US20040070121A1 - Open and closed metal vessel with which to hold metals hot and to melt them, and for transporting said liquid metals - Google Patents

Open and closed metal vessel with which to hold metals hot and to melt them, and for transporting said liquid metals Download PDF

Info

Publication number
US20040070121A1
US20040070121A1 US10/682,147 US68214703A US2004070121A1 US 20040070121 A1 US20040070121 A1 US 20040070121A1 US 68214703 A US68214703 A US 68214703A US 2004070121 A1 US2004070121 A1 US 2004070121A1
Authority
US
United States
Prior art keywords
open
metal vessel
closed
furnace
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/682,147
Inventor
Gustav Ohnsmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20040070121A1 publication Critical patent/US20040070121A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings

Definitions

  • the present invention relates to an open and closed metal vessel of the kind defined in the preamble of claim 1 serving to hold metals hot and to melt them, further to transporting such liquid metals.
  • Displaceable as well as fixed-shape crucibles are used to hold metals hot and to melt them.
  • Displaceable crucibles illustratively are made of clay-graphite, silicon carbide, cast iron, cast steel or metal plate, depending on casting materials to be held hot or be molten. They are used in hot holding furnaces or in melting furnaces. Heating can be carried out by means of electrical resistors, induction or gas. Heat transfer to the liquid or solid metal in the crucible through the furnace space or, in the event induction is used, directly through the crucible wall, will entail substantial wear due to thermal, mechanical and chemical stresses on the crucibles being used.
  • German patent document 29 17 577 A1 discloses a heat-resistant collecting vessel for the leakage melt and switch elements detecting said melt
  • European patent document 0 895 490 B1 and the German patent document 198 02 342 describe a crucible furnace for low-pressure casting or for filling the pressurized chamber of a horizontal and vertical cold-chamber of a pressure die casting machine.
  • Permanently integrated crucibles constitute a permanent part of the furnace. Typically they consist of chamotte brick masonry with a stamped or cast refractory lining. Because of the masonry thickness, the liquid-melting heating in the furnace is carried out inductively. This design incurs the substantial drawback that the induction channel—in particular as regards aluminum alloys—depending on flow rate of the metal, may already be clogged after about 2 weeks because of the adhesion of the oxides and nitrides and thus shall block said flow. In order to (re)open the said induction channel, most of the time the casting furnace must be exchanged, the residual melt must be removed, and said channel must be pried open using a compressed air hammer. Also the furnace outside surface temperatures run to 70 to 100EC while being as high as 120EC in the region of the induction channel. This closed furnace system is used especially for low pressure casting.
  • the objective of the present invention is avoid said known drawbacks by proposing an open and closed metal vessel to hold hot, and to melt metals and to transport said liquefied metals, said container being free from a crucible whether, under the conventional definitions, said crucible either is displaceable or permanently integrated.
  • the open and closed metal vessel is constituted by a housing at the inside of which thermally insulating materials subtend an open or closed cavity lined with a textile 3D-surface structure, the closed metal vessel being fitted with a displaceable riser pipe.
  • the open and closed metal vessel of the present invention may serve as a hot-holding, scooping and melting furnace, whereas in its closed mode, it may serve as a hot-holding furnace, a low-pressure casting furnace, a low-pressure metal transporting furnace and as a liquid-metal, transporting container.
  • the open and closed metal vessel of the present invention comprises an integral 3D-surface structure lining which covers in seamless manner the open and closed cavity of the metal vessel to receive the liquid or solid metal and it is further fitted with discharge channels and covering surfaces.
  • This goal is attained by the high flexibility of said structure and its versatility in assuming many geometric and spatial configurations.
  • This integral, textile 3D-surface structure may be used as a single layer or a multi-layer to line and cover cavities and surfaces. By coating the single or multilayer surfaces of said 3D-surface structure, and depending on the requirements set on the said liquid or solid metals, the thermal, chemical as well as mechanical properties of said metals may be additionally enhanced.
  • the thermally insulating material enclosing said textile structure's inside and outside surfaces is designed to be a seamlessly upwardly open insulation housing.
  • the heater elements inserted into the liquid metal(s) are clad by appropriate protective substances. Said heater elements are configured underneath the said textile structure and are protected by a thin and exchangeable plate against leakages of liquid metals.
  • the integral, displaceable furnace riser pipe affixed to the closed metal vessel is made to pass through, and be centered relative to, a bush.
  • Said furnace riser pipe is displaceably connected to a drive system which implements the openings and closings related to continuously filling with liquid metals both metallic and non-metallic casting and furthermore to filling pressure chambers molds with said liquid metal(s).
  • the closed metal vessel shall be additionally placed within a sealable single or multiple container when liquid metal must be transported.
  • Claim 5 cites wear-resistant, flexible materials to be used for the textile, 3D-surface structure
  • claim 7 lists effective thermally insulating materials
  • claim 8 cites protective substances for the heater elements inserted into the liquid metal and configured underneath the textile 3D-surface structure.
  • FIG. 1 is a cross-section of an open metal vessel of the invention
  • FIG. 2 is a cross-section of a closed metal vessel of the invention fitted with a displaceable riser pipe
  • FIG. 3 is a cross-section of an open metal vessel of the invention used to melt metals
  • FIG. 4 is a cross-section of a closed metal vessel of the invention used for transporting liquid metal.
  • the open metal vessel of FIG. 1 shows an aperture 12 which passes through the textile 3D-surface structure 4 and is used to fill the cavity 11 with liquid and solid metals and also to remove liquid metal for casting.
  • the heating to hold hot and to melt liquid and solid metals in this embodiment can be implemented by heater elements 6 , 7 8 or by induction 9 .
  • the open metal vessel 1 a may serve as a hot-holding, ladling and melting furnace for casting operations.
  • FIG. 3 shows another open metal vessel 1 c to melt metals by means of an inductive heater 10 and fitted with a discharge channel 13 for the liquid metal.
  • the closed metal vessel 1 b of FIG. 2 has been filled with a liquid metal 18 in its cavity 11 and comprises both a hermetically sealing furnace cover 16 which, jointly with said container's thermally insulating lining 3 c and the surface of the liquid metal, subtends a gassing space 17 , and the furnace riser pipe 20 connected to the control system 23 assuring the vertical opening and closing steps between said pipe and the casting mold 22 .
  • the bush 21 mounted on the furnace cover 16 guides and centers the displaceable furnace riser pipe 20 .
  • This advantageous design allows rapidly and simply exchanging the furnace(s) used in casting.
  • the liquid metal also may be heated by the heater elements 6 , 7 , 8 or by induction 9 .
  • the closed metal vessel 1 b may serve as a low pressure casting furnace or a low-pressure metal transporting furnace to fill casting molds or pressure chambers for pressurized casting and also to hold metals hot in casting operation.
  • FIG. 4 shows another closed metal vessel 1 d for transporting liquid metals in a closable single or multi-container 28 .
  • the thermally insulating material 3 f lining the inside space of the transport container's cover 25 comprises a cone dipping into the liquid metal.
  • the metal container 1 d serves directly as a hot-holding furnace for metal buffering in casting plants and furthermore—on account of said exchanging or removing said furnace cover—as a hot-holding, ladling, melting furnace, a low-pressure casting furnace and a low-pressure metal transporting furnace, the heating of the liquid metals optionally being implemented by insertable heater elements 6 , 7 or by stationary, pre-installed heater elements 8 or by induction 9 .
  • the inventive open and closed metal vessel 1 a , 1 b , 1 c , 1 d may be manufactured in all possible geometric shapes, the outer casing 2 subtending the inner space in turn subtending by means of the thermally insulating materials 3 , 3 a , 3 b , 3 c , 3 f and by the textile 3D-surface structure 4 , an open and closed cavity 11 receiving the liquid or solid metal which it shall hold hot or implement melting it or it shall transport the liquid metal.
  • the high flexibility and tear-resistance of the textile 3D-surface structure 4 allows seamlessly lining the cavity 11 , the discharge channel 13 and the cover surfaces 2 ′, 3 ′, 3 a ′, where movable pins 14 or fixed pins 15 affix the textile 3D-surface structure 4 in its position. Because the liquid metal may be drained from the open metal vessel 1 a , 1 c or from the metal vessel 1 b , 1 d to be opened, exchanging the textile 3D-surface structure 4 can be carried out in a brief time. Another advantage regarding the textile 3D-surface structure 4 is its collapsibility and its low weight, said features being substantial advantages as regards their storage and transportation. Because of the high thermal strength of the textile 3D-surface structure 4 , pre-warming time intervals or slow heating rates of the open and closed metal container 1 a , 1 b , 1 c , 1 d are not required.
  • the invention comprises the upwardly open insulation housing which is made of seamless, thermally insulating materials 3 , 3 b , the material 3 consisting of a cast glass foam and the thermal insulation 3 b is made of fiber ceramics withstanding high compressive loads.
  • These features and the optimal heat barrier represented by the open and closed melt vessels 1 a , 1 b , 1 c , 1 d allow mounting the heater elements 6 , 7 , 8 directly in or at the cavity 11 , the heater elements 8 being protected against leakage of metal liquid by a thin and exchangeable plate 3 d .
  • On account of this direct and also indirect transfer of heat to hold hot and melt metals it is possible to preclude metals from overheating and thus exclude the otherwise entailed adverse chemical reactions as well as increased gas absorption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • General Induction Heating (AREA)

Abstract

The open and closed metal vessel 1 a , 1 b , 1 c , 1 d serving to hold hot and to melt metals and to transport said liquid metals comprises an open and closed cavity 11 which is subtended by thermally insulating materials 3, 3 a , 3 b , 3 c , 3 e , 3 f and which is seamlessly lined by an integral, exchangeable, single-layer or stratified textile, 3D-surface structure 4. Said metal vessel receives the liquid and solid metal to hold it hot or to melt it and also serves to transport the liquid metals. The heating to hold hot and to melt the metals is implemented by heater elements 6, 7 situated in the liquid metal and furthermore by heater elements 8 configured underneath the 3D-surface structure, or by induction. (9, 10). The closed metal vessel 1 b is equipped with an integral, displaceable furnace riser pipe 20 on the furnace cover 16. When casting, the open metal vessel 1 a , 1 c may serve as a hot-holding, ladling and melting furnace and the closed metal vessel 1 b , 1 d may serve as a transport receptacle, all described operational criteria being met by exchanging the furnace cover or removing it and using the open and closed metal vessel 1 a , 1 b , 1 d.

Description

  • The present invention relates to an open and closed metal vessel of the kind defined in the preamble of claim 1 serving to hold metals hot and to melt them, further to transporting such liquid metals. [0001]
  • Displaceable as well as fixed-shape crucibles are used to hold metals hot and to melt them. [0002]
  • Displaceable crucibles illustratively are made of clay-graphite, silicon carbide, cast iron, cast steel or metal plate, depending on casting materials to be held hot or be molten. They are used in hot holding furnaces or in melting furnaces. Heating can be carried out by means of electrical resistors, induction or gas. Heat transfer to the liquid or solid metal in the crucible through the furnace space or, in the event induction is used, directly through the crucible wall, will entail substantial wear due to thermal, mechanical and chemical stresses on the crucibles being used. Moreover, where electrical resistance or gas heating is used, large energy consumption is required to heat the furnace space and the crucible, as well as being incurred by the heat dissipation taking place at the refractory furnace lining. Illustratively the German patent document 29 17 577 A1 discloses a heat-resistant collecting vessel for the leakage melt and switch elements detecting said melt, while the European patent document 0 895 490 B1 and the German patent document 198 02 342 describe a crucible furnace for low-pressure casting or for filling the pressurized chamber of a horizontal and vertical cold-chamber of a pressure die casting machine. [0003]
  • Permanently integrated crucibles constitute a permanent part of the furnace. Typically they consist of chamotte brick masonry with a stamped or cast refractory lining. Because of the masonry thickness, the liquid-melting heating in the furnace is carried out inductively. This design incurs the substantial drawback that the induction channel—in particular as regards aluminum alloys—depending on flow rate of the metal, may already be clogged after about 2 weeks because of the adhesion of the oxides and nitrides and thus shall block said flow. In order to (re)open the said induction channel, most of the time the casting furnace must be exchanged, the residual melt must be removed, and said channel must be pried open using a compressed air hammer. Also the furnace outside surface temperatures run to 70 to 100EC while being as high as 120EC in the region of the induction channel. This closed furnace system is used especially for low pressure casting. [0004]
  • The objective of the present invention is avoid said known drawbacks by proposing an open and closed metal vessel to hold hot, and to melt metals and to transport said liquefied metals, said container being free from a crucible whether, under the conventional definitions, said crucible either is displaceable or permanently integrated. [0005]
  • To attain this goal, the open and closed metal vessel is constituted by a housing at the inside of which thermally insulating materials subtend an open or closed cavity lined with a textile 3D-surface structure, the closed metal vessel being fitted with a displaceable riser pipe. Advantageous embodiment modes and further developments of the invention are stated in the dependent claims. [0006]
  • When, in its open mode, the open and closed metal vessel of the present invention may serve as a hot-holding, scooping and melting furnace, whereas in its closed mode, it may serve as a hot-holding furnace, a low-pressure casting furnace, a low-pressure metal transporting furnace and as a liquid-metal, transporting container. [0007]
  • The open and closed metal vessel of the present invention comprises an integral 3D-surface structure lining which covers in seamless manner the open and closed cavity of the metal vessel to receive the liquid or solid metal and it is further fitted with discharge channels and covering surfaces. This goal is attained by the high flexibility of said structure and its versatility in assuming many geometric and spatial configurations. This integral, textile 3D-surface structure may be used as a single layer or a multi-layer to line and cover cavities and surfaces. By coating the single or multilayer surfaces of said 3D-surface structure, and depending on the requirements set on the said liquid or solid metals, the thermal, chemical as well as mechanical properties of said metals may be additionally enhanced. In a further advantageous embodiment of the present invention, the thermally insulating material enclosing said textile structure's inside and outside surfaces is designed to be a seamlessly upwardly open insulation housing. [0008]
  • In order to preclude chemical and/or electrical reactions, the heater elements inserted into the liquid metal(s) are clad by appropriate protective substances. Said heater elements are configured underneath the said textile structure and are protected by a thin and exchangeable plate against leakages of liquid metals. [0009]
  • The integral, displaceable furnace riser pipe affixed to the closed metal vessel is made to pass through, and be centered relative to, a bush. Said furnace riser pipe is displaceably connected to a drive system which implements the openings and closings related to continuously filling with liquid metals both metallic and non-metallic casting and furthermore to filling pressure chambers molds with said liquid metal(s). [0010]
  • In order to assure the greatest possible safety of operation, the closed metal vessel shall be additionally placed within a sealable single or multiple container when liquid metal must be transported. [0011]
  • Claim 5 cites wear-resistant, flexible materials to be used for the textile, 3D-surface structure, whereas [0012] claim 7 lists effective thermally insulating materials and claim 8 cites protective substances for the heater elements inserted into the liquid metal and configured underneath the textile 3D-surface structure. The just above cited advantages as well as further ones are discussed below in relation to the preferred embodiment of the present invention and in relation the appended drawings.
  • FIG. 1 is a cross-section of an open metal vessel of the invention, [0013]
  • FIG. 2 is a cross-section of a closed metal vessel of the invention fitted with a displaceable riser pipe, [0014]
  • FIG. 3 is a cross-section of an open metal vessel of the invention used to melt metals, and [0015]
  • FIG. 4 is a cross-section of a closed metal vessel of the invention used for transporting liquid metal.[0016]
  • The open metal vessel of FIG. 1 shows an [0017] aperture 12 which passes through the textile 3D-surface structure 4 and is used to fill the cavity 11 with liquid and solid metals and also to remove liquid metal for casting. The heating to hold hot and to melt liquid and solid metals in this embodiment can be implemented by heater elements 6, 7 8 or by induction 9. Accordingly the open metal vessel 1 a may serve as a hot-holding, ladling and melting furnace for casting operations.
  • FIG. 3 shows another [0018] open metal vessel 1 c to melt metals by means of an inductive heater 10 and fitted with a discharge channel 13 for the liquid metal.
  • The closed [0019] metal vessel 1 b of FIG. 2 has been filled with a liquid metal 18 in its cavity 11 and comprises both a hermetically sealing furnace cover 16 which, jointly with said container's thermally insulating lining 3 c and the surface of the liquid metal, subtends a gassing space 17, and the furnace riser pipe 20 connected to the control system 23 assuring the vertical opening and closing steps between said pipe and the casting mold 22. The bush 21 mounted on the furnace cover 16 guides and centers the displaceable furnace riser pipe 20. This advantageous design allows rapidly and simply exchanging the furnace(s) used in casting. In this instance the liquid metal also may be heated by the heater elements 6, 7, 8 or by induction 9. In this manner the closed metal vessel 1 b may serve as a low pressure casting furnace or a low-pressure metal transporting furnace to fill casting molds or pressure chambers for pressurized casting and also to hold metals hot in casting operation.
  • FIG. 4 shows another closed [0020] metal vessel 1 d for transporting liquid metals in a closable single or multi-container 28. To preclude the liquid metal from sloshing while being transported, the thermally insulating material 3 f lining the inside space of the transport container's cover 25 comprises a cone dipping into the liquid metal. With this design the metal container 1 d serves directly as a hot-holding furnace for metal buffering in casting plants and furthermore—on account of said exchanging or removing said furnace cover—as a hot-holding, ladling, melting furnace, a low-pressure casting furnace and a low-pressure metal transporting furnace, the heating of the liquid metals optionally being implemented by insertable heater elements 6, 7 or by stationary, pre-installed heater elements 8 or by induction 9.
  • The inventive open and closed [0021] metal vessel 1 a, 1 b, 1 c, 1 d may be manufactured in all possible geometric shapes, the outer casing 2 subtending the inner space in turn subtending by means of the thermally insulating materials 3, 3 a, 3 b, 3 c, 3 f and by the textile 3D-surface structure 4, an open and closed cavity 11 receiving the liquid or solid metal which it shall hold hot or implement melting it or it shall transport the liquid metal.
  • The high flexibility and tear-resistance of the textile 3D-surface structure [0022] 4 allows seamlessly lining the cavity 11, the discharge channel 13 and the cover surfaces 2′, 3′, 3 a′, where movable pins 14 or fixed pins 15 affix the textile 3D-surface structure 4 in its position. Because the liquid metal may be drained from the open metal vessel 1 a, 1 c or from the metal vessel 1 b, 1 d to be opened, exchanging the textile 3D-surface structure 4 can be carried out in a brief time. Another advantage regarding the textile 3D-surface structure 4 is its collapsibility and its low weight, said features being substantial advantages as regards their storage and transportation. Because of the high thermal strength of the textile 3D-surface structure 4, pre-warming time intervals or slow heating rates of the open and closed metal container 1 a, 1 b, 1 c, 1 d are not required.
  • In order to further reduce heat losses due to convection, the invention comprises the upwardly open insulation housing which is made of seamless, thermally insulating [0023] materials 3, 3 b, the material 3 consisting of a cast glass foam and the thermal insulation 3 b is made of fiber ceramics withstanding high compressive loads. These features and the optimal heat barrier represented by the open and closed melt vessels 1 a, 1 b, 1 c, 1 d allow mounting the heater elements 6, 7, 8 directly in or at the cavity 11, the heater elements 8 being protected against leakage of metal liquid by a thin and exchangeable plate 3 d. On account of this direct and also indirect transfer of heat to hold hot and melt metals, it is possible to preclude metals from overheating and thus exclude the otherwise entailed adverse chemical reactions as well as increased gas absorption.
  • In order to preclude transported liquid metal from sloshing, the inside space of the [0024] cover 25 of the closed metal container 1 d is lined with a conical heat insulating material 3 f dipping into the liquid metal. Be it further borne in mind that details relating to design which may entirely differ from those disclosed above may shall fall within the scope of the present invention.

Claims (10)

1. An open and closed metal vessel for holding hot and melting metals and to transport said liquid metals and comprising heater elements (6, 7, 8) or being fitted with inductive heaters (9, 10),
characterized in that
the open and closed metal vessel (1 a, 1 b, 1 c, 1 d) in the inside space of which thermally insulating materials (3, 3 a, 3 b, 3 c, 3 e, 3 f) subtend an open or a closed cavity (11) which is lined with a textile 3D-surface structure (4), and that the closed melt vessel (1 b) comprises a displaceable furnace riser pipe.(20).
2. Open and closed metal vessel as claimed in claim 1, characterized in that the open metal vessel (1 a, 1 c) may serve as a hot-holding, ladling and melting furnace and that the closed metal vessel metal vessel (1 b, 1 d) may serve as hot-holding furnace, low-pressure casting furnace, low-pressure metal transporting furnace and as a liquid-metal transporting vessel.
3. Open and closed metal vessel as claimed in either of claims 1 and 2, characterized in that the integral textile 3D-surface structure (4) lines in seamless, single-layer or stratified manner the cavity (11), the discharge channels (13) and the cover surface (2′, 3′, 3 a′).
4. Open and closed metal vessel as claimed in either of claims 2 and 3, characterized in that the surfaces of the single-layer or stratified textile 3D-surface structure (4) comprise(s) a coating depending on metal requirements.
5. Open and closed metal vessel as claimed in either of claims 3 and 4, characterized in that the textile 3D-surface structure (4) is made of glass or ceramic fibers.
6. Open and closed metal vessel as claimed in claim 1, characterized in that the thermally insulating material (3, 3 b) subtending the inside space of the metal vessel is a seamless, upwardly open insulating housing.
7. Open and closed metal vessel as claimed in either of claims 1 and 6, characterized in that the thermally insulating materials (3, 3 a, 3 b, 3 c, 3 e, 3 f may be glass foam, glass fibers, ceramic or fiber-ceramic materials.
8. Open and closed metal vessel as claimed in claim 1, characterized in that the protective substances of the heater elements (6, 7, 8) mounted in the metal vessel (1 a, 1 b, 1 d) may be made of glass, glass fibers and fiber ceramics.
9. Open and closed metal vessel as claimed in claim 1, characterized in that the integral, displaceable furnace riser pipe (20) is both centered and guided by a bush (21) on the furnace cover (16) and is displaced by a drive system (23).
10. Open and closed metal vessel as claimed by claim 1, characterized in that the closed metal vessel (1 d) is received by an additional, sealable single or collecting container (28).
US10/682,147 2002-10-10 2003-10-08 Open and closed metal vessel with which to hold metals hot and to melt them, and for transporting said liquid metals Abandoned US20040070121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02022658A EP1410861A1 (en) 2002-10-10 2002-10-10 Molten metal vessel
EP02022658.5 2002-10-10

Publications (1)

Publication Number Publication Date
US20040070121A1 true US20040070121A1 (en) 2004-04-15

Family

ID=32039119

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/682,147 Abandoned US20040070121A1 (en) 2002-10-10 2003-10-08 Open and closed metal vessel with which to hold metals hot and to melt them, and for transporting said liquid metals

Country Status (2)

Country Link
US (1) US20040070121A1 (en)
EP (1) EP1410861A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430398B (en) * 2004-02-20 2008-06-18 Hoei Shokai Co Ltd Container, storage bath and method of producing the container
US20100256882A1 (en) * 2009-04-03 2010-10-07 Loren Christopher Dreier Automated manual transmission shift methodology for tanker trucks
CN102839243A (en) * 2012-09-06 2012-12-26 江苏永钢集团有限公司 Furnace top sealing device
CN103736983A (en) * 2013-12-17 2014-04-23 广西柳州银海铝业股份有限公司 Fluid groove preheating cover plate and fluid groove preheating method
US20150108325A1 (en) * 2013-10-23 2015-04-23 Keith Ryan Method and apparatus for electrically-heated refractory moulds and mandrels
US10898949B2 (en) * 2017-05-05 2021-01-26 Glassy Metals Llc Techniques and apparatus for electromagnetically stirring a melt material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907353B1 (en) * 2006-10-23 2013-02-22 Lethiguel DEVICE FOR HEATING A LIQUID METAL BATH.
DE102009014683A1 (en) 2009-03-27 2010-09-30 Seram Ag Method for maintaining metal melt and slag in molten condition, comprises applying microwave radiation in the conventionally produced melt that exists in carrier containers, casting ladles, pouring ladles and/or casting distributor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1917849A (en) * 1930-07-26 1933-07-11 Ajax Electrothermic Corp Refractory lining
US3162710A (en) * 1962-07-24 1964-12-22 Anderson Donald Jay Induction furnace with removable crucible
US4713180A (en) * 1984-02-15 1987-12-15 Georg Fischer Aktiengesellschaft Ceramic filter and method for using same
US4720713A (en) * 1986-10-06 1988-01-19 Hughes Aircraft Company Fiber ceramic antenna reflector
US4995595A (en) * 1986-03-22 1991-02-26 Leybold Aktiengesellschaft Smelting crucible

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015056A (en) * 1983-07-08 1985-01-25 Shinagawa Refract Co Ltd Method for applying refractories to tundish by hot spraying
GB8526669D0 (en) * 1985-10-30 1985-12-04 Micropore International Ltd Vessel
FR2599651B1 (en) * 1986-06-10 1989-10-27 Daussan & Co CONTAINER FOR RECEIVING LIQUID METAL
JP3168173B2 (en) * 1997-04-30 2001-05-21 トヨタ自動車北海道株式会社 Ladle
DE19802342C1 (en) * 1998-01-22 1999-03-04 Gustav Ohnsmann Apparatus for supplying horizontal and vertical cold chamber diecasting machines with metal
EP1086936A3 (en) * 1999-09-22 2001-11-28 Nichias Corporation Ceramic composites and use thereof as lining materials
DE20007414U1 (en) * 2000-04-22 2000-06-29 Saveway Isolierstoffe GmbH, 98704 Langewiesen Sheet material for insulating layers on metallurgical vessels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1917849A (en) * 1930-07-26 1933-07-11 Ajax Electrothermic Corp Refractory lining
US3162710A (en) * 1962-07-24 1964-12-22 Anderson Donald Jay Induction furnace with removable crucible
US4713180A (en) * 1984-02-15 1987-12-15 Georg Fischer Aktiengesellschaft Ceramic filter and method for using same
US4995595A (en) * 1986-03-22 1991-02-26 Leybold Aktiengesellschaft Smelting crucible
US4720713A (en) * 1986-10-06 1988-01-19 Hughes Aircraft Company Fiber ceramic antenna reflector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430398B (en) * 2004-02-20 2008-06-18 Hoei Shokai Co Ltd Container, storage bath and method of producing the container
US20100256882A1 (en) * 2009-04-03 2010-10-07 Loren Christopher Dreier Automated manual transmission shift methodology for tanker trucks
US8055418B2 (en) * 2009-04-03 2011-11-08 Zf Friedrichshafen Automated manual transmission shift methodology for tanker trucks
CN102839243A (en) * 2012-09-06 2012-12-26 江苏永钢集团有限公司 Furnace top sealing device
US20150108325A1 (en) * 2013-10-23 2015-04-23 Keith Ryan Method and apparatus for electrically-heated refractory moulds and mandrels
CN103736983A (en) * 2013-12-17 2014-04-23 广西柳州银海铝业股份有限公司 Fluid groove preheating cover plate and fluid groove preheating method
US10898949B2 (en) * 2017-05-05 2021-01-26 Glassy Metals Llc Techniques and apparatus for electromagnetically stirring a melt material

Also Published As

Publication number Publication date
EP1410861A1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
US5948352A (en) Two-chamber furnace for countergravity casting
EP1136778B1 (en) Melting/retaining furnace for aluminum ingot
CA2100832C (en) Method and apparatus for making intermetallic castings
KR101287935B1 (en) Crucible type continuous melting furnace
US10799949B2 (en) Slide closure on the spout of a metallurgical vessel
US20040070121A1 (en) Open and closed metal vessel with which to hold metals hot and to melt them, and for transporting said liquid metals
EP0697577B1 (en) Vacuum melting - pressure pouring induction furnace
EP0160384A1 (en) Induction furnaces
EP2000235A9 (en) Ladle for molten metal delivery
US3970444A (en) Method for pouring steel during continuous casting
US6585928B2 (en) Dispensing system for molten aluminum and method
KR101132930B1 (en) Holding furnace for supplying fixed amount of molten metal
CA1260049A (en) Tiltable metallurgical furnace vessel
US4330107A (en) Teapot ladle and method of use
US6318444B1 (en) Device for charging horizontal and vertical cold chamber pressure die-casting machines with metal and method
US4441191A (en) Apparatus for heating a continuous flow of molten metal
JP5550730B2 (en) System for melting metal materials and movable hearth used therefor
US11826820B2 (en) Arrangement for low-pressure casting of refractory metals
CA2379378C (en) Molten metal ladle transport arrangement
JPH11320079A (en) Crucible furnace type ladle
SU839668A1 (en) Trough for liquid metal transporting
RU2094479C1 (en) Method of smelting steel in arc furnaces
JPH0780632A (en) Molten metal holding furnace
CS249153B1 (en) Pouring ladle's closure with lower control especially of steelmaking ladle
JPH03274210A (en) Device for tapping molten metal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION