US20040027905A1 - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
US20040027905A1
US20040027905A1 US10/216,240 US21624002A US2004027905A1 US 20040027905 A1 US20040027905 A1 US 20040027905A1 US 21624002 A US21624002 A US 21624002A US 2004027905 A1 US2004027905 A1 US 2004027905A1
Authority
US
United States
Prior art keywords
time
memory device
semiconductor memory
power supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/216,240
Other versions
US6693839B1 (en
Inventor
Yoshio Onozuka
Eiji Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWAI, EIJI, ONOZUKA, YOSHIO
Publication of US20040027905A1 publication Critical patent/US20040027905A1/en
Application granted granted Critical
Publication of US6693839B1 publication Critical patent/US6693839B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/22Safety or protection circuits preventing unauthorised or accidental access to memory cells

Definitions

  • the present invention relates to a semiconductor memory device having a nonvolatile memory.
  • video and other data semiconductor memories storing video data, audio data, or other data (hereinafter referred to as “video and other data”) therein have been sold as package media.
  • video and other data semiconductor memories storing video data, audio data, or other data (hereinafter referred to as “video and other data”) therein have been sold as package media.
  • mask ROM media are used as such package media.
  • package media can be manufactured in a short period of time because desired information can be electrically rewritten after the package media have been completed.
  • the nonvolatile semiconductor memories are problematic in that since data stored therein can be rewritten by general users according to a certain procedure, it is not possible to determine whether the manufacturers are responsible or not if the nonvolatile semiconductor memories suffer a defect after data stored in the memories have been modified.
  • a semiconductor memory device including: a chip having a nonvolatile memory capable of rewriting stored data; and mode switching means disposed on the chip for irreversibly inhibiting data from being written in the nonvolatile memory upon elapse of a preset period of time from a time when a power supply of the semiconductor memory device is turned on if a predetermined signal is not supplied from outside of the chip within the preset period of time.
  • a semiconductor memory device including: a chip having a nonvolatile memory capable of rewriting stored data; and mode switching means disposed on the chip for irreversibly inhibiting data from being written in the nonvolatile memory if the number of times that a power supply of the semiconductor memory device is turned on reaches a predetermined number.
  • the semiconductor memory device is capable of selectively performing different functions because it provides higher security for data stored in the nonvolatile memory and allows stored data to be selectively rewritten with predetermined signals supplied from outside of the chip within a preset period of time.
  • FIG. 1 is a block diagram of a semiconductor memory device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a WE signal locking circuit in the semiconductor memory device shown in FIG. 1;
  • FIG. 3 is a block diagram of a semiconductor memory device according to another embodiment of the present invention.
  • a semiconductor memory device 1 is fabricated on a single chip, and includes a mode switcher 3 , an input/output controller 5 , an operation logic controller 7 , a control circuit 9 , a high-voltage generating circuit 11 , a row address buffer 13 , a row address decoder 15 , an address register 17 , a column buffer 19 , a column decoder 21 , a data register 23 , a sense amplifier 25 , and a memory cell array 27 .
  • the mode switcher 3 includes a power-on detecting circuit 31 , a timer counter 32 , a mode setting circuit 33 , a WE signal locking circuit 34 , a NAND gate 35 , and an inverter 36 .
  • the timer counter 32 is connected to the power-on detecting circuit 31 .
  • the mode setting circuit 33 is connected to the timer counter 32 , and is supplied with 8-bit code signals CD 1 through CD 8 from outside of the chip.
  • the WE signal locking circuit 34 is connected to the mode setting circuit 33 .
  • the NAND gate 35 is connected to the WE signal locking circuit 34 , and is supplied with a write-enable signal WE from outside of the chip.
  • the inverter 36 is connected to the NAND gate 35 .
  • the operation logic controller 7 is connected to the inverter 36 , and is supplied with a control signal CS from outside of the chip.
  • the control circuit 9 is connected to the operation logic controller 7 , and the high-voltage generating circuit 11 is connected to the control circuit 9 .
  • the high-voltage generating circuit 11 generates a high voltage which is supplied to the row address decoder 15 , the sense amplifier 25 , and the memory cell array 27 .
  • the input/output controller 5 is supplied with an address or data to be written in the memory cell array 27 , as 8-bit input/output data IO 1 through IO 8 , from outside of the chip, and outputs an address or data read from the memory cell array 27 , as 8-bit input/output data IO 1 through IO 8 , from the chip.
  • the input/output controller 5 is connected to the operation logic controller 7 .
  • the address register 17 is connected to the input/output controller 5 .
  • the row address buffer 13 and the column buffer 19 are connected to the address register 17 .
  • the row address decoder 15 is connected to the row address buffer 13 and the control circuit 9 .
  • the column decoder 21 is connected to the column buffer 19 .
  • the data register 23 is connected to the column decoder 21 and the input/output controller 5 .
  • the sense amplifier 25 is connected to the data register 23 and the control circuit 9 .
  • the memory cell array 27 is connected to the row address decoder 15 and the sense amplifier 25 .
  • the WE signal locking circuit 34 has a circuit arrangement shown in FIG. 2. As shown in FIG. 2, the WE signal locking circuit 34 includes an N-channel MOS transistor Tr, a fuse 40 , an output node ON, and a pull-down resistor R.
  • the N-channel MOS transistor Tr is connected between the output node ON and a ground node.
  • the gate of the N-channel MOS transistor Tr is connected to the mode setting circuit 33 .
  • the fuse 40 is connected between a power supply voltage node Vcc and the output node ON.
  • the pull-down register R is connected between the output node ON and the ground node.
  • the output node ON is connected to one of the input terminals of the NAND gate 35 .
  • the semiconductor memory device thus constructed can selectively function as an ordinary reprogrammable nonvolatile memory and a read-only memory with its reprogrammable function inhibited irreversibly, depending on a signal supplied from outside of the chip. Operation of the semiconductor memory device will be described in detail below.
  • the address of a given memory cell of the memory cell array 27 and data to be written in the memory cell are supplied as input/output data IO 1 through IO 8 to the input/output controller 5 .
  • the address is supplied to the address register 17 , and the data is supplied to the data register 23 .
  • the address is then supplied from the address register 17 to the column buffer 19 and the row address buffer 13 .
  • the memory cell corresponding to the address is selected by the column decoder 21 and the row address decoder 15 .
  • the data from the data register 23 is amplified by the sense amplifier 25 , and written in the selected memory cell.
  • the column decoder 21 , the data register 23 , the sense amplifier 25 , and the row address decoder 15 are controlled by the control circuit 9 .
  • the control circuit 9 performs the above data writing process during a period of time in which the write-enable signal WE supplied to the operation logic controller 7 is being activated into a high level.
  • the operation logic controller 7 controls the input/output controller 5 and the control circuit 9 depending on the control signal CS supplied from outside of the chip.
  • the high-voltage generating circuit 11 generates a voltage higher than the power supply voltage under the control of the control circuit 9 , and supplies the generated voltage to the row address decoder 15 , the sense amplifier 25 , and the memory cell array 27 .
  • the mode switcher 3 controls the write-enable signal WE as follows:
  • the power-on detecting circuit 31 detects a generated power-on reset signal, thus detecting a time when the power supply is turned on.
  • the timer counter 32 measures a preset period of time from the time when the power supply is turned on as detected by the power-on detecting circuit 31 , and indicates the elapse of the preset period of time to the mode setting circuit 33 . If the mode setting circuit 33 is not supplied with the predetermined code signals CD 1 through CD 8 within the preset period of time, then the mode setting circuit 33 generates a high-level rewrite-inhibit signal CT and supplies the high-level rewrite-inhibit signal CT to the WE signal locking circuit 34 .
  • the N-channel MOS transistor Tr in the WE signal locking circuit 34 is turned on.
  • the fuse 40 has a resistance of several hundreds ⁇ and the pull-down resistor R has a resistance of several hundreds k ⁇ .
  • the mode setting circuit 33 when the mode setting circuit 33 generates a high-level rewrite-inhibit signal CT and supplies the high-level rewrite-inhibit signal CT to the WE signal locking circuit 34 , the WE signal locking circuit 34 supplies a low-level write-enable locking signal WEL irreversibly from the output node ON to the NAND gate 35 .
  • the NAND gate 35 steadily outputs a high-level signal irrespective of the level of the write-enable signal WE supplied from outside of the chip.
  • the write-enable signal WE supplied to the operation logic controller 7 is irreversibly inactivated into a low level, inhibiting data stored in the memory cell array 27 from being rewritten. At this time, the semiconductor memory device 1 is only allowed to read stored data.
  • the operation logic controller 7 is supplied with a write-enable signal WE, allowing data stored in the semiconductor memory device 1 to be written normally.
  • the semiconductor memory device 1 For rewriting stored data, the semiconductor memory device 1 needs to be supplied with the predetermined code signals CD 1 through CD 8 from outside of the chip within the preset period of time. When the given period of time elapses without the semiconductor memory device 1 being supplied with the predetermined code signals CD 1 through CD 8 , the reprogrammable function of the semiconductor memory device 1 is automatically inhibited. Therefore, the third party finds it difficult to rewrite data stored in the semiconductor memory device 1 , and the security of the semiconductor memory device 1 is increased. Furthermore, the semiconductor memory device 1 allows stored data to be rewritten without involving an increase in the circuit scale and cost.
  • the manufacturer of the semiconductor memory device 1 can rewrite stored data under its own management before the semiconductor memory device 1 is used by general users. Therefore, an excessive inventory of semiconductor memory devices can be reduced to an appropriate level because the data stored therein can be rewritten by the manufacturer and the semiconductor memory devices with the rewritten data can be shipped forward again.
  • a nonvolatile counter 37 for storing the number of times that the power supply has been turned on may be incorporated in the chip.
  • the nonvolatile counter 37 when the count stored in the nonvolatile counter 37 reaches a predetermined number, then the nonvolatile counter 37 outputs a signal to inhibit stored data from being rewritten even if the predetermined code signals CD 1 through CD 8 are supplied from outside of the chip within the preset period of time.
  • the semiconductor memory device shown in FIG. 3 has better security against unauthorized rewriting of data stored therein.
  • the 8-bit code signals CD 1 through CD 8 may be replaced with a variable code represented by a voltage which is chronologically variable according to a given pattern.
  • a variable code provides an analog process for preventing stored data from being rewritten by unauthorized persons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Read Only Memory (AREA)

Abstract

A semiconductor memory device which is capable of selectively performing different functions has a chip having a nonvolatile memory capable of rewriting stored data, and a mode switcher disposed on the chip for irreversibly inhibiting data from being written in the nonvolatile memory upon elapse of a preset period of time from a time when a power supply of the semiconductor memory device is turned on if a predetermined signal is not supplied from outside of the chip within the preset period of time.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a semiconductor memory device having a nonvolatile memory. [0001]
  • Heretofore, semiconductor memories storing video data, audio data, or other data (hereinafter referred to as “video and other data”) therein have been sold as package media. Primarily, mask ROM media are used as such package media. [0002]
  • Conventional package media have particular codes that are written by the steps of ion implantation and low-layer metal interconnection formation in a process of fabricating semiconductor integrated circuits. Therefore, it generally takes more than about two months to complete the conventional package media. [0003]
  • If an actual number of package media that are sold is much smaller than the number of manufactured package media, then since the mask ROM media are not reprogrammable, there arises a business problem in that the manufacturer has to have a large inventory of unsold package media. [0004]
  • When a growing demand comes up for certain video and other data, it is necessary to manufacture new mask ROM media storing those video and other data, and hence a certain period of time is required before desired package media can be supplied. [0005]
  • If an electrically reprogrammable nonvolatile semiconductor memory such as a flash memory is used for package media, then package media can be manufactured in a short period of time because desired information can be electrically rewritten after the package media have been completed. [0006]
  • Since it is easy to rewrite information stored in those electrically reprogrammable nonvolatile semiconductor memories, desired information can be written therein upon demand, and the manufacturer does not have to keep a large inventory of unsold package media. [0007]
  • However, the nonvolatile semiconductor memories are problematic in that since data stored therein can be rewritten by general users according to a certain procedure, it is not possible to determine whether the manufacturers are responsible or not if the nonvolatile semiconductor memories suffer a defect after data stored in the memories have been modified. [0008]
  • Another problem with the use of the nonvolatile semiconductor memories is that other parties than the manufacturers are given an opportunity to produce contents, the contents may be exchanged or copied in violation of their copyright, and pirate edition producers tend to be rampant. [0009]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a semiconductor memory device which is capable of selectively performing different functions. [0010]
  • According to an aspect of the present invention, there is provided a semiconductor memory device including: a chip having a nonvolatile memory capable of rewriting stored data; and mode switching means disposed on the chip for irreversibly inhibiting data from being written in the nonvolatile memory upon elapse of a preset period of time from a time when a power supply of the semiconductor memory device is turned on if a predetermined signal is not supplied from outside of the chip within the preset period of time. [0011]
  • According to another aspect of the present invention, there is provided a semiconductor memory device including: a chip having a nonvolatile memory capable of rewriting stored data; and mode switching means disposed on the chip for irreversibly inhibiting data from being written in the nonvolatile memory if the number of times that a power supply of the semiconductor memory device is turned on reaches a predetermined number. [0012]
  • The semiconductor memory device according to the present invention is capable of selectively performing different functions because it provides higher security for data stored in the nonvolatile memory and allows stored data to be selectively rewritten with predetermined signals supplied from outside of the chip within a preset period of time. [0013]
  • The above and other objects, features and advantages of the present invention will become apparent from the following description and the appended claims, taken in conjunction with the accompanying drawings in which like parts or elements denoted by like reference symbols.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a semiconductor memory device according to an embodiment of the present invention; [0015]
  • FIG. 2 is a circuit diagram of a WE signal locking circuit in the semiconductor memory device shown in FIG. 1; and [0016]
  • FIG. 3 is a block diagram of a semiconductor memory device according to another embodiment of the present invention.[0017]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As shown in FIG. 1, a [0018] semiconductor memory device 1 according to an embodiment of the present invention is fabricated on a single chip, and includes a mode switcher 3, an input/output controller 5, an operation logic controller 7, a control circuit 9, a high-voltage generating circuit 11, a row address buffer 13, a row address decoder 15, an address register 17, a column buffer 19, a column decoder 21, a data register 23, a sense amplifier 25, and a memory cell array 27.
  • The [0019] mode switcher 3 includes a power-on detecting circuit 31, a timer counter 32, a mode setting circuit 33, a WE signal locking circuit 34, a NAND gate 35, and an inverter 36.
  • The [0020] timer counter 32 is connected to the power-on detecting circuit 31. The mode setting circuit 33 is connected to the timer counter 32, and is supplied with 8-bit code signals CD1 through CD8 from outside of the chip. The WE signal locking circuit 34 is connected to the mode setting circuit 33. The NAND gate 35 is connected to the WE signal locking circuit 34, and is supplied with a write-enable signal WE from outside of the chip. The inverter 36 is connected to the NAND gate 35.
  • The [0021] operation logic controller 7 is connected to the inverter 36, and is supplied with a control signal CS from outside of the chip. The control circuit 9 is connected to the operation logic controller 7, and the high-voltage generating circuit 11 is connected to the control circuit 9. The high-voltage generating circuit 11 generates a high voltage which is supplied to the row address decoder 15, the sense amplifier 25, and the memory cell array 27.
  • The input/[0022] output controller 5 is supplied with an address or data to be written in the memory cell array 27, as 8-bit input/output data IO1 through IO8, from outside of the chip, and outputs an address or data read from the memory cell array 27, as 8-bit input/output data IO1 through IO8, from the chip. The input/output controller 5 is connected to the operation logic controller 7.
  • The [0023] address register 17 is connected to the input/output controller 5. The row address buffer 13 and the column buffer 19 are connected to the address register 17.
  • The [0024] row address decoder 15 is connected to the row address buffer 13 and the control circuit 9. The column decoder 21 is connected to the column buffer 19. The data register 23 is connected to the column decoder 21 and the input/output controller 5. The sense amplifier 25 is connected to the data register 23 and the control circuit 9. The memory cell array 27 is connected to the row address decoder 15 and the sense amplifier 25.
  • The WE [0025] signal locking circuit 34 has a circuit arrangement shown in FIG. 2. As shown in FIG. 2, the WE signal locking circuit 34 includes an N-channel MOS transistor Tr, a fuse 40, an output node ON, and a pull-down resistor R.
  • The N-channel MOS transistor Tr is connected between the output node ON and a ground node. The gate of the N-channel MOS transistor Tr is connected to the [0026] mode setting circuit 33. The fuse 40 is connected between a power supply voltage node Vcc and the output node ON. The pull-down register R is connected between the output node ON and the ground node. The output node ON is connected to one of the input terminals of the NAND gate 35.
  • The semiconductor memory device thus constructed can selectively function as an ordinary reprogrammable nonvolatile memory and a read-only memory with its reprogrammable function inhibited irreversibly, depending on a signal supplied from outside of the chip. Operation of the semiconductor memory device will be described in detail below. [0027]
  • First, the address of a given memory cell of the [0028] memory cell array 27 and data to be written in the memory cell are supplied as input/output data IO1 through IO8 to the input/output controller 5. The address is supplied to the address register 17, and the data is supplied to the data register 23.
  • The address is then supplied from the [0029] address register 17 to the column buffer 19 and the row address buffer 13. The memory cell corresponding to the address is selected by the column decoder 21 and the row address decoder 15. The data from the data register 23 is amplified by the sense amplifier 25, and written in the selected memory cell.
  • In the above data writing process, the [0030] column decoder 21, the data register 23, the sense amplifier 25, and the row address decoder 15 are controlled by the control circuit 9. The control circuit 9 performs the above data writing process during a period of time in which the write-enable signal WE supplied to the operation logic controller 7 is being activated into a high level. The operation logic controller 7 controls the input/output controller 5 and the control circuit 9 depending on the control signal CS supplied from outside of the chip.
  • The high-[0031] voltage generating circuit 11 generates a voltage higher than the power supply voltage under the control of the control circuit 9, and supplies the generated voltage to the row address decoder 15, the sense amplifier 25, and the memory cell array 27.
  • In the semiconductor memory device according to the present embodiment, the [0032] mode switcher 3 controls the write-enable signal WE as follows: The power-on detecting circuit 31 detects a generated power-on reset signal, thus detecting a time when the power supply is turned on.
  • Then, the [0033] timer counter 32 measures a preset period of time from the time when the power supply is turned on as detected by the power-on detecting circuit 31, and indicates the elapse of the preset period of time to the mode setting circuit 33. If the mode setting circuit 33 is not supplied with the predetermined code signals CD1 through CD8 within the preset period of time, then the mode setting circuit 33 generates a high-level rewrite-inhibit signal CT and supplies the high-level rewrite-inhibit signal CT to the WE signal locking circuit 34.
  • In response to the high-level rewrite-inhibit signal CT, the N-channel MOS transistor Tr in the WE [0034] signal locking circuit 34 is turned on. The fuse 40 has a resistance of several hundreds Ω and the pull-down resistor R has a resistance of several hundreds kΩ. When the N-channel MOS transistor Tr is turned on, since the resistance between the output node ON and the ground node becomes several tens Ω, a large current flows between the power supply voltage node Vcc and the output node ON, melting the fuse 40.
  • Therefore, when the [0035] mode setting circuit 33 generates a high-level rewrite-inhibit signal CT and supplies the high-level rewrite-inhibit signal CT to the WE signal locking circuit 34, the WE signal locking circuit 34 supplies a low-level write-enable locking signal WEL irreversibly from the output node ON to the NAND gate 35.
  • At this time, the [0036] NAND gate 35 steadily outputs a high-level signal irrespective of the level of the write-enable signal WE supplied from outside of the chip.
  • Thus, when the predetermined code signals CD[0037] 1 through CD8 are not supplied from outside of the chip within the preset period of time, the write-enable signal WE supplied to the operation logic controller 7 is irreversibly inactivated into a low level, inhibiting data stored in the memory cell array 27 from being rewritten. At this time, the semiconductor memory device 1 is only allowed to read stored data.
  • If the predetermined code signals CD[0038] 1 through CD8 are supplied from outside of the chip within the preset period of time, then because the mode setting circuit 33 does not generate a high-level rewrite-inhibit signal CT, the operation logic controller 7 is supplied with a write-enable signal WE, allowing data stored in the semiconductor memory device 1 to be written normally.
  • For rewriting stored data, the [0039] semiconductor memory device 1 needs to be supplied with the predetermined code signals CD1 through CD8 from outside of the chip within the preset period of time. When the given period of time elapses without the semiconductor memory device 1 being supplied with the predetermined code signals CD1 through CD8, the reprogrammable function of the semiconductor memory device 1 is automatically inhibited. Therefore, the third party finds it difficult to rewrite data stored in the semiconductor memory device 1, and the security of the semiconductor memory device 1 is increased. Furthermore, the semiconductor memory device 1 allows stored data to be rewritten without involving an increase in the circuit scale and cost.
  • The manufacturer of the [0040] semiconductor memory device 1 can rewrite stored data under its own management before the semiconductor memory device 1 is used by general users. Therefore, an excessive inventory of semiconductor memory devices can be reduced to an appropriate level because the data stored therein can be rewritten by the manufacturer and the semiconductor memory devices with the rewritten data can be shipped forward again.
  • As shown in FIG. 3, a [0041] nonvolatile counter 37 for storing the number of times that the power supply has been turned on may be incorporated in the chip. With the arrangement shown in FIG. 3, when the count stored in the nonvolatile counter 37 reaches a predetermined number, then the nonvolatile counter 37 outputs a signal to inhibit stored data from being rewritten even if the predetermined code signals CD1 through CD8 are supplied from outside of the chip within the preset period of time. The semiconductor memory device shown in FIG. 3 has better security against unauthorized rewriting of data stored therein.
  • The 8-bit code signals CD[0042] 1 through CD8 may be replaced with a variable code represented by a voltage which is chronologically variable according to a given pattern. Such a variable code provides an analog process for preventing stored data from being rewritten by unauthorized persons.
  • Although certain preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims. [0043]

Claims (9)

What is claimed is:
1. A semiconductor memory device comprising:
a chip having a nonvolatile memory capable of rewriting stored data; and
mode switching means disposed on said chip for irreversibly inhibiting data from being written in said nonvolatile memory upon elapse of a preset period of time from a time when a power supply of the semiconductor memory device is turned on if a predetermined signal is not supplied from outside of said chip within said preset period of time.
2. A semiconductor memory device according to claim 1, wherein said mode switching means comprises:
power supply turn-on detecting means for detecting the time when said power supply is turned on;
time measuring means for measuring said preset period of time from the time when said power supply is turned on as detected by said power supply turn-on detecting means;
mode setting means for generating a write-inhibit signal if said predetermined signal is not supplied from outside of said chip within said preset period of time as measured by said time measuring means; and
signal level locking means for irreversibly inactivating a write-enable signal supplied to said nonvolatile memory in response to said write-inhibit signal generated by said mode setting means.
3. A semiconductor memory device according to claim 2, wherein said signal level locking means comprises:
a fuse and a resistive element connected in series between a power supply voltage node and a ground node;
a transistor connected between an intermediate node, being between said fuse and said resistive element, and said ground node, in parallel to said resistive element, and having a gate for being supplied with said write-inhibit signal; and
an AND gate for ANDing a signal outputted from said intermediate node and said write-enable signal.
4. A semiconductor memory device according to claim 1, wherein said predetermined signal includes a variable code identified by a predetermined change of a voltage.
5. A semiconductor memory device comprising:
a chip having a nonvolatile memory capable of rewriting stored data; and
mode switching means disposed on said chip for irreversibly inhibiting data from being written in said nonvolatile memory if the number of times that a power supply of the semiconductor memory device is turned on reaches a predetermined number.
6. A semiconductor memory device according to claim 5, wherein said mode switching means comprises:
means for irreversibly inhibiting data from being written in said nonvolatile memory upon elapse of a preset period of time from a time when said power supply is turned on if a predetermined signal is not supplied from outside of said chip within said preset period of time.
7. A semiconductor memory device according to claim 6, wherein said mode switching means comprises:
power supply turn-on detecting means for detecting the time when said power supply is turned on;
time measuring means for measuring said preset period of time from the time when said power supply is turned on as detected by said power supply turn-on detecting means;
mode setting means for generating a write-inhibit signal if said predetermined signal is not supplied from outside of said chip within said preset period of time as measured by said time measuring means; and
signal level locking means for irreversibly inactivating a write-enable signal supplied to said nonvolatile memory in response to said write-inhibit signal generated by said mode setting means.
8. A semiconductor memory device according to claim 7, wherein said signal level locking means comprises:
a fuse and a resistive element connected in series between a power supply voltage node and a ground node;
a transistor connected between an intermediate node, being between said fuse and said resistive element, and said ground node, in parallel to said resistive element, and having a gate for being supplied with said write-inhibit signal; and
an AND gate for ANDing a signal outputted from said intermediate node and said write-enable signal.
9. A semiconductor memory device according to claim 6, wherein said predetermined signal includes a variable code identified by a predetermined change of a voltage.
US10/216,240 2001-08-10 2002-08-12 Semiconductor memory device Expired - Lifetime US6693839B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001244728A JP3843777B2 (en) 2001-08-10 2001-08-10 Semiconductor memory device
JPP2001-244728 2002-08-10

Publications (2)

Publication Number Publication Date
US20040027905A1 true US20040027905A1 (en) 2004-02-12
US6693839B1 US6693839B1 (en) 2004-02-17

Family

ID=19074614

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/216,240 Expired - Lifetime US6693839B1 (en) 2001-08-10 2002-08-12 Semiconductor memory device

Country Status (2)

Country Link
US (1) US6693839B1 (en)
JP (1) JP3843777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027946A1 (en) * 2018-08-03 2020-02-06 Microsoft Technology Licensing, Llc One-time programmable (otp) lock circuit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142627B2 (en) * 2004-12-23 2006-11-28 Ramtron International Corporation Counting scheme with automatic point-of-reference generation
US7120220B2 (en) * 2004-12-23 2006-10-10 Ramtron International Corporation Non-volatile counter
EP2221825A1 (en) * 2009-02-05 2010-08-25 Thomson Licensing Non-volatile storage device with forgery-proof permanent storage option
JP5387144B2 (en) 2009-06-01 2014-01-15 ソニー株式会社 Malfunction occurrence attack detection circuit and integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916862B2 (en) * 2000-10-03 2007-05-23 株式会社東芝 Nonvolatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027946A1 (en) * 2018-08-03 2020-02-06 Microsoft Technology Licensing, Llc One-time programmable (otp) lock circuit

Also Published As

Publication number Publication date
JP2003059283A (en) 2003-02-28
US6693839B1 (en) 2004-02-17
JP3843777B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US7031188B2 (en) Memory system having flash memory where a one-time programmable block is included
US6108246A (en) Semiconductor memory device
US7359249B2 (en) Nonvolatile semiconductor memory device and method of rewriting data thereof
US6445606B1 (en) Secure poly fuse ROM with a power-on or on-reset hardware security features and method therefor
US8385110B2 (en) Semiconductor memory device with security function and control method thereof
JPH0823080A (en) Manufacture of memory device and memory cell
US6198657B1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP4818024B2 (en) Semiconductor memory device
US20060044861A1 (en) System and method using a one-time programmable memory cell
KR20140026223A (en) Integrated circuit chip, memory device and e-fuse array circuit
KR20020090373A (en) Novolatile flash memory device usable as a boot-up memory in a system and method of operating the same
JP2002217295A (en) Semiconductor device
US8159894B2 (en) One time programmable memory
JP2006510203A (en) One-time programmable memory device
US20110122671A1 (en) Systems and methods for controlling integrated circuit operation with below ground pin voltage
US5642480A (en) Method and apparatus for enhanced security of a data processor
US6693839B1 (en) Semiconductor memory device
KR102132247B1 (en) One-time program memory
KR100632939B1 (en) Memory system having flash memory where otp block is included
US20020018362A1 (en) Programmable circuit and its method of operation
JP2006311579A (en) Detection circuit
JP2002100191A (en) Semiconductor memory
US6118709A (en) Externally controlled power on reset device for non-volatile memory in integrated circuit form
KR930001653B1 (en) Nonvolatile semiconductor memory device
KR0132272B1 (en) Prom built in micro-computer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ONOZUKA, YOSHIO;KAWAI, EIJI;REEL/FRAME:013627/0964;SIGNING DATES FROM 20021202 TO 20021213

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12