US20040065522A1 - Force-limiting rotary lock - Google Patents
Force-limiting rotary lock Download PDFInfo
- Publication number
- US20040065522A1 US20040065522A1 US10/266,710 US26671002A US2004065522A1 US 20040065522 A1 US20040065522 A1 US 20040065522A1 US 26671002 A US26671002 A US 26671002A US 2004065522 A1 US2004065522 A1 US 2004065522A1
- Authority
- US
- United States
- Prior art keywords
- shaft
- pawl
- housing
- angular direction
- rotary lock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
- F16H25/2021—Screw mechanisms with means for avoiding overloading
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18568—Reciprocating or oscillating to or from alternating rotary
- Y10T74/18576—Reciprocating or oscillating to or from alternating rotary including screw and nut
- Y10T74/18704—Means to selectively lock or retard screw or nut
Definitions
- the present invention relates generally to force limiters, and, more particularly, to an improved force-limiting rotary lock that is particularly adapted to be utilized on an aircraft between a driving shaft and one or more airfoil surfaces, such as flaps, slats and the like.
- flaps are used to redefine the contour of the wing during takeoff and landing.
- a ball screw actuator is used to drive a rotary shaft that controls movement of a plurality of individual flaps that are spaced along the wing. It is generally desirable to provide a force limiter to prevent damage to the actuator structure in the event that an overload condition is sensed.
- the present invention provides an improved force-limiting rotary lock ( 20 ) for a shaft ( 21 ) mounted in a housing ( 22 ) for rotational movement about an axis (x-x).
- the shaft is also axially movable relative to the housing, and is biased (via Belleville spring stacks 33 , 34 ) to move toward a predetermined axial position relative to the housing.
- the improved rotary lock broadly comprises: at least one member ( 28 ) provided on one of the shaft and housing; a pawl ( 51 ) mounted on the other of the shaft and housing, the pawl being movable relative to the member ( 28 ) between first and second positions; wherein the pawl is operatively arranged to engage the member when the pawl is in the first position (e.g., as shown in FIG. 3) to prevent further rotation of the shaft in one angular direction, and is operatively arranged to be disengaged from the member when the pawl is in the second position (e.g., as shown in FIG.
- each member ( 28 ) is a lug or dog that extends outwardly from the shaft.
- such members be they dogs, lugs or otherwise
- the device is shown as having a single pawl ( 51 ) which is operatively mounted for selective movement between any one of three spring-biased positions: a first position (e.g., as shown in FIG. 3) in which the pawl ( 51 ) engages a member ( 28 ) to prevent rotation of the shaft in one angular direction, a second position (e.g., as shown in FIG. 2) in which the pawl is disengaged from such member and permits rotation of the shaft in either angular direction, and a third position in which the pawl engages a member ( 28 ) and prevents further rotation in the opposite angular direction.
- a first position e.g., as shown in FIG. 3
- a second position e.g., as shown in FIG. 2
- the pawl is disengaged from such member and permits rotation of the shaft in either angular direction
- a third position in which the pawl engages a member ( 28 ) and prevents further rotation in the opposite angular direction
- the shaft When the shaft is prevented from rotating in one angular direction, the shaft is not prevented from rotating in the opposite angular direction. Moreover, when the shaft is prevented from rotating in the one angular direction, the pawl is retained in its position independently of the axial position of the shaft. When the pawl is in its first or locked position (i.e., to prevent further rotation in the one angular direction), and the shaft is rotated in the opposite angular direction, even when the shaft is not axially displaced, the pawl will be moved from its locked or first position to its unlocked or second position.
- the general object of the invention is to provide an improved force-limiting rotary lock.
- Another object is to provide a force-limiting rotary lock for use in controlling airfoil surfaces, such as flaps, slats and the like.
- FIG. 1 is a perspective cutaway view of the improved force-limiting rotary lock, this view showing the shaft, the housing, the lug-like members, and the pawl.
- FIG. 2 is a fragmentary vertical sectional view thereof, taken generally on line 2 - 2 of FIG. 1, showing the pawl as being in its disengaged or second position.
- FIG. 3 is a view generally similar to FIG. 2, but showing the pawl as having been moved from its unlocked or second position to its first or locked position, and further showing the pawl as operatively engaging one of the lug-like members to prevent further rotation of the shaft in a counterclockwise direction.
- the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader.
- the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
- the present invention broadly provides an improved force-limiting rotary lock, of which the presently-preferred embodiment is schematically indicated at 20 .
- This embodiment broadly includes a horizontally-elongated shaft, generally indicated at 21 , which is operatively mounted within a housing, generally indicated at 22 . More particularly, shaft 21 is mounted for both rotational and axial movement relative to the housing.
- the shaft is shown as having a generally horizontal axis x-x.
- the shaft has an external screw thread, schematically indicated at 23 , at its left marginal end portion; a collar portion 24 spaced rightwardly from the screw thread; a plurality of cam members, severally indicated at 25 , extending outwardly from a portion of the shaft; an annular disk-like member 26 provided with four circumferentially-spaced dog- or lug-like members 28 extending radially outwardly therefrom; and a series of splined teeth 29 operatively engaging a mating set of splined teeth on a driving member 30 .
- Member 30 is arranged-to be rotated about axis x-x by a suitable mechanism (not shown). Because of the splined connection, shaft 21 is constrained to rotate with member 30 , but is permitted to move axially relative to driving member 30 and housing 22 .
- Screw thread 23 at the left end of the shaft is operatively connected to a screw-and-nut mechanism (not shown) for driving another member or element (not shown).
- a screw-and-nut mechanism for driving another member or element (not shown).
- the housing is shown as being a horizontally-elongated specially-configured tubular member that is penetrated by the shaft.
- the housing has a leftward portion 31 of reduced diameter, and a rightward portion 32 of enlarged diameter.
- the housing leftward portion 31 has two axially-spaced chambers 33 , 34 separated by an inwardly-extending annular portion 35 .
- a Belleville spring stack 36 is arranged in left chamber 35
- another Belleville spring stack 38 is arranged in right chamber 34 .
- These two Belleville spring stacks act via preload-adjusting shims 39 , 40 on shaft collar portion 24 , and urge the shaft to move toward a predetermined axial position relative to the housing.
- Shims 39 and 40 are selected to provide the desired preload on the respective springs, and need not be of the same axial thickness. Indeed, they may be of different axial thicknesses, depending on the particular application.
- the housing enlarged-diameter portion 32 is shown as having (from left to right in FIG. 1): a rightwardly-facing annular vertical wall 41 , an inwardly-facing horizontal cylindrical wall 42 extending rightwardly therefrom, a leftwardly-facing annular vertical surface 43 , an inwardly-facing horizontal cylindrical surface 44 , a rightwardly-facing annular vertical surface 45 , an inwardly-facing horizontal cylindrical surface 46 , and an leftwardly-facing annular vertical surface 48 .
- the cam members 25 are arranged in two axially-spaced groups of four each, with the cam members of each group being spaced equidistantly about the shaft axis by intervals of about 90 degrees.
- Disk member 26 is arranged in the housing recess defined between surfaces 45 , 46 and 48 .
- member 26 is an annular disk-like member from which four lug-like members 28 extend radially outwardly. These four members are spaced equidistantly about the outer cylindrical surface of disk member 26 .
- Cam follower 49 is mounted on the left marginal end portion of a rod 50 that is pivotally mounted in a hole that extends between housing surfaces 43 and 45 .
- follower 49 is mounted on one end of rod 50
- a pawl 51 is mounted on the other end of this rod.
- follower 49 has a inner portion 52 that is normally arranged to be axially positioned between the axially-spaced cams 25 , 25 .
- the pawl is a specially-configured member having three concave recesses 53 , 54 and 55 , respectively.
- a ball 56 is mounted on the housing and is biased by a spring 58 to move toward the pawl and to snap into one of recesses 53 , 54 or 55 .
- FIGS. 1 - 3 the design shown in FIGS. 1 - 3 is capable of locking the shaft against further rotation in the event of a overload, in either angular direction, with the shaft in all cases being free to be moved in opposite angular direction so as to selectively unlock the mechanism.
- the invention provides an improved force-limiting rotary lock for a shaft mounted on a housing.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Braking Arrangements (AREA)
- Chairs For Special Purposes, Such As Reclining Chairs (AREA)
- Transmission Devices (AREA)
- Pivots And Pivotal Connections (AREA)
- Mutual Connection Of Rods And Tubes (AREA)
Abstract
Description
- The present invention relates generally to force limiters, and, more particularly, to an improved force-limiting rotary lock that is particularly adapted to be utilized on an aircraft between a driving shaft and one or more airfoil surfaces, such as flaps, slats and the like.
- In fixed wing aircraft, flaps are used to redefine the contour of the wing during takeoff and landing. In some cases, a ball screw actuator is used to drive a rotary shaft that controls movement of a plurality of individual flaps that are spaced along the wing. It is generally desirable to provide a force limiter to prevent damage to the actuator structure in the event that an overload condition is sensed.
- Various types of rotary locking mechanisms are shown and described in U.S. patent application Ser. No. 09/778,600, filed Feb. 7, 2001, which is assigned to the assignee of the present application, and in U.S. Pat. Nos. 6,109,415, 4,697,672, 4,579, 201, 3,898,817 and 5,582,390. The aggregate disclosures of this application and these patents are hereby incorporated by reference.
- With parenthetical reference to the corresponding parts, portions or surfaces of the disclosed embodiment, merely for purposes of illustration and not by way of limitation, the present invention provides an improved force-limiting rotary lock (20) for a shaft (21) mounted in a housing (22) for rotational movement about an axis (x-x). The shaft is also axially movable relative to the housing, and is biased (via Belleville spring stacks 33, 34) to move toward a predetermined axial position relative to the housing. The improved rotary lock broadly comprises: at least one member (28) provided on one of the shaft and housing; a pawl (51) mounted on the other of the shaft and housing, the pawl being movable relative to the member (28) between first and second positions; wherein the pawl is operatively arranged to engage the member when the pawl is in the first position (e.g., as shown in FIG. 3) to prevent further rotation of the shaft in one angular direction, and is operatively arranged to be disengaged from the member when the pawl is in the second position (e.g., as shown in FIG. 2) to permit rotation of the shaft in either angular direction; a cam (25) mounted on one of the shaft and housing; a follower (49) associated with the pawl for selectively moving the pawl between the first and second positions, and operatively arranged to engage the cam when the shaft is axially displaced from the predetermined position such that when the shaft is axially displaced from the predetermined position and the pawl (51) engages the member (28), the shaft will be prevented from rotating further in the one angular direction.
- In the illustrated embodiment, each member (28) is a lug or dog that extends outwardly from the shaft. However, in an alternative arrangement, such members (be they dogs, lugs or otherwise) could be mounted on the housing.
- Also, in the preferred embodiment, the device is shown as having a single pawl (51) which is operatively mounted for selective movement between any one of three spring-biased positions: a first position (e.g., as shown in FIG. 3) in which the pawl (51) engages a member (28) to prevent rotation of the shaft in one angular direction, a second position (e.g., as shown in FIG. 2) in which the pawl is disengaged from such member and permits rotation of the shaft in either angular direction, and a third position in which the pawl engages a member (28) and prevents further rotation in the opposite angular direction. However, in an alternative embodiment, multiple pawls could be provided.
- When the shaft is prevented from rotating in one angular direction, the shaft is not prevented from rotating in the opposite angular direction. Moreover, when the shaft is prevented from rotating in the one angular direction, the pawl is retained in its position independently of the axial position of the shaft. When the pawl is in its first or locked position (i.e., to prevent further rotation in the one angular direction), and the shaft is rotated in the opposite angular direction, even when the shaft is not axially displaced, the pawl will be moved from its locked or first position to its unlocked or second position.
- Accordingly, the general object of the invention is to provide an improved force-limiting rotary lock.
- Another object is to provide a force-limiting rotary lock for use in controlling airfoil surfaces, such as flaps, slats and the like.
- These and other objects and advantages will become apparent from the foregoing and ongoing written specification, the drawings, and the appended claims.
- FIG. 1 is a perspective cutaway view of the improved force-limiting rotary lock, this view showing the shaft, the housing, the lug-like members, and the pawl.
- FIG. 2 is a fragmentary vertical sectional view thereof, taken generally on line2-2 of FIG. 1, showing the pawl as being in its disengaged or second position.
- FIG. 3 is a view generally similar to FIG. 2, but showing the pawl as having been moved from its unlocked or second position to its first or locked position, and further showing the pawl as operatively engaging one of the lug-like members to prevent further rotation of the shaft in a counterclockwise direction.
- At the outset, it should be clearly understood that like reference numerals are intended to identify the same structural elements, portions or surfaces, consistently throughout the several drawing figures, as such elements, portions or surfaces may be further described or explained by the entire written specification, of which this detailed description is an integral part. Unless otherwise indicated, the drawings are intended to be read (e.g., cross-hatching, arrangement of parts, proportion, degree, etc.) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof (e.g., “horizontally”, “rightwardly”, “upwardly”, etc.), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
- Referring now to the drawings, and, more particularly, to FIG. 1 thereof, the present invention broadly provides an improved force-limiting rotary lock, of which the presently-preferred embodiment is schematically indicated at20. This embodiment broadly includes a horizontally-elongated shaft, generally indicated at 21, which is operatively mounted within a housing, generally indicated at 22. More particularly,
shaft 21 is mounted for both rotational and axial movement relative to the housing. - The shaft is shown as having a generally horizontal axis x-x. The shaft has an external screw thread, schematically indicated at23, at its left marginal end portion; a
collar portion 24 spaced rightwardly from the screw thread; a plurality of cam members, severally indicated at 25, extending outwardly from a portion of the shaft; an annular disk-like member 26 provided with four circumferentially-spaced dog- or lug-like members 28 extending radially outwardly therefrom; and a series ofsplined teeth 29 operatively engaging a mating set of splined teeth on adriving member 30.Member 30 is arranged-to be rotated about axis x-x by a suitable mechanism (not shown). Because of the splined connection,shaft 21 is constrained to rotate withmember 30, but is permitted to move axially relative to drivingmember 30 and housing 22. - Screw
thread 23 at the left end of the shaft is operatively connected to a screw-and-nut mechanism (not shown) for driving another member or element (not shown). As long as the reaction force from the screw-and-nut mechanism is less than the preload on Bellevillesprings 36 or 38 (as described in detail below), there will be no discernable axial movement of the shaft relative to the housing. However, should such driven member lock up for any reason, then continued rotation ofshaft 21 will produce a reaction force in excess of the preload, and thus cause axial movement ofshaft 21 relative tohousing 22. - The housing is shown as being a horizontally-elongated specially-configured tubular member that is penetrated by the shaft. The housing has a
leftward portion 31 of reduced diameter, and arightward portion 32 of enlarged diameter. The housingleftward portion 31 has two axially-spaced chambers annular portion 35. A Bellevillespring stack 36 is arranged inleft chamber 35, and another Bellevillespring stack 38 is arranged inright chamber 34. These two Belleville spring stacks act via preload-adjustingshims shaft collar portion 24, and urge the shaft to move toward a predetermined axial position relative to the housing.Shims - The housing enlarged-
diameter portion 32 is shown as having (from left to right in FIG. 1): a rightwardly-facing annularvertical wall 41, an inwardly-facing horizontalcylindrical wall 42 extending rightwardly therefrom, a leftwardly-facing annularvertical surface 43, an inwardly-facing horizontalcylindrical surface 44, a rightwardly-facing annularvertical surface 45, an inwardly-facing horizontalcylindrical surface 46, and an leftwardly-facing annularvertical surface 48. Thecam members 25 are arranged in two axially-spaced groups of four each, with the cam members of each group being spaced equidistantly about the shaft axis by intervals of about 90 degrees. Thus, there are a total of eightcam members 25, and these extend outwardly so as to face towardhousing surface 44.Disk member 26 is arranged in the housing recess defined betweensurfaces member 26 is an annular disk-like member from which four lug-like members 28 extend radially outwardly. These four members are spaced equidistantly about the outer cylindrical surface ofdisk member 26. -
Cam follower 49 is mounted on the left marginal end portion of arod 50 that is pivotally mounted in a hole that extends betweenhousing surfaces Follower 49 is mounted on one end ofrod 50, and apawl 51 is mounted on the other end of this rod.Follower 49 has ainner portion 52 that is normally arranged to be axially positioned between the axially-spacedcams member 30 is rotated,shaft 21 will rotate and will cause the desired movement of the flap. In other words, during normal operation, the shaft will rotate in response to an input from drivingmember 30, but will not move axially relative to the housing. - However, in the event that the flap drive becomes jammed, such impeded movement of the drive will be transmitted back through
screw thread 23 and will cause axial shifting ofshaft 21. As this occurs, the inner end offollower 49 will be engaged by one of thecams 25. Continued rotation of the shaft will causefollower 49 to pivot about the axis ofrod 50, and will causepawl 51 to move from its second or unlocked position (as shown in FIG. 2)to its first or biased locked position (as shown in FIG. 3). - As best shown in FIGS. 2 and 3, the pawl is a specially-configured member having three
concave recesses ball 56 is mounted on the housing and is biased by aspring 58 to move toward the pawl and to snap into one ofrecesses - When the shaft is in its predetermined axial position relative to the housing, normal rotational movement of the shaft does not cause any movement of
pawl 51. Thus, the pawl is normally retained in its unlocked or second position, as shown in FIG. 2. However, should the shaft move in either axial direction, as by a flap being overloaded or locked up and the threaded connection causing axial shifting of the shaft within the housing,follower 49 will engage thecams 25 on the axially-shifted shaft and will pivot the pawl from its unlocked position (shown in FIG. 2) to its alternative locked position (shown in FIG. 3). In this condition, the locked position of the pawl will preclude further rotation of the shaft in the same direction by blocking one of thelugs 28 ondisk 26, this being shown as being counter-clockwise in FIG. 3. - However, even when locked against further rotation in one angular direction, the shaft is free to rotate in the opposite (i.e., clockwise) angular direction. As this occurs, the advancing lug will then engage the off-center pawl and return it from its locked position back to its normal position.
- It should be noted that the design shown in FIGS.1-3 is capable of locking the shaft against further rotation in the event of a overload, in either angular direction, with the shaft in all cases being free to be moved in opposite angular direction so as to selectively unlock the mechanism.
- Thus, the invention provides an improved force-limiting rotary lock for a shaft mounted on a housing.
- Modifications
- As indicated above, many changes and modifications may be made. For example, the form illustrated in the drawings is intended to be viewed as a schematic. The actual implementation of this schematic may take varied and other forms. While it is presently preferred to use opposed Belleville spring stacks with preload-adjusting shims, other types of centering devices may be used. Similarly, other types of cams and followers may be used. The pawl may be mounted on either the shaft or the housing, with the lugs being mounted on the other of the shaft and housing. Connections other than the splined connection may be substituted therefor.
- Therefore, while the presently preferred form of the improved force-limiting rotary lock has been shown and described, and certain changes and modifications thereof discussed, persons skilled in this art will readily appreciate that various additional changes and modifications may be made without departing from the spirit of the invention, as defined and differentiated by the following claims.
Claims (4)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/266,710 US6722485B1 (en) | 2002-10-08 | 2002-10-08 | Force-limiting rotary lock |
CA2444404A CA2444404C (en) | 2002-10-08 | 2003-10-06 | Force-limiting rotary lock |
ES03256303T ES2244898T3 (en) | 2002-10-08 | 2003-10-07 | FORCE LIMIT ROTATING LOCK. |
DE60301467T DE60301467T2 (en) | 2002-10-08 | 2003-10-07 | Force limiter by blocking a rotary movement |
JP2003383127A JP3856785B2 (en) | 2002-10-08 | 2003-10-07 | Force-limiting rotary locking device |
EP03256303A EP1411272B1 (en) | 2002-10-08 | 2003-10-07 | Force-limiting rotary lock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/266,710 US6722485B1 (en) | 2002-10-08 | 2002-10-08 | Force-limiting rotary lock |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040065522A1 true US20040065522A1 (en) | 2004-04-08 |
US6722485B1 US6722485B1 (en) | 2004-04-20 |
Family
ID=32042711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/266,710 Expired - Lifetime US6722485B1 (en) | 2002-10-08 | 2002-10-08 | Force-limiting rotary lock |
Country Status (6)
Country | Link |
---|---|
US (1) | US6722485B1 (en) |
EP (1) | EP1411272B1 (en) |
JP (1) | JP3856785B2 (en) |
CA (1) | CA2444404C (en) |
DE (1) | DE60301467T2 (en) |
ES (1) | ES2244898T3 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100096152A1 (en) * | 2008-10-16 | 2010-04-22 | Top Gearbox Industry Co., Ltd. | Lever type output shaft locking device |
CN102927093A (en) * | 2012-10-23 | 2013-02-13 | 中国船舶重工集团公司第七一○研究所 | March fixing device with state sampling function |
CN104859842A (en) * | 2015-06-11 | 2015-08-26 | 贵州华烽电器有限公司 | Longitudinal angular displacement tooling structure |
WO2016115062A1 (en) * | 2015-01-13 | 2016-07-21 | Moog Inc. | Travel limiting stop module for a rotational drive system |
US20160369877A1 (en) * | 2015-06-17 | 2016-12-22 | Moog Inc. | No-back brake functionality monitor |
US20180087637A1 (en) * | 2016-09-28 | 2018-03-29 | Linear Transfer Automation | Ball screw locking apparatus |
US11781625B2 (en) | 2019-02-25 | 2023-10-10 | Moog Inc. | Single-use non-jamming stop module for rotary drive actuator |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007089275A (en) * | 2005-09-21 | 2007-04-05 | Smc Corp | Electric cylinder |
JP5243018B2 (en) * | 2007-12-27 | 2013-07-24 | Ntn株式会社 | Electric linear actuator |
EP2285673B1 (en) * | 2008-06-13 | 2014-05-21 | Moog Inc. | Method for determining the apparent operational integrity of a no-back device |
US8844389B2 (en) * | 2011-12-14 | 2014-09-30 | Woodward Hrt, Inc. | Automatically locking linear actuator |
GB201121604D0 (en) | 2011-12-15 | 2012-01-25 | Airbus Uk Ltd | A shaft locking device |
JP3186045U (en) * | 2013-03-11 | 2013-09-19 | 秋夫 松井 | The present invention relates to a wedge-shaped biting brake device for an elevator (elevator). |
US9470272B2 (en) | 2013-07-09 | 2016-10-18 | Moog Inc. | Torque limiter responsive to output torque |
CN203702759U (en) * | 2014-01-20 | 2014-07-09 | 思博特有限公司 | Portable rotating self-locking type quick-disassembly lock catch device |
US10473554B2 (en) * | 2016-02-02 | 2019-11-12 | Moog Inc. | Gearbox torque measurement system |
EP3232078B1 (en) | 2016-04-15 | 2020-06-03 | UTC Aerospace Systems Wroclaw Sp. z o.o. | No-back device with energy-dispersing springs |
CN110422129B (en) * | 2019-07-28 | 2020-05-26 | 南京视莱尔汽车电子有限公司 | Automobile electronic module monitoring system |
US11873092B2 (en) * | 2020-12-16 | 2024-01-16 | The Boeing Company | Trim actuators for horizontal stabilizers and methods of controlling horizontal stabilizers |
EP4186788A1 (en) * | 2021-11-25 | 2023-05-31 | Goodrich Actuation Systems SAS | Electromechanical actuator |
EP4209415B1 (en) * | 2022-01-06 | 2024-09-18 | Goodrich Actuation Systems SAS | Electromechanical actuator |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2393120A (en) * | 1943-05-27 | 1946-01-15 | Perman Per Emil | Safety device in screw hoisting blocks |
US2854113A (en) * | 1957-02-06 | 1958-09-30 | Barber Colman Co | Actuator and limit means therefor |
US3898817A (en) * | 1973-02-20 | 1975-08-12 | Lucas Industries Ltd | Actuator with a torque limiting device |
US4459867A (en) * | 1981-12-28 | 1984-07-17 | Sundstrand Corporation | Resettable force limiting device |
US4579201A (en) * | 1983-05-16 | 1986-04-01 | Curtiss Wright Flight Systems, Inc. | Bidirectional, torque-limiting, no-back clutch mechanism |
US4697672A (en) * | 1985-03-25 | 1987-10-06 | Sundstrand Corporation | Bi-directional force limiting no-back mechanism |
US5582390A (en) * | 1994-11-17 | 1996-12-10 | Sundstrand Corporation | Drive apparatus with primary and secondary no-back features |
US5655636A (en) * | 1995-06-02 | 1997-08-12 | Sundstrand Corporation | Compact actuator including resettable force limiting and anti-backdrive devices |
US6109415A (en) * | 1998-05-29 | 2000-08-29 | The Boeing Company | Bi-directional ballscrew no-back device |
US6467363B2 (en) * | 2001-02-07 | 2002-10-22 | Moog Inc. | Ball screw actuator locking mechanism |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4318304A (en) * | 1980-04-11 | 1982-03-09 | Sundstrand Corporation | Force limiting device |
-
2002
- 2002-10-08 US US10/266,710 patent/US6722485B1/en not_active Expired - Lifetime
-
2003
- 2003-10-06 CA CA2444404A patent/CA2444404C/en not_active Expired - Lifetime
- 2003-10-07 EP EP03256303A patent/EP1411272B1/en not_active Expired - Lifetime
- 2003-10-07 DE DE60301467T patent/DE60301467T2/en not_active Expired - Lifetime
- 2003-10-07 ES ES03256303T patent/ES2244898T3/en not_active Expired - Lifetime
- 2003-10-07 JP JP2003383127A patent/JP3856785B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2393120A (en) * | 1943-05-27 | 1946-01-15 | Perman Per Emil | Safety device in screw hoisting blocks |
US2854113A (en) * | 1957-02-06 | 1958-09-30 | Barber Colman Co | Actuator and limit means therefor |
US3898817A (en) * | 1973-02-20 | 1975-08-12 | Lucas Industries Ltd | Actuator with a torque limiting device |
US4459867A (en) * | 1981-12-28 | 1984-07-17 | Sundstrand Corporation | Resettable force limiting device |
US4579201A (en) * | 1983-05-16 | 1986-04-01 | Curtiss Wright Flight Systems, Inc. | Bidirectional, torque-limiting, no-back clutch mechanism |
US4697672A (en) * | 1985-03-25 | 1987-10-06 | Sundstrand Corporation | Bi-directional force limiting no-back mechanism |
US5582390A (en) * | 1994-11-17 | 1996-12-10 | Sundstrand Corporation | Drive apparatus with primary and secondary no-back features |
US5655636A (en) * | 1995-06-02 | 1997-08-12 | Sundstrand Corporation | Compact actuator including resettable force limiting and anti-backdrive devices |
US6109415A (en) * | 1998-05-29 | 2000-08-29 | The Boeing Company | Bi-directional ballscrew no-back device |
US6467363B2 (en) * | 2001-02-07 | 2002-10-22 | Moog Inc. | Ball screw actuator locking mechanism |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100096152A1 (en) * | 2008-10-16 | 2010-04-22 | Top Gearbox Industry Co., Ltd. | Lever type output shaft locking device |
CN102927093A (en) * | 2012-10-23 | 2013-02-13 | 中国船舶重工集团公司第七一○研究所 | March fixing device with state sampling function |
WO2016115062A1 (en) * | 2015-01-13 | 2016-07-21 | Moog Inc. | Travel limiting stop module for a rotational drive system |
US9670999B2 (en) | 2015-01-13 | 2017-06-06 | Moog Inc. | Low friction travel limiting stop module for a rotational drive system |
CN104859842A (en) * | 2015-06-11 | 2015-08-26 | 贵州华烽电器有限公司 | Longitudinal angular displacement tooling structure |
US20160369877A1 (en) * | 2015-06-17 | 2016-12-22 | Moog Inc. | No-back brake functionality monitor |
US20180087637A1 (en) * | 2016-09-28 | 2018-03-29 | Linear Transfer Automation | Ball screw locking apparatus |
US10663046B2 (en) * | 2016-09-28 | 2020-05-26 | Linear Transfer Automation | Ball screw locking apparatus |
US11781625B2 (en) | 2019-02-25 | 2023-10-10 | Moog Inc. | Single-use non-jamming stop module for rotary drive actuator |
Also Published As
Publication number | Publication date |
---|---|
JP3856785B2 (en) | 2006-12-13 |
DE60301467T2 (en) | 2006-01-19 |
EP1411272A3 (en) | 2004-05-06 |
ES2244898T3 (en) | 2005-12-16 |
EP1411272B1 (en) | 2005-08-31 |
DE60301467D1 (en) | 2005-10-06 |
CA2444404A1 (en) | 2004-04-08 |
JP2004162919A (en) | 2004-06-10 |
EP1411272A2 (en) | 2004-04-21 |
US6722485B1 (en) | 2004-04-20 |
CA2444404C (en) | 2011-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6722485B1 (en) | Force-limiting rotary lock | |
US6202803B1 (en) | Output load limiter | |
US5983743A (en) | Actuator assembly | |
US6467363B2 (en) | Ball screw actuator locking mechanism | |
US5655636A (en) | Compact actuator including resettable force limiting and anti-backdrive devices | |
US5916325A (en) | Actuator assembly and torque limiting system for same | |
JP6244021B2 (en) | Torque limiter that can respond to output torque | |
US6766709B1 (en) | Universal gear self-locking/unlocking mechanism | |
US9863515B2 (en) | Self-locking no-back actuator | |
US4795110A (en) | Flight control surface actuation lock system | |
US20120111993A1 (en) | Rotational lock mechanism for actuator | |
CA2700572C (en) | Motorized spindle drive with overload protection | |
US4628752A (en) | Actuators and actuator assemblies | |
US20140135132A1 (en) | Non-chattering ball detent torque limiter | |
US10859123B2 (en) | Torque-limiting device | |
US6237433B1 (en) | Electromechanical actuator of the type having a screw-and-nut system | |
EP0404772B1 (en) | Non-jamming rotary mechanical actuator | |
US5383818A (en) | Overload clutch for limiting a torque moment | |
EP1321359B1 (en) | Differential torque limiter | |
DE69419144T2 (en) | SAFETY DEVICE AGAINST INTERFERENCE FOR FLIGHT CONTROL SYSTEM | |
US6196361B1 (en) | Compact electric asymmetry brake | |
US9039538B2 (en) | Non-chattering ball detent torque limiter | |
US20060070827A1 (en) | Screw actuator | |
JPS62202217A (en) | Overfeed stopper for rotating shaft | |
US6471028B1 (en) | Mechanical module with variable characteristic set by the act of installation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOOG INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GITNES, SETH E.;HOUSE, WILLIAM H.;NAKASHIMA, KENNETH K.;AND OTHERS;REEL/FRAME:013375/0858;SIGNING DATES FROM 20020925 TO 20020927 |
|
AS | Assignment |
Owner name: HSBC BANK USA, AS AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:MOOG INC.;REEL/FRAME:013782/0738 Effective date: 20030303 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |