US20040035122A1 - Refrigeration system employing multiple economizer circuits - Google Patents

Refrigeration system employing multiple economizer circuits Download PDF

Info

Publication number
US20040035122A1
US20040035122A1 US10/224,759 US22475902A US2004035122A1 US 20040035122 A1 US20040035122 A1 US 20040035122A1 US 22475902 A US22475902 A US 22475902A US 2004035122 A1 US2004035122 A1 US 2004035122A1
Authority
US
United States
Prior art keywords
refrigerant
low pressure
high pressure
passage
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/224,759
Other versions
US6694750B1 (en
Inventor
Alexander Lifson
Yan Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Priority to US10/224,759 priority Critical patent/US6694750B1/en
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIFSON, ALEXANDER, TANG, YAN
Application granted granted Critical
Publication of US6694750B1 publication Critical patent/US6694750B1/en
Publication of US20040035122A1 publication Critical patent/US20040035122A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates generally to a refrigeration system employing multiple economizer circuits to increase capacity and efficiency of the refrigeration system.
  • System capacity can be increased by increasing the subcooling of the refrigerant leaving the condenser.
  • the amount of subcooling typically ranges from 0 to 15° F.
  • An economizer can be employed to additionally subcool the liquid refrigerant exiting the condenser, increasing the capacity and efficiency of the refrigeration system.
  • the refrigerant is split into two flow paths after leaving the condenser.
  • the first flow path is expanded to a low pressure by an expansion valve prior to passing into the economizer heat exchanger.
  • the second flow path flows directly into the economizer heat exchanger and is cooled by the refrigerant in the first flow path.
  • the refrigerant from the first path then flows along an economizer return path and is injected through economizer ports into the compressor.
  • the vapor refrigerant in the second path is then expanded by a main expansion valve.
  • the multiple stage economizer refrigeration system of the present invention includes a compressor, a condenser, a high pressure economizer circuit, a low pressure economizer circuit, expansion valves, and an evaporator. After the refrigerant exits the condenser, the refrigerant splits into two flow paths. The first path of refrigerant is expanded to a lower pressure in an expansion valve prior to flowing into the high pressure economizer heat exchanger. Refrigerant from the main path flows through the high pressure economizer heat exchanger and is cooled by the refrigerant in the first path. The refrigerant in the first path is returned to the compressor through the high pressure economizer port.
  • the refrigerant from the main path After being cooled in the high pressure economizer, the refrigerant from the main path again splits into two flow paths. Refrigerant in the second path is expanded to a low pressure in an expansion valve prior to flowing into the low pressure economizer heat exchanger. Refrigerant from the main path passes through the low pressure economizer heat exchanger and is cooled by the refrigerant in the second path. The refrigerant from the second path is returned to the compressor through the low pressure economizer port.
  • additional subcooling of the main flow of the refrigerant is accomplished by subcooling in two stages. For even greater subcooling benefits, more than to stages can be implemented.
  • the refrigerant After being cooled in the low pressure economizer heat exchanger, the refrigerant is expanded in the main expansion valve, heated in the evaporator, and enters the compressor at the suction port. After compression, the refrigerant is discharged through the discharge port.
  • the multiple economizer refrigeration system can be employed in a screw compressor or a scroll compressor.
  • the screw compressor includes a male rotor including a plurality of helical threads and a pair of opposing female rotors each including a plurality of helical threads.
  • the helical threads of the male rotor engage the helical threads of the female rotors to create two sets of compression chambers.
  • One set of compression chambers communicates with refrigerant from the high pressure economizer, and the other set of compression chambers communicates with refrigerant from the low pressure economizer.
  • a scroll compressor is employed in the multiple economizer refrigeration system.
  • Vapor refrigerant from the low pressure economizer is injected into the scroll compressor through a pair of low pressure injections ports.
  • the low pressure ports are located such that vapor injection initiates shortly after the suction port is covered and the compression chambers are sealed from suction.
  • Vapor refrigerant from the high pressure economizer is injected into the scroll compressor through a high pressure injection port.
  • the high pressure injection port is located proximate to the discharge port. Refrigerant injection through the high pressure injection port and the low pressure injection ports occurs into separate scroll compressor pockets.
  • FIG. 1 illustrates a schematic diagram of a prior art refrigeration system employing a single economizer circuit
  • FIG. 2 illustrates a graph relating pressure to enthalpy for the prior art refrigeration system of FIG. 1;
  • FIG. 3 illustrates a schematic diagram of the refrigeration system of the present invention employing dual economizer circuits
  • FIG. 4 illustrates a graph relating pressure to enthalpy for the refrigeration system of FIG. 4;
  • FIG. 5 illustrates a cross sectional view of a screw compressor employed in a refrigerant system utilizing dual economizers taken along line 5 - 5 of FIG. 6;
  • FIG. 6 illustrates a top view of the screw compressor of FIG. 5
  • FIG. 7 illustrates a scroll compressor employed in a refrigerant system utilizing dual economizers when injection of refrigerant begins
  • FIG. 8 illustrates the scroll compressor of FIG. 7 when injection of the refrigerant from the low pressure economizer is still in progress, and injection of refrigerant from the high pressure economizer is almost complete.
  • FIG. 1 illustrates a schematic diagram of a prior art single economizer refrigeration system 20 .
  • the system 20 includes a compressor 22 , a condenser 24 , a main expansion device 26 , an evaporator 28 , and an economizer heat exchanger 30 .
  • Refrigerant circulates though the closed circuit system 20 . After the refrigerant exits the compressor 22 through the discharge port 42 at high pressure and enthalpy, the refrigerant loses heat in the condenser 24 , exiting at lower enthalpy and high pressure. The refrigerant then splits into two flow paths 32 and 34 .
  • Refrigerant in path 34 is expanded to a low pressure in the expansion valve 36 prior to flowing through the economizer heat exchanger 30 .
  • Refrigerant in path 32 flows through the economizer heat exchanger 30 , it is cooled by the refrigerant in path 34 .
  • Refrigerant in path 34 from the economizer heat exchanger 30 is returned along the economizer return path 56 to the compressor 22 through the economizer port 38 at a pressure between the suction pressure and the discharge pressure.
  • the refrigerant in line 32 is expanded by the main expansion device 26 and then heated in the evaporator 28 .
  • the refrigerant enters the compressor 22 at the suction port 40 .
  • this refrigerant mixes with the refrigerant from the return path 56 .
  • a graph relating enthalpy to pressure for the refrigeration system 20 is illustrated in FIG. 2.
  • the length of the evaporation line 29 illustrates the cooling capacity of the system 20 .
  • FIG. 3 illustrates a schematic diagram of the refrigeration system 120 of the present invention employing dual economizer heat exchangers 133 a and 133 b .
  • the system 120 includes a compressor 122 , a condenser 124 , a high pressure economizer heat exchanger 133 a , a low pressure economizer heat exchanger 133 b , an expansion valve 126 , and an evaporator 128 .
  • the refrigerant After the refrigerant exits the compressor 122 at high pressure and enthalpy through the discharge port 142 , the refrigerant loses heat in the condenser 124 , exiting the condenser 124 at low enthalpy and high pressure.
  • the refrigerant then splits into two flow paths 132 a and 134 a .
  • Refrigerant in path 134 a is expanded to a low pressure by the low pressure expansion valve 136 a prior to flowing through the economizer heat exchanger 133 a .
  • Refrigerant in the path 132 a flows through the high pressure economizer heat exchanger 133 a , it is cooled by the refrigerant in path 134 a .
  • Refrigerant from the economizer heat exchanger 133 a is returned along the economizer return path 156 a to the compressor 122 through the high pressure economizer port 138 a for compression in compression chambers 148 a.
  • the refrigerant in path 132 a splits into two flow paths 132 b and 134 b .
  • Refrigerant in path 134 b is expanded to a low pressure by the low pressure expansion valve 136 b prior to flowing through the low pressure economizer heat exchanger 133 b .
  • the refrigerant in the path 132 b flows through the low pressure economizer heat exchanger 133 b , it is cooled by the refrigerant in path 134 b .
  • Refrigerant in path 134 b from the economizer heat exchanger 133 b is returned along the economizer return path 156 b to the compressor 122 through the low pressure economizer port 138 b for compression in compression chambers 148 b.
  • Refrigerant from path 132 b is then expanded in the main expansion valve 126 .
  • the main expansion valve 126 as well as the high pressure and low pressure expansion valves 136 a and 136 b , can be electronic EXV (electric expansion vales) or TXV valves.
  • the refrigerant After evaporation in the evaporator 128 , the refrigerant enters the compressor 122 through the suction port 140 .
  • Refrigerant from the paths 134 a and 134 b enters the compressor 122 through the high pressure economizer port 138 a and the low pressure economizer port 138 b , respectively, and mixes with the refrigerant in the compressor 122 for compression.
  • the economizer ports 138 a and 138 b communicate with the compression chambers 148 a and 148 b , respectively, which are each at a pressure which varies during the compression cycle of the compressor 122 .
  • the refrigerant from the economizer heat exchangers 133 a and 133 b which flows in the compression chambers 148 a and 148 b must remain separate at the point of injection in the compressor 122 .
  • both of the economizer heat exchangers 133 a and 133 b are engaged.
  • either of the economizer heat exchangers 133 a and 133 b can be disengaged by shutting off the expansions valves 136 a and 136 b , respectively.
  • Both of the economizer heat exchangers 133 a and 133 b can be disengaged for non-economized operation by shutting off both of the expansion valves 136 a and 136 b.
  • a first solenoid valve 144 a regulates the flow of refrigerant between the high pressure economizer port 138 a and the low pressure economizer port 138 b .
  • a second solenoid valve 144 b regulates the flow of refrigerant between the low pressure economizer port 138 b and the compressor suction port 140 .
  • the solenoid valves 144 a and 144 b can be opened or closed depending on system 120 requirements to achieve steps of compressor 122 or system 120 unloading. By opening the solenoid valves 144 a and 144 , the refrigerant flow from both the high pressure and the low pressure economizer ports 138 a and 138 b can be by-passed into the suction port 140 to reduce cooling. Alternately, by opening the solenoid valve 144 a and closing the solenoid valve 144 b , the refrigerant flow from the high pressure economizer port 138 a can be by-passed into the economizer port 138 b . Alternately, by closing the solenoid valve 144 a and opening the solenoid valve 144 b , the refrigerant flow from the low pressure economizer port 138 b can be bypassed into suction line 166 .
  • FIG. 4 illustrates a graph relating enthalpy to pressure for the refrigeration system 120 of FIG. 3 employing dual economizer heat exchangers 133 a and 133 b .
  • the evaporation line 129 of the refrigerant system 120 is longer than the evaporation line 29 of the refrigeration system 20 employing one economizer 30 (illustrated in FIG. 2). This indicates that the refrigeration system 120 employing dual economizers 133 a and 133 b has a greater cooling capacity than the refrigeration system 20 employing a single economizer 30 .
  • FIG. 5 illustrates a cross-sectional view of a tri-rotor screw compressor 222 employed in the dual economizer system 120 of the present invention.
  • the screw compressor 222 includes a housing 244 having a central portion 246 c and a pair of opposing portions 246 a and 246 b .
  • the central portion 246 c houses a male rotor 248 c including a plurality of helical threads 250 c .
  • the opposing portions 246 a and 246 b each house a female rotor 248 b and 248 b , each including a plurality of helical threads 253 a and 253 b , respectively.
  • the helical threads 250 c of the male rotor 248 c engage the helical threads 253 b of the female rotors 248 b and 248 b , respectively, to create high pressure compression chambers 252 a and low pressure compression chambers 252 b , respectively.
  • Refrigerant from the high pressure economizer 133 a enters the compressor 222 through the high pressure economizer port 238 b and is compressed in the high pressure compression chambers 252 a .
  • Refrigerant from the low pressure economizer 133 b enters the compressor 222 through the low pressure economizer port 238 b and is compressed in the low pressure compression chambers 252 b .
  • the refrigerant from the economizer heat exchangers 133 a and 133 b is injected into the compressor 222 through separate economizer ports 238 a and 238 b , respectively, the refrigerant from the economizers 133 a and 133 b remains separate at the point of injection into the compressor 222 .
  • the refrigerant splits into two streams. As shown in FIG. 6, one stream enters the suction port 254 a for compression in the compression chambers 252 a with the refrigerant from the high pressure economizer 133 a , and the other stream enters suction port 254 b for compression in the compression chambers 252 b with refrigerant from the low pressure economizer 133 b . After compression, the refrigerant in the compression chambers 252 a and 252 b is discharged through the discharge ports 242 a and 242 b , respectively, for condensation.
  • the low pressure economizer port 238 b is positioned closer to the suction ports 254 a and 254 b
  • the high pressure economizer port 238 b is positioned closer to the discharge ports 254 a and 254 b.
  • FIG. 7 illustrates a scroll compressor 322 employed in the refrigeration system 120 employing dual economizer heat exchangers 133 a and 133 b .
  • the scroll compressor 322 includes a non-orbiting scroll 344 , an orbiting scroll 346 , and a plurality of compression chambers 348 b and 348 b defined therebetween.
  • Vapor refrigerant from the low pressure economizer heat exchanger 133 b is injected into a pair of compression chambers 348 b of the scroll compressor 322 through a pair of low pressure injections ports 338 b .
  • Vapor refrigerant from the high pressure economizer heat exchanger 133 a is injected into the compression chambers 348 b of the scroll compressor 322 through a high pressure injection port 338 a .
  • the high pressure injection port 338 b is located proximate to the discharge port 342 .
  • the injection ports 338 b and 338 b typically extend through the body of the fixed scrolls 344 and into the compression chambers 348 b and 348 b , respectively.
  • FIG. 7 illustrates the position of scroll compressor 322 when injection of refrigerant from the dual economizer heat exchangers 133 a and 133 b begins.
  • the injection ports 338 b and 338 b have just opened to allow the vapor refrigerant from each economizer heat exchanger 133 a and 133 b to enter the compression chambers 348 b and 348 b , respectively.
  • FIG. 8 illustrates the position of the scroll compressor 322 when refrigerant injection from the low pressure economizer 133 b into the compression chambers 348 b is still in progress and refrigerant injection from the high pressure economizer 133 a into the compression chamber 348 b is almost complete.
  • the high pressure injection port 338 b is separated from the discharge port 342 as the high pressure injection port 338 b is still covered by the orbiting scroll 346 prior to the initiation of the discharge process through a discharge valve that may cover the discharge port.
  • the scroll compressor 322 can alternatively include additional injection ports and compression chambers to allow for three ore more economizer heat exchangers. If three economizers are to be employed, the scroll compressor 322 will preferably have more than 2.5 turns.
  • a higher operating efficiency is possible employing multiple economizer heat exchangers 133 a and 133 b .
  • an increase in refrigeration capacity is possible.
  • Compressor reliability is also improved due to a decrease in the discharge temperature.
  • Control of system capacity is also increased by alternating the engagement of economizer circuits, as well as initiating bypass operation between the economizer circuits or between any of the economizer circuits and suction line.

Abstract

The refrigeration system of the present invention includes multiple economizer circuits. After flowing through the condenser, a first path of refrigerant is split from the main path. The refrigerant in the first path is expanded to a lower pressure and cools the refrigerant in the main path in the high pressure economizer heat exchanger. The refrigerant in the first path then returns to the compressor in a high pressure economizer port. A second path of refrigerant is then split from the main path. The refrigerant in the second flow path is expanded to a lower pressure and cools the refrigerant in the main path in the low pressure economizer heat exchanger. The refrigerant in the second path then return to the compressor in a low pressure economizer port. The refrigerant in the main path is then evaporated. The dual stage economizer refrigeration system can be employed with a screw compressor or a scroll compressor.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates generally to a refrigeration system employing multiple economizer circuits to increase capacity and efficiency of the refrigeration system. [0001]
  • System capacity can be increased by increasing the subcooling of the refrigerant leaving the condenser. In a standard (non-economized) refrigeration system, the amount of subcooling typically ranges from 0 to 15° F. An economizer can be employed to additionally subcool the liquid refrigerant exiting the condenser, increasing the capacity and efficiency of the refrigeration system. [0002]
  • In an economized system, the refrigerant is split into two flow paths after leaving the condenser. The first flow path is expanded to a low pressure by an expansion valve prior to passing into the economizer heat exchanger. The second flow path flows directly into the economizer heat exchanger and is cooled by the refrigerant in the first flow path. The refrigerant from the first path then flows along an economizer return path and is injected through economizer ports into the compressor. The vapor refrigerant in the second path is then expanded by a main expansion valve. By employing an economizer, both system capacity and efficiency is increased. [0003]
  • It would be beneficial to employ multiple economizer circuits to further increase the capacity of the refrigeration system. The benefits of employing multiple economizer circuits are especially pronounced for a refrigeration system operating with a high discharge to suction pressure ratio. Multiple economizers have not been employed in prior refrigeration systems as the refrigerant flow from each of the economizers mixes at the point of injection. For example, prior screw compressors include a pair of rotors. As only two rotors are employed, the rotational angle of the compression process is not large enough to prevent vapor communication among the suction port, the low pressure economizer port, the high pressure economizer port, and the discharge port. [0004]
  • SUMMARY OF THE INVENTION
  • The multiple stage economizer refrigeration system of the present invention includes a compressor, a condenser, a high pressure economizer circuit, a low pressure economizer circuit, expansion valves, and an evaporator. After the refrigerant exits the condenser, the refrigerant splits into two flow paths. The first path of refrigerant is expanded to a lower pressure in an expansion valve prior to flowing into the high pressure economizer heat exchanger. Refrigerant from the main path flows through the high pressure economizer heat exchanger and is cooled by the refrigerant in the first path. The refrigerant in the first path is returned to the compressor through the high pressure economizer port. [0005]
  • After being cooled in the high pressure economizer, the refrigerant from the main path again splits into two flow paths. Refrigerant in the second path is expanded to a low pressure in an expansion valve prior to flowing into the low pressure economizer heat exchanger. Refrigerant from the main path passes through the low pressure economizer heat exchanger and is cooled by the refrigerant in the second path. The refrigerant from the second path is returned to the compressor through the low pressure economizer port. Thus, additional subcooling of the main flow of the refrigerant is accomplished by subcooling in two stages. For even greater subcooling benefits, more than to stages can be implemented. [0006]
  • After being cooled in the low pressure economizer heat exchanger, the refrigerant is expanded in the main expansion valve, heated in the evaporator, and enters the compressor at the suction port. After compression, the refrigerant is discharged through the discharge port. [0007]
  • The multiple economizer refrigeration system can be employed in a screw compressor or a scroll compressor. The screw compressor includes a male rotor including a plurality of helical threads and a pair of opposing female rotors each including a plurality of helical threads. The helical threads of the male rotor engage the helical threads of the female rotors to create two sets of compression chambers. One set of compression chambers communicates with refrigerant from the high pressure economizer, and the other set of compression chambers communicates with refrigerant from the low pressure economizer. [0008]
  • Alternately, a scroll compressor is employed in the multiple economizer refrigeration system. Vapor refrigerant from the low pressure economizer is injected into the scroll compressor through a pair of low pressure injections ports. The low pressure ports are located such that vapor injection initiates shortly after the suction port is covered and the compression chambers are sealed from suction. Vapor refrigerant from the high pressure economizer is injected into the scroll compressor through a high pressure injection port. The high pressure injection port is located proximate to the discharge port. Refrigerant injection through the high pressure injection port and the low pressure injection ports occurs into separate scroll compressor pockets. [0009]
  • These and other features of the present invention will be best understood from the following specification and drawings.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The various features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows: [0011]
  • FIG. 1 illustrates a schematic diagram of a prior art refrigeration system employing a single economizer circuit; [0012]
  • FIG. 2 illustrates a graph relating pressure to enthalpy for the prior art refrigeration system of FIG. 1; [0013]
  • FIG. 3 illustrates a schematic diagram of the refrigeration system of the present invention employing dual economizer circuits; [0014]
  • FIG. 4 illustrates a graph relating pressure to enthalpy for the refrigeration system of FIG. 4; [0015]
  • FIG. 5 illustrates a cross sectional view of a screw compressor employed in a refrigerant system utilizing dual economizers taken along line [0016] 5-5 of FIG. 6;
  • FIG. 6 illustrates a top view of the screw compressor of FIG. 5; [0017]
  • FIG. 7 illustrates a scroll compressor employed in a refrigerant system utilizing dual economizers when injection of refrigerant begins; and [0018]
  • FIG. 8 illustrates the scroll compressor of FIG. 7 when injection of the refrigerant from the low pressure economizer is still in progress, and injection of refrigerant from the high pressure economizer is almost complete.[0019]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 illustrates a schematic diagram of a prior art single [0020] economizer refrigeration system 20. The system 20 includes a compressor 22, a condenser 24, a main expansion device 26, an evaporator 28, and an economizer heat exchanger 30. Refrigerant circulates though the closed circuit system 20. After the refrigerant exits the compressor 22 through the discharge port 42 at high pressure and enthalpy, the refrigerant loses heat in the condenser 24, exiting at lower enthalpy and high pressure. The refrigerant then splits into two flow paths 32 and 34. Refrigerant in path 34 is expanded to a low pressure in the expansion valve 36 prior to flowing through the economizer heat exchanger 30. As the refrigerant in the path 32 flows through the economizer heat exchanger 30, it is cooled by the refrigerant in path 34. Refrigerant in path 34 from the economizer heat exchanger 30 is returned along the economizer return path 56 to the compressor 22 through the economizer port 38 at a pressure between the suction pressure and the discharge pressure. The refrigerant in line 32 is expanded by the main expansion device 26 and then heated in the evaporator 28. The refrigerant enters the compressor 22 at the suction port 40. Downstream, this refrigerant mixes with the refrigerant from the return path 56. A graph relating enthalpy to pressure for the refrigeration system 20 is illustrated in FIG. 2. The length of the evaporation line 29 illustrates the cooling capacity of the system 20.
  • FIG. 3 illustrates a schematic diagram of the [0021] refrigeration system 120 of the present invention employing dual economizer heat exchangers 133 a and 133 b. The system 120 includes a compressor 122, a condenser 124, a high pressure economizer heat exchanger 133 a, a low pressure economizer heat exchanger 133 b, an expansion valve 126, and an evaporator 128. After the refrigerant exits the compressor 122 at high pressure and enthalpy through the discharge port 142, the refrigerant loses heat in the condenser 124, exiting the condenser 124 at low enthalpy and high pressure. The refrigerant then splits into two flow paths 132 a and 134 a. Refrigerant in path 134 a is expanded to a low pressure by the low pressure expansion valve 136 a prior to flowing through the economizer heat exchanger 133 a. As the refrigerant in the path 132 a flows through the high pressure economizer heat exchanger 133 a, it is cooled by the refrigerant in path 134 a. Refrigerant from the economizer heat exchanger 133 a is returned along the economizer return path 156 a to the compressor 122 through the high pressure economizer port 138 a for compression in compression chambers 148 a.
  • After being cooled in the high pressure economizer heat exchanger [0022] 133 a, the refrigerant in path 132 a splits into two flow paths 132 b and 134 b. Refrigerant in path 134 b is expanded to a low pressure by the low pressure expansion valve 136 b prior to flowing through the low pressure economizer heat exchanger 133 b. As the refrigerant in the path 132 b flows through the low pressure economizer heat exchanger 133 b, it is cooled by the refrigerant in path 134 b. Refrigerant in path 134 b from the economizer heat exchanger 133 b is returned along the economizer return path 156 b to the compressor 122 through the low pressure economizer port 138 b for compression in compression chambers 148 b.
  • Refrigerant from [0023] path 132 b is then expanded in the main expansion valve 126. The main expansion valve 126, as well as the high pressure and low pressure expansion valves 136 a and 136 b, can be electronic EXV (electric expansion vales) or TXV valves. After evaporation in the evaporator 128, the refrigerant enters the compressor 122 through the suction port 140. Refrigerant from the paths 134 a and 134 b enters the compressor 122 through the high pressure economizer port 138 a and the low pressure economizer port 138 b, respectively, and mixes with the refrigerant in the compressor 122 for compression.
  • The [0024] economizer ports 138 a and 138 b communicate with the compression chambers 148 a and 148 b, respectively, which are each at a pressure which varies during the compression cycle of the compressor 122. To prevent high pressure to low pressure leak of refrigerant from line 156 a to 156 b, the refrigerant from the economizer heat exchangers 133 a and 133 b which flows in the compression chambers 148 a and 148 b must remain separate at the point of injection in the compressor 122.
  • Multiple steps of [0025] compressor 122 unloading are also possible with the system 120 of the present invention. In one step, both of the economizer heat exchangers 133 a and 133 b are engaged. Alternatively, in additional steps, either of the economizer heat exchangers 133 a and 133 b can be disengaged by shutting off the expansions valves 136 a and 136 b, respectively. Both of the economizer heat exchangers 133 a and 133 b can be disengaged for non-economized operation by shutting off both of the expansion valves 136 a and 136 b.
  • To regulate capacity of the [0026] system 120, two additional solenoid valves 144 a and 144 b may be employed. A first solenoid valve 144 a regulates the flow of refrigerant between the high pressure economizer port 138 a and the low pressure economizer port 138 b. A second solenoid valve 144 b regulates the flow of refrigerant between the low pressure economizer port 138 b and the compressor suction port 140.
  • The [0027] solenoid valves 144 a and 144 b can be opened or closed depending on system 120 requirements to achieve steps of compressor 122 or system 120 unloading. By opening the solenoid valves 144 a and 144, the refrigerant flow from both the high pressure and the low pressure economizer ports 138 a and 138 b can be by-passed into the suction port 140 to reduce cooling. Alternately, by opening the solenoid valve 144 a and closing the solenoid valve 144 b, the refrigerant flow from the high pressure economizer port 138 a can be by-passed into the economizer port 138 b. Alternately, by closing the solenoid valve 144 a and opening the solenoid valve 144 b, the refrigerant flow from the low pressure economizer port 138 b can be bypassed into suction line 166.
  • By controlling the [0028] expansion valves 136 a and 136 b and solenoid valves 144 a and 144 b, the operation of the compressor 122 and system 120 can be adjusted to meet the cooling demands and achieve optimum capacity and efficiency. A worker of ordinary skill in the art would know how to control these valves depending on the system 120 requirements.
  • FIG. 4 illustrates a graph relating enthalpy to pressure for the [0029] refrigeration system 120 of FIG. 3 employing dual economizer heat exchangers 133 a and 133 b. As shown, the evaporation line 129 of the refrigerant system 120 is longer than the evaporation line 29 of the refrigeration system 20 employing one economizer 30 (illustrated in FIG. 2). This indicates that the refrigeration system 120 employing dual economizers 133 a and 133 b has a greater cooling capacity than the refrigeration system 20 employing a single economizer 30.
  • FIG. 5 illustrates a cross-sectional view of a [0030] tri-rotor screw compressor 222 employed in the dual economizer system 120 of the present invention. The screw compressor 222 includes a housing 244 having a central portion 246 c and a pair of opposing portions 246 a and 246 b. The central portion 246 c houses a male rotor 248 c including a plurality of helical threads 250 c. The opposing portions 246 a and 246 b each house a female rotor 248 b and 248 b, each including a plurality of helical threads 253 a and 253 b, respectively. The helical threads 250 c of the male rotor 248 c engage the helical threads 253 b of the female rotors 248 b and 248 b, respectively, to create high pressure compression chambers 252 a and low pressure compression chambers 252 b, respectively. Refrigerant from the high pressure economizer 133 a enters the compressor 222 through the high pressure economizer port 238 b and is compressed in the high pressure compression chambers 252 a. Refrigerant from the low pressure economizer 133 b enters the compressor 222 through the low pressure economizer port 238 b and is compressed in the low pressure compression chambers 252 b. As the refrigerant from the economizer heat exchangers 133 a and 133 b is injected into the compressor 222 through separate economizer ports 238 a and 238 b, respectively, the refrigerant from the economizers 133 a and 133 b remains separate at the point of injection into the compressor 222.
  • After evaporation, the refrigerant splits into two streams. As shown in FIG. 6, one stream enters the [0031] suction port 254 a for compression in the compression chambers 252 a with the refrigerant from the high pressure economizer 133 a, and the other stream enters suction port 254 b for compression in the compression chambers 252 b with refrigerant from the low pressure economizer 133 b. After compression, the refrigerant in the compression chambers 252 a and 252 b is discharged through the discharge ports 242 a and 242 b, respectively, for condensation. As shown, the low pressure economizer port 238 b is positioned closer to the suction ports 254 a and 254 b, and the high pressure economizer port 238 b is positioned closer to the discharge ports 254 a and 254 b.
  • As the [0032] compression chambers 252 a and 252 b are separate and are on opposing sides of the housing 244, there is no communication between the refrigerant from the high pressure economizer 233 a and the refrigerant from the low pressure economizer 233 a. By optimizing the position and size of economizer ports 238 b and 238 b, vapor communication between the compression chambers 252 a and 252 b, the suction ports 243 a and 243 b, and the discharge ports 242 a and 242 b is prevented, allowing for control of the pressure in each economizer 133 a and 133 b.
  • FIG. 7 illustrates a [0033] scroll compressor 322 employed in the refrigeration system 120 employing dual economizer heat exchangers 133 a and 133 b. The scroll compressor 322 includes a non-orbiting scroll 344, an orbiting scroll 346, and a plurality of compression chambers 348 b and 348 b defined therebetween.
  • As the refrigerant from the [0034] economizer heat exchangers 133 a and 130 b is injected into the compressor 322 through separate economizer ports 338 b and 338 b, respectively, and as long as solenoid valve 144 a remains closed, the refrigerant in lines 156 a and 156 b, respectively, remains separate, and there is no communication between compression chambers 348 b and 348 b.
  • Vapor refrigerant from the low pressure economizer heat exchanger [0035] 133 b is injected into a pair of compression chambers 348 b of the scroll compressor 322 through a pair of low pressure injections ports 338 b. Vapor refrigerant from the high pressure economizer heat exchanger 133 a is injected into the compression chambers 348 b of the scroll compressor 322 through a high pressure injection port 338 a. The high pressure injection port 338 b is located proximate to the discharge port 342. The injection ports 338 b and 338 b typically extend through the body of the fixed scrolls 344 and into the compression chambers 348 b and 348 b, respectively.
  • FIG. 7 illustrates the position of [0036] scroll compressor 322 when injection of refrigerant from the dual economizer heat exchangers 133 a and 133 b begins. The injection ports 338 b and 338 b have just opened to allow the vapor refrigerant from each economizer heat exchanger 133 a and 133 b to enter the compression chambers 348 b and 348 b, respectively.
  • FIG. 8 illustrates the position of the [0037] scroll compressor 322 when refrigerant injection from the low pressure economizer 133 b into the compression chambers 348 b is still in progress and refrigerant injection from the high pressure economizer 133 a into the compression chamber 348 b is almost complete. At this stage, the high pressure injection port 338 b is separated from the discharge port 342 as the high pressure injection port 338 b is still covered by the orbiting scroll 346 prior to the initiation of the discharge process through a discharge valve that may cover the discharge port.
  • The [0038] scroll compressor 322 can alternatively include additional injection ports and compression chambers to allow for three ore more economizer heat exchangers. If three economizers are to be employed, the scroll compressor 322 will preferably have more than 2.5 turns.
  • There are several benefits to the [0039] refrigerant system 120 of the present invention.
  • For one, a higher operating efficiency is possible employing multiple economizer heat exchangers [0040] 133 a and 133 b. Additionally, an increase in refrigeration capacity is possible. Compressor reliability is also improved due to a decrease in the discharge temperature. Control of system capacity is also increased by alternating the engagement of economizer circuits, as well as initiating bypass operation between the economizer circuits or between any of the economizer circuits and suction line.
  • The foregoing description is only exemplary of the principles of the invention. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, so that one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention. [0041]

Claims (16)

What is claimed is:
1. A refrigeration system comprising:
a compressor for compressing a refrigerant to a high pressure;
a condenser for cooling said refrigerant;
a high pressure economizer heat exchanger, said refrigerant being split into a first passage provided with a high pressure expansion device and a second passage and then exchanging heat therebetween in said high pressure economizer heat exchanger, said first passage returning to said compressor and said second passage flowing to a low pressure economizer heat exchanger;
said low pressure economizer heat exchanger, said refrigerant being split into a first passage provided with a low pressure expansion device and a second passage and then exchanging heat therebetween in said low pressure economizer heat exchanger, said first passage returning to said compressor and said second passage flowing to an expansion device;
said expansion device for reducing said refrigerant to a low pressure; and
an evaporator for evaporating said refrigerant.
2. The system as recited in claim 1 wherein said compression device is a screw compressor including a male rotor, a first female rotor, and a second female rotor, each of said rotors having a plurality of threads, said plurality of threads of said male rotor said plurality of threads of said first female rotor engaging to create a plurality of high pressure compression chambers, and said plurality of threads of said male rotor and said plurality of threads of said second female rotor engaging to create a plurality of low pressure compression chambers, refrigerant from said high pressure economizer flowing into said high pressure compressor chambers and refrigerant from said low pressure economizer flowing into said low pressure chambers.
3. The system as recited in claim 2 wherein said refrigerant from said evaporator enters said screw compressor through a high pressure suction and a low pressure suction port for compression in said high pressure and said low pressure compression chambers, respectively, and said refrigerant from said low pressure and said high pressure economizer heat exchangers enters said low pressure and said high pressure compression chambers, respectively, through a low pressure and a high pressure economizer port, respectively, and said refrigerant in said high pressure and said low pressure compression chambers exits said compressor through a high pressure and a low pressure discharge port, respectively.
4. The system as recited in claim 1 wherein said compression device is a scroll compressor including a non-orbiting scroll member including a base and a generally spiral wrap extending from said base and an orbiting scroll member including a base and a generally spiral wrap extending from said base, said generally spiral wrap of said non-orbiting and orbiting scroll members interfitting to define at least one compression chamber, one of said scroll members having at least one high pressure injection port and at least one low pressure injection port, said refrigerant from said high pressure economizer heat exchanger and said low pressure economizer heat exchanger entering said at least one compression chamber through said at least one high pressure injection port and said at last one low pressure injection port, respectively.
5. The system as recited in claim 4 wherein communication of said refrigerant between said high pressure economizer heat exchanger and said low pressure economizer heat exchanger is prevented at a point of injection.
6. The system as recited in claim 4 wherein said refrigerant is injected through said at least one high pressure injection port and said at least one low pressure injection port into at least one high pressure compression chamber and at least one low pressure compression chamber, respectively.
7. The system as recited in claim 4 wherein said at least one low pressure injection port and said at least one high pressure injection port are located such that refrigerant injection through said injection ports begins after a suction port is closed to said compression chamber.
8. The system as recited in claim 6 wherein refrigerant injection through said injection ports ends before opening of said compression chamber to a discharge port.
9. The system as recited in claim 1 wherein said refrigerant from said high pressure economizer heat exchanger and said low pressure economizer heat exchanger enters said compressor through a high pressure economizer port and a low pressure economizer port, respectively, said refrigerant from said evaporator enters said compressor through a suction port, said refrigerant from said compressor exits said compressor through a discharge port.
10. The system as recited in claim 9 further including a first valve which controls flow of said refrigerant between said high pressure economizer port and said low pressure economizer port and a second valve which controls flow of said refrigerant between said low pressure economizer port and said suction port.
11. The system as recited in claim 10 wherein said first valve and said second valve are opened to bypass said refrigerant from said high pressure economizer port and said low pressure economizer port to said suction port.
12. The system as recited in claim 10 wherein said first valve is opened and said second valve is closed to bypass said refrigerant from said high pressure economizer port to said low pressure economizer port.
13. The system as recited in claim 10 wherein said first valve is closed and said second valve is opened to bypass said refrigerant from said low pressure economizer port to said suction port.
14. The system as recited in claim 1 wherein at least one of said high pressure expansion device and said low pressure expansion device is closed.
15. A refrigeration system comprising:
a compressor for compressing a refrigerant to a high pressure, said refrigerant entering said compressor through a suction port and exits said compressor through a discharge port;
a condenser for cooling said refrigerant;
a high pressure economizer heat exchanger, said refrigerant being split into a first passage provided with a high pressure expansion device and a second passage and then exchanging heat therebetween in said high pressure economizer heat exchanger such that said refrigerant in said second passage is cooled by said refrigerant in said first passage, said first passage returning to said compressor and said second passage flowing to a low pressure economizer heat exchanger;
said low pressure economizer heat exchanger, said refrigerant being split into a first passage provided with a low pressure expansion device and a second passage and then exchanging heat therebetween in said low pressure economizer heat exchanger such that said refrigerant in said second passage is cooled by said refrigerant in said first passage, said first passage returning to said compressor and said second passage flowing to an expansion device;
said expansion device for reducing said refrigerant to a low pressure;
an evaporator for evaporating said refrigerant;
a first valve which controls flow of said refrigerant between said high pressure economizer port and said low pressure economizer port; and
a second valve which controls flow of said refrigerant between said low pressure economizer port and said suction port.
16. A method of operating a refrigeration system comprising the steps of:
compressing a refrigerant to a high pressure;
cooling said refrigerant;
subcooling said refrigerant by splitting said refrigerant into a first passage and a second passage, expanding said refrigerant in said first passage, exchanging heat between said refrigerant in said first passage and said refrigerant in said second passage, returning said refrigerant in said first passage to said step of compressing and flowing said refrigerant in said second passage to a step of further subcooling;
further subcooling said refrigerant by splitting said refrigerant into a first passage and a second passage, expanding said refrigerant in said first passage, exchanging heat between said refrigerant in said first passage and said refrigerant in said second passage, returning said refrigerant in said first passage to said step of compressing and flowing said refrigerant in said second passage to a step of expanding;
expanding said refrigerant to a low pressure; and
evaporating said refrigerant.
US10/224,759 2002-08-21 2002-08-21 Refrigeration system employing multiple economizer circuits Expired - Fee Related US6694750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/224,759 US6694750B1 (en) 2002-08-21 2002-08-21 Refrigeration system employing multiple economizer circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/224,759 US6694750B1 (en) 2002-08-21 2002-08-21 Refrigeration system employing multiple economizer circuits

Publications (2)

Publication Number Publication Date
US6694750B1 US6694750B1 (en) 2004-02-24
US20040035122A1 true US20040035122A1 (en) 2004-02-26

Family

ID=31495301

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/224,759 Expired - Fee Related US6694750B1 (en) 2002-08-21 2002-08-21 Refrigeration system employing multiple economizer circuits

Country Status (1)

Country Link
US (1) US6694750B1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017249A1 (en) * 2003-09-05 2007-01-25 Daikin Industriest, Ltd. Freezer device
WO2006110208A3 (en) * 2005-04-08 2007-09-20 Carrier Corp Refrigerant system with variable speed compressor and reheat function
EP1891384A2 (en) * 2005-06-13 2008-02-27 Carrier Corporation Refrigerant system with vapor injection and liquid injection through separate passages
EP2008039A1 (en) * 2006-03-27 2008-12-31 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
EP2097703A1 (en) * 2006-12-29 2009-09-09 Carrier Corporation Economizer heat exchanger
US20100083677A1 (en) * 2007-02-26 2010-04-08 Alexander Lifson Economized refrigerant system utilizing expander with intermediate pressure port
US20100199715A1 (en) * 2007-09-24 2010-08-12 Alexander Lifson Refrigerant system with bypass line and dedicated economized flow compression chamber
US20120186295A1 (en) * 2011-01-21 2012-07-26 Lg Electronics Inc. Air conditioner
US20120234036A1 (en) * 2007-07-27 2012-09-20 Johnson Controls Technology Company Economized vapor compression circuit
KR20130096831A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 An air conditioner
EP2455688A3 (en) * 2010-11-23 2014-03-05 LG Electronics Inc. Heat pump and method of controlling the same
EP2857686A1 (en) * 2013-10-07 2015-04-08 LG Electronics, Inc. Scroll compressor and air conditioner including the same
EP2924370A1 (en) * 2014-03-20 2015-09-30 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
EP2357427A4 (en) * 2008-12-05 2016-04-27 Daikin Ind Ltd Refrigeration device
EP3043072A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Scroll compressor and air conditioner including a scroll compressor
WO2019221426A1 (en) * 2018-05-17 2019-11-21 Lg Electronics Inc. Compressor
DE102007013485B4 (en) * 2007-03-21 2020-02-20 Gea Refrigeration Germany Gmbh Process for controlling a CO2 refrigeration system with two-stage compression
US20200219606A1 (en) * 2017-08-30 2020-07-09 Samsung Electronics Co., Ltd. Refrigerator
US10895259B2 (en) 2018-04-20 2021-01-19 Trane International Inc. Screw compressor having synchronized economizer ports
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11300341B2 (en) 2017-06-08 2022-04-12 Carrier Corporation Method of control for economizer of transport refrigeration units
US11346583B2 (en) * 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424807B2 (en) * 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
US6895781B2 (en) * 2003-10-27 2005-05-24 Carrier Corporation Multiple refrigerant circuits with single economizer heat exchanger
US7017357B2 (en) * 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
CN101443615B (en) * 2005-02-02 2012-08-08 开利公司 Refrigerating system with economizing cycle
CA2593405A1 (en) * 2005-03-14 2006-09-21 York International Corporation Hvac system with powered subcooler
WO2007111594A1 (en) * 2006-03-27 2007-10-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits and a single or two stage main compressor
EP1974171B1 (en) * 2006-09-29 2014-07-23 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
US8769982B2 (en) * 2006-10-02 2014-07-08 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
US7647790B2 (en) * 2006-10-02 2010-01-19 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
US8181478B2 (en) * 2006-10-02 2012-05-22 Emerson Climate Technologies, Inc. Refrigeration system
US8337176B2 (en) * 2006-12-26 2012-12-25 Carrier Corporation Tandem compressors with common intermediate port
US8561425B2 (en) 2007-04-24 2013-10-22 Carrier Corporation Refrigerant vapor compression system with dual economizer circuits
WO2008130358A1 (en) * 2007-04-24 2008-10-30 Carrier Corporation Transcritical refrigerant vapor compression system with charge management
JP2010525292A (en) * 2007-04-24 2010-07-22 キャリア コーポレイション Refrigerant vapor compression system and method in transcritical operation
EP2165124A4 (en) * 2007-05-14 2013-05-29 Carrier Corp Refrigerant vapor compression system with flash tank economizer
ATE550612T1 (en) * 2007-05-22 2012-04-15 Angelantoni Ind Spa COOLING DEVICE AND METHOD FOR CIRCULATING A COOLING FLUID ASSOCIATED WITH IT
CN101688711A (en) * 2007-05-23 2010-03-31 开利公司 Refrigerant injection above critical point in a transcritical refrigerant system
CN101946137B (en) * 2008-02-19 2013-08-28 开利公司 Refrigerant vapor compression system
US8037713B2 (en) 2008-02-20 2011-10-18 Trane International, Inc. Centrifugal compressor assembly and method
US9353765B2 (en) * 2008-02-20 2016-05-31 Trane International Inc. Centrifugal compressor assembly and method
US7975506B2 (en) * 2008-02-20 2011-07-12 Trane International, Inc. Coaxial economizer assembly and method
US7856834B2 (en) 2008-02-20 2010-12-28 Trane International Inc. Centrifugal compressor assembly and method
KR101280381B1 (en) * 2009-11-18 2013-07-01 엘지전자 주식회사 Heat pump
US9297569B2 (en) 2010-07-27 2016-03-29 Raytheon Company System and method for providing efficient cooling within a test environment
US20120103005A1 (en) * 2010-11-01 2012-05-03 Johnson Controls Technology Company Screw chiller economizer system
US9752803B2 (en) 2011-02-16 2017-09-05 Johnson Controls Technology Company Heat pump system with a flow directing system
KR102103360B1 (en) * 2013-04-15 2020-05-29 엘지전자 주식회사 Air Conditioner and Controlling method for the same
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
KR101645132B1 (en) * 2015-04-24 2016-08-02 엘지전자 주식회사 Subcooler and Air conditioner including the same
CN106855329B (en) 2015-12-08 2020-08-28 开利公司 Refrigeration system and starting control method thereof
CN105485949A (en) * 2015-12-21 2016-04-13 珠海格力电器股份有限公司 Refrigeration system and control method thereof
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CA3081986A1 (en) 2019-07-15 2021-01-15 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
US11761446B2 (en) 2021-09-30 2023-09-19 Trane International Inc. Scroll compressor with engineered shared communication port

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058988A (en) * 1976-01-29 1977-11-22 Dunham-Bush, Inc. Heat pump system with high efficiency reversible helical screw rotary compressor
FR2620205A1 (en) * 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
US6113358A (en) * 1995-11-02 2000-09-05 Aaf - Mcquay Inc. Scroll compressors
US5806327A (en) * 1996-06-28 1998-09-15 Lord; Richard G. Compressor capacity reduction
US5692389A (en) * 1996-06-28 1997-12-02 Carrier Corporation Flash tank economizer
US6058727A (en) * 1997-12-19 2000-05-09 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
US6058729A (en) * 1998-07-02 2000-05-09 Carrier Corporation Method of optimizing cooling capacity, energy efficiency and reliability of a refrigeration system during temperature pull down
US6176092B1 (en) * 1998-10-09 2001-01-23 American Standard Inc. Oil-free liquid chiller
US6202438B1 (en) * 1999-11-23 2001-03-20 Scroll Technologies Compressor economizer circuit with check valve
US6428284B1 (en) * 2000-03-16 2002-08-06 Mobile Climate Control Inc. Rotary vane compressor with economizer port for capacity control
US6539720B2 (en) * 2000-11-06 2003-04-01 Capstone Turbine Corporation Generated system bottoming cycle

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640762B2 (en) * 2003-09-05 2010-01-05 Daikin Industries, Ltd. Refrigeration apparatus
US20070017249A1 (en) * 2003-09-05 2007-01-25 Daikin Industriest, Ltd. Freezer device
WO2006110208A3 (en) * 2005-04-08 2007-09-20 Carrier Corp Refrigerant system with variable speed compressor and reheat function
US8418486B2 (en) 2005-04-08 2013-04-16 Carrier Corporation Refrigerant system with variable speed compressor and reheat function
EP1891384A4 (en) * 2005-06-13 2010-09-15 Carrier Corp Refrigerant system with vapor injection and liquid injection through separate passages
EP1891384A2 (en) * 2005-06-13 2008-02-27 Carrier Corporation Refrigerant system with vapor injection and liquid injection through separate passages
EP2008039A1 (en) * 2006-03-27 2008-12-31 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
US20100223939A1 (en) * 2006-03-27 2010-09-09 Biswajit Mitra Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
EP2008039A4 (en) * 2006-03-27 2011-12-14 Carrier Corp Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
US8322150B2 (en) 2006-03-27 2012-12-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
US8312737B2 (en) 2006-12-29 2012-11-20 Carrier Corporation Economizer heat exchanger
US20100095700A1 (en) * 2006-12-29 2010-04-22 Carrier Corporation Economizer Heat Exchanger
EP2097703A4 (en) * 2006-12-29 2012-08-29 Carrier Corp Economizer heat exchanger
EP2097703A1 (en) * 2006-12-29 2009-09-09 Carrier Corporation Economizer heat exchanger
US20100083677A1 (en) * 2007-02-26 2010-04-08 Alexander Lifson Economized refrigerant system utilizing expander with intermediate pressure port
DE102007013485B4 (en) * 2007-03-21 2020-02-20 Gea Refrigeration Germany Gmbh Process for controlling a CO2 refrigeration system with two-stage compression
US8713963B2 (en) * 2007-07-27 2014-05-06 Johnson Controls Technology Company Economized vapor compression circuit
US20120234036A1 (en) * 2007-07-27 2012-09-20 Johnson Controls Technology Company Economized vapor compression circuit
US20100199715A1 (en) * 2007-09-24 2010-08-12 Alexander Lifson Refrigerant system with bypass line and dedicated economized flow compression chamber
EP2357427A4 (en) * 2008-12-05 2016-04-27 Daikin Ind Ltd Refrigeration device
EP2455688A3 (en) * 2010-11-23 2014-03-05 LG Electronics Inc. Heat pump and method of controlling the same
US20120186295A1 (en) * 2011-01-21 2012-07-26 Lg Electronics Inc. Air conditioner
US9091464B2 (en) * 2011-01-21 2015-07-28 Lg Electronics Inc. Air conditioner
KR20130096831A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 An air conditioner
KR101873597B1 (en) 2012-02-23 2018-07-31 엘지전자 주식회사 An air conditioner
EP2857686A1 (en) * 2013-10-07 2015-04-08 LG Electronics, Inc. Scroll compressor and air conditioner including the same
US10197325B2 (en) 2014-03-20 2019-02-05 Lg Electronics Inc. Air conditioner with two injection circuits and method of controlling the air conditioner
EP2924370A1 (en) * 2014-03-20 2015-09-30 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
CN105782034A (en) * 2015-01-12 2016-07-20 Lg电子株式会社 Scroll Compressor And Air Conditioner Including A Scroll Compressor
US10184472B2 (en) * 2015-01-12 2019-01-22 Lg Electronics Inc. Scroll compressor and air conditioner including a scroll compressor
US20160201669A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Scroll compressor and air conditioner including a scroll compressor
EP3043072A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Scroll compressor and air conditioner including a scroll compressor
US11300341B2 (en) 2017-06-08 2022-04-12 Carrier Corporation Method of control for economizer of transport refrigeration units
US20200219606A1 (en) * 2017-08-30 2020-07-09 Samsung Electronics Co., Ltd. Refrigerator
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US10895259B2 (en) 2018-04-20 2021-01-19 Trane International Inc. Screw compressor having synchronized economizer ports
WO2019221426A1 (en) * 2018-05-17 2019-11-21 Lg Electronics Inc. Compressor
US11346583B2 (en) * 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors

Also Published As

Publication number Publication date
US6694750B1 (en) 2004-02-24

Similar Documents

Publication Publication Date Title
US6694750B1 (en) Refrigeration system employing multiple economizer circuits
US5996364A (en) Scroll compressor with unloader valve between economizer and suction
EP1492986B1 (en) Injection of liquid and vapor refrigerant through economizer ports
US6883341B1 (en) Compressor with unloader valve between economizer line and evaporator inlet
EP1921320B1 (en) Scroll compressor with vapor injection and unloader port
US7100386B2 (en) Economizer/by-pass port inserts to control port size
US8863545B2 (en) Refrigeration apparatus
JP5881282B2 (en) Turbo refrigeration apparatus, control apparatus and control method thereof
EP1788325B1 (en) Freezing apparatus
US20080256961A1 (en) Economized Refrigerant System with Vapor Injection at Low Pressure
US20090175748A1 (en) Multi-stage compressor unit for refrigeration system
EP2251622B1 (en) Refrigeration device
US7640762B2 (en) Refrigeration apparatus
GB2440669A (en) A Refrigeration System with an Economizer for Transcritical Operation.
US5381665A (en) Refrigerating system with compressor cooled by liquid refrigerant
JPH0448160A (en) Freezing cycle device
JP3152454B2 (en) Two-stage compression refrigeration system
JP2001272122A (en) Two-stage compression refrigerating unit
US11041667B2 (en) Refrigeration cycle apparatus
WO1997016647A1 (en) Improved compressor arrangement and method of working the same
JP2646894B2 (en) Refrigeration cycle device
JP7400857B2 (en) air conditioner
JP2009162407A (en) Refrigerating device
JPH04281164A (en) Refrigerating device
JP2014005949A (en) Refrigeration device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIFSON, ALEXANDER;TANG, YAN;REEL/FRAME:013223/0263;SIGNING DATES FROM 20020802 TO 20020814

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120224