper and other types of print media.
- FIG. 2 is a section view illustrating a typical web suitable for use in coating device 10 .
- web 20 / 24 includes a layer of adhesive material 26 , a layer of coating material 28 on adhesive layer 26 , a carrier 30 (or backing as it is sometimes called) and a release layer 32 interposed between carrier 30 and coating material 28 .
- Suitable webs include, for example, the clear flexible film webs described in pending Hewlett-Packard patent application Ser. No. 10/167,891, filed Jun. 11, 2002 and entitled “Images Printed On Porous Media And Coated With A Thermal Transfer Overcoat.”
- Fuser 22 represents generally any suitable device for applying heat or pressure or both to the web/media sandwich to cause coating 28 to bond to the paper or other print media.
- fuser 22 includes a pair of opposing rollers 34 and 36 that rotate against one another to form a fuser nip 40 .
- a conventional fuser such as the roll-type fuser used in a laser printer may be adapted for use as fuser 22 in coating device 10 .
- roller 34 is constructed as a heated fuser roller and roller 36 is constructed as a compliant pressure roller.
- each web 20 , 24 passes over a peel bar 52 , 54 .
- Each peel bar 52 and 54 extends across the width of the web and protrudes slightly into the web path. That is to say, top take-up spool 14 , top peel bar 52 and fuser 22 are positioned relative to one another such that web 20 bends around peel bar 52 on its way to top take-up spool 12 . Similarly, bottom take-up spool 18 , bottom peel bar 54 and fuser 22 are positioned relative to one another such that web 24 bends around bottom peel bar 54 on its way to bottom take-up spool 18 .
- Each web path 46 and 48 diverges from media path 44 at peel bars 52 and 54 at a sharp angle, preferably 60° to 130° and most preferably about 90°, to help carrier 30 separate more cleanly away from coating layer 28 .
- Peel bars 52 and 54 are not aligned directly opposite one another across the web/media path. Rather, one peel bar is positioned downstream from the other peel bar to help improve carrier/coating separation.
- each web 20 and 24 and the corresponding supply and take-up spools are about the same width as the print media, as best seen in FIG. 6.
- Print media sheet 42 moves through fuser 22 along a media path 44 .
- Top web 20 moves from top web supply spool 12 through fuser 22 to top web take-up spool 14 along a first/top web path 46 .
- Bottom web 24 moves from bottom web supply spool 16 through fuser 22 to bottom web take-up spool 18 along a second/bottom web path 48 .
- Print media path 44 and web paths 46 and 48 converge at fuser nip 40 , are coincident with one another through fuser 22 as coating 28 from each web is applied to the top and bottom of print media sheet 42 , and then diverge as each now spent web 20 a and 24 a is taken up by take-up spools 14 and 18 .
- the combination of heat and pressure applied to webs 20 and 24 and media sheet 42 , as they pass through fuser nip 40 melts adhesive layers 26 (FIG. 2) into sheet 42 to bond coating 28 to the top and bottom of the sheet 42 and softens release layer 32 to allow carrier layer 30 to be removed more easily from coating layer 28 .
- Spent webs 20 a and 24 a taken up on spools 14 and 18 , consist of carriers 30 and the remnants of release layers 32 .
- webs 20 and 24 and sheet 42 pass through a cooler 50 located downstream from fuser 22 and then over peel bars 52 and 54 downstream from cooler 50 .
- Print media path 44 and web paths 46 and 48 converge at fuser nip 40 , are coincident with one another through fuser 22 and cooler 50 , and then diverge at peel bars 52 and 54 as each now spent web 20 a and 24 a is taken up by take-up spools 14 and 18 .
- Cooler 50 cools webs 20 and 24 and sheet 42 to accelerate the curing of the bond between the coating layers 28 and sheet 42 . Accelerated curing strengthens the bond between coating 28 and sheet 42 and allows carrier 30 to separate more cleanly from coating 28 at peel bars 52 and 54 .
- cooler 50 is constructed as a pair of opposing cooler rollers 56 and 58 that rotate against one another to form a cooler nip 60 .
- Cooler 50 may cool passively as a heat sink, in which case cooler rollers 56 and 58 are constructed as a relatively large mass of thermally conductive material.
- cooler rollers 56 and 58 are actively cooled so that cooler 50 actively cools the web/sheet sandwich as it passes between cooler rollers 56 and 58 .
- each web 20 , 24 passes over a peel bar 52 , 54 .
- Each peel bar 52 and 54 extends across the width of the web and protrudes slightly into the web path.
- Each web path 46 and 48 diverges from media path 44 at peel bars 53 and 54 at a sharp angle, preferably 60° to 130° and most preferably about 90°, to help carrier 30 separate more cleanly away from coating layer 28 .
- peel bars 52 and 54 are not aligned directly opposite one another across the web/media path. It has been discovered that the staggered configuration shown in FIG. 3, in which one peel bar is located downstream from the other peel bar, helps improve carrier/coating separation.
- each carrier 30 is peeled away from coating layer 28 at the same time. It was discovered during testing of this alternative configuration that the adhesion between carrier 30 and coating 28 is such that each web 20 and 24 tends to pull on media sheet 42 as carrier 30 peels away from coating 28 . This pull is not always the same on each side of sheet 42 . One side pulling harder than the other tends to relieve pressure on the weak side peel bar. This pressure relief can impede separation between carrier 30 and coating 28 on the weak side that can, in turn, affect the quality of the coating retained on that side of sheet 42 . Hence, the staggered configuration for peel bars 52 and 54 is preferred over the aligned configuration.
- media sheet 42 reaches the upstream peel bar 54 where peeling carrier 30 from bottom web 24 is initiated at a first point in time. As sheet 42 reaches the downstream peel bar 52 , peeling carrier 30 from top web 20 is initiated at a second later point in time.
- FIGS. 4 - 7 illustrate a modular coating device 62 installed in a post-print finishing device 64 operatively coupled to a printer 66 .
- FIG. 5 is an enlarged view of coating device 62
- FIG. 6 is a detailed view of the fuser/cooler module 68 of coating device 62 .
- modular coating device 62 includes an upper module 68 with components for coating the top of each sheet 42 and a lower module 70 with components for coating the bottom of each sheet 42 .
- Two print media paths are provided through post print finishing device 64 .
- a coating media path 44 runs through coating modules 68 and 70 and a bypass media path 45 bypasses coating modules 68 and 70 . Both media paths 44 and 45 discharge sheets 42 to an output tray 72 (output tray 72 is shown in FIG. 7) or to other downstream finishing operations.
- Upper module 68 includes a first/top side coating material web supply spool 12 , a first/top side web take-up spool 14 , and a first/top side fuser and cooler unit 74 .
- Lower module 70 includes a second/bottom side coating material web supply spool 16 , a second/bottom side web take-up spool 18 , and a second/bottom side fuser and cooler unit 76 .
- First/top side coating material web 20 runs from top supply spool 12 through fuser and cooler unit 74 to top take-up spool 14 around idler rollers 78 and 80 (web 20 is shown in FIG. 5).
- Second/bottom side coating material web 24 runs from bottom web supply spool 16 through fuser and cooler unit 76 to bottom web take-up spool 18 around idler rollers 82 and 84 (web 24 is shown in FIG. 5).
- Top supply and take-up spools 12 , 14 and bottom supply and take-up spools 16 , 18 are positioned over one another to achieve a vertically compact design.
- An exit drive roller 86 and associated pinch roller 88 propel media sheets 42 out of coating device 62 toward output tray 72 (output tray 72 is shown in FIG. 7).
- Each of the rollers in upper coating module 68 are mounted to or otherwise supported by an upper module frame 90 .
- Each of the rollers in lower coating module 70 are mounted to or otherwise supported by a lower module frame 92 .
- FIG. 8 is a perspective view of upper module 68 .
- Module 68 and its counterpart lower module 70 are configured to slide into and out of post print finishing device 64 to facilitate installation, repair and replacement of the module.
- top peel bar 52 is mounted to the housing 75 of top fuser/cooler unit 74 .
- Bottom peel bar 54 is mounted to the housing 77 of bottom fuser/cooler unit 76 .
- Each peel bar 52 , 54 includes a web facing surface 53 , 55 as shown in FIG. 10. Rigid peel bars with a narrow line of contact against coating webs 20 and 24 are preferred. Hence, in the configuration shown in the drawings, web facing surfaces 53 and 55 are beveled away from the web enough that peel bars 52 and 54 contact the web only along a narrow edge 57 , 59 on the downstream side of each peel bar 52 , 54 , respectively.
- peel bars 52 and 54 can be used to stiffen an otherwise more flexible bar
- mounting peel bars 52 and 54 to the fuser cooler unit housings 75 and 77 allows for more variability in the material used to construct peel bars 52 and 54 and the cross-sectional size of the peel bars.
- the peel bars could be constructed of rigid material having a sufficiently robust cross-section mounted on each end to frames 90 and 92 .
- the peel bars could also be formed integral to housing 75 and 77 .
- Other suitable configurations that allow peel bars 52 and 54 to intercept webs 20 and 24 uniformly across the width of print media 42 are possible.
- the distance along media path 44 between contact edges 57 and 59 of peel bars 52 and 54 and the extent to which peel bars 52 and 54 protrude into media path 44 may be adjusted as necessary or desirable for a particular operating environment.
- documents are often printed on 24# paper with an inkjet or laser printer.
- a suitable web for coating such documents is nominally 12-15 ⁇ m thick and carries a 3.5-3.8 ⁇ m thick film of coating material.
- the following spacing will provide suitable performance: approximately 30 mm between contact edges 57 and 59 of peel bars 52 and 54 , respectively and contact edges 57 and 59 protruding approximately 3 mm, into media path 44 with facing surfaces 53 , 55 beveled away from a slightly radiused or flattened edge 57 , 59 , respectively.
- a radiused or flattened edge 57 , 59 is preferred to minimize the risk of cutting the web as it peels away from the paper or other print media.
- Peel bars 52 and 54 are configured so that the two webs contact both peel bars at all times and so that the peel bars do not damage or impede media sheet 42 .
- the thickness and weight of media sheet 42 may vary significantly.
- peel bars 52 and 54 may be spaced further apart and may protrude less into media path 44 . It is expected that in most operating environments, peel bars spaced apart 20-30 mm and protruding 2-5 mm into the media path will allow for the desired peeling.
- the various components of coating device 62 may be directly supported by the frame, such as by mounting a component directly to the frame, or components may be indirectly supported by the frame, such as by mounting a component to a support structure or other component that is mounted to the frame.
- the frame that supports the components may be a module frame, as in upper module frame 90 and lower module frame 92 , an overall coating device frame, or the post print finishing device frame such as might be the case where the coating device is not constructed of modular units that slide into and out of the finishing device.
- FIG. 9 illustrates a drive train for driven components of modular coating device 62 .
- main drive stepper motor 94 drives main drive gear 96 clockwise.
- Bottom web take-up gear 98 which is coupled to bottom web take-up spool 18 , is driven clockwise off main gear 96 through a spacer gear 100 .
- Top web take-up gear 102 which is coupled to top web take-up spool 14 , is driven counter-clockwise off main gear 96 through a pair of reversing spacer gears 104 and 106 .
- Exit drive gear 108 which is coupled to exit drive roller 86 , is driven counter-clockwise directly off main gear 96 .
- Center drive gear 110 which turns coaxially with main gear 96 , is driven clockwise at the urging of motor 94 through main gear 96 .
- Top fuser roller gear 112 which is coupled to top fuser roller 34
- top cooler roller gear 114 which is coupled to top cooler roller 56
- Bottom fuser roller gear 116 which is coupled to bottom fuser roller 36
- bottom cooler roller gear 118 which is coupled to bottom cooler roller 58
- center spacer gear 120 is driven clockwise off center drive gear 110 through a center spacer gear 120 .
- the drive train illustrated in FIG. 9 may also include clutches interposed between some of the drive elements as necessary or desirable to maintain the appropriate relationship among moving parts.
- electromagnetic slip clutches should be included at take-up gears 98 and 102 to help control the tension on top and bottom coating webs 20 , 20 a and 24 , 24 a.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
Abstract
Description
- The invention is directed to print media coating devices and methods.
- It is sometimes desirable to coat printed media with a film of clear flexible material. Such coatings can be formulated and applied to help protect the printed image, enhance the printed image or provide a more uniform gloss level across the entire media (including both printed and unprinted areas).
- Duplex printing, in which printed images are applied to both sides of a sheet of paper or other print media, is now very common. Many printers, copiers, multi-function peripherals and other printing devices offer duplex printing. Where a coating is desired on both sides of a sheet, such as might be the case with duplex printing, the sheet must pass twice through the coating module of a post print finishing device—once to coat the top of the sheet and once to coat the bottom of the sheet.
- The patent application filed on Oct. 25, 2002 under Attorney Docket No. 100202897-1 ('897) and entitled “Print Media Coating Device and Method” describes devices and methods for simultaneously coating both sides of printed media with a flexible film. For conventional single side coating, as well as the new two-side coating described in the '897 patent application, it is desirable to use a peel bar to help separate the film carrier from the film after the film is applied to the media. Coatings are applied to print media by overlaying on the media a multi-layered web containing the coating material and then applying heat and pressure to fuse the coating material to the media. The web includes a film/layer of coating material, a carrier (sometimes called a backing), and a release layer in between the coating material and the carrier.
- In a conventional single side coating device such as the one illustrated in FIG. 11, the
peel bar 2 protrudes slightly intomedia path 3 downstream fromfuser 4 to apply pressure to coatingmaterial web 5.Web 5 is threaded throughfuser 4 from asupply spool 6 to a take-up spool 7. Coatingmaterial web 5 andmedia sheet 8 are sandwiched together throughfuser 4 with the coating material film part ofweb 5 facingsheet 8. Fuser 4 applies heat and pressure to the web/sheet sandwich to affix the coating material film to thesheet 8. The carrier portion ofweb 5 angles up offpeel bar 2 to take-upspool 7. The point pressure applied bypeel bar 2 toweb 5 helps the carrier portion ofweb 5 separate more cleanly from the coating film, now affixed tosheet 8. - In one design of the new two-side coating device, the peel bars are placed directly opposite one another across the media path so that each carrier is peeled away from the coating film at the same time. During the development and testing of this design, it was discovered that the adhesion between the carrier and the coating film is such that each web tends to pull on the sheet as the carrier peels away from the coating film. This pull is not always the same on each side of the sheet. One side pulling harder than the other tends to relieve pressure on the weak side peel bar. This pressure relief can impede separation between the carrier and the coating film on the weak side which can, in turn, effect the quality of the coating film retained on that side of the sheet. Accordingly, the present invention was developed in an effort to maintain a more uniform pressure on each peel bar as a way to improve carrier/coating film separation.
- One embodiment of the present invention is directed to a print media coating device that includes first and second web supplies, first and second web take-ups, and a fuser defining a print media path therethrough. The first web supply and the first web take-up are positioned on one side of the media path and the second web supply and the second web take-up are positioned on the other side of the media path opposite the first web supply and the first web take-up. A first coating material web runs from the first web supply, along the media path through the fuser, to the first web take-up and a second coating material web runs from the second web supply, along the media path through the fuser, to the second web take-up. A first peel bar is positioned immediately adjacent to the print media path, downstream from the fuser on the first side of the media path. A second peel bar is positioned immediately adjacent to the print media path downstream from the fuser and downstream from the first peel bar.
- Another embodiment of the invention is directed to a method for coating print media that includes: providing first and second coating material webs, each web having a coating material and a carrier carrying the coating material; sandwiching the print media between the first and second coating material webs; fusing coating material to the print media; and peeling the carrier from the coating material on the first coating material web and then peeling the carrier from the coating material on the second coating material web.
- FIG. 1 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention.
- FIG. 2 illustrates a typical coating material web.
- FIG. 3 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention in which the device includes cooling rollers and peel bars.
- FIG. 4 illustrates a modular coating device according to one embodiment of the invention installed in a post print-finishing device.
- FIG. 5 is a more detailed illustration of a coating device such as the one shown in FIG. 4.
- FIG. 6 illustrates the fuser and cooler module and peel bars of a coating device such as the one shown in FIG. 4.
- FIG. 7 illustrates a modular coating device according to one embodiment of the invention installed in a post print-finishing device attached to a printer.
- FIG. 8 is a perspective view of an upper/top side-coating module according to one embodiment of the invention.
- FIG. 9 illustrates a drive train for the driven components of a modular coating device according to one embodiment of the invention.
- FIG. 10 is a detailed view of the peel bars shown in FIG. 6.
- FIG. 11 illustrates a conventional single side coating device.
- FIG. 1 illustrates a device for simultaneously coating both sides of a sheet of print media according to one embodiment of the invention. Referring to FIG. 1,
coating device 10 includes first/top side coating material web supply and web take-up spools up spools coating material web 20 runs fromtop supply spool 12 through afuser 22 to top take-up spool 14. A second/bottom sidecoating material web 24 runs from bottomweb supply spool 16 throughfuser 22 to bottom web take-up spool 18.Webs - FIG. 2 is a section view illustrating a typical web suitable for use in
coating device 10. Referring to FIG. 2,web 20/24 includes a layer ofadhesive material 26, a layer ofcoating material 28 onadhesive layer 26, a carrier 30 (or backing as it is sometimes called) and arelease layer 32 interposed betweencarrier 30 andcoating material 28. Suitable webs include, for example, the clear flexible film webs described in pending Hewlett-Packard patent application Ser. No. 10/167,891, filed Jun. 11, 2002 and entitled “Images Printed On Porous Media And Coated With A Thermal Transfer Overcoat.” -
Fuser 22 represents generally any suitable device for applying heat or pressure or both to the web/media sandwich to causecoating 28 to bond to the paper or other print media. In the embodiment illustrated in FIG. 1,fuser 22 includes a pair ofopposing rollers fuser nip 40. A conventional fuser such as the roll-type fuser used in a laser printer may be adapted for use asfuser 22 incoating device 10. In one example of such a fuser, which is shown in FIG. 1 and in more detail in FIG. 6,roller 34 is constructed as a heated fuser roller androller 36 is constructed as a compliant pressure roller. - Downstream from
fuser 22, eachweb peel bar peel bar up spool 14,top peel bar 52 andfuser 22 are positioned relative to one another such thatweb 20 bends aroundpeel bar 52 on its way to top take-up spool 12. Similarly, bottom take-up spool 18,bottom peel bar 54 andfuser 22 are positioned relative to one another such thatweb 24 bends aroundbottom peel bar 54 on its way to bottom take-upspool 18. Eachweb path media path 44 atpeel bars carrier 30 separate more cleanly away fromcoating layer 28.Peel bars - When a coating across the full width of the paper or
other print media 42 is desired, as will typically be the case, eachweb Print media sheet 42 moves throughfuser 22 along amedia path 44.Top web 20 moves from topweb supply spool 12 throughfuser 22 to top web take-upspool 14 along a first/top web path 46.Bottom web 24 moves from bottomweb supply spool 16 throughfuser 22 to bottom web take-upspool 18 along a second/bottom web path 48.Print media path 44 andweb paths fuser 22 as coating 28 from each web is applied to the top and bottom ofprint media sheet 42, and then diverge as each now spentweb spools webs media sheet 42, as they pass through fuser nip 40, melts adhesive layers 26 (FIG. 2) intosheet 42 tobond coating 28 to the top and bottom of thesheet 42 and softensrelease layer 32 to allowcarrier layer 30 to be removed more easily fromcoating layer 28.Spent webs spools carriers 30 and the remnants of release layers 32. - In the coating device illustrated in FIG. 3,
webs sheet 42 pass through a cooler 50 located downstream fromfuser 22 and then over peel bars 52 and 54 downstream from cooler 50.Print media path 44 andweb paths fuser 22 and cooler 50, and then diverge at peel bars 52 and 54 as each now spentweb spools Cooler 50 coolswebs sheet 42 to accelerate the curing of the bond between the coating layers 28 andsheet 42. Accelerated curing strengthens the bond betweencoating 28 andsheet 42 and allowscarrier 30 to separate more cleanly from coating 28 at peel bars 52 and 54. - In the embodiment of FIG. 3, cooler50 is constructed as a pair of opposing
cooler rollers Cooler 50 may cool passively as a heat sink, in which casecooler rollers cooler rollers cooler rollers - Downstream from cooler50, each
web peel bar peel bar web path media path 44 at peel bars 53 and 54 at a sharp angle, preferably 60° to 130° and most preferably about 90°, to helpcarrier 30 separate more cleanly away fromcoating layer 28. In the embodiment of FIG. 3, peel bars 52 and 54 are not aligned directly opposite one another across the web/media path. It has been discovered that the staggered configuration shown in FIG. 3, in which one peel bar is located downstream from the other peel bar, helps improve carrier/coating separation. - In an alternative configuration in which the peel bars are placed directly opposite one another, each
carrier 30 is peeled away fromcoating layer 28 at the same time. It was discovered during testing of this alternative configuration that the adhesion betweencarrier 30 andcoating 28 is such that eachweb media sheet 42 ascarrier 30 peels away from coating 28. This pull is not always the same on each side ofsheet 42. One side pulling harder than the other tends to relieve pressure on the weak side peel bar. This pressure relief can impede separation betweencarrier 30 andcoating 28 on the weak side that can, in turn, affect the quality of the coating retained on that side ofsheet 42. Hence, the staggered configuration for peel bars 52 and 54 is preferred over the aligned configuration. - In this staggered configuration,
media sheet 42 reaches theupstream peel bar 54 where peelingcarrier 30 frombottom web 24 is initiated at a first point in time. Assheet 42 reaches thedownstream peel bar 52, peelingcarrier 30 fromtop web 20 is initiated at a second later point in time. - FIGS.4-7 illustrate a
modular coating device 62 installed in apost-print finishing device 64 operatively coupled to aprinter 66. FIG. 5 is an enlarged view ofcoating device 62 and FIG. 6 is a detailed view of the fuser/cooler module 68 ofcoating device 62. Referring to FIGS. 4-7,modular coating device 62 includes anupper module 68 with components for coating the top of eachsheet 42 and alower module 70 with components for coating the bottom of eachsheet 42. Two print media paths are provided through postprint finishing device 64. Acoating media path 44 runs throughcoating modules bypass media path 45bypasses coating modules media paths discharge sheets 42 to an output tray 72 (output tray 72 is shown in FIG. 7) or to other downstream finishing operations. -
Upper module 68 includes a first/top side coating materialweb supply spool 12, a first/top side web take-upspool 14, and a first/top side fuser andcooler unit 74.Lower module 70 includes a second/bottom side coating materialweb supply spool 16, a second/bottom side web take-upspool 18, and a second/bottom side fuser andcooler unit 76. First/top sidecoating material web 20 runs fromtop supply spool 12 through fuser andcooler unit 74 to top take-upspool 14 aroundidler rollers 78 and 80 (web 20 is shown in FIG. 5). Second/bottom sidecoating material web 24 runs from bottomweb supply spool 16 through fuser andcooler unit 76 to bottom web take-upspool 18 aroundidler rollers 82 and 84 (web 24 is shown in FIG. 5). Top supply and take-upspools spools - An
exit drive roller 86 and associatedpinch roller 88 propelmedia sheets 42 out ofcoating device 62 toward output tray 72 (output tray 72 is shown in FIG. 7). Each of the rollers inupper coating module 68 are mounted to or otherwise supported by anupper module frame 90. Each of the rollers inlower coating module 70 are mounted to or otherwise supported by alower module frame 92. - FIG. 8 is a perspective view of
upper module 68.Module 68 and its counterpartlower module 70 are configured to slide into and out of postprint finishing device 64 to facilitate installation, repair and replacement of the module. - Referring now to FIGS. 6 and 10,
top peel bar 52 is mounted to thehousing 75 of top fuser/cooler unit 74.Bottom peel bar 54 is mounted to the housing 77 of bottom fuser/cooler unit 76. Eachpeel bar web facing surface coating webs web facing surfaces narrow edge peel bar cooler unit housings 75 and 77 allows for more variability in the material used to constructpeel bars frames housing 75 and 77. Other suitable configurations that allowpeel bars webs print media 42 are possible. - The distance along
media path 44 between contact edges 57 and 59 of peel bars 52 and 54 and the extent to which peel bars 52 and 54 protrude intomedia path 44 may be adjusted as necessary or desirable for a particular operating environment. For example, in a typical business office documents are often printed on 24# paper with an inkjet or laser printer. A suitable web for coating such documents is nominally 12-15 μm thick and carries a 3.5-3.8 μm thick film of coating material. In this operating environment, the following spacing will provide suitable performance: approximately 30 mm between contact edges 57 and 59 of peel bars 52 and 54, respectively and contact edges 57 and 59 protruding approximately 3 mm, intomedia path 44 with facingsurfaces edge edge - Peel bars52 and 54 are configured so that the two webs contact both peel bars at all times and so that the peel bars do not damage or impede
media sheet 42. The thickness and weight ofmedia sheet 42 may vary significantly. When heavier media sheets 43 are coated, peel bars 52 and 54 may be spaced further apart and may protrude less intomedia path 44. It is expected that in most operating environments, peel bars spaced apart 20-30 mm and protruding 2-5 mm into the media path will allow for the desired peeling. - The various components of
coating device 62 may be directly supported by the frame, such as by mounting a component directly to the frame, or components may be indirectly supported by the frame, such as by mounting a component to a support structure or other component that is mounted to the frame. The frame that supports the components may be a module frame, as inupper module frame 90 andlower module frame 92, an overall coating device frame, or the post print finishing device frame such as might be the case where the coating device is not constructed of modular units that slide into and out of the finishing device. - FIG. 9 illustrates a drive train for driven components of
modular coating device 62. In the drive train shown in FIG. 9, all of the major components inmedia path 44 andweb paths drive stepper motor 94 drivesmain drive gear 96 clockwise. Bottom web take-up gear 98, which is coupled to bottom web take-upspool 18, is driven clockwise offmain gear 96 through aspacer gear 100. Top web take-upgear 102, which is coupled to top web take-upspool 14, is driven counter-clockwise offmain gear 96 through a pair of reversing spacer gears 104 and 106.Exit drive gear 108, which is coupled to exitdrive roller 86, is driven counter-clockwise directly offmain gear 96. -
Center drive gear 110, which turns coaxially withmain gear 96, is driven clockwise at the urging ofmotor 94 throughmain gear 96. Topfuser roller gear 112, which is coupled totop fuser roller 34, and topcooler roller gear 114, which is coupled to topcooler roller 56, are driven counter-clockwise offcenter drive gear 110. Bottomfuser roller gear 116, which is coupled tobottom fuser roller 36, and bottomcooler roller gear 118, which is coupled to bottomcooler roller 58, are driven clockwise offcenter drive gear 110 through acenter spacer gear 120. - Although not shown, the drive train illustrated in FIG. 9 may also include clutches interposed between some of the drive elements as necessary or desirable to maintain the appropriate relationship among moving parts. For example, electromagnetic slip clutches should be included at take-up gears98 and 102 to help control the tension on top and
bottom coating webs - While the present invention has been shown and described with reference to the foregoing exemplary embodiments, it is to be understood that other forms, details, and embodiments may be made without departing from the spirit and scope of the invention that is defined in the following claims.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/280,553 US6732780B1 (en) | 2002-10-25 | 2002-10-25 | Print media coating device |
JP2003326294A JP4080404B2 (en) | 2002-10-25 | 2003-09-18 | Printing media coating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/280,553 US6732780B1 (en) | 2002-10-25 | 2002-10-25 | Print media coating device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040079476A1 true US20040079476A1 (en) | 2004-04-29 |
US6732780B1 US6732780B1 (en) | 2004-05-11 |
Family
ID=32106969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/280,553 Expired - Lifetime US6732780B1 (en) | 2002-10-25 | 2002-10-25 | Print media coating device |
Country Status (2)
Country | Link |
---|---|
US (1) | US6732780B1 (en) |
JP (1) | JP4080404B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050136230A1 (en) * | 2003-12-18 | 2005-06-23 | Noritsu Koki Co., Ltd. | Laminate sheet and lamination method |
US20090188631A1 (en) * | 2004-01-07 | 2009-07-30 | Seung-Kyoon Noh | Tape supplier and refill cartridge for binding apparatus |
GB2494918A (en) * | 2011-09-23 | 2013-03-27 | Tiko Corp Ltd | Thermal laminator |
CN103448128A (en) * | 2013-08-14 | 2013-12-18 | 苏州摩维天然纤维材料有限公司 | Stripping machine for rim charge surface layer of hemp-fiber composite board |
CN108190606A (en) * | 2018-01-04 | 2018-06-22 | 常州新创航空科技有限公司 | Carbon fiber prepreg winding/unwinding device |
CN108528035A (en) * | 2018-03-30 | 2018-09-14 | 重庆川之舟印务设计有限公司 | A kind of printing film covering device |
CN110091623A (en) * | 2019-06-04 | 2019-08-06 | 昆山华冠商标印刷有限公司 | Rolling double-side printer and its production method in trade mark production |
CN110341291A (en) * | 2019-08-16 | 2019-10-18 | 江阴市合助机械科技有限公司 | A kind of composite board automatically strips method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279061B2 (en) * | 2003-04-09 | 2007-10-09 | Exxonmobil Oil Corporation | Process for the production of improved metallized films |
JP4530814B2 (en) * | 2004-11-17 | 2010-08-25 | ノーリツ鋼機株式会社 | Recording medium coating apparatus |
JP2014019552A (en) * | 2012-07-19 | 2014-02-03 | Sharp Corp | Thermal transfer device and glossy image forming apparatus having the same |
DE102012020095B4 (en) * | 2012-10-12 | 2016-05-19 | Cotesa Gmbh | separator |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415705A (en) * | 1964-12-30 | 1968-12-10 | Vitta Corp | Machines for tape transfer |
US3547730A (en) * | 1966-12-16 | 1970-12-15 | Du Pont | Machine for making resist images |
US4075051A (en) * | 1976-11-29 | 1978-02-21 | E. I. Du Pont De Nemours And Company | Method of trimming photoresist film |
US4338152A (en) * | 1981-02-17 | 1982-07-06 | E. I. Du Pont De Nemours And Company | Gripping arrangement for an apparatus for automatically laminating circuit boards |
US4405394A (en) * | 1980-05-27 | 1983-09-20 | E. I. Du Pont De Nemours And Company | Laminating process |
US4495014A (en) * | 1983-02-18 | 1985-01-22 | E. I. Du Pont De Nemours And Company | Laminating and trimming process |
US4714504A (en) * | 1986-10-10 | 1987-12-22 | Ibm Corporation | Process of laminating a photosensitive layer of a substrate |
US4738555A (en) * | 1984-08-20 | 1988-04-19 | Kabushiki Kaisha Toshiba | Method, apparatus and thermal print ribbon to provide a protective layer over thermally-printed areas on a record medium |
US5370960A (en) * | 1993-04-02 | 1994-12-06 | Rexham Graphics Incorporated | Electrographic imaging process |
US5582669A (en) * | 1994-05-10 | 1996-12-10 | Polaroid Corporation | Method for providing a protective overcoat on an image carrying medium utilizing a heated roller and a cooled roller |
US5714305A (en) * | 1995-05-24 | 1998-02-03 | Polaroid Corporation | Overcoat-releasing laminate and method for the manufacture thereof |
US6475322B1 (en) * | 2001-06-25 | 2002-11-05 | Hewlett-Packard Company | Sheet lamination with transverse sheet bias to eliminate trailing edge coating debris |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5571368A (en) * | 1994-04-15 | 1996-11-05 | Graphic Laminating, Inc. | Laminating machine with improved heating and cooling |
-
2002
- 2002-10-25 US US10/280,553 patent/US6732780B1/en not_active Expired - Lifetime
-
2003
- 2003-09-18 JP JP2003326294A patent/JP4080404B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415705A (en) * | 1964-12-30 | 1968-12-10 | Vitta Corp | Machines for tape transfer |
US3547730A (en) * | 1966-12-16 | 1970-12-15 | Du Pont | Machine for making resist images |
US4075051A (en) * | 1976-11-29 | 1978-02-21 | E. I. Du Pont De Nemours And Company | Method of trimming photoresist film |
US4405394A (en) * | 1980-05-27 | 1983-09-20 | E. I. Du Pont De Nemours And Company | Laminating process |
US4338152A (en) * | 1981-02-17 | 1982-07-06 | E. I. Du Pont De Nemours And Company | Gripping arrangement for an apparatus for automatically laminating circuit boards |
US4495014A (en) * | 1983-02-18 | 1985-01-22 | E. I. Du Pont De Nemours And Company | Laminating and trimming process |
US4738555A (en) * | 1984-08-20 | 1988-04-19 | Kabushiki Kaisha Toshiba | Method, apparatus and thermal print ribbon to provide a protective layer over thermally-printed areas on a record medium |
US4714504A (en) * | 1986-10-10 | 1987-12-22 | Ibm Corporation | Process of laminating a photosensitive layer of a substrate |
US5370960A (en) * | 1993-04-02 | 1994-12-06 | Rexham Graphics Incorporated | Electrographic imaging process |
US5582669A (en) * | 1994-05-10 | 1996-12-10 | Polaroid Corporation | Method for providing a protective overcoat on an image carrying medium utilizing a heated roller and a cooled roller |
US5714305A (en) * | 1995-05-24 | 1998-02-03 | Polaroid Corporation | Overcoat-releasing laminate and method for the manufacture thereof |
US6475322B1 (en) * | 2001-06-25 | 2002-11-05 | Hewlett-Packard Company | Sheet lamination with transverse sheet bias to eliminate trailing edge coating debris |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050136230A1 (en) * | 2003-12-18 | 2005-06-23 | Noritsu Koki Co., Ltd. | Laminate sheet and lamination method |
US20090188631A1 (en) * | 2004-01-07 | 2009-07-30 | Seung-Kyoon Noh | Tape supplier and refill cartridge for binding apparatus |
GB2494918A (en) * | 2011-09-23 | 2013-03-27 | Tiko Corp Ltd | Thermal laminator |
CN103448128A (en) * | 2013-08-14 | 2013-12-18 | 苏州摩维天然纤维材料有限公司 | Stripping machine for rim charge surface layer of hemp-fiber composite board |
CN108190606A (en) * | 2018-01-04 | 2018-06-22 | 常州新创航空科技有限公司 | Carbon fiber prepreg winding/unwinding device |
CN108528035A (en) * | 2018-03-30 | 2018-09-14 | 重庆川之舟印务设计有限公司 | A kind of printing film covering device |
CN110091623A (en) * | 2019-06-04 | 2019-08-06 | 昆山华冠商标印刷有限公司 | Rolling double-side printer and its production method in trade mark production |
CN110341291A (en) * | 2019-08-16 | 2019-10-18 | 江阴市合助机械科技有限公司 | A kind of composite board automatically strips method |
Also Published As
Publication number | Publication date |
---|---|
JP4080404B2 (en) | 2008-04-23 |
JP2004142943A (en) | 2004-05-20 |
US6732780B1 (en) | 2004-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6732780B1 (en) | Print media coating device | |
US6554044B2 (en) | Laminator peel-off bar | |
JP2002137294A (en) | Laminating equipment | |
US6823920B2 (en) | Print media coating device and method | |
US6690908B1 (en) | Print media coating device and method | |
JP4465651B2 (en) | Laminating apparatus and laminating method | |
US20030121617A1 (en) | Overcoat application peel apparatus | |
JP2004168475A (en) | Laminating apparatus | |
JP4366690B2 (en) | Laminating apparatus and laminating method | |
JP4437689B2 (en) | Laminating equipment | |
JP4419122B2 (en) | Laminating apparatus and laminating method | |
JP2001063868A (en) | Thermal transfer recording device | |
JP4465653B2 (en) | Laminating apparatus and laminating method | |
JP4378695B2 (en) | Laminating equipment | |
JP4419134B2 (en) | Laminating apparatus and laminating method | |
JP4560771B2 (en) | Laminating equipment | |
JP4348693B2 (en) | Laminating apparatus and laminating method | |
JP4348692B2 (en) | Laminating equipment | |
JP4560770B2 (en) | Laminating equipment | |
JP4614741B2 (en) | Recording medium coating apparatus | |
JP2006142528A (en) | Recording medium covering apparatus | |
JP4378696B2 (en) | Laminating apparatus and laminating method | |
JP4437687B2 (en) | Laminating equipment | |
JP2004276269A (en) | Transfer method, transfer device, and recording apparatus | |
JP2000335818A (en) | Label printer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAYOSO, MAXIMO;REEL/FRAME:013649/0522 Effective date: 20021017 |
|
AS | Assignment |
Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., COLORAD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:013776/0928 Effective date: 20030131 Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.,COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:013776/0928 Effective date: 20030131 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |