US20040040607A1 - Refrigerant hose - Google Patents

Refrigerant hose Download PDF

Info

Publication number
US20040040607A1
US20040040607A1 US10/230,035 US23003502A US2004040607A1 US 20040040607 A1 US20040040607 A1 US 20040040607A1 US 23003502 A US23003502 A US 23003502A US 2004040607 A1 US2004040607 A1 US 2004040607A1
Authority
US
United States
Prior art keywords
hose
layer
resin
accordance
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/230,035
Inventor
Reji Wilson
Brian Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/230,035 priority Critical patent/US20040040607A1/en
Priority to MXPA03007254A priority patent/MXPA03007254A/en
Priority to BRPI0303412-7A priority patent/BRPI0303412B1/en
Priority to EP03102635A priority patent/EP1393889A1/en
Priority to DE20321380U priority patent/DE20321380U1/en
Priority to CNB031553613A priority patent/CN100354121C/en
Priority to US10/733,147 priority patent/US6941975B2/en
Publication of US20040040607A1 publication Critical patent/US20040040607A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/043HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]

Definitions

  • the present invention is directed to a hose suitable for use in refrigerant systems such as vehicle, industrial, and residential refrigerant systems.
  • the hose is a combination of elastomeric materials to provide flexibility and thermoplastic materials to provide impermeability.
  • Hoses are used for transporting refrigerants in vehicle air conditioning systems, and in industrial and residential refrigerant systems.
  • the hoses generally have a three-layer laminar construction consisting of an innermost layer, a reinforcing layer, and an outermost cover layer.
  • the inner and outer layers are formed of rubber, including butyl rubbers (IIR, CIIR, BIIR or BIMS), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), nitrite rubbers (NBR, HNBR), or ethylene acrylic copolymer rubber (AEM).
  • the reinforcing fiber layer usually is a mesh structure formed by braided organic yarn such as polyester fiber, rayon fiber, or nylon fiber.
  • the outer cover typically is formed of EPDM, CR, butyl rubbers, or AEM. Adhesion layers may be employed between the layers.
  • the hoses discussed above have a high degree of flexibility. Because of this, the rubber hoses can be handled with ease. However, rubber materials generally tend to have high gas permeability. Attempts to improve the resistance of conventional rubber hoses to refrigerant permeation have been made by incorporating polyamide layers, such as nylon 6, nylon 66, modified nylon 6, or alloys of nylon 6, etc, as an inner layer. However, the use of such polyamide layers, while reducing permeation rates, also reduces the flexibility of the hoses. To achieve an acceptable compromise of the required characteristics, the thickness of a nylon inner core layer is conventionally at least 0.5 mm (0.02′′), see also U.S. Pat. No. 4,633,912 who discloses a polyamide blend cores tube with a gauge thickness of 1.07 mm and 0.81 mm.
  • Hoses may be characterized as barrier or veneer hose, the distinction between the two being the type of material forming the innermost layer.
  • Barrier hoses have the innermost layer formed of an elastomeric material and a barrier layer located outward of the innermost layer. In hoses where the barrier layer is the innermost layer, the hose is referred to a veneer hose.
  • Some applications may use either type of hose, such as fuel hose, while other applications may require a specific internal material and thus only one type of hose would be appropriate.
  • the present invention is directed to a hose suitable for transporting refrigerants.
  • the hose has a high resistance to permeation and high flexibility.
  • the hose comprising has a barrier layer, an intermediate elastomeric layer, a reinforcing layer, and a cover layer.
  • the barrier layer is formed of at least two resin layer wherein at least one of the resin layers is formed from a vinyl resin.
  • the hose is a barrier hose. Radially inward of the multi-layer barrier layer is an elastomeric layer. The elastomeric layer forms the innermost layer of the hose and is in direct contact with any fluids or gasses that will flow through the hose.
  • the hose is a veneer hose. That is, the barrier layer is the radially innermost layer of the hose and is in direct contact with any fluids or gasses that will flow through the hose.
  • the barrier layer of the hose is formed of three resin layers.
  • the material forming the innermost resin layer is repeated as the radially outermost resin layer.
  • This construction is the most expeditious regarding manufacturing; however, the third resin layer may also be formed from a third resin material.
  • the vinyl resin forming one of the barrier layers is selected from the group consisting of vinyl acetate (EVA), polyvinylalcohol (PVA), vinyl alcohol/ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymer, and vinylidene chloride/methylacrylate copolymer.
  • the non-vinyl resin barrier layer is formed of a material selected from the group consisting of polyolefin thermoplastic resins or polyamide thermoplastic resins.
  • the intermediate rubber layer, and the innermost rubber layer when the hose construction is a barrier hose is formed of a material from the group consisting of chloroprene rubbers, nitrile rubbers, ethylene-propylene rubber, ethylene propylene diene rubber (EPDM), butyl rubbers (IIR, CIIR, BIIR), chlorosulfonated polyethylene rubber (CSM), ethylene-acrylic copolymer rubber (AEM), chlorinated polyethylene rubber (CPE), or brominated isobutylene-paramethylstyrene (BIMS).
  • chloroprene rubbers nitrile rubbers
  • ethylene-propylene rubber ethylene propylene diene rubber
  • EPDM ethylene propylene diene rubber
  • IIR, CIIR, BIIR chlorosulfonated polyethylene rubber
  • AEM ethylene-acrylic copolymer rubber
  • CPE chlorinated polyethylene rubber
  • BIMS brominated isobutylene-paramethyl
  • each resin layer in the barrier layer has a radial thickness of 0.001 to 0.005 in (0.025 to 0.127 mm).
  • FIG. 1 is a cross-sectional view of a partial hose in accordance with the present invention.
  • FIG. 2 is another embodiment of the inventive hose
  • FIG. 3 is another embodiment of the inventive hose.
  • FIG. 4 is a graph comparing steady state permeation rates.
  • the refrigerant hose 10 of the present invention is illustrated in FIG. 1.
  • the hose 10 has a core layer 12 , relative to the radial direction of the hose and the longitudinal hose axis.
  • the core layer 12 is formed from an elastomeric material.
  • the barrier layer 14 formed of at least two thermoplastic layers, 16 , 18 .
  • an intermediate elastomeric layer 20 Over the barrier layer is an intermediate elastomeric layer 20 , reinforcing layer 22 and a cover layer 24 .
  • the core layer 12 is formed from an elastomeric material. As this layer 12 is adjacent to the veneer barrier layer, it must be able to bond to the barrier layer 14 .
  • Such materials include, but are not limited to chloroprene rubbers, nitrile rubbers, ethylene-propylene rubber, ethylene propylene diene rubber (EPDM), butyl rubbers (IIR, CIIR, BIIR), chlorosulfonated polyethylene rubber (CSM), ethylene-acrylic rubber (AEM), chlorinated polyethylene rubber (CPE), or brominated isobutylene-paramethylstyrene (BIMS).
  • the core layer 12 may also be formed from thermoplastic elastomers or thermoplastic vulcanizates such as polyproplene, polyethylene, or other polyolefins blended with EPDM, IIR, NBR, or acrylic rubber.
  • the barrier layer 14 is formed of a first thermoplastic layer 16 , the material having a low permeation rate.
  • Suitable low permeability materials include polyolefin thermoplastic resins, such as high density polyethylene (HDPE), ultrahigh molecular weight polyethylene (UHMWPE), polypropylene (PP), and ethylene propylene copolymer thermoplastic resin; and polyamide thermoplastic resins such as nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12), nylon 610 (N610), nylon 612 (N612), nylon 6/66 copolymer (N6/66), nylon 6/66/610 copolymer (N6/66/610), nylon MXD6 (MxD6), nylon 6T, nylon 6/6T copolymer, nylon 66/PP copolymer, and nylon 66/PPS copolymer.
  • HDPE high density polyethylene
  • UHMWPE ultrahigh molecular weight polyethylene
  • PP polypropy
  • the polyamide when using a polyamide resin, or a blend of polyamide resins, the polyamide is preferably non-plasticized.
  • a plasticizer to the polyamide improves the flexibility of the material; however, it also decreases the permeability characteristics of the nylon.
  • non-plasticized polyamide are preferred.
  • the second layer 18 in the barrier layer 14 is a low permeability material differing from the first thermoplastic layer 16 .
  • the preferred material is a vinyl resin such as vinyl acetate (EVA), polyvinylalcohol (PVA), vinyl alcohol/ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymer, and vinylidene chloride/methylacrylate copolymer.
  • the first layer 16 may be the radially innermost layer or the second layer 18 may be the radially innermost layer.
  • each individual resin layer 16 , 18 has a radial thickness of 0.001 to 0.005 in (0.025-0.127 mm).
  • the intermediate layer 20 must be able to bond to the barrier layer.
  • This layer is formed of the same materials suitable for the innermost layer 12 .
  • the reinforcing layer 22 may be formed by braiding, spiraling, knitting, or helical knitting of yarn.
  • the yarn may be selected from conventional hose reinforcing yarns such as glass, steel, cotton, polyester, or aramid fibers, or a blend of any of these fibers.
  • the cover layer 24 is selected from known hose cover layer materials, including but not limited to nitrile-butadiene rubber (NBR), chlorosulfonated polyethylene rubber (CSM), EPDM, butyl rubbers, chlorinated butyl rubber (Cl-IIR), brominated butyl rubber (Br-IIR), epichlorohydrine rubber, acrylic rubber (AEM), chloroprene rubber (CR), BIMS, and the like. Similar to the core layer 12 , the cover may also be formed from thermoplastic elastomers or thermoplastic vulcanizates.
  • the hose 10 has a permeation rate of not greater than 0.0003 g/cm/day. A permeation rate this low may be considered to be a zero permeation rate. Conventionally, to obtain permeation rates this low, a thin metallic layer is employed in the hose. The present invention achieves a very low, to zero, permeation rate without the use of a metallic foil or layer within the hose.
  • FIG. 2 A second embodiment of the present invention is illustrated in FIG. 2.
  • the hose 10 ′ has an innermost layer 12 , a barrier layer 14 , an adjacent elastomeric friction layer 20 , a reinforcing layer 22 , and a cover layer 24 .
  • the barrier layer 14 of the hose 10 ′ has three layers, 16 , 18 , 16 ′.
  • the material selected for the radially innermost layer is repeated as the third, and radially outermost layer.
  • the middle layer is formed of the material having the lowest permeation rate.
  • FIG. 3 A third embodiment of the present invention is illustrated in FIG. 3.
  • the hose 10 ′′ has no innermost elastomeric layer 12 .
  • the barrier layer 14 forms the innermost layer and the hose 10 ′′ is a veneer hose.
  • the barrier layer is formed of two barrier layers, 16 , 18 formed of the materials, and in the manner, discussed above.
  • the veneer hose 10 ′′ may also have the barrier layer 14 formed of three layers wherein the innermost barrier layer 16 is repeated, sandwiching the second barrier layer 18 .
  • Construction of the hose 10 is accomplished in the following manner.
  • the innermost layer is extruded onto either a flexible or fixed mandrel.
  • the barrier layer is formed by co-extruding the different layers simultaneously onto the innermost layer.
  • a multi-layer head is used for the extrusion.
  • a tri-extrusion head is used.
  • a dual extrusion head or a tri-extrusion, with one silent port may be used. No adhesive is applied between the different layers as the bonding between the layers is accomplished through melt bonding.
  • the barrier layer is formed, either another elastomeric layer is applied or the reinforcement layer is immediately applied.
  • the cover layer is applied last.
  • the formed hose length is then vulcanized to cure the elastomeric layers.
  • the hose length may be cut into definitive lengths either before or after curing. If the hose length is cut prior to curing, then typically, the hose lengths are cured on fixed curve short length mandrels designed to impart a fixed and final configuration to the hose.
  • a hose in accordance with the invention was constructed.
  • the innermost layer was formed of CR.
  • the barrier was formed of three layers: a non-plasticized copolymer of nylon 6 and nylon 66, a middle layer of EVOH, and a repeated layer of the non-plasticized nylon 6,66 copolymer.
  • Each of the barrier layers had a thickness of about 0.002′′ (0.007 mm) for a total thickness of about 0.006′′ (0.024 mm)
  • Another layer of CR was applied.
  • a reinforcing layer of polyester was applied.
  • the cover layer was formed of a butyl rubber.
  • a commercially available, low-permeation rate hose was procured.
  • the hose has an innermost layer of CR, a barrier layer of a plasticized nylon 6-66 copolymer, an NBR friction layer, polyester reinforcement, and a cover layer of chloro-butyl rubber.
  • This hose is the Goodyear Galaxy 534-860-013 hose sold by The Goodyear Tire & Rubber Company.
  • a second commercially available, low permeation hose was procured.
  • the hose has an innermost layer of CR, a barrier layer of non-plasticized nylon 6-66 copolymer, a CR friction layer, polyester reinforcement, and a cover layer of chloro-butyl rubber.
  • This hose is the Goodyear Galaxy 534-890-013 hose sold by The Goodyear Tire & Rubber Company.
  • the three hoses where cut into sections and tested for permeation rates.
  • the permeation test was performed by sealing at least one end of the hose section, introducing a refrigerant fluid into the hose, and then sealing the open end of the hose.
  • the total weight of the hose and contained fluid is measured.
  • the hose section is then left in an ambient environment at 90° C.
  • the weight of the hose is measured every day for two weeks, and then every other day for another week.
  • the permeation rate is then calculated based on the weight loss per section length per day for the last five days (steady state).
  • Comparative hose 1 showed a permeation rate of 0.0064 g/in/day (2.52 ⁇ 10 ⁇ 3 g/cm/day).
  • Comparative hose 2 showed a permeation rate of 0.0013 g/in/day (5.12 ⁇ 10 ⁇ 4 g/cm/day).
  • the inventive hose showed a permeation rate of 0.0001 g/in/day (3.94 ⁇ 10 ⁇ 5 g/cm/day).
  • the inventive hose exhibits a significant improvement in low permeation compared to the other hoses.
  • This hose has been described as being useful for refrigerants, including but not limited to R134A, but is also useful for other types of fluids or gases, such as CO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

A hose suitable for use in refrigerant systems. The hose has a barrier layer formed of at least two layers of thermoplastic resin. At least one of the layers is a vinyl resin. The resins are selected so that the hose has a permeation rate of virtually zero.

Description

    FIELD OF THE INVENTION
  • The present invention is directed to a hose suitable for use in refrigerant systems such as vehicle, industrial, and residential refrigerant systems. The hose is a combination of elastomeric materials to provide flexibility and thermoplastic materials to provide impermeability. [0001]
  • BACKGROUND OF THE INVENTION
  • Hoses are used for transporting refrigerants in vehicle air conditioning systems, and in industrial and residential refrigerant systems. The hoses generally have a three-layer laminar construction consisting of an innermost layer, a reinforcing layer, and an outermost cover layer. Generally, the inner and outer layers are formed of rubber, including butyl rubbers (IIR, CIIR, BIIR or BIMS), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), nitrite rubbers (NBR, HNBR), or ethylene acrylic copolymer rubber (AEM). The reinforcing fiber layer usually is a mesh structure formed by braided organic yarn such as polyester fiber, rayon fiber, or nylon fiber. The outer cover typically is formed of EPDM, CR, butyl rubbers, or AEM. Adhesion layers may be employed between the layers. [0002]
  • The hoses discussed above have a high degree of flexibility. Because of this, the rubber hoses can be handled with ease. However, rubber materials generally tend to have high gas permeability. Attempts to improve the resistance of conventional rubber hoses to refrigerant permeation have been made by incorporating polyamide layers, such as nylon 6, nylon 66, modified nylon 6, or alloys of nylon 6, etc, as an inner layer. However, the use of such polyamide layers, while reducing permeation rates, also reduces the flexibility of the hoses. To achieve an acceptable compromise of the required characteristics, the thickness of a nylon inner core layer is conventionally at least 0.5 mm (0.02″), see also U.S. Pat. No. 4,633,912 who discloses a polyamide blend cores tube with a gauge thickness of 1.07 mm and 0.81 mm. [0003]
  • Hoses may be characterized as barrier or veneer hose, the distinction between the two being the type of material forming the innermost layer. Barrier hoses have the innermost layer formed of an elastomeric material and a barrier layer located outward of the innermost layer. In hoses where the barrier layer is the innermost layer, the hose is referred to a veneer hose. Some applications may use either type of hose, such as fuel hose, while other applications may require a specific internal material and thus only one type of hose would be appropriate. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a hose suitable for transporting refrigerants. The hose has a high resistance to permeation and high flexibility. The hose comprising has a barrier layer, an intermediate elastomeric layer, a reinforcing layer, and a cover layer. To achieve the high resistance to permeation, producing an almost zero permeation rate hose, the barrier layer is formed of at least two resin layer wherein at least one of the resin layers is formed from a vinyl resin. [0005]
  • In one aspect of the disclosed invention, the hose is a barrier hose. Radially inward of the multi-layer barrier layer is an elastomeric layer. The elastomeric layer forms the innermost layer of the hose and is in direct contact with any fluids or gasses that will flow through the hose. [0006]
  • In another aspect of the invention, the hose is a veneer hose. That is, the barrier layer is the radially innermost layer of the hose and is in direct contact with any fluids or gasses that will flow through the hose. [0007]
  • In another aspect, the barrier layer of the hose is formed of three resin layers. In such a construction, the material forming the innermost resin layer is repeated as the radially outermost resin layer. This construction is the most expeditious regarding manufacturing; however, the third resin layer may also be formed from a third resin material. [0008]
  • In one aspect of the invention, the vinyl resin forming one of the barrier layers is selected from the group consisting of vinyl acetate (EVA), polyvinylalcohol (PVA), vinyl alcohol/ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymer, and vinylidene chloride/methylacrylate copolymer. [0009]
  • In another aspect of the invention, the non-vinyl resin barrier layer is formed of a material selected from the group consisting of polyolefin thermoplastic resins or polyamide thermoplastic resins. [0010]
  • In another aspect of the invention, the intermediate rubber layer, and the innermost rubber layer when the hose construction is a barrier hose, is formed of a material from the group consisting of chloroprene rubbers, nitrile rubbers, ethylene-propylene rubber, ethylene propylene diene rubber (EPDM), butyl rubbers (IIR, CIIR, BIIR), chlorosulfonated polyethylene rubber (CSM), ethylene-acrylic copolymer rubber (AEM), chlorinated polyethylene rubber (CPE), or brominated isobutylene-paramethylstyrene (BIMS). [0011]
  • In another aspect of the invention, each resin layer in the barrier layer has a radial thickness of 0.001 to 0.005 in (0.025 to 0.127 mm).[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described by way of example and with reference to the accompanying drawings in which: [0013]
  • FIG. 1 is a cross-sectional view of a partial hose in accordance with the present invention; [0014]
  • FIG. 2 is another embodiment of the inventive hose; [0015]
  • FIG. 3 is another embodiment of the inventive hose; and [0016]
  • FIG. 4 is a graph comparing steady state permeation rates.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The [0018] refrigerant hose 10 of the present invention is illustrated in FIG. 1. The hose 10 has a core layer 12, relative to the radial direction of the hose and the longitudinal hose axis. The core layer 12 is formed from an elastomeric material. Over the core layer 12 is the barrier layer 14 formed of at least two thermoplastic layers, 16, 18. Over the barrier layer is an intermediate elastomeric layer 20, reinforcing layer 22 and a cover layer 24.
  • The [0019] core layer 12 is formed from an elastomeric material. As this layer 12 is adjacent to the veneer barrier layer, it must be able to bond to the barrier layer 14. Such materials include, but are not limited to chloroprene rubbers, nitrile rubbers, ethylene-propylene rubber, ethylene propylene diene rubber (EPDM), butyl rubbers (IIR, CIIR, BIIR), chlorosulfonated polyethylene rubber (CSM), ethylene-acrylic rubber (AEM), chlorinated polyethylene rubber (CPE), or brominated isobutylene-paramethylstyrene (BIMS). The core layer 12 may also be formed from thermoplastic elastomers or thermoplastic vulcanizates such as polyproplene, polyethylene, or other polyolefins blended with EPDM, IIR, NBR, or acrylic rubber.
  • The [0020] barrier layer 14 is formed of a first thermoplastic layer 16, the material having a low permeation rate. Suitable low permeability materials include polyolefin thermoplastic resins, such as high density polyethylene (HDPE), ultrahigh molecular weight polyethylene (UHMWPE), polypropylene (PP), and ethylene propylene copolymer thermoplastic resin; and polyamide thermoplastic resins such as nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12), nylon 610 (N610), nylon 612 (N612), nylon 6/66 copolymer (N6/66), nylon 6/66/610 copolymer (N6/66/610), nylon MXD6 (MxD6), nylon 6T, nylon 6/6T copolymer, nylon 66/PP copolymer, and nylon 66/PPS copolymer. To achieve a low permeation of the completed hose, when using a polyamide resin, or a blend of polyamide resins, the polyamide is preferably non-plasticized. The addition of a plasticizer to the polyamide improves the flexibility of the material; however, it also decreases the permeability characteristics of the nylon. Thus, non-plasticized polyamide are preferred.
  • The [0021] second layer 18 in the barrier layer 14 is a low permeability material differing from the first thermoplastic layer 16. The preferred material is a vinyl resin such as vinyl acetate (EVA), polyvinylalcohol (PVA), vinyl alcohol/ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymer, and vinylidene chloride/methylacrylate copolymer.
  • In constructing the [0022] barrier layer 14, the first layer 16 may be the radially innermost layer or the second layer 18 may be the radially innermost layer. To maintain the required flexibility of the hose 10, each individual resin layer 16, 18, has a radial thickness of 0.001 to 0.005 in (0.025-0.127 mm).
  • The [0023] intermediate layer 20 must be able to bond to the barrier layer. This layer is formed of the same materials suitable for the innermost layer 12.
  • The reinforcing [0024] layer 22 may be formed by braiding, spiraling, knitting, or helical knitting of yarn. The yarn may be selected from conventional hose reinforcing yarns such as glass, steel, cotton, polyester, or aramid fibers, or a blend of any of these fibers.
  • The [0025] cover layer 24 is selected from known hose cover layer materials, including but not limited to nitrile-butadiene rubber (NBR), chlorosulfonated polyethylene rubber (CSM), EPDM, butyl rubbers, chlorinated butyl rubber (Cl-IIR), brominated butyl rubber (Br-IIR), epichlorohydrine rubber, acrylic rubber (AEM), chloroprene rubber (CR), BIMS, and the like. Similar to the core layer 12, the cover may also be formed from thermoplastic elastomers or thermoplastic vulcanizates.
  • The [0026] hose 10 has a permeation rate of not greater than 0.0003 g/cm/day. A permeation rate this low may be considered to be a zero permeation rate. Conventionally, to obtain permeation rates this low, a thin metallic layer is employed in the hose. The present invention achieves a very low, to zero, permeation rate without the use of a metallic foil or layer within the hose.
  • A second embodiment of the present invention is illustrated in FIG. 2. The [0027] hose 10′ has an innermost layer 12, a barrier layer 14, an adjacent elastomeric friction layer 20, a reinforcing layer 22, and a cover layer 24. In this embodiment, the barrier layer 14 of the hose 10′ has three layers, 16, 18, 16′. The material selected for the radially innermost layer is repeated as the third, and radially outermost layer. Preferably, the middle layer is formed of the material having the lowest permeation rate.
  • A third embodiment of the present invention is illustrated in FIG. 3. In this embodiment, the [0028] hose 10″ has no innermost elastomeric layer 12. Instead, the barrier layer 14 forms the innermost layer and the hose 10″ is a veneer hose. In the illustrated embodiment, the barrier layer is formed of two barrier layers, 16, 18 formed of the materials, and in the manner, discussed above. Similar to the second embodiment, the veneer hose 10″ may also have the barrier layer 14 formed of three layers wherein the innermost barrier layer 16 is repeated, sandwiching the second barrier layer 18.
  • The intended use of the hose, including the intended fluid or gas that will flow through the hose, will determine which of the various disclosed barrier or veneer hose constructions is appropriate. [0029]
  • Construction of the [0030] hose 10 is accomplished in the following manner.
  • The innermost layer is extruded onto either a flexible or fixed mandrel. The barrier layer is formed by co-extruding the different layers simultaneously onto the innermost layer. A multi-layer head is used for the extrusion. When the barrier layer is formed as a three-layer element, a tri-extrusion head is used. When forming the barrier layer as a two layer element, a dual extrusion head or a tri-extrusion, with one silent port, may be used. No adhesive is applied between the different layers as the bonding between the layers is accomplished through melt bonding. [0031]
  • After the barrier layer is formed, either another elastomeric layer is applied or the reinforcement layer is immediately applied. The cover layer is applied last. The formed hose length is then vulcanized to cure the elastomeric layers. The hose length may be cut into definitive lengths either before or after curing. If the hose length is cut prior to curing, then typically, the hose lengths are cured on fixed curve short length mandrels designed to impart a fixed and final configuration to the hose. [0032]
  • Exemplary Hose
  • A hose in accordance with the invention was constructed. The innermost layer was formed of CR. The barrier was formed of three layers: a non-plasticized copolymer of nylon 6 and nylon 66, a middle layer of EVOH, and a repeated layer of the non-plasticized nylon 6,66 copolymer. Each of the barrier layers had a thickness of about 0.002″ (0.007 mm) for a total thickness of about 0.006″ (0.024 mm) Outward of the barrier layer, another layer of CR was applied. A reinforcing layer of polyester was applied. The cover layer was formed of a butyl rubber. [0033]
  • Comparative 1
  • A commercially available, low-permeation rate hose was procured. The hose has an innermost layer of CR, a barrier layer of a plasticized nylon 6-66 copolymer, an NBR friction layer, polyester reinforcement, and a cover layer of chloro-butyl rubber. This hose is the Goodyear Galaxy 534-860-013 hose sold by The Goodyear Tire & Rubber Company. [0034]
  • Comparative 2
  • A second commercially available, low permeation hose was procured. The hose has an innermost layer of CR, a barrier layer of non-plasticized nylon 6-66 copolymer, a CR friction layer, polyester reinforcement, and a cover layer of chloro-butyl rubber. This hose is the Goodyear Galaxy 534-890-013 hose sold by The Goodyear Tire & Rubber Company. [0035]
  • The three hoses where cut into sections and tested for permeation rates. The permeation test was performed by sealing at least one end of the hose section, introducing a refrigerant fluid into the hose, and then sealing the open end of the hose. The total weight of the hose and contained fluid is measured. The hose section is then left in an ambient environment at 90° C. The weight of the hose is measured every day for two weeks, and then every other day for another week. The permeation rate is then calculated based on the weight loss per section length per day for the last five days (steady state). [0036]
  • The results of the permeation rates of the inventive hose and the two comparative hoses are shown in FIG. 4. [0037] Comparative hose 1 showed a permeation rate of 0.0064 g/in/day (2.52×10−3 g/cm/day). Comparative hose 2 showed a permeation rate of 0.0013 g/in/day (5.12×10−4 g/cm/day). The inventive hose showed a permeation rate of 0.0001 g/in/day (3.94×10−5 g/cm/day). The inventive hose exhibits a significant improvement in low permeation compared to the other hoses.
  • This hose has been described as being useful for refrigerants, including but not limited to R134A, but is also useful for other types of fluids or gases, such as CO[0038] 2.
  • Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims. [0039]

Claims (10)

What is claimed is:
1. A hose comprising an inner barrier layer, a radially outer intermediate layer, a reinforcing layer, and a cover layer, wherein the barrier layer is formed of at least two resin layer and wherein the two resin layers are formed of two different materials and at least one of the resin layers is a vinyl resin.
2. A hose in accordance with claim 1 wherein the hose is further comprised of an elastomeric layer radially inward of the barrier layer.
3. A hose in accordance with claim 1 wherein the barrier layer is the radially innermost layer of the hose.
4. A hose in accordance with claim 1 wherein the barrier layer is formed of three resin layers.
5. A hose in accordance with claim 4 wherein the radially innermost resin layer and the radially outermost resin layer are formed of the same resin material.
6. A hose in accordance with claim 1 wherein the vinyl resin is selected from the group consisting of vinyl acetate (EVA), polyvinylalcohol (PVA), vinyl alcohol/ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymer, and vinylidene chloride/methylacrylate copolymer.
7. A hose in accordance with claim 1 wherein the non-vinyl resin barrier layer is formed of a material selected from the group consisting of polyolefin thermoplastic resins or polyamide thermoplastic resins.
8. A hose in accordance with claim 1 wherein the hose has a permeation rate of not greater than 0.0003 g/cm/day.
9. A hose in accordance with claim 1 wherein each resin layer in the barrier layer has a radial thickness of 0.001 to 0.005 in (0.025 to 0.127 mm).
10. A hose in accordance with claim 1 wherein the intermediate layer is formed of a material from the group consisting of chloroprene rubbers, nitrile rubbers, ethylene-propylene rubber, ethylene propylene diene rubber (EPDM), butyl rubbers (IIR, CIIR, BIIR), chlorosulfonated polyethylene rubber (CSM), ethylene-acrylic copolymer rubber (AEM), chlorinated polyethylene rubber (CPE), brominated isobutylene-paramethylstyrene (BIMS), thermoplastic elastomers, and thermoplastic vulcanizates.
US10/230,035 1981-01-27 2002-08-28 Refrigerant hose Abandoned US20040040607A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/230,035 US20040040607A1 (en) 2002-08-28 2002-08-28 Refrigerant hose
MXPA03007254A MXPA03007254A (en) 2002-08-28 2003-08-14 Refrigerant hose.
BRPI0303412-7A BRPI0303412B1 (en) 2002-08-28 2003-08-21 Soda hose
EP03102635A EP1393889A1 (en) 2002-08-28 2003-08-22 Refrigerant hose
DE20321380U DE20321380U1 (en) 1981-01-27 2003-08-22 Hose for use in vehicle, industrial and residential refrigerant systems comprises barrier layer including resin layers formed of vinyl resin
CNB031553613A CN100354121C (en) 2002-08-28 2003-08-28 Frigrant hose
US10/733,147 US6941975B2 (en) 2002-08-28 2003-12-11 Refrigerant hose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/230,035 US20040040607A1 (en) 2002-08-28 2002-08-28 Refrigerant hose

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/733,147 Continuation-In-Part US6941975B2 (en) 2002-08-28 2003-12-11 Refrigerant hose

Publications (1)

Publication Number Publication Date
US20040040607A1 true US20040040607A1 (en) 2004-03-04

Family

ID=31495365

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/230,035 Abandoned US20040040607A1 (en) 1981-01-27 2002-08-28 Refrigerant hose
US10/733,147 Expired - Lifetime US6941975B2 (en) 2002-08-28 2003-12-11 Refrigerant hose

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/733,147 Expired - Lifetime US6941975B2 (en) 2002-08-28 2003-12-11 Refrigerant hose

Country Status (5)

Country Link
US (2) US20040040607A1 (en)
EP (1) EP1393889A1 (en)
CN (1) CN100354121C (en)
BR (1) BRPI0303412B1 (en)
MX (1) MXPA03007254A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217745A1 (en) * 2004-03-31 2005-10-06 Toyoda Gosei Co., Ltd Fuel tube
US20050224128A1 (en) * 2004-04-08 2005-10-13 Manuli Automotive S.P.A. Hose with high flexibility and heat resistance, and low permeability
US20060260706A1 (en) * 2005-05-23 2006-11-23 Ivg Colbachini S.P.A. Flexible hose for fuels and method for making it
US20070227606A1 (en) * 2006-03-28 2007-10-04 Kazushige Sakazaki Corrugated Hose for Transporting Fluid and Method for Producing the Same
US20080072987A1 (en) * 2006-09-27 2008-03-27 Denso Corporation Refrigerant transporting hose and manufacturing method therefor
US20090000684A1 (en) * 2007-06-28 2009-01-01 Nissan Motor Co., Ltd. Multi-layer hose
US20100300571A1 (en) * 2009-06-01 2010-12-02 The Gates Corporation Low-Permeation Flexible Fuel Hose
US20110226375A1 (en) * 2009-06-01 2011-09-22 The Gates Corporation Low-Permeation Flexible Fuel Hose
US20130126031A1 (en) * 2010-08-30 2013-05-23 Contitech Kuehner Gmbh & Cie Kg Hose having a low permeation rate, in particular a hose for a high temperature coolant, and method for producing same
US20150274009A1 (en) * 2014-03-25 2015-10-01 Magna Steyr Fuel Systems Gesmbh Filling device and method for manufacturing a filling device
US20170365988A1 (en) * 2016-06-15 2017-12-21 Tubigomma Deregibus S.R.L. Multilayer containment and protection tube for conduits, cables and the like
CN113795382A (en) * 2019-03-11 2021-12-14 康蒂泰克化学技术有限公司 Refrigerant hose
US20220268376A1 (en) * 2018-08-21 2022-08-25 TI Automotive (Fuldabrück) GmbH Multilayer motor vehicle temperature control tube
US11655920B2 (en) 2020-03-06 2023-05-23 TI Automotive (Fuldabrück) GmbH Multilayer motor vehicle pipeline

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064909A1 (en) * 2002-01-25 2003-08-07 Natvar Holdings, Inc. Co-extruded tubing
BRPI0402583A (en) * 2003-07-11 2005-05-31 Goodyear Tire & Rubber Refrigerant hose
DE102004025919A1 (en) * 2004-05-27 2005-12-22 Veritas Ag Shaped body with vapor-sputtering layers
ITTO20050370A1 (en) * 2005-05-31 2006-12-01 Errecinque S R L MULTILAYER PIPE FOR AIR CONDITIONING AND REFRIGERATION SYSTEMS
US7913719B2 (en) * 2006-01-30 2011-03-29 Cooligy Inc. Tape-wrapped multilayer tubing and methods for making the same
JP4626624B2 (en) * 2006-03-28 2011-02-09 東海ゴム工業株式会社 Heat resistant air hose
JP2008008486A (en) * 2006-05-31 2008-01-17 Tokai Rubber Ind Ltd Refrigerant transportation hose
US7478654B2 (en) * 2006-08-17 2009-01-20 Veyance Technologies, Inc. Hose
US20080087350A1 (en) * 2006-10-12 2008-04-17 Tokai Rubber Industries, Ltd. Refrigerant-transporting hose
DE102007009906A1 (en) * 2007-02-28 2008-09-04 Veritas Ag Charge air hose
US7568505B2 (en) * 2007-03-23 2009-08-04 Tokai Rubber Industries, Ltd. Fuel hose
EP1974903A1 (en) * 2007-03-29 2008-10-01 Tokai Rubber Industries, Ltd. Low gas-permeable hose
US20090123683A1 (en) * 2007-11-09 2009-05-14 Miller Lance D Low-Permeation Flexible Fuel Hose
US8844580B2 (en) * 2009-03-31 2014-09-30 Parker-Hannifin Corporation Low fluid permeation rubber hose
CN101782169A (en) * 2010-04-06 2010-07-21 文谟统 Air-conditioning pipe made of THV fluoride material for conveying novel environment-friendly refrigerant
EP2576203B1 (en) 2010-06-01 2014-07-09 The Gates Corporation Low-permeation flexible fuel hose
CN102996912B (en) * 2012-10-19 2016-05-11 芜湖市鑫海橡塑制品有限责任公司 High pressure dynamic steering tube
EP2727719A1 (en) * 2012-10-31 2014-05-07 Veyance Technologies, Inc. Refrigerant hose
US9841125B2 (en) 2013-09-16 2017-12-12 Eaton Corporation Hose with rubber and plastic
US20150075665A1 (en) * 2013-09-17 2015-03-19 Veyance Technologies, Inc. Refrigerant hose with metal foil layer
US20170066227A1 (en) * 2014-03-05 2017-03-09 Nupi Industrie Italiane S.P.A. Multilayer tube and use thereof for fluid transportation at medium pressure
CN104455802A (en) * 2014-10-14 2015-03-25 青岛三祥科技股份有限公司 High-temperature-resistant and refrigerant-resistant air conditioner hose
FR3046827B1 (en) * 2016-01-15 2018-05-25 Arkema France MULTILAYER TUBULAR STRUCTURE HAVING IMPROVED RESISTANCE TO EXTRACTION IN BIO-GASOLINE AND USE THEREOF
FR3046826B1 (en) * 2016-01-15 2018-05-25 Arkema France MULTILAYER TUBULAR STRUCTURE HAVING IMPROVED RESISTANCE TO EXTRACTION IN BIO-GASOLINE AND USE THEREOF
US11104052B2 (en) 2018-09-07 2021-08-31 Contitech Schlauch Gmbh Increased rubber-to-nylon adhesion by ozone treatment
US10837580B2 (en) 2018-09-07 2020-11-17 Contitech Schlauch Gmbh Flexible air conditioning barrier or veneer suction hose
CN109114320A (en) * 2018-10-08 2019-01-01 成都毅诚机电工程有限公司 A kind of air conditioning hose of osmotic-pressure-tolerant
CN109185572A (en) * 2018-10-08 2019-01-11 成都毅诚机电工程有限公司 A kind of ageing-resistant air conditioning hose
WO2021018413A1 (en) * 2019-07-31 2021-02-04 Eaton Intelligent Power Limited Low permeation type c air conditioning hose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476121A (en) * 1990-09-25 1995-12-19 Bridgestone Corporation Low permeable rubber hose
US6536479B2 (en) * 2001-05-30 2003-03-25 The Goodyear Tire & Rubber Company Refrigerant hose
US6555243B2 (en) * 2000-06-09 2003-04-29 Ems-Chemie Ag Thermoplastic multilayer composites

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3510395A1 (en) * 1985-03-22 1986-09-25 Technoform Caprano + Brunnhofer KG, 3501 Fuldabrück Fuel-carrying line which can be installed fixed with a predetermined length for a motor vehicle
US4603712A (en) * 1985-03-29 1986-08-05 The Gates Rubber Company Compounded polychloroprene formulation used as an adhesive layer in the manufacture of elastomeric articles
US4633912A (en) 1985-05-31 1987-01-06 The Goodyear Tire & Rubber Company Hose construction
JPH0140391Y2 (en) 1985-06-05 1989-12-04
JPH0697076B2 (en) * 1986-12-16 1994-11-30 横浜ゴム株式会社 Low permeability hose
US4907625A (en) * 1987-12-28 1990-03-13 Tokai Rubber Industries, Ltd. Refregerant transporting hose
JPH072403B2 (en) * 1988-06-06 1995-01-18 東海ゴム工業株式会社 Refrigerant transport hose
JPH0615914B2 (en) * 1988-10-18 1994-03-02 東海ゴム工業株式会社 Refrigerant transport hose
DE4001125C1 (en) * 1989-11-20 1990-12-13 Technoform Caprano + Brunnhofer Kg, 3501 Fuldabrueck, De
JP2578705B2 (en) * 1992-03-30 1997-02-05 東海ゴム工業株式会社 Resin tube for fuel pipe and method of manufacturing the same
DE4214383C2 (en) 1992-04-30 1996-08-14 Inventa Ag Coextruded multilayer polymer tube
US5488975A (en) 1992-06-16 1996-02-06 Heatway Systems, Inc. Multiple layer flexible hose construction incorporating gas barrier
US5427831B1 (en) * 1993-11-12 1998-01-06 Du Pont Fluoropolymer laminates
US5707701A (en) 1994-08-31 1998-01-13 Bridgestone Corporation Resin/rubber laminate
US5679425A (en) * 1994-11-23 1997-10-21 Plumley Companies, Inc. Hose for fuel handling systems
US5639528A (en) * 1995-04-24 1997-06-17 The Goodyear Tire & Rubber Company Hose construction containing fluoroplastic terpolymers
US6166143A (en) 1996-11-06 2000-12-26 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition, hose comprising thermoplastic elastomer composition and process of production thereof
FR2759018B1 (en) * 1997-02-05 1999-05-14 Hutchinson THERMOPLASTIC-ELASTOMERIC COMPOSITE PRODUCT, SUCH FOR EXAMPLE AS A REFRIGERANT TRANSPORT HOSE FOR AN AIR CONDITIONING CIRCUIT
US6257281B1 (en) * 1998-02-13 2001-07-10 Itt Manufacturing Enterprises, Inc. Multi-layer tubing having at least one intermediate layer formed from a polyamide alloy
US5957164A (en) * 1998-09-10 1999-09-28 Aeroquip Corporation Refrigerant hose
JP2000179758A (en) 1998-12-16 2000-06-27 Tokai Rubber Ind Ltd Coolant hose for electric compressor
JP2000205458A (en) 1999-01-11 2000-07-25 Tokai Rubber Ind Ltd Hose for carbon dioxide refrigerant transport
JP3571578B2 (en) 1999-05-20 2004-09-29 丸五ゴム工業株式会社 Multilayer fuel hose
US6279615B1 (en) 1999-09-03 2001-08-28 Tokai Rubber Industries, Ltd. Fuel hose
US20010006712A1 (en) 1999-12-27 2001-07-05 Motoshige Hibino Hose of impermeability and a process for manufacturing the same
JP2001263544A (en) * 2000-03-21 2001-09-26 Tokai Rubber Ind Ltd Impermeable composite hose
US6619329B2 (en) 2000-10-03 2003-09-16 Tokai Rubber Industries, Ltd. Hose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476121A (en) * 1990-09-25 1995-12-19 Bridgestone Corporation Low permeable rubber hose
US6555243B2 (en) * 2000-06-09 2003-04-29 Ems-Chemie Ag Thermoplastic multilayer composites
US6536479B2 (en) * 2001-05-30 2003-03-25 The Goodyear Tire & Rubber Company Refrigerant hose

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050217745A1 (en) * 2004-03-31 2005-10-06 Toyoda Gosei Co., Ltd Fuel tube
US7308912B2 (en) * 2004-03-31 2007-12-18 Toyoda Gosei Co., Ltd. Fuel tube
US20050224128A1 (en) * 2004-04-08 2005-10-13 Manuli Automotive S.P.A. Hose with high flexibility and heat resistance, and low permeability
US20060260706A1 (en) * 2005-05-23 2006-11-23 Ivg Colbachini S.P.A. Flexible hose for fuels and method for making it
US7347226B2 (en) * 2005-05-23 2008-03-25 Ivg Colbachini S.P.A. Flexible hose for fuels and method for making it
US20070227606A1 (en) * 2006-03-28 2007-10-04 Kazushige Sakazaki Corrugated Hose for Transporting Fluid and Method for Producing the Same
US20080072987A1 (en) * 2006-09-27 2008-03-27 Denso Corporation Refrigerant transporting hose and manufacturing method therefor
US20090000684A1 (en) * 2007-06-28 2009-01-01 Nissan Motor Co., Ltd. Multi-layer hose
US9592648B2 (en) 2009-06-01 2017-03-14 Gates Corporation Low-permeation flexible fuel hose
US20110226375A1 (en) * 2009-06-01 2011-09-22 The Gates Corporation Low-Permeation Flexible Fuel Hose
US20100300571A1 (en) * 2009-06-01 2010-12-02 The Gates Corporation Low-Permeation Flexible Fuel Hose
US20130126031A1 (en) * 2010-08-30 2013-05-23 Contitech Kuehner Gmbh & Cie Kg Hose having a low permeation rate, in particular a hose for a high temperature coolant, and method for producing same
EP2611602A1 (en) * 2010-08-30 2013-07-10 ContiTech Kühner GmbH & Cie. KG Hose having a low permeation rate, in particular a hose for a high temperature coolant, and method for producing same
US8800604B2 (en) * 2010-08-30 2014-08-12 Contitech Kuehner Gmbh & Cie Kg Hose having a low permeation rate, in particular a hose for a high temperature coolant, and method for producing same
US20150274009A1 (en) * 2014-03-25 2015-10-01 Magna Steyr Fuel Systems Gesmbh Filling device and method for manufacturing a filling device
US9428045B2 (en) * 2014-03-25 2016-08-30 Magna Steyr Fuel Systems Gesmbh Filling device and method for manufacturing a filling device
US20170365988A1 (en) * 2016-06-15 2017-12-21 Tubigomma Deregibus S.R.L. Multilayer containment and protection tube for conduits, cables and the like
US10483732B2 (en) * 2016-06-15 2019-11-19 Tubigomma Deregibus S.R.L. Multilayer containment and protection tube for conduits, cables and the like
US20220268376A1 (en) * 2018-08-21 2022-08-25 TI Automotive (Fuldabrück) GmbH Multilayer motor vehicle temperature control tube
CN113795382A (en) * 2019-03-11 2021-12-14 康蒂泰克化学技术有限公司 Refrigerant hose
US11655920B2 (en) 2020-03-06 2023-05-23 TI Automotive (Fuldabrück) GmbH Multilayer motor vehicle pipeline

Also Published As

Publication number Publication date
EP1393889A1 (en) 2004-03-03
BR0303412A (en) 2004-09-08
MXPA03007254A (en) 2004-03-05
US20040118469A1 (en) 2004-06-24
CN1488495A (en) 2004-04-14
BRPI0303412B1 (en) 2015-07-07
US6941975B2 (en) 2005-09-13
CN100354121C (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US6941975B2 (en) Refrigerant hose
US20070048475A1 (en) Refrigerant hose
EP1125080B1 (en) Refrigerant hose
US7478654B2 (en) Hose
US20140116562A1 (en) Refrigerant hose
KR960006172B1 (en) Hose
US4881576A (en) Hose for transport of refrigerant fluids and fuel oils
CN101855075B (en) Hose for transporting refrigerant
US6648023B2 (en) Low permeable hose and method for producing the same
JPH034090A (en) Hose for transporting refrigerant
US6536479B2 (en) Refrigerant hose
KR19990081837A (en) Refrigerant transport hose
JP2005030598A (en) Hose for refrigerant
US11104052B2 (en) Increased rubber-to-nylon adhesion by ozone treatment
EP0694140A1 (en) Hose for refrigerating systems
JP3806974B2 (en) Refrigerant transport hose
JP2001241572A (en) Rubber hose and manufacturing process of rubber hose
JPH0222050A (en) Refrigerant transport hose
JP4691913B2 (en) Dimethyl ether transport hose
DE20321380U1 (en) Hose for use in vehicle, industrial and residential refrigerant systems comprises barrier layer including resin layers formed of vinyl resin
JPH02173491A (en) Refrigerant transporting hose
JP2004232728A (en) Transport hose for carbon dioxide refrigerant
JP2001030365A (en) Low gas-permeable coolant hose
JP2000002375A (en) Rubber hose and its manufacture
EP3085527A1 (en) Flexible multi-layer hose

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION