US20040018728A1 - Chemical mechanical polishing solution for platinum - Google Patents

Chemical mechanical polishing solution for platinum Download PDF

Info

Publication number
US20040018728A1
US20040018728A1 US10/460,695 US46069503A US2004018728A1 US 20040018728 A1 US20040018728 A1 US 20040018728A1 US 46069503 A US46069503 A US 46069503A US 2004018728 A1 US2004018728 A1 US 2004018728A1
Authority
US
United States
Prior art keywords
platinum
interlayer insulating
solution
insulating film
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/460,695
Inventor
Woo Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Assigned to HYNIX SEMICONDUCTOR INC. reassignment HYNIX SEMICONDUCTOR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, WOO JIN
Publication of US20040018728A1 publication Critical patent/US20040018728A1/en
Priority to US11/493,126 priority Critical patent/US7470623B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions

Definitions

  • a solution for platinum abbreviated as “Pt” chemical mechanical polishing (abbreviated as “CMP”) containing an alkali aqueous solution and an oxidizer is disclosed. More specifically, a method for forming Pt patterns including using the above Pt-CMP solution is disclosed which can improve a polishing rate and polishing characteristics of Pt used as a lower electrode of a metal capacitor.
  • Pt platinum
  • CMP chemical mechanical polishing
  • Platinum is a noble metal which is chemically and mechanically stable, and is an essential material used in fabricating high performance semiconductor devices.
  • platinum (Pt) has been recently used as a lower electrode in DRAM devices. The lower electrode is created while forming metal layer/insulating film/metal layer-type capacitors through an electro-deposition process.
  • the slurry for a metal CMP process with a strong acidity of pH 2 ⁇ 4 contains an abrasive such as alumina (Al 2 O 3 ) or manganese oxide (MnO 2 ) and an oxidizer such as hydrogen peroxide (H 2 O 2 ) or ferric nitrate (Fe(NO 3 ) 2 ) as a first additive, using distilled water or ultra pure water. Further, a small amount of surfactant or dispersing agent may be added to improve CMP slurry properties.
  • the Pt layers may be separated from the interlayer insulating film because the Pt layer has poor adhesion to the interlayer insulating film.
  • dishing and erosion effects are generated on the Pt layer adjacent to the interlayer insulating film.
  • the abrasive included in the slurry can severely scratch the interlayer insulating film, and impurities such as the slurry grounds can remain on the Pt layer. Therefore, the properties of the resultant device are compromised.
  • Solutions for platinum CMP are disclosed which can improve the polishing speed of platinum under a low polishing pressure and reduce dishing of the platinum layer and scratches on the interlayer insulating film.
  • FIG. 1 is a cross-sectional view illustrating a Pt electrode formed using a disclosed solution.
  • FIG. 2 is a graph illustrating a current dependent on a potential of Pt formed using a disclosed solution.
  • FIGS. 3 a through 3 d are graphs illustrating growth rate of Pt oxide layer under various solutions.
  • CMP solutions containing an oxidizer in an alkali aqueous solution are disclosed.
  • the CMP solutions can be used for polishing and planarizing Pt.
  • the alkali aqueous solution contains alkali compounds selected from the group consisting of sodium hydride, potassium hydride, tetramethyl ammoniumhydride, tetraalkyl ammonium hydride and mixtures thereof. Potassium hydride (KOH) is preferably used.
  • the alkali aqueous solution preferably has a concentration ranging from 0.01 M to 10 M, and preferably ranging from 0.1 M to 5 M.
  • Examples of the oxidizer are any of the compounds which make Pt atoms lose the electrons to oxidize the Pt.
  • Fe(NO 3 ) 2 is used, and preferably H 2 O 2 as the oxidizer.
  • the oxidizer is present in concentration ranging from 1 vol % to 50 vol % to the alkali aqueous solution, and more preferably, ranging from 1 vol % to 10 vol % to the alkali aqueous solution.
  • the CMP solution comprising the alkali aqueous solution and the oxidizer maintains its pH ranging from 8 to 14and more preferably ranging from 10 to 14.
  • the disclosed Pt-CMP solution changes the physical and chemical properties of the surface of Pt layer by way of the alkali aqueous solution and the oxidizer. That is, using the disclosed CMP solution, the binding strength and compactness between Pt atoms are decreased. Consequently, the oxidation speed of the Pt layer surface increases.
  • the disclosed Pt-CMP solution includes no abrasive and thus decreases scratches generated on the exposed interlayer insulating film.
  • a disclosed method for forming a platinum pattern comprises:
  • Step (c) may further comprise performing a primary CMP process polishing the Pt layer using the disclosed CMP solution until interlayer insulating film is exposed and performing a secondary CMP process polishing the exposed interlayer insulating film using slurry for an interlayer insulating film.
  • the Pt-formed semiconductor substrate is contacted with a polishing pad of a rotary table of a CMP system under pressure. Then, the disclosed Pt-CMP solution is supplied to an interface between the polishing pad and the Pt layer, and the Pt layer is polished.
  • the CMP process is performed under a pressure ranging from 1 to 3 psi, at a table revolution of a rotary type system ranging from 10 to 80 rpm, and at a linear table speed ranging from 100 to 600 fpm depending upon the polishing speed of the Pt layer and the polishing property of the interlayer insulating film.
  • a touch polishing process of interlayer insulating film pattern is performed at the time the interlayer insulating film is exposed, using CMP slurry for interlayer insulating film.
  • the touch polishing process is a buffering step to prevent the Pt layer from dishing generated by the difference in polishing selectivity between the Pt layer and the interlayer insulating film of the primary CMP process.
  • the polishing conditions are similar to that of the primary CMP process.
  • polishing pads can be used in the above CMP process according to the polishing properties of the Pt layer.
  • a soft pad can be used to raise uniformity of the polished layer and a hard pad can be used to improve planarity.
  • a stack pad laminated with the above two pads or the combination of the above pads can be also used.
  • a metal adhesion layer such as titanium (Ti) or titanium nitride (TiN) can be further formed on the top surface of the interlayer insulating film pattern before forming Pt layer so as to improve adhesiveness of the Pt layer.
  • a disclosed method for forming a platinum pattern comprises:
  • the interlayer insulating pattern is an oxide pattern, and the Pt pattern is used as the lower electrode pattern.
  • the Pt-formed semiconductor substrate is contacted to a polishing pad of a rotary table of a CMP system under pressure. Then, the disclosed Pt-CMP solution is supplied to an interface of the polishing pad and the Pt layer, and the Pt layer is polished.
  • the primary CMP process is performed under a pressure ranging from 1 to 3 psi, at a table revolution of a rotary type system ranging from 10 to 80 rpm, and at a linear table speed ranging from 100 to 600 fpm depending upon the polishing speed of the Pt layer and the polishing property of the interlayer insulating film.
  • the exposed metal adhesion layer is polished using metal CMP slurry until the interlayer insulating film is exposed.
  • a touch polishing process of interlayer insulating film is performed at the time the interlayer insulating film is exposed, using CMP slurry for interlayer insulating film.
  • the touch polishing process is a buffering step to prevent the Pt layer from dishing generated by the difference in polishing selectivity between the metal layer and the interlayer insulating film.
  • conditions of the secondary CMP process and the tertiary CMP process are similar to that of the primary CMP process.
  • a metal adhesion layer 3 is formed on a semiconductor substrate 1 , and an interlayer insulating film (not shown) is sequentially formed thereon.
  • a general lithography is performed on a predetermined portion of the interlayer insulating film where the lower electrode is formed. Then, an opening portion to expose the metal adhesion layer 3 and an interlayer insulating film pattern 5 are formed.
  • a CMP process is performed to form a Pt pattern 7 as a lower electrode.
  • a soft pad, a hard pad, a stack pad laminated with the above two pads or the combination of the above pads can be used for the polishing pads used in the primary and the secondary CMP processes.
  • KOH 1 mole
  • H 2 O 2 was added to be present in a final concentration of 2 vol % to the resulting solution.
  • the resulting solution was further stirred for more than 10 minutes until it was completely mixed and stabilized, thereby obtaining the Pt-CMP solution.
  • a Pt layer was dipped in 1 M KOH aqueous solution containing 2 vol % H 2 O 2 prepared in the above Example 1 and other 1 M KOH aqueous solution not containing the oxidizer. Then, a voltage was applied to the two solutions, and a current generated on the surface of the Pt layer was compared.
  • FIG. 2 shows the current dependent on a potential of the Pt layer formed using a disclosed solution.
  • FIGS. 3 a through 3 d show concentrations of elements such as Pt, O and C to polishing time.
  • the concentration of the oxide layer formed on the Pt surface is higher than that of the Pt.
  • the concentration of the oxide layer decreases, and the concentration of the polished Pt increases.
  • the thickness ( ⁇ ) where the oxide layer penetrates into the Pt surface in various kinds of slurries is obtained by measuring polishing time until the oxide layer is removed by the polishing process.
  • the slurry for oxidizing most the Pt surface was known by the polishing time.
  • Table 1 shows the results as follows. TABLE 1 Thickness of oxide layer penetrating into Pt dipping condition Pt surface ( ⁇ ) Common slurry for metal 100 KOH aqueous solution 75 Disclosed KOH aqueous solution 225 containing oxidizer Exposure to air 75
  • the disclosed CMP process is performed by using the disclosed platinum CMP solution containing the oxidizer in the alkali aqueous solution, which improves the polishing speed of platinum under a low pressure and reduces dishing of the Pt layer.
  • the disclosed solution decreases scratches generated in the interlayer insulating film because the solution does not contain an abrasive like conventional slurries for metal. As a result, an improved technique for device isolation and reduction of step coverage is disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

A solution for platinum chemical mechanical polishing is disclosed. Further, a method for forming Pt patterns is disclosed which utilizes the disclosed Pt-CMP solution which contains an alkali aqueous solution and an oxidizer which improves the polishing rate and polishing characteristics of Pt which forms a lower electrode of a metal capacitor.

Description

    BACKGROUND
  • 1. Technical Field [0001]
  • A solution for platinum (abbreviated as “Pt”) chemical mechanical polishing (abbreviated as “CMP”) containing an alkali aqueous solution and an oxidizer is disclosed. More specifically, a method for forming Pt patterns including using the above Pt-CMP solution is disclosed which can improve a polishing rate and polishing characteristics of Pt used as a lower electrode of a metal capacitor. [0002]
  • 2. Description of the Related Art [0003]
  • Platinum is a noble metal which is chemically and mechanically stable, and is an essential material used in fabricating high performance semiconductor devices. In addition, platinum (Pt) has been recently used as a lower electrode in DRAM devices. The lower electrode is created while forming metal layer/insulating film/metal layer-type capacitors through an electro-deposition process. [0004]
  • However, when the Pt layer is electro-deposited, the current is non-uniform due to the geometry and density of the oxide layer that is used for isolation. As a result, the Pt layer is non-uniformly formed and short-circuit is caused. [0005]
  • In order to solve the above-described problem, after the Pt layer is electro-deposited, a CMP process can be performed on the upper portion of the layer to planarize the Pt layer. However, because the Pt layer has relatively low chemical reactivity, appropriate CMP slurry cannot be provided to polish the Pt during CMP process. Thus, the common slurries intended for other metals such as tungsten or aluminum are employed when polishing platinum. [0006]
  • The slurries intended for other metals also include chemicals for planarizing of the various metal layers on a silicon substrate. In general, the slurry for a metal CMP process with a strong acidity of [0007] pH 2˜4 contains an abrasive such as alumina (Al2O3) or manganese oxide (MnO2) and an oxidizer such as hydrogen peroxide (H2O2) or ferric nitrate (Fe(NO3)2) as a first additive, using distilled water or ultra pure water. Further, a small amount of surfactant or dispersing agent may be added to improve CMP slurry properties.
  • Since the polishing speed of Pt layers is very slow, the CMP process is performed for a long period of time under high polishing pressure in order to adequately planarize the Pt. [0008]
  • As a result, the Pt layers may be separated from the interlayer insulating film because the Pt layer has poor adhesion to the interlayer insulating film. In addition, dishing and erosion effects are generated on the Pt layer adjacent to the interlayer insulating film. [0009]
  • Moreover, when the Pt layer is polished for a long time under high polishing pressure, the abrasive included in the slurry can severely scratch the interlayer insulating film, and impurities such as the slurry grounds can remain on the Pt layer. Therefore, the properties of the resultant device are compromised. [0010]
  • SUMMARY OF THE DISCLOSURE
  • Solutions for platinum CMP are disclosed which can improve the polishing speed of platinum under a low polishing pressure and reduce dishing of the platinum layer and scratches on the interlayer insulating film. [0011]
  • Methods for forming a platinum pattern including CMP process using the above Pt-CMP solution are also disclosed.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view illustrating a Pt electrode formed using a disclosed solution. [0013]
  • FIG. 2 is a graph illustrating a current dependent on a potential of Pt formed using a disclosed solution. [0014]
  • FIGS. 3[0015] a through 3 d are graphs illustrating growth rate of Pt oxide layer under various solutions.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • CMP solutions containing an oxidizer in an alkali aqueous solution are disclosed. The CMP solutions can be used for polishing and planarizing Pt. [0016]
  • The alkali aqueous solution contains alkali compounds selected from the group consisting of sodium hydride, potassium hydride, tetramethyl ammoniumhydride, tetraalkyl ammonium hydride and mixtures thereof. Potassium hydride (KOH) is preferably used. Here, the alkali aqueous solution preferably has a concentration ranging from 0.01 M to 10 M, and preferably ranging from 0.1 M to 5 M. [0017]
  • Examples of the oxidizer are any of the compounds which make Pt atoms lose the electrons to oxidize the Pt. For example, Fe(NO[0018] 3)2 is used, and preferably H2O2 as the oxidizer. The oxidizer is present in concentration ranging from 1 vol % to 50 vol % to the alkali aqueous solution, and more preferably, ranging from 1 vol % to 10 vol % to the alkali aqueous solution.
  • It is preferable that the CMP solution comprising the alkali aqueous solution and the oxidizer maintains its pH ranging from 8 to 14and more preferably ranging from 10 to 14. [0019]
  • In order to find out chemical reactivity of the Pt-CMP solution, after a predetermined voltage is externally applied to 1 M KOH aqueous solution containing 2 vol % H[0020] 2O2 and other 1 M KOH aqueous solution not containing the oxidizer, current obtained by electro-chemical reactions generated on the Pt surface are measured.
  • As a result, it is shown that current density of KOH aqueous solution containing the oxidizer is higher than KOH solution not containing the oxidizer when having the same applied potential. Accordingly, it is recognized that Pt layers are more rapidly oxidized by the disclosed Pt-CMP solutions (see FIG. 2). [0021]
  • When an oxidation speed of the Pt surface exposed to air is compared with that of the Pt surface exposed to (1) a common slurry for metal, (2) KOH aqueous solution not containing the oxidizer and (3) the disclosed Pt-CMP solution containing oxidizer, the Pt surface exposed to the disclosed solution showed the highest concentration of oxygen. As a result, the Pt surface exposed to the disclosed CMP solution has a greater degree of oxidation after the polishing process (see FIGS. 3[0022] a through 3 d).
  • The disclosed Pt-CMP solution changes the physical and chemical properties of the surface of Pt layer by way of the alkali aqueous solution and the oxidizer. That is, using the disclosed CMP solution, the binding strength and compactness between Pt atoms are decreased. Consequently, the oxidation speed of the Pt layer surface increases. [0023]
  • In this way, when the Pt surface is oxidized, its hardness is lowered such that the Pt surface is more easily polished. Thus, the polishing speed under the same pressure is faster and the polishing process is easier when the CMP process is performed on the Pt layer using the disclosed solution than when using a common slurry for metal. [0024]
  • In addition, in comparison with a conventional slurry, the disclosed Pt-CMP solution includes no abrasive and thus decreases scratches generated on the exposed interlayer insulating film. [0025]
  • A disclosed method for forming a platinum pattern comprises: [0026]
  • (a) forming an interlayer insulating film pattern having a contact hole on a semiconductor substrate; [0027]
  • (b) forming a platinum layer on the interlayer insulating film pattern; and [0028]
  • (c) performing a primary platinum CMP process on an overall surface of the platinum layer with the interlayer insulating film pattern as an etching barrier film using the disclosed Pt-CMP solution. [0029]
  • Step (c) may further comprise performing a primary CMP process polishing the Pt layer using the disclosed CMP solution until interlayer insulating film is exposed and performing a secondary CMP process polishing the exposed interlayer insulating film using slurry for an interlayer insulating film. [0030]
  • In the primary CMP process, the Pt-formed semiconductor substrate is contacted with a polishing pad of a rotary table of a CMP system under pressure. Then, the disclosed Pt-CMP solution is supplied to an interface between the polishing pad and the Pt layer, and the Pt layer is polished. [0031]
  • Here, the CMP process is performed under a pressure ranging from 1 to 3 psi, at a table revolution of a rotary type system ranging from 10 to 80 rpm, and at a linear table speed ranging from 100 to 600 fpm depending upon the polishing speed of the Pt layer and the polishing property of the interlayer insulating film. [0032]
  • Thereafter, in the secondary CMP process, a touch polishing process of interlayer insulating film pattern is performed at the time the interlayer insulating film is exposed, using CMP slurry for interlayer insulating film. The touch polishing process is a buffering step to prevent the Pt layer from dishing generated by the difference in polishing selectivity between the Pt layer and the interlayer insulating film of the primary CMP process. Here, the polishing conditions are similar to that of the primary CMP process. [0033]
  • Various types of polishing pads can be used in the above CMP process according to the polishing properties of the Pt layer. For example, a soft pad can be used to raise uniformity of the polished layer and a hard pad can be used to improve planarity. And a stack pad laminated with the above two pads or the combination of the above pads can be also used. [0034]
  • In addition, a metal adhesion layer such as titanium (Ti) or titanium nitride (TiN) can be further formed on the top surface of the interlayer insulating film pattern before forming Pt layer so as to improve adhesiveness of the Pt layer. [0035]
  • That is, a disclosed method for forming a platinum pattern comprises: [0036]
  • (a) forming an interlayer insulating film pattern having a contact hole on a semiconductor substrate; [0037]
  • (b) forming a metal adhesion layer on the interlayer insulating film pattern; [0038]
  • (c) forming a platinum layer on the metal adhesion layer; [0039]
  • (d) performing a primary platinum CMP process on an overall surface of the platinum layer using the disclosed Pt-CMP solution until the metal adhesion layer is exposed; [0040]
  • (e) performing a secondary a CMP process on the resultant surface using a metal slurry until the interlayer insulating film is exposed; and [0041]
  • (f) performing a touch-polishing process on the resultant surface using slurry for an interlayer insulating film. [0042]
  • Preferably, the interlayer insulating pattern is an oxide pattern, and the Pt pattern is used as the lower electrode pattern. [0043]
  • In the primary CMP process, the Pt-formed semiconductor substrate is contacted to a polishing pad of a rotary table of a CMP system under pressure. Then, the disclosed Pt-CMP solution is supplied to an interface of the polishing pad and the Pt layer, and the Pt layer is polished. [0044]
  • Here, as described above, the primary CMP process is performed under a pressure ranging from 1 to 3 psi, at a table revolution of a rotary type system ranging from 10 to 80 rpm, and at a linear table speed ranging from 100 to 600 fpm depending upon the polishing speed of the Pt layer and the polishing property of the interlayer insulating film. [0045]
  • Thereafter, in the secondary CMP process, the exposed metal adhesion layer is polished using metal CMP slurry until the interlayer insulating film is exposed. [0046]
  • In the tertiary CMP process, a touch polishing process of interlayer insulating film is performed at the time the interlayer insulating film is exposed, using CMP slurry for interlayer insulating film. The touch polishing process is a buffering step to prevent the Pt layer from dishing generated by the difference in polishing selectivity between the metal layer and the interlayer insulating film. Here, conditions of the secondary CMP process and the tertiary CMP process are similar to that of the primary CMP process. [0047]
  • The above secondary and tertiary CMP slurry for a metal and interlayer insulating film is used the general slurry. [0048]
  • The disclosed Pt-electrode pattern is shown in FIG. 1. [0049]
  • Referring to FIG. 1, a [0050] metal adhesion layer 3 is formed on a semiconductor substrate 1, and an interlayer insulating film (not shown) is sequentially formed thereon.
  • A general lithography is performed on a predetermined portion of the interlayer insulating film where the lower electrode is formed. Then, an opening portion to expose the [0051] metal adhesion layer 3 and an interlayer insulating film pattern 5 are formed.
  • After a Pt layer (not shown) is electro-deposited on the resultant surface, a CMP process is performed to form a [0052] Pt pattern 7 as a lower electrode.
  • In the above CMP process comprising the Pt-formed semiconductor substrate is contacted to a polishing pad formed on a rotary table of a CMP system under pressure. Then, the disclosed Pt-CMP solution containing H[0053] 2O2 present at 1 to 10 vol % in a 0.1 to 5 M KOH aqueous solution is supplied to an interface of the polishing pad and the Pt layer, and the Pt layer is polished. Here, the primary CMP process is performed under a pressure ranging from 1 to 3 psi, at a table revolution of a rotary type system ranging from 10 to 80 rpm, and at a linear table speed ranging from 100 to 600 fpm. Thereafter, in the secondary CMP process, a touch polishing process is performed at the time the interlayer insulating film is exposed, using slurry for interlayer insulating film.
  • A soft pad, a hard pad, a stack pad laminated with the above two pads or the combination of the above pads can be used for the polishing pads used in the primary and the secondary CMP processes. [0054]
  • EXAMPLE 1 Preparation of the Disclosed Pt-CMP Solution
  • KOH ([0055] 1 mole) was added to 1000 mL of ultra pure water to prepare 1 M KOH aqueous solution. The resulting solution was stirred, and H2O2 was added to be present in a final concentration of 2 vol % to the resulting solution. The resulting solution was further stirred for more than 10 minutes until it was completely mixed and stabilized, thereby obtaining the Pt-CMP solution.
  • EXPERIMENTAL EXAMPLE 1 Chemical Reactivity of the Disclosed Pt-CMP Solution
  • A Pt layer was dipped in 1 M KOH aqueous solution containing 2 vol % H[0056] 2O2 prepared in the above Example 1 and other 1 M KOH aqueous solution not containing the oxidizer. Then, a voltage was applied to the two solutions, and a current generated on the surface of the Pt layer was compared. FIG. 2 shows the current dependent on a potential of the Pt layer formed using a disclosed solution.
  • When a potential was 0.4 E/V[0057] Ag/Agcl, 1 M KOH aqueous solution not containing the oxidizer had a current density of 1×10−5 Am−2 while 1M KHO solution containing 2 vol % H2O2 had a high current density of about 0.05 Am−2. That is, the Pt surface polished with the disclosed solution was more oxidized than the Pt surface polished with the solution not containing the oxidizer.
  • EXPERIMENTAL EXAMPLE 2 Oxidation of the Pt Surface Under Various Conditions
  • Platinum was dipped and oxidized respectively in (1) a common slurry for metal of [0058] pH 6 using CeO2 as an abrasive (see FIG. 3a), (2) 1 M KOH aqueous solution not containing the oxidizer (see FIG. 3b) and (3) 1 M KHO solution containing 2 vol % H2O2 (see FIG. 3c). Then, the surface of Pt was polished at room temperature using AES (Auger Electron-Spectroscopy) at a speed of 50 Å/min, thereby measuring the time the oxidized portion was polished.
  • After the Pt layer was exposed to air and oxidized, the surface of Pt was polished at the same speed as described above, thereby measuring the time the oxidized portion was polished (see FIG. 3[0059] d).
  • FIGS. 3[0060] a through 3 d show concentrations of elements such as Pt, O and C to polishing time. At an initial stage of the polishing process, the concentration of the oxide layer formed on the Pt surface is higher than that of the Pt. However, as the polishing process proceeded, it is shown that the concentration of the oxide layer decreases, and the concentration of the polished Pt increases.
  • The thickness (Å) where the oxide layer penetrates into the Pt surface in various kinds of slurries is obtained by measuring polishing time until the oxide layer is removed by the polishing process. In other words, the slurry for oxidizing most the Pt surface was known by the polishing time. Table 1 shows the results as follows. [0061]
    TABLE 1
    Thickness of oxide
    layer penetrating into
    Pt dipping condition Pt surface (Å)
    Common slurry for metal 100
    KOH aqueous solution 75
    Disclosed KOH aqueous solution 225
    containing oxidizer
    Exposure to air 75
  • As shown in Table 1, the surface of Pt dipped in the alkali aqueous solution containing the disclosed oxidizer is oxidized the most. Therefore, the polishing speed of the Pt layer is increased due to the oxide layer, thereby improving the polishing speed and effect. [0062]
  • As discussed earlier, the disclosed CMP process is performed by using the disclosed platinum CMP solution containing the oxidizer in the alkali aqueous solution, which improves the polishing speed of platinum under a low pressure and reduces dishing of the Pt layer. In addition, the disclosed solution decreases scratches generated in the interlayer insulating film because the solution does not contain an abrasive like conventional slurries for metal. As a result, an improved technique for device isolation and reduction of step coverage is disclosed. [0063]

Claims (20)

What is claimed is:
1. A chemical mechanical polishing (CMP) solution for platinum comprising:
an alkali aqueous solution; and
an oxidizer.
2. The solution according to claim 1, wherein the alkali aqueous solution comprises:
alkali compounds selected from the group consisting of sodium hydride, potassium hydride, tetramethyl ammoniumhydride, tetraalkyl ammonium hydride and mixtures thereof.
3. The solution according to claim 1, wherein the concentration of alkali aqueous solution ranges from 0.01 M to 10 M.
4. The solution according to claim 1, wherein the concentration of alkali aqueous solution ranges from 0.1 M to 5 M.
5. The solution according to claim 1, wherein the oxidizer is H2O2, Fe(NO3)2 or mixtures thereof.
6. The solution according to claim 1, wherein the oxidizer is present in a concentration ranging from 1 vol % to 50 vol % of the alkali aqueous solution.
7. The solution according to claim 1, wherein the oxidizer is present in a concentration ranging from 1 vol % to 10 vol % of the alkali aqueous solution.
8. The solution according to claim 1, wherein the pH of the solution ranges from 8 to 14.
9. The solution according to claim 1, wherein the pH of the solution ranges from 10 to 14.
10. A method for forming a platinum pattern comprising:
(a) forming an interlayer insulating film pattern having a contact hole on a semiconductor substrate;
(b) forming a platinum layer on the interlayer insulating film pattern; and
(c) performing a platinum CMP process on a surface of the platinum layer with the interlayer insulating film pattern as an etching barrier film using the CMP solution of claim 1.
11. The method according to claim 10, further comprising:
performing a touch-polishing process on the surface after step (c) using a slurry for an interlayer insulating.
12. The method according to claim 10, wherein the interlayer insulating film pattern is an oxide pattern.
13. The method according to claim 10, wherein the platinum pattern is used as a lower electrode pattern.
14. A method for forming a platinum pattern comprising:
(a) forming an interlayer insulating film pattern having a contact hole on a semiconductor substrate;
(b) forming a metal adhesion layer on the interlayer insulating film pattern;
(c) forming a platinum layer on the metal adhesion layer;
(d) performing a platinum CMP process on an overall surface of the platinum layer using the CMP solution of claim 1 until the metal adhesion layer is exposed;
(e) performing a CMP process on the resultant surface using a metal slurry until the interlayer insulating film is exposed; and
(f) performing a touch-polishing process on the resultant surface using slurry for an interlayer insulating film.
15. The method according to claim 14, wherein the metal adhesion layer is Ti or TiN.
16. The method according to claim 14, wherein the interlayer insulating film pattern is an oxide pattern.
17. The method according to claim 14, wherein the platinum pattern is used as a lower electrode pattern.
18. A platinum (Pt) chemical mechanical polishing (CMP) solution comprising:
a KOH aqueous solution; and
hydrogen peroxide.
19. The Pt CMP solution according to claim 18, wherein the concentration of KOH aqueous solution ranges from 0.01 M to 10 M, and hydrogen peroxide is present in a concentration ranging from 1 to 50 vol % of the KOH aqueous solution.
20. A method for forming a for forming a platinum pattern comprising:
(a) forming an interlayer insulating film pattern having a contact hole on a semiconductor substrate;
(b) forming a metal adhesion layer on the interlayer insulating film pattern;
(c) forming a platinum layer on the metal adhesion layer;
(d) performing a platinum CMP process on an overall surface of the platinum layer using the CMP solution of claim 18 until the metal adhesion layer is exposed;
(e) performing a CMP process on the resultant surface using a metal slurry until the interlayer insulating film is exposed; and
(f) performing a touch-polishing process on the resultant surface using slurry for an interlayer insulating film.
US10/460,695 2002-06-19 2003-06-12 Chemical mechanical polishing solution for platinum Abandoned US20040018728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/493,126 US7470623B2 (en) 2002-06-19 2006-07-26 Method of forming a platinum pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2002-34376 2002-06-19
KR1020020034376A KR20040000009A (en) 2002-06-19 2002-06-19 Solution for Platinum-Chemical Mechanical Planarization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/493,126 Division US7470623B2 (en) 2002-06-19 2006-07-26 Method of forming a platinum pattern

Publications (1)

Publication Number Publication Date
US20040018728A1 true US20040018728A1 (en) 2004-01-29

Family

ID=30768125

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/460,695 Abandoned US20040018728A1 (en) 2002-06-19 2003-06-12 Chemical mechanical polishing solution for platinum
US11/493,126 Expired - Fee Related US7470623B2 (en) 2002-06-19 2006-07-26 Method of forming a platinum pattern

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/493,126 Expired - Fee Related US7470623B2 (en) 2002-06-19 2006-07-26 Method of forming a platinum pattern

Country Status (5)

Country Link
US (2) US20040018728A1 (en)
JP (1) JP2004080007A (en)
KR (1) KR20040000009A (en)
CN (1) CN1238560C (en)
TW (1) TWI253465B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080020680A1 (en) * 2006-07-24 2008-01-24 Cabot Microelectronics Corporation Rate-enhanced CMP compositions for dielectric films
CN104576351A (en) * 2013-10-23 2015-04-29 中芯国际集成电路制造(上海)有限公司 Chemical and mechanical grinding method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211950A1 (en) * 2004-03-24 2005-09-29 Cabot Microelectronics Corporation Chemical-mechanical polishing composition and method for using the same
KR100713232B1 (en) * 2006-08-30 2007-05-04 이정자 Sprouter
KR101031180B1 (en) * 2010-01-13 2011-05-03 산이건설 주식회사 Infilled type steel box bridge holder
US8610280B2 (en) 2011-09-16 2013-12-17 Micron Technology, Inc. Platinum-containing constructions, and methods of forming platinum-containing constructions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436286A (en) * 1963-03-28 1969-04-01 Siemens Ag Polishing method for the removal of material from monocrystalline semiconductor bodies
US3764424A (en) * 1971-05-03 1973-10-09 Bell Telephone Labor Inc Fabrication of gallium arsenide devices
US4956313A (en) * 1987-08-17 1990-09-11 International Business Machines Corporation Via-filling and planarization technique
US5575885A (en) * 1993-12-14 1996-11-19 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
US5938505A (en) * 1997-01-10 1999-08-17 Texas Instruments Incorporated High selectivity oxide to nitride slurry
US5957757A (en) * 1997-10-30 1999-09-28 Lsi Logic Corporation Conditioning CMP polishing pad using a high pressure fluid
US6244929B1 (en) * 1998-11-10 2001-06-12 Vlsi Technology, Inc. Chemical-mechanical-polishing system with continuous filtration
US6290736B1 (en) * 1999-02-09 2001-09-18 Sharp Laboratories Of America, Inc. Chemically active slurry for the polishing of noble metals and method for same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143662A (en) * 1998-02-18 2000-11-07 Rodel Holdings, Inc. Chemical mechanical polishing composition and method of polishing a substrate
US6214728B1 (en) * 1998-11-20 2001-04-10 Chartered Semiconductor Manufacturing, Ltd. Method to encapsulate copper plug for interconnect metallization
US6555466B1 (en) * 1999-03-29 2003-04-29 Speedfam Corporation Two-step chemical-mechanical planarization for damascene structures on semiconductor wafers
JP2001023940A (en) 1999-07-09 2001-01-26 Seimi Chem Co Ltd Method for planarizing semiconductor integrated circuit and chemical mechanical polishing slurry therefor
JP4156137B2 (en) * 1999-07-19 2008-09-24 株式会社トクヤマ Metal film abrasive
KR100504359B1 (en) * 2000-02-04 2005-07-28 쇼와 덴코 가부시키가이샤 Polishing composite for use in lsi manufacture and method of manufacturing lsi
JP3993369B2 (en) * 2000-07-14 2007-10-17 株式会社東芝 Manufacturing method of semiconductor device
KR100396883B1 (en) * 2000-11-23 2003-09-02 삼성전자주식회사 Slurry for chemical mechanical polishing and manufacturing method of copper metal interconnection layer using the same
DE10060343A1 (en) * 2000-12-04 2002-06-06 Bayer Ag Polishing slurry for the chemical mechanical polishing of metal and dielectric structures
US6576479B2 (en) * 2001-04-23 2003-06-10 Macronix International Co., Ltd. Method for forming vertical ferroelectric capacitor comprising forming ferroelectric material in gap between electrodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436286A (en) * 1963-03-28 1969-04-01 Siemens Ag Polishing method for the removal of material from monocrystalline semiconductor bodies
US3764424A (en) * 1971-05-03 1973-10-09 Bell Telephone Labor Inc Fabrication of gallium arsenide devices
US4956313A (en) * 1987-08-17 1990-09-11 International Business Machines Corporation Via-filling and planarization technique
US5575885A (en) * 1993-12-14 1996-11-19 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
USRE37786E1 (en) * 1993-12-14 2002-07-09 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
US5938505A (en) * 1997-01-10 1999-08-17 Texas Instruments Incorporated High selectivity oxide to nitride slurry
US5957757A (en) * 1997-10-30 1999-09-28 Lsi Logic Corporation Conditioning CMP polishing pad using a high pressure fluid
US6244929B1 (en) * 1998-11-10 2001-06-12 Vlsi Technology, Inc. Chemical-mechanical-polishing system with continuous filtration
US6290736B1 (en) * 1999-02-09 2001-09-18 Sharp Laboratories Of America, Inc. Chemically active slurry for the polishing of noble metals and method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080020680A1 (en) * 2006-07-24 2008-01-24 Cabot Microelectronics Corporation Rate-enhanced CMP compositions for dielectric films
CN104576351A (en) * 2013-10-23 2015-04-29 中芯国际集成电路制造(上海)有限公司 Chemical and mechanical grinding method

Also Published As

Publication number Publication date
CN1238560C (en) 2006-01-25
TWI253465B (en) 2006-04-21
JP2004080007A (en) 2004-03-11
US20060264052A1 (en) 2006-11-23
KR20040000009A (en) 2004-01-03
CN1475604A (en) 2004-02-18
US7470623B2 (en) 2008-12-30
TW200404885A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US6178585B1 (en) Slurries for chemical mechanical polishing
US7998335B2 (en) Controlled electrochemical polishing method
US20050070109A1 (en) Novel slurry for chemical mechanical polishing of metals
US7470623B2 (en) Method of forming a platinum pattern
KR101335946B1 (en) CMP slurry composition for tungsten
US20020197855A1 (en) Chemical mechanical polishing slurry and process for ruthenium films
JP3904578B2 (en) Manufacturing method of semiconductor device
US6797624B2 (en) Solution for ruthenium chemical mechanical planarization
US20030166338A1 (en) CMP slurry for metal and method for manufacturing metal line contact plug of semiconductor device using the same
KR100648264B1 (en) Slurry for ruthenium cmp, cmp method for ruthenium using the slurry and method for forming ruthenium electrode using the ruthenium cmp
JP2001210612A (en) Cmp nonselective slurry, its manufacturing method and method of forming plug in insulating layer on wafer using te same
US6752844B2 (en) Ceric-ion slurry for use in chemical-mechanical polishing
US20030003747A1 (en) Chemical mechanical polishing slurry for ruthenium titanium nitride and polishing process using the same
JP3887737B2 (en) Wiring formation method
KR20030056895A (en) Slurry for CMP and method for fabricating the same and method for treating CMP using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYNIX SEMICONDUCTOR INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, WOO JIN;REEL/FRAME:014494/0878

Effective date: 20030901

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION