US20040055501A1 - Penetrator and method for using same - Google Patents
Penetrator and method for using same Download PDFInfo
- Publication number
- US20040055501A1 US20040055501A1 US10/251,423 US25142302A US2004055501A1 US 20040055501 A1 US20040055501 A1 US 20040055501A1 US 25142302 A US25142302 A US 25142302A US 2004055501 A1 US2004055501 A1 US 2004055501A1
- Authority
- US
- United States
- Prior art keywords
- penetrator
- stabilizing portion
- fore body
- target
- stabilizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/02—Stabilising arrangements
- F42B10/04—Stabilising arrangements using fixed fins
- F42B10/06—Tail fins
- F42B10/08—Flechette-type projectiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/02—Stabilising arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/04—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
- F42B12/06—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with hard or heavy core; Kinetic energy penetrators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/36—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
- F42B12/56—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
- F42B12/58—Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles
- F42B12/62—Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles the submissiles being ejected parallel to the longitudinal axis of the projectile
- F42B12/64—Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles the submissiles being ejected parallel to the longitudinal axis of the projectile the submissiles being of shot- or flechette-type
Definitions
- This invention relates to a penetrator and a method of using the penetrator, and, more particularly, to a penetrator for penetrating and damaging a variety of different types of targets.
- Flechettes generally are small, dart-like, projectiles that are typically dispensed at high velocities and in large numbers to damage various types of targets. As they are unpowered and have no explosive elements, they rely on kinetic energy as the damage mechanism. They are generally designed to have minimum aerodynamic drag so that they can travel over long distances at high velocities with good accuracy. Flechettes may be individually dispensed from a gun, dispensed in numbers from a gun in a shotgun-like manner, or dispensed in numbers from a warhead of a rocket or missile.
- Flechettes are typically designed with the intended target in mind. For example, some flechettes are designed to behave as hardened penetrators to breach harder targets, such as thin armor. Such flechettes are less effective against softer targets because they tend to pass through the target quickly with minimal damage. Other flechettes are designed to damage softer targets by fracturing or bending as they strike the target; however, they are often ineffective against harder targets because of the tendency to fracture or bend upon striking such targets.
- flechettes for each type of target have conventionally been needed. Supplying, storing, and deploying multiple types of flechettes based upon the perceived or anticipated target may lead to logistical difficulties.
- Other conventional approaches to damaging both harder and softer targets have included the use of other types of penetrators, often having explosive components, which are more expensive to deploy than flechette-based weapons.
- the present invention is directed to overcoming, or at least reducing, the effects of one or more of the problems set forth above.
- a penetrator in one aspect of the present invention, includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- a vehicle in another aspect of the present invention, includes a body, means for propelling the vehicle, and a plurality of penetrators disposed within the body and dispensable therefrom. At least one of the plurality of penetrators includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- a cartridge in yet another aspect of the present invention, includes a casing, an explosive charge disposed within the casing, a primer proximate the explosive charge, and at least one penetrator disposed within the casing forward of the explosive charge.
- the at least one penetrator includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- a method of using a penetrator includes propelling the penetrator toward a first target, penetrating the first target with a fore body of the penetrator, and detaching a stabilizing portion of the penetrator from the fore body. The method further includes impacting the second target with the fore body.
- a penetrator in yet another aspect of the present invention, includes means for penetrating a target having a center of aerodynamic pressure forward of a center of gravity, means for aerodynamically stabilizing the penetrator, and means for removably attaching the means for penetrating the target and the means for aerodynamically stabilizing the penetrator, wherein a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator when the means for penetrating the target is attached to the means for aerodynamically stabilizing the penetrator.
- FIG. 1A is an exploded side view of a penetrator according to the present invention.
- FIG. 1B is an exploded side view of the penetrator of FIG. 1A including an alternative pin and blind bore;
- FIGS. 1 C- 1 G are side views of stabilizing portions alternative to that of FIGS. 1A and 1B;
- FIG. 2A is an assembled side view of the penetrator of FIGS. 1A and 1B;
- FIG. 2B is a cross-sectional view of the penetrator of FIG. 2 taken along the line 2 B- 2 B;
- FIGS. 3 A- 3 F are stylized diagrams illustrating a use of the penetrator of FIGS. 1 - 3 according to the present invention
- FIGS. 4 A- 4 B are stylized diagrams illustrating propelling the penetrator of FIGS. 1 - 3 from a gun;
- FIG. 5A is a stylized diagram of a cartridge including the penetrator of FIGS. 1 - 3 ;
- FIGS. 5B and 5C are stylized diagrams illustrating propelling the penetrator of FIGS. 1 - 3 from the cartridge of FIG. 5A disposed within a gun;
- FIGS. 6 A- 6 B are stylized diagrams illustrating dispensing a plurality of the penetrators of FIGS. 1 - 3 from an airborne vehicle.
- FIG. 1A provides an exploded view of an illustrative embodiment of the present invention.
- a penetrator 100 includes a fore body 102 coupled with a stabilizing portion 104 .
- the fore body 102 comprises a nose portion 106 shaped to decrease aerodynamic drag on the penetrator 100 when assembled with the stabilizing portion 104 and to augment the hard target piercing capability of the penetrator 100 .
- the invention is not so limited. Rather, the fore body 102 in general, and the nose portion 106 in particular, may have any chosen shape.
- the fore body 102 is but one means for penetrating the target 302 .
- the nose portion 106 transitions to a body portion 108 , which has an outer diameter generally corresponding to that of a forward end 110 of the stabilizing portion 104 to decrease aerodynamic drag on the penetrator 100 .
- the scope of the present invention is not so limited, but rather the body portion 108 and the forward end 110 of the stabilizing portion 104 may have any chosen dimensions and/or shapes.
- the fore body 102 further includes a pin 112 extending aftward from the body portion 108 .
- the pin 112 When assembled, the pin 112 is received in a blind bore 114 defined by the stabilizing portion 104 to couple the fore body 102 and the stabilizing portion 104 , as shown in FIG. 2A.
- the pin 112 is adhesively bonded within the bore 114 by an adhesive layer 116 , shown in FIG. 2B.
- the pin 112 may have a press-fit relationship with the bore 114 and, in such an embodiment, the adhesive layer 116 is omitted.
- the scope of the present invention encompasses any means for coupling the fore body 102 and the stabilizing portion 104 , so long as the stabilizing portion 104 may be detached from the penetrator 100 as it encounters a target, as will be described later.
- the pin 112 may be part of the stabilizing portion 104 and the fore body 102 may define the bore 114 , in which the pin is received.
- the pin 112 may be a separate element and each of the fore body 102 and the stabilizing portion 104 may define a bore (e.g., the bore 114 ) therein. In such an embodiment, the pin 112 would be received in both of the bores.
- other mechanical elements and/or interconnections may be used to detachably couple the fore body 102 and the stabilizing portion 104 , and such mechanical elements and/or interconnections are considered to be within the scope of the present invention.
- an alternative fore body 102 a includes a pin 124 (as an alternative to the pin 112 of FIG. 1A) extending aftward from the body portion 108 .
- the pin 124 When assembled, the pin 124 is received in a blind bore 126 (as an alternative to the blind bore 114 of FIG. 1A) defined by an alternative stabilizing portion 104 a .
- the pin 124 comprises grooves 124 a , 124 b that engage protrusions 126 a , 126 b of the blind bore 126 to detachably couple the fore body 102 a with the stabilizing portion 104 a .
- each of the pins 112 , 124 is but one means for removably attaching the fore body 102 a and the stabilizing portion 104 a.
- the stabilizing portion 104 provides aerodynamic stability to the penetrator 100 and, in one embodiment, comprises outwardly extending fins 118 . While the illustrated embodiment includes the stabilizing portion 104 having three fins 116 , the present invention is not so limited. Rather, the scope of the present invention includes a stabilizing portion (e.g., the stabilizing portion 104 ) having a plurality of fins of any chosen number. For example, an alternative embodiment of the present invention may include a stabilizing portion having four fins.
- a stabilizing portion comprising any means for improving the aerodynamic stability of the penetrator 100 .
- a stabilizing portion 104 c includes a tuft 128 disposed proximate an aft end 129 of the stabilizing portion 104 c .
- the tuft 128 may comprise a mass of randomly oriented fibers made of cotton, fiberglass, or the like.
- a stabilizing portion 104 d may comprise an outwardly sloping flare 130 for improving the aerodynamic stability of the penetrator 100 .
- a stabilizing portion 104 e may comprise a plurality of outwardly and aftwardly extending flaps 132 for improving the aerodynamic stability of the penetrator 100 .
- a stabilizing portion 104 f includes a balloon 134 disposed proximate an aft end 129 of the stabilizing portion 104 f for improving the aerodynamic stability of the penetrator 100 .
- the balloon 134 may be made of a rubber, nylon cloth, or any other chosen material capable of inhibiting a flow of air therethrough.
- a stabilizing portion 104 g includes a ribbon 136 disposed proximate an aft end 129 of the stabilizing portion 104 g for improving the aerodynamic stability of the penetrator 100 .
- the ribbon 136 may be made, for example, of fiberglass cloth, nylon cloth, or the like.
- each of the stabilizing portions 104 and 104 a - 104 g is but one means for aerodynamically stabilizing the penetrator 100 . While the following description of the invention is provided relating to the stabilizing portion 104 , the description applies equally to penetrators comprising any of the stabilizing portions 104 a - 104 g.
- the fore body 102 comprises a material having a higher density than a material comprising the stabilizing portion 104 .
- the fore body 102 may comprise tungsten, a tungsten alloy, an iron alloy, or steel
- the stabilizing portion 104 may comprise a polymeric material (e.g., an epoxy material or a urethane material), aluminum, an aluminum alloy, magnesium, or a magnesium alloy.
- the higher density material aids the fore body 102 in penetrating harder targets, such as armor plate, while the lower density material of the stabilizing portion 104 decreases the overall weight of the penetrator 100 and aids in achieving aerodynamic stability.
- a penetrator is to be aerodynamically stable, it is necessary for the center of gravity of the penetrator to be forward of the center of aerodynamic pressure of the penetrator.
- the “center of gravity” can be considered to be the point where all the weight of a penetrator can be considered to be concentrated.
- the “center of aerodynamic pressure” can be considered to be the point on a penetrator at which the total aerodynamic force effectively acts.
- the penetrator 100 is indicated generally at 202 and the center of aerodynamic pressure of the penetrator 100 is indicated generally at 204 .
- the center of gravity 202 being forward of the center of aerodynamic pressure 204 , the penetrator 100 is considered to be aerodynamically stable.
- the precise location of the center of gravity 202 and center of aerodynamic pressure 204 will be implementation specific, depending upon the overall design of the penetrator 100 .
- FIGS. 3 A- 3 F illustrate the penetrator 100 in one particular use.
- FIG. 3A shows the penetrator 100 advancing toward (as indicated by an arrow 304 ) a first target 302 .
- the first target is a “hard” target, such as an armor plate that might be used to protect a vehicle from combat damage.
- FIG. 3B illustrates the fore body 102 penetrating the first target 302 .
- the stabilizing portion 104 becomes wedged therein and separates from the fore body 102 , as shown in FIG. 3C.
- the adhesive layer 200 (shown in FIG. 2B) fractures as a result of the impact between the stabilizing portion 104 and the first target 302 to detach the stabilizing portion 104 from the fore body 102 .
- the pin 112 fractures as a result of the impact between the stabilizing portion 104 and the first target 302 to detach the stabilizing portion 104 from the fore body 102 .
- the fore body 102 comprises the pin 124 (as shown in FIG.
- the pin 124 is released from the blind bore 126 as a result of the impact between the stabilizing portion 104 and the first target 302 . After separating from the stabilizing portion 104 , the fore body 102 continues to travel beyond the first target 302 .
- the aerodynamic stability of the penetrator 100 changes.
- the spatial relationship between the center of gravity and the center of pressure of the fore body 102 is different than that for the fore body 102 and the stabilizing portion 104 together.
- the center of gravity of the fore body 102 is indicated generally at 120 and the center of aerodynamic pressure of the fore body 102 is indicated generally at 122 .
- the center of aerodynamic pressure 122 is forward of the center of gravity 120
- the fore body 102 is considered aerodynamically unstable.
- the center of aerodynamic pressure 122 moves forward of the center of gravity 120 in a manner not shown, and the penetrator becomes aerodynamically unstable.
- the forward portion (i.e., the fore body 102 ) of the penetrator 100 begins to skew or tumble when the stabilizing portion 104 is removed.
- FIG. 3D as the fore body 102 travels beyond the first target 302 , it begins to skew or tumble from its previous spatial orientation (as indicated by arrows 306 a , 306 b ) due to its aerodynamic instability. While FIG. 3D illustrates the fore body 102 tumbling in a clockwise direction, the fore body 102 may tumble in one or more directions in three-dimensional space over time as it travels through the air.
- FIG. 3E illustrates the skewing or tumbling fore body 102 approaching a second target 308 .
- the second target 308 is a “soft” target, such as the vehicle or equipment shielded by the first target 302 (e.g., the armor plate).
- the first target 302 e.g., the armor plate.
- the fore body 102 skews or tumbles, it is likely that it will impact the second target 308 at an attitude other than in a “head-on” attitude, in which the nose portion 106 is forward and a central axis 310 of the fore body 102 is generally perpendicular to the second target 308 .
- the fore body 102 in a non-head-on attitude impacts a larger area of the second target 308 than if the fore body 102 were in a head-on attitude, which will increase the amount of damage the fore body 102 may inflict on the second target 308 .
- FIG. 3F illustrates the impact of the fore body 102 with the second target 308 , producing an opening 312 therethrough and debris 314 .
- the fore body 102 may break into a plurality of pieces, as shown in FIG. 3F, or may remain generally intact.
- FIGS. 3 G- 3 L illustrate the penetrator 100 in an alternative use, in which the fore body 102 additionally encounters an intermediate target 316 disposed between the first target 302 and the second target 308 .
- the intermediate target 316 is a hard target, but is generally softer than the first target 302 .
- the fore body 102 travels toward the intermediate target 316 generally in an unskewed condition, as shown in FIG. 3G, or only marginally skewed.
- the fore body 102 may not be skewed or may be only marginally skewed because the velocity of the fore body 102 may have been reduced, due to the impact with the first target, such that the fore body 102 is marginally aerodynamically stable.
- the viscosity of the medium through which the fore body 102 is traveling may be insufficiently viscous to cause skewing thereof.
- a medium that is more viscous will induce more skewing or tumbling than a medium that is less viscous.
- the fore body 102 encounters and penetrates the intermediate target 316 in generally a head-on attitude, as shown in FIG. 3H.
- the fore body 102 skews or tumbles, as described in reference to FIG. 3D, as it travels toward the second target 308 .
- FIG. 3J illustrates the impact of the fore body 102 with the second target 308 , producing the opening 312 therethrough and the debris 314 .
- the fore body 102 may break into a plurality of pieces, as shown in FIG. 3J, or may remain generally intact.
- the fore body 102 may remain generally unskewed or only marginally skewed after penetrating the intermediate target 316 , as shown in FIG. 3K.
- the fore body 102 may remain generally unskewed or only marginally skewed as discussed above regarding FIG. 3G.
- As the fore body 102 impacts the second target 308 it skews or tumbles and penetrates the second target 308 , as shown in FIG. 3L.
- the fore body 102 may become skewed or may tumble within the second target 308 as a result of an increased viscosity of the second target 308 .
- the penetrator 100 may be propelled or dispensed by any desired means.
- a gun 402 may be used to propel one or more of the penetrators 100 .
- an explosive charge 404 is disposed behind the penetrator 100 within the gun 402 .
- the penetrator 100 is propelled through a barrel 406 of the gun and toward a target.
- the penetrator 100 may be propelled by any chosen means, such as by compressed air, a biasing member (e.g., a spring), or by other such methods.
- the penetrator 100 may form part of a cartridge 500 .
- the cartridge 500 comprises a casing 502 for housing one or more penetrators 100 (only one penetrator 100 shown in FIG. 5) and an explosive charge 504 , which is disposed behind the penetrator 100 .
- a primer 506 extends through a rear, end wall 508 of the cartridge and abuts the explosive charge 504 .
- a firing mechanism (not shown) of a gun 510 shown in FIG. 5B, activates the primer 504 , which, in turn, detonates the explosive charge 504 .
- the propulsive energy created as a result of the detonation of the explosive charge 504 propels the penetrator 100 through a barrel 512 of the gun 510 and toward a target, as shown in FIG. 5C.
- one or more of the penetrators 100 may be dispensed by a vehicle capable of flight, such as a rocket, a missile, a bomb, or a projectile.
- the vehicle 602 comprises a body 604 and a means for propelling the vehicle 602 , such as an engine or a motor 606 .
- the penetrators 100 (only one indicated) are housed within the body 604 , as shown in FIG. 6A, until such time as they are to be deployed.
- a portion 608 of the body 604 is ejected from the vehicle 602 to reveal the penetrators 100 .
- the penetrators 100 are dispensed from the vehicle 602 as shown in FIG. 6B.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
A penetrator includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator. A method of using a penetrator includes propelling the penetrator toward a first target, penetrating the first target with a fore body of the penetrator, and detaching a stabilizing portion of the penetrator from the fore body. The method further includes impacting the second target with the fore body.
Description
- This application is related to an application entitled “A Penetrator and Method of Using Same” by inventors Hunn, Banks, and Cowan, filed on Sep. 20, 2002 and having attorney docket number 2063.004900/VS-592.
- 1. Field of the Invention
- This invention relates to a penetrator and a method of using the penetrator, and, more particularly, to a penetrator for penetrating and damaging a variety of different types of targets.
- 2. Description of the Related Art
- Flechettes generally are small, dart-like, projectiles that are typically dispensed at high velocities and in large numbers to damage various types of targets. As they are unpowered and have no explosive elements, they rely on kinetic energy as the damage mechanism. They are generally designed to have minimum aerodynamic drag so that they can travel over long distances at high velocities with good accuracy. Flechettes may be individually dispensed from a gun, dispensed in numbers from a gun in a shotgun-like manner, or dispensed in numbers from a warhead of a rocket or missile.
- Flechettes are typically designed with the intended target in mind. For example, some flechettes are designed to behave as hardened penetrators to breach harder targets, such as thin armor. Such flechettes are less effective against softer targets because they tend to pass through the target quickly with minimal damage. Other flechettes are designed to damage softer targets by fracturing or bending as they strike the target; however, they are often ineffective against harder targets because of the tendency to fracture or bend upon striking such targets.
- In combat situations wherein both harder and softer targets are anticipated, flechettes for each type of target have conventionally been needed. Supplying, storing, and deploying multiple types of flechettes based upon the perceived or anticipated target may lead to logistical difficulties. Other conventional approaches to damaging both harder and softer targets have included the use of other types of penetrators, often having explosive components, which are more expensive to deploy than flechette-based weapons.
- The present invention is directed to overcoming, or at least reducing, the effects of one or more of the problems set forth above.
- In one aspect of the present invention, a penetrator is provided. The penetrator includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- In another aspect of the present invention, a vehicle is provided. The vehicle includes a body, means for propelling the vehicle, and a plurality of penetrators disposed within the body and dispensable therefrom. At least one of the plurality of penetrators includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- In yet another aspect of the present invention, a cartridge is provided. The cartridge includes a casing, an explosive charge disposed within the casing, a primer proximate the explosive charge, and at least one penetrator disposed within the casing forward of the explosive charge. The at least one penetrator includes a fore body having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
- In another aspect of the present invention, a method of using a penetrator is provided. The method includes propelling the penetrator toward a first target, penetrating the first target with a fore body of the penetrator, and detaching a stabilizing portion of the penetrator from the fore body. The method further includes impacting the second target with the fore body.
- In yet another aspect of the present invention, a penetrator is provided. The penetrator includes means for penetrating a target having a center of aerodynamic pressure forward of a center of gravity, means for aerodynamically stabilizing the penetrator, and means for removably attaching the means for penetrating the target and the means for aerodynamically stabilizing the penetrator, wherein a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator when the means for penetrating the target is attached to the means for aerodynamically stabilizing the penetrator.
- The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which the leftmost significant digit(s) in the reference numerals denote(s) the first figure in which the respective reference numerals appear, and in which:
- FIG. 1A is an exploded side view of a penetrator according to the present invention;
- FIG. 1B is an exploded side view of the penetrator of FIG. 1A including an alternative pin and blind bore;
- FIGS.1C-1G are side views of stabilizing portions alternative to that of FIGS. 1A and 1B;
- FIG. 2A is an assembled side view of the penetrator of FIGS. 1A and 1B;
- FIG. 2B is a cross-sectional view of the penetrator of FIG. 2 taken along the
line 2B-2B; - FIGS.3A-3F are stylized diagrams illustrating a use of the penetrator of FIGS. 1-3 according to the present invention;
- FIGS.4A-4B are stylized diagrams illustrating propelling the penetrator of FIGS. 1-3 from a gun;
- FIG. 5A is a stylized diagram of a cartridge including the penetrator of FIGS.1-3;
- FIGS. 5B and 5C are stylized diagrams illustrating propelling the penetrator of FIGS.1-3 from the cartridge of FIG. 5A disposed within a gun;
- FIGS.6A-6B are stylized diagrams illustrating dispensing a plurality of the penetrators of FIGS. 1-3 from an airborne vehicle.
- While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
- Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
- FIG. 1A provides an exploded view of an illustrative embodiment of the present invention. A
penetrator 100 includes afore body 102 coupled with a stabilizingportion 104. In the illustrated embodiment, thefore body 102 comprises anose portion 106 shaped to decrease aerodynamic drag on thepenetrator 100 when assembled with the stabilizingportion 104 and to augment the hard target piercing capability of thepenetrator 100. However, the invention is not so limited. Rather, thefore body 102 in general, and thenose portion 106 in particular, may have any chosen shape. Thus, by way of example and illustration, thefore body 102 is but one means for penetrating thetarget 302. Moving aftward along thefore body 102, thenose portion 106 transitions to abody portion 108, which has an outer diameter generally corresponding to that of aforward end 110 of the stabilizingportion 104 to decrease aerodynamic drag on thepenetrator 100. However, the scope of the present invention is not so limited, but rather thebody portion 108 and theforward end 110 of the stabilizingportion 104 may have any chosen dimensions and/or shapes. - In the illustrated embodiment, the
fore body 102 further includes apin 112 extending aftward from thebody portion 108. When assembled, thepin 112 is received in ablind bore 114 defined by the stabilizingportion 104 to couple thefore body 102 and the stabilizingportion 104, as shown in FIG. 2A. In one embodiment, thepin 112 is adhesively bonded within thebore 114 by an adhesive layer 116, shown in FIG. 2B. Alternatively, thepin 112 may have a press-fit relationship with thebore 114 and, in such an embodiment, the adhesive layer 116 is omitted. The scope of the present invention, however, encompasses any means for coupling thefore body 102 and the stabilizingportion 104, so long as the stabilizingportion 104 may be detached from thepenetrator 100 as it encounters a target, as will be described later. - For example, the
pin 112 may be part of the stabilizingportion 104 and thefore body 102 may define thebore 114, in which the pin is received. Alternatively, thepin 112 may be a separate element and each of thefore body 102 and the stabilizingportion 104 may define a bore (e.g., the bore 114) therein. In such an embodiment, thepin 112 would be received in both of the bores. Alternatively, other mechanical elements and/or interconnections may be used to detachably couple thefore body 102 and the stabilizingportion 104, and such mechanical elements and/or interconnections are considered to be within the scope of the present invention. - For example, as shown in FIG. 1B, an alternative fore body102 a includes a pin 124 (as an alternative to the
pin 112 of FIG. 1A) extending aftward from thebody portion 108. When assembled, thepin 124 is received in a blind bore 126 (as an alternative to theblind bore 114 of FIG. 1A) defined by an alternative stabilizing portion 104 a. Thepin 124 comprisesgrooves protrusions blind bore 126 to detachably couple the fore body 102 a with the stabilizing portion 104 a. In one embodiment, thepin 124 and theblind bore 126 are sized and configured such that thepin 124 may be snapped into and out of theblind bore 126. Thus, by way of example and illustration, each of thepins - Referring again to FIGS. 1A and 1B, the stabilizing
portion 104 provides aerodynamic stability to thepenetrator 100 and, in one embodiment, comprises outwardly extendingfins 118. While the illustrated embodiment includes the stabilizingportion 104 having three fins 116, the present invention is not so limited. Rather, the scope of the present invention includes a stabilizing portion (e.g., the stabilizing portion 104) having a plurality of fins of any chosen number. For example, an alternative embodiment of the present invention may include a stabilizing portion having four fins. - In fact, the scope of the present invention includes a stabilizing portion comprising any means for improving the aerodynamic stability of the
penetrator 100. For example, as shown in FIG. 1C, a stabilizingportion 104 c includes atuft 128 disposed proximate anaft end 129 of the stabilizingportion 104 c. In the illustrated embodiment, thetuft 128 may comprise a mass of randomly oriented fibers made of cotton, fiberglass, or the like. Further, as illustrated in FIG. 1D, a stabilizingportion 104 d may comprise an outwardlysloping flare 130 for improving the aerodynamic stability of thepenetrator 100. Alternatively, as shown in FIG. 1E, a stabilizingportion 104 e may comprise a plurality of outwardly and aftwardly extendingflaps 132 for improving the aerodynamic stability of thepenetrator 100. - Further, as illustrated in FIG. 1F, a stabilizing
portion 104 f includes aballoon 134 disposed proximate anaft end 129 of the stabilizingportion 104 f for improving the aerodynamic stability of thepenetrator 100. Theballoon 134 may be made of a rubber, nylon cloth, or any other chosen material capable of inhibiting a flow of air therethrough. - Alternatively, as shown in FIG. 1G, a stabilizing
portion 104 g includes a ribbon 136 disposed proximate anaft end 129 of the stabilizingportion 104 g for improving the aerodynamic stability of thepenetrator 100. The ribbon 136 may be made, for example, of fiberglass cloth, nylon cloth, or the like. Thus, by way of example and illustration, each of the stabilizingportions penetrator 100. While the following description of the invention is provided relating to the stabilizingportion 104, the description applies equally to penetrators comprising any of the stabilizingportions 104 a-104 g. - In the illustrated embodiment, the
fore body 102 comprises a material having a higher density than a material comprising the stabilizingportion 104. For example, in one embodiment, thefore body 102 may comprise tungsten, a tungsten alloy, an iron alloy, or steel, and the stabilizingportion 104 may comprise a polymeric material (e.g., an epoxy material or a urethane material), aluminum, an aluminum alloy, magnesium, or a magnesium alloy. The higher density material aids thefore body 102 in penetrating harder targets, such as armor plate, while the lower density material of the stabilizingportion 104 decreases the overall weight of thepenetrator 100 and aids in achieving aerodynamic stability. - Generally, if a penetrator is to be aerodynamically stable, it is necessary for the center of gravity of the penetrator to be forward of the center of aerodynamic pressure of the penetrator. The “center of gravity” can be considered to be the point where all the weight of a penetrator can be considered to be concentrated. The “center of aerodynamic pressure” can be considered to be the point on a penetrator at which the total aerodynamic force effectively acts.
- As indicated above, if the center of gravity of the penetrator is forward of the penetrator's center of aerodynamic pressure, the penetrator is considered to be aerodynamically stable. If, however, the center of gravity of the penetrator is aft of its center of aerodynamic pressure, the penetrator is considered to be unstable and will skew or tumble as it travels through a medium, such as air. Referring again to FIG. 2A, the center of gravity of the
penetrator 100 is indicated generally at 202 and the center of aerodynamic pressure of thepenetrator 100 is indicated generally at 204. With the center ofgravity 202 being forward of the center ofaerodynamic pressure 204, thepenetrator 100 is considered to be aerodynamically stable. As will be appreciated by those skilled in the art having the benefit of this disclosure, the precise location of the center ofgravity 202 and center ofaerodynamic pressure 204 will be implementation specific, depending upon the overall design of thepenetrator 100. - FIGS.3A-3F illustrate the
penetrator 100 in one particular use. FIG. 3A shows thepenetrator 100 advancing toward (as indicated by an arrow 304) afirst target 302. The first target is a “hard” target, such as an armor plate that might be used to protect a vehicle from combat damage. FIG. 3B illustrates thefore body 102 penetrating thefirst target 302. - As the
penetrator 100 advances through thefirst target 302, the stabilizingportion 104 becomes wedged therein and separates from thefore body 102, as shown in FIG. 3C. In one embodiment, the adhesive layer 200 (shown in FIG. 2B) fractures as a result of the impact between the stabilizingportion 104 and thefirst target 302 to detach the stabilizingportion 104 from thefore body 102. In another embodiment, thepin 112 fractures as a result of the impact between the stabilizingportion 104 and thefirst target 302 to detach the stabilizingportion 104 from thefore body 102. In an embodiment wherein thefore body 102 comprises the pin 124 (as shown in FIG. 1B), thepin 124 is released from theblind bore 126 as a result of the impact between the stabilizingportion 104 and thefirst target 302. After separating from the stabilizingportion 104, thefore body 102 continues to travel beyond thefirst target 302. - However, as the stabilizing
portion 104 is removed, the aerodynamic stability of thepenetrator 100 changes. The spatial relationship between the center of gravity and the center of pressure of thefore body 102 is different than that for thefore body 102 and the stabilizingportion 104 together. Referring again to FIG. 1A, the center of gravity of thefore body 102 is indicated generally at 120 and the center of aerodynamic pressure of thefore body 102 is indicated generally at 122. As the center ofaerodynamic pressure 122 is forward of the center ofgravity 120, thefore body 102 is considered aerodynamically unstable. Upon removal of the stabilizing portion, the center ofaerodynamic pressure 122 moves forward of the center ofgravity 120 in a manner not shown, and the penetrator becomes aerodynamically unstable. Thus, the forward portion (i.e., the fore body 102) of thepenetrator 100 begins to skew or tumble when the stabilizingportion 104 is removed. - Referring now to FIG. 3D, as the
fore body 102 travels beyond thefirst target 302, it begins to skew or tumble from its previous spatial orientation (as indicated byarrows fore body 102 tumbling in a clockwise direction, thefore body 102 may tumble in one or more directions in three-dimensional space over time as it travels through the air. - FIG. 3E illustrates the skewing or tumbling
fore body 102 approaching asecond target 308. Thesecond target 308 is a “soft” target, such as the vehicle or equipment shielded by the first target 302 (e.g., the armor plate). As thefore body 102 skews or tumbles, it is likely that it will impact thesecond target 308 at an attitude other than in a “head-on” attitude, in which thenose portion 106 is forward and acentral axis 310 of thefore body 102 is generally perpendicular to thesecond target 308. Thus, thefore body 102 in a non-head-on attitude impacts a larger area of thesecond target 308 than if thefore body 102 were in a head-on attitude, which will increase the amount of damage thefore body 102 may inflict on thesecond target 308. - FIG. 3F illustrates the impact of the
fore body 102 with thesecond target 308, producing anopening 312 therethrough anddebris 314. Depending upon the construction of thesecond target 308 and the attitude at which thefore body 102 impacts thesecond target 308, thefore body 102 may break into a plurality of pieces, as shown in FIG. 3F, or may remain generally intact. - FIGS.3G-3L illustrate the
penetrator 100 in an alternative use, in which thefore body 102 additionally encounters anintermediate target 316 disposed between thefirst target 302 and thesecond target 308. Theintermediate target 316 is a hard target, but is generally softer than thefirst target 302. In one embodiment, after the stabilizingportion 104 has separated from the fore body 102 (as shown in FIG. 3C), thefore body 102 travels toward theintermediate target 316 generally in an unskewed condition, as shown in FIG. 3G, or only marginally skewed. For example, thefore body 102 may not be skewed or may be only marginally skewed because the velocity of thefore body 102 may have been reduced, due to the impact with the first target, such that thefore body 102 is marginally aerodynamically stable. Further, the viscosity of the medium through which thefore body 102 is traveling may be insufficiently viscous to cause skewing thereof. Generally, a medium that is more viscous will induce more skewing or tumbling than a medium that is less viscous. - Thus, the
fore body 102 encounters and penetrates theintermediate target 316 in generally a head-on attitude, as shown in FIG. 3H. In one embodiment, as shown in FIG. 3I, thefore body 102 skews or tumbles, as described in reference to FIG. 3D, as it travels toward thesecond target 308. FIG. 3J illustrates the impact of thefore body 102 with thesecond target 308, producing theopening 312 therethrough and thedebris 314. Depending upon the construction of thesecond target 308 and the attitude at which thefore body 102 impacts thesecond target 308, thefore body 102 may break into a plurality of pieces, as shown in FIG. 3J, or may remain generally intact. - Alternatively, in one embodiment, the
fore body 102 may remain generally unskewed or only marginally skewed after penetrating theintermediate target 316, as shown in FIG. 3K. Thefore body 102 may remain generally unskewed or only marginally skewed as discussed above regarding FIG. 3G. As thefore body 102 impacts thesecond target 308, it skews or tumbles and penetrates thesecond target 308, as shown in FIG. 3L. Thefore body 102 may become skewed or may tumble within thesecond target 308 as a result of an increased viscosity of thesecond target 308. - The
penetrator 100 may be propelled or dispensed by any desired means. For example, as shown in FIGS. 4A and 4B, agun 402 may be used to propel one or more of thepenetrators 100. In the illustrated embodiment, anexplosive charge 404 is disposed behind thepenetrator 100 within thegun 402. Upon detonation of theexplosive charge 404, thepenetrator 100 is propelled through abarrel 406 of the gun and toward a target. Thepenetrator 100, however, may be propelled by any chosen means, such as by compressed air, a biasing member (e.g., a spring), or by other such methods. - Alternatively, as shown in FIG. 5A, the
penetrator 100 may form part of acartridge 500. In such an embodiment, thecartridge 500 comprises acasing 502 for housing one or more penetrators 100 (only onepenetrator 100 shown in FIG. 5) and anexplosive charge 504, which is disposed behind thepenetrator 100. In the illustrated embodiment, aprimer 506 extends through a rear,end wall 508 of the cartridge and abuts theexplosive charge 504. A firing mechanism (not shown) of agun 510, shown in FIG. 5B, activates theprimer 504, which, in turn, detonates theexplosive charge 504. The propulsive energy created as a result of the detonation of theexplosive charge 504 propels thepenetrator 100 through abarrel 512 of thegun 510 and toward a target, as shown in FIG. 5C. - Further, one or more of the
penetrators 100 may be dispensed by a vehicle capable of flight, such as a rocket, a missile, a bomb, or a projectile. In the embodiment illustrated in FIGS. 6A and 6B, thevehicle 602 comprises abody 604 and a means for propelling thevehicle 602, such as an engine or amotor 606. The penetrators 100 (only one indicated) are housed within thebody 604, as shown in FIG. 6A, until such time as they are to be deployed. Aportion 608 of thebody 604 is ejected from thevehicle 602 to reveal thepenetrators 100. Thepenetrators 100 are dispensed from thevehicle 602 as shown in FIG. 6B. - The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
Claims (60)
1. A penetrator comprising:
a fore body having a center of aerodynamic pressure forward of a center of gravity; and
a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
2. A penetrator, according to claim 1 , wherein the fore body includes a pin and the stabilizing portion defines a bore for receiving the pin to couple the fore body and the stabilizing portion.
3. A penetrator, according to claim 2 , further comprising an adhesive layer between the pin and an interior wall of the bore to bond the fore body to the stabilizing portion.
4. A penetrator, according to claim 2 , wherein an interior wall of the bore comprises at least one protrusion and the pin defines at least one groove engaged with the at least one protrusion.
5. A penetrator, according to claim 1 , wherein the fore body comprises a material selected from the group consisting of tungsten, a tungsten alloy, an iron alloy, and steel.
6. A penetrator, according to claim 1 , wherein the fore body comprises a material having a density greater than that of aluminum.
7. A penetrator, according to claim 1 , wherein the stabilizing portion further comprises a plurality of outwardly extending fins for improving an aerodynamic stability of the projectile.
8. A penetrator, according to claim 1 , wherein the stabilizing portion further comprises an outwardly sloping flare for improving an aerodynamic stability of the projectile.
9. A penetrator, according to claim 1 , wherein the stabilizing portion further comprises a tuft disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
10. A penetrator, according to claim 1 , wherein the stabilizing portion further comprises a plurality of aftwardly extending flaps for improving an aerodynamic stability of the projectile.
11. A penetrator, according to claim 1 , wherein the stabilizing portion further comprises a balloon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
12. A penetrator, according claim 1 , wherein the stabilizing portion further comprises a ribbon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
13. A penetrator, according to claim 1 , wherein the stabilizing portion comprises a material selected from the group consisting of a polymeric material, aluminum, an aluminum alloy, magnesium, and a magnesium alloy.
14. A penetrator, according to claim 1 , wherein the fore body comprises a material of higher density than that of the stabilizing portion.
15. A vehicle capable of flight, comprising:
a body;
means for propelling the vehicle; and
a plurality of penetrators disposed within the body and dispensable therefrom, at least one of the plurality of penetrators comprising:
a fore body having a center of aerodynamic pressure forward of a center of gravity; and
a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
16. A vehicle, according to claim 15 , wherein the means for propelling the vehicle comprises an engine or a motor.
17. A vehicle, according to claim 15 , wherein the fore body includes a pin and the stabilizing portion defines a bore for receiving the pin to couple the fore body and the stabilizing portion.
18. A vehicle, according to claim 17 , wherein the at least one of the plurality of penetrators further comprises an adhesive layer between the pin and an interior wall of the bore to bond the fore body to the stabilizing portion.
19. A vehicle, according to claim 17 , wherein an interior wall of the bore comprises at least one protrusion and the pin defines at least one groove engaged with the at least one protrusion.
20. A vehicle, according to claim 15 , wherein the fore body comprises a material selected from the group consisting of tungsten, a tungsten alloy, an iron alloy, and steel.
21. A vehicle, according to claim 15 , wherein the fore body comprises a material having a density greater than that of aluminum.
22. A vehicle, according to claim 15 , wherein the stabilizing portion further comprises a plurality of outwardly extending fins for improving an aerodynamic stability of the projectile.
23. A vehicle, according to claim 15 , wherein the stabilizing portion further comprises an outwardly sloping flare for improving an aerodynamic stability of the projectile.
24. A vehicle, according to claim 15 , wherein the stabilizing portion further comprises a tuft disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
25. A vehicle, according to claim 15 , wherein the stabilizing portion further comprises a plurality of aftwardly extending flaps for improving an aerodynamic stability of the projectile.
26. A vehicle, according to claim 15 , wherein the stabilizing portion further comprises a balloon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
27. A vehicle, according claim 15 , wherein the stabilizing portion further comprises a ribbon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
28. A vehicle, according to claim 15 , wherein the stabilizing portion comprises a material selected from the group consisting of a polymeric material, aluminum, an aluminum alloy, magnesium, and a magnesium alloy.
29. A vehicle, according to claim 15 , wherein the fore body comprises a material of higher density than that of the stabilizing portion.
30. A cartridge, comprising:
a casing;
an explosive charge disposed within the casing;
a primer proximate the explosive charge; and
at least one penetrator disposed within the casing forward of the explosive charge, the at least one penetrator comprising:
a fore body having a center of aerodynamic pressure forward of a center of gravity; and
a stabilizing portion removably attached to the fore body such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
31. A cartridge, according to claim 30 , wherein the fore body includes a pin and the stabilizing portion defines a bore for receiving the pin to couple the fore body and the stabilizing portion.
32. A cartridge, according to claim 31 , wherein the at least one of the plurality of penetrators further comprises an adhesive layer between the pin and an interior wall of the bore to bond the fore body to the stabilizing portion.
33. A cartridge, according to claim 31 , wherein an interior wall of the bore comprises at least one protrusion and the pin defines at least one groove engaged with the at least one protrusion.
34. A cartridge, according to claim 30 , wherein the fore body comprises a material selected from the group consisting of tungsten, a tungsten alloy, an iron alloy, and steel.
35. A cartridge, according to claim 30 , wherein the fore body comprises a material having a density greater than that of aluminum.
36. A cartridge, according to claim 30 , wherein the stabilizing portion further comprises a plurality of outwardly extending fins for improving an aerodynamic stability of the projectile.
37. A cartridge, according to claim 30 , wherein the stabilizing portion further comprises an outwardly sloping flare for improving an aerodynamic stability of the projectile.
38. A cartridge, according to claim 30 , wherein the stabilizing portion further comprises a tuft disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
39. A cartridge, according to claim 30 , wherein the stabilizing portion further comprises a plurality of aftwardly extending flaps for improving an aerodynamic stability of the projectile.
40. A cartridge, according to claim 30 , wherein the stabilizing portion further comprises a balloon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
41. A cartridge, according claim 30 , wherein the stabilizing portion further comprises a ribbon disposed proximate an aft end of the stabilizing portion for improving an aerodynamic stability of the projectile.
42. A cartridge, according to claim 30 , wherein the stabilizing portion comprises a material selected from the group consisting of a polymeric material, aluminum, an aluminum alloy, magnesium, and a magnesium alloy.
43. A cartridge, according to claim 30 , wherein the fore body comprises a material of higher density than that of the stabilizing portion.
44. A method of using a penetrator, comprising:
propelling the penetrator toward a first target;
penetrating the first target with a fore body of the penetrator;
detaching a stabilizing portion of the penetrator from the fore body; and
impacting the second target with the fore body.
45. A method, according to claim 44 , further comprising skewing a spatial orientation of the fore body as it travels toward a second target.
46. A method, according to claim 44 , further comprising skewing a spatial orientation of the fore body as it travels through the second target.
47. A method, according to claim 44 , further comprising impacting an intermediate target with the fore body prior to impacting the second target with the fore body.
48. A method, according to claim 47 , further comprising skewing a spatial orientation of the fore body as it travels toward the second target.
49. A method, according to claim 47 , further comprising skewing a spatial orientation of the fore body as it travels through the second target.
50. A method, according to claim 44 , wherein propelling the penetrator further comprises propelling the penetrator from a barrel of a gun.
51. A method, according to claim 44 , wherein propelling the penetrator further comprises propelling the penetrator from a cartridge disposed within a gun.
52. A method, according to claim 44 , wherein propelling the penetrator further comprises dispensing the penetrator from an airborne vehicle.
53. A method, according to claim 44 , wherein detaching the stabilizing portion further comprises fracturing an adhesive layer coupling the fore body and the stabilizing portion.
54. A method, according to claim 44 , wherein detaching the stabilizing portion further comprises fracturing a pin coupling the fore body and the stabilizing portion.
55. A method, according to claim 44 , wherein detaching the stabilizing portion further comprises disengaging a grooved pin from correspondingly grooved bore.
56. A method, according to claim 44 , wherein detaching the stabilizing portion further comprises impacting the first target with the stabilizing portion to detach the stabilizing portion from the fore body.
57. A penetrator, comprising:
means for penetrating a target having a center of aerodynamic pressure forward of a center of gravity;
means for aerodynamically stabilizing the penetrator; and
means for removably attaching the means for penetrating the target and the means for aerodynamically stabilizing the penetrator,
wherein a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator when the means for penetrating the target is attached to the means for aerodynamically stabilizing the penetrator.
58. A penetrator, according to claim 57 , wherein the means for penetrating the target comprises a fore body.
59. A penetrator, according to claim 57 , wherein the means for aerodynamically stabilizing the penetrator comprises a stabilizing portion.
60. A penetrator, according to claim 57 , wherein the means for detachably coupling the means for penetrating the target and the means for aerodynamically stabilizing the penetrator comprises a pin coupling the means for detachably coupling the means for penetrating the target and the means for aerodynamically stabilizing the penetrator.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/251,423 US20040055501A1 (en) | 2002-09-20 | 2002-09-20 | Penetrator and method for using same |
EP03759375A EP1543289A1 (en) | 2002-09-20 | 2003-09-17 | A penetrator and method for using same |
AU2003275105A AU2003275105A1 (en) | 2002-09-20 | 2003-09-17 | A penetrator and method for using same |
PCT/US2003/029804 WO2004027341A1 (en) | 2002-09-20 | 2003-09-17 | A penetrator and method for using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/251,423 US20040055501A1 (en) | 2002-09-20 | 2002-09-20 | Penetrator and method for using same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040055501A1 true US20040055501A1 (en) | 2004-03-25 |
Family
ID=31992735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/251,423 Abandoned US20040055501A1 (en) | 2002-09-20 | 2002-09-20 | Penetrator and method for using same |
Country Status (1)
Country | Link |
---|---|
US (1) | US20040055501A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080092767A1 (en) * | 2006-04-06 | 2008-04-24 | Taylor John D | Advanced armor-piercing projectile construction and method |
US8026465B1 (en) * | 2009-05-20 | 2011-09-27 | The United States Of America As Represented By The Secretary Of The Navy | Guided fuse with variable incidence panels |
CN113721303A (en) * | 2021-08-26 | 2021-11-30 | 四川航天系统工程研究所 | Two-stage separation type moon penetrator with buffer device |
US11632987B2 (en) | 2013-12-31 | 2023-04-25 | Rai Strategic Holdings, Inc. | Electronic vaping device |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2345619A (en) * | 1941-06-27 | 1944-04-04 | Wiley T Moore | Projectile |
US2446082A (en) * | 1941-09-15 | 1948-07-27 | Dixon Cecil Aubrey | Incendiary projectile |
US2532323A (en) * | 1942-03-30 | 1950-12-05 | Jr George A Miller | Bullet |
US2979285A (en) * | 1958-10-10 | 1961-04-11 | Bolkow Entwicklungen Kg | Missile structures |
US3208385A (en) * | 1962-12-24 | 1965-09-28 | Diehl | Incendiary shell |
US3516360A (en) * | 1968-03-27 | 1970-06-23 | Olin Mathieson | Shot container |
US3545383A (en) * | 1965-10-27 | 1970-12-08 | Singer General Precision | Flechette |
US3851590A (en) * | 1966-12-30 | 1974-12-03 | Aai Corp | Multiple hardness pointed finned projectile |
US3880083A (en) * | 1967-05-19 | 1975-04-29 | Us Army | Bimetallic mass stabilized flechette |
US3886841A (en) * | 1973-05-29 | 1975-06-03 | Matthew S Smith | Rocket powered round |
US3941059A (en) * | 1967-01-18 | 1976-03-02 | The United States Of America As Represented By The Secretary Of The Army | Flechette |
US3967553A (en) * | 1973-07-25 | 1976-07-06 | Messerschmitt-Bolkow-Blohm Gmbh | Flammability promoting ammunition for use against airborne targets |
US4251079A (en) * | 1978-07-03 | 1981-02-17 | Earl Hugh E | Pellet for an air, gas or spring gun |
US4340197A (en) * | 1966-02-15 | 1982-07-20 | The United States Of America As Represented By The Secretary Of The Air Force | Decoy missile |
US4638738A (en) * | 1983-10-28 | 1987-01-27 | Rheinmetall Gmbh. | Fin stabilized subcaliber shell of large length to diameter ratio |
US4665828A (en) * | 1983-11-23 | 1987-05-19 | Voest-Alpine Aktiengesellschaft | Penetrator for a driving-cage projectile and the process of manufacturing the same |
US4770102A (en) * | 1980-09-23 | 1988-09-13 | Rheinmetal Gmbh | Piercing projectile with a weakened head |
US4882822A (en) * | 1988-01-04 | 1989-11-28 | Burczynski Thomas J | Method of fabrication of a bullet having sections separable upon impact |
US4901645A (en) * | 1980-08-23 | 1990-02-20 | Rheinmetall, Gmbh | Inertial projectile having a breakable pre-penetrator |
US4961384A (en) * | 1986-02-18 | 1990-10-09 | The United States Of America As Represented By The Secretary Of The Army | Hypervelocity penetrator for an electromagnetic accelerator |
US4970960A (en) * | 1980-11-05 | 1990-11-20 | Feldmann Fritz K | Anti-material projectile |
US5112846A (en) * | 1989-05-26 | 1992-05-12 | Warner-Lambert Company | N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents |
US5158509A (en) * | 1990-12-14 | 1992-10-27 | The United States Of America As Represented By The United States Department Of Energy | Composite stabilizer unit |
US5198616A (en) * | 1990-09-28 | 1993-03-30 | Bei Electronics, Inc. | Frangible armor piercing incendiary projectile |
US5223667A (en) * | 1992-01-21 | 1993-06-29 | Bei Electronics, Inc. | Plural piece flechettes affording enhanced penetration |
US5297492A (en) * | 1993-02-26 | 1994-03-29 | Buc Steven M | Armor piercing fin-stabilized discarding sabot tracer projectile |
US5725179A (en) * | 1996-11-04 | 1998-03-10 | The United States Of America As Represented By The Secretary Of The Army | Expansion wave spin inducing generator |
US5728968A (en) * | 1989-08-24 | 1998-03-17 | Primex Technologies, Inc. | Armor penetrating projectile |
US5923370A (en) * | 1996-10-08 | 1999-07-13 | Dalsa, Inc. | Image smear and dark signal reduction device and method |
USH1938H1 (en) * | 1998-01-28 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Navy | Supercavitating water-entry projectile |
-
2002
- 2002-09-20 US US10/251,423 patent/US20040055501A1/en not_active Abandoned
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2345619A (en) * | 1941-06-27 | 1944-04-04 | Wiley T Moore | Projectile |
US2446082A (en) * | 1941-09-15 | 1948-07-27 | Dixon Cecil Aubrey | Incendiary projectile |
US2532323A (en) * | 1942-03-30 | 1950-12-05 | Jr George A Miller | Bullet |
US2979285A (en) * | 1958-10-10 | 1961-04-11 | Bolkow Entwicklungen Kg | Missile structures |
US3208385A (en) * | 1962-12-24 | 1965-09-28 | Diehl | Incendiary shell |
US3545383A (en) * | 1965-10-27 | 1970-12-08 | Singer General Precision | Flechette |
US4340197A (en) * | 1966-02-15 | 1982-07-20 | The United States Of America As Represented By The Secretary Of The Air Force | Decoy missile |
US3851590A (en) * | 1966-12-30 | 1974-12-03 | Aai Corp | Multiple hardness pointed finned projectile |
US3941059A (en) * | 1967-01-18 | 1976-03-02 | The United States Of America As Represented By The Secretary Of The Army | Flechette |
US3880083A (en) * | 1967-05-19 | 1975-04-29 | Us Army | Bimetallic mass stabilized flechette |
US3516360A (en) * | 1968-03-27 | 1970-06-23 | Olin Mathieson | Shot container |
US3886841A (en) * | 1973-05-29 | 1975-06-03 | Matthew S Smith | Rocket powered round |
US3967553A (en) * | 1973-07-25 | 1976-07-06 | Messerschmitt-Bolkow-Blohm Gmbh | Flammability promoting ammunition for use against airborne targets |
US4251079A (en) * | 1978-07-03 | 1981-02-17 | Earl Hugh E | Pellet for an air, gas or spring gun |
US4901645A (en) * | 1980-08-23 | 1990-02-20 | Rheinmetall, Gmbh | Inertial projectile having a breakable pre-penetrator |
US4770102A (en) * | 1980-09-23 | 1988-09-13 | Rheinmetal Gmbh | Piercing projectile with a weakened head |
US4970960A (en) * | 1980-11-05 | 1990-11-20 | Feldmann Fritz K | Anti-material projectile |
US4638738A (en) * | 1983-10-28 | 1987-01-27 | Rheinmetall Gmbh. | Fin stabilized subcaliber shell of large length to diameter ratio |
US4665828A (en) * | 1983-11-23 | 1987-05-19 | Voest-Alpine Aktiengesellschaft | Penetrator for a driving-cage projectile and the process of manufacturing the same |
US4961384A (en) * | 1986-02-18 | 1990-10-09 | The United States Of America As Represented By The Secretary Of The Army | Hypervelocity penetrator for an electromagnetic accelerator |
US4882822A (en) * | 1988-01-04 | 1989-11-28 | Burczynski Thomas J | Method of fabrication of a bullet having sections separable upon impact |
US5112846A (en) * | 1989-05-26 | 1992-05-12 | Warner-Lambert Company | N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents |
US5728968A (en) * | 1989-08-24 | 1998-03-17 | Primex Technologies, Inc. | Armor penetrating projectile |
US5198616A (en) * | 1990-09-28 | 1993-03-30 | Bei Electronics, Inc. | Frangible armor piercing incendiary projectile |
US5158509A (en) * | 1990-12-14 | 1992-10-27 | The United States Of America As Represented By The United States Department Of Energy | Composite stabilizer unit |
US5223667A (en) * | 1992-01-21 | 1993-06-29 | Bei Electronics, Inc. | Plural piece flechettes affording enhanced penetration |
US5297492A (en) * | 1993-02-26 | 1994-03-29 | Buc Steven M | Armor piercing fin-stabilized discarding sabot tracer projectile |
US5923370A (en) * | 1996-10-08 | 1999-07-13 | Dalsa, Inc. | Image smear and dark signal reduction device and method |
US5725179A (en) * | 1996-11-04 | 1998-03-10 | The United States Of America As Represented By The Secretary Of The Army | Expansion wave spin inducing generator |
USH1938H1 (en) * | 1998-01-28 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Navy | Supercavitating water-entry projectile |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080092767A1 (en) * | 2006-04-06 | 2008-04-24 | Taylor John D | Advanced armor-piercing projectile construction and method |
US7520224B2 (en) * | 2006-04-06 | 2009-04-21 | John D. Taylor | Advanced armor-piercing projectile construction and method |
US8026465B1 (en) * | 2009-05-20 | 2011-09-27 | The United States Of America As Represented By The Secretary Of The Navy | Guided fuse with variable incidence panels |
US11632987B2 (en) | 2013-12-31 | 2023-04-25 | Rai Strategic Holdings, Inc. | Electronic vaping device |
CN113721303A (en) * | 2021-08-26 | 2021-11-30 | 四川航天系统工程研究所 | Two-stage separation type moon penetrator with buffer device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7261040B2 (en) | Penetrator and method of using same | |
EP0774105B1 (en) | Aerodynamically stabilized projectile system for use against underwater objects | |
EP1704382B1 (en) | Warhead | |
KR101889636B1 (en) | Penetrator munition with enhanced fragmentation | |
US4597333A (en) | Two-part armor-piercing projectile | |
US20160223309A1 (en) | Weapon and Weapon System Employing the Same | |
US20070006766A1 (en) | Munition device | |
US4612860A (en) | Projectile | |
US8640622B2 (en) | Tandem nested projectile assembly | |
JPH1137698A (en) | Invasion-discharge projectile having many collisional divisions | |
US8413586B2 (en) | Door breaching projectile system | |
US6662726B1 (en) | Kinetic energy penetrator | |
US20040055501A1 (en) | Penetrator and method for using same | |
US5014931A (en) | Kinetic energy projectile with impact-ejected fins | |
US8607708B1 (en) | Impact igniting incendiary device for projectiles | |
US8074552B1 (en) | Flyer plate armor systems and methods | |
EP1543289A1 (en) | A penetrator and method for using same | |
WO2005036093A2 (en) | Spark-producing penetrator and method of using same | |
AU686954B2 (en) | Full caliber projectile for use against underwater objects | |
RU2738687C2 (en) | Armor-pierced finned sub-caliber projectile | |
AU685027B2 (en) | Gyroscopically stabilized projectile system for use against underwater objects | |
JP2870722B2 (en) | Anti-armored flying object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LOCKHEED MARTIN CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUNN, DAVID L.;BANKS, JOHNNY E.;COWAN, CARLTON B.;REEL/FRAME:013574/0581;SIGNING DATES FROM 20021015 TO 20021022 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |