US20050211950A1 - Chemical-mechanical polishing composition and method for using the same - Google Patents

Chemical-mechanical polishing composition and method for using the same Download PDF

Info

Publication number
US20050211950A1
US20050211950A1 US10807944 US80794404A US2005211950A1 US 20050211950 A1 US20050211950 A1 US 20050211950A1 US 10807944 US10807944 US 10807944 US 80794404 A US80794404 A US 80794404A US 2005211950 A1 US2005211950 A1 US 2005211950A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
polishing composition
alumina
chemical
abrasive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10807944
Inventor
Francesco De Rege Thesauro
Kevin Moeggenborg
Vlasta Brusic
Benjamin Bayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Microelectronics Corp
Original Assignee
Cabot Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09GPOLISHING COMPOSITIONS OTHER THAN FRENCH POLISH; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Abstract

The invention provides a chemical-mechanical polishing composition comprising: (a) an abrasive comprising α-alumina, (b) about 0.05 to about 50 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. The invention also provides a chemical-mechanical polishing composition comprising: (a) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (b) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. The invention further provides methods of polishing a substrate using each of the above-described chemical-mechanical polishing compositions.

Description

    FIELD OF THE INVENTION
  • This invention pertains to a chemical-mechanical polishing composition and a method of polishing a substrate using the same.
  • BACKGROUND OF THE INVENTION
  • In the fabrication of integrated circuits and other electronic devices, multiple layers of conducting, semiconducting, and dielectric materials are deposited onto or removed from a substrate surface. Thin layers of conducting, semiconducting, and dielectric materials may be deposited onto the substrate surface by a number of deposition techniques. Deposition techniques common in modem microelectronics processing include physical vapor deposition (PVD), also known as sputtering, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and electrochemical plating (ECP).
  • As layers of materials are sequentially deposited onto and removed from the substrate, the uppermost surface of the substrate may become non-planar and require planarization. Planarizing a surface, or “polishing” a surface, is a process where material is removed from the surface of the substrate to form a generally even, planar surface. Planarization is useful in removing undesired surface topography and surface defects, such as rough surfaces, agglomerated materials, crystal lattice damage, scratches, and contaminated layers or materials. Planarization is also useful in forming features on a substrate by removing excess deposited material used to fill the features and to provide an even surface for subsequent levels of metallization and processing.
  • Chemical-mechanical planarization, or chemical-mechanical polishing (CMP), is a common technique used to planarize substrates. CMP utilizes a chemical composition, typically a slurry or other fluid medium, for selective removal of material from the substrate. In conventional CMP techniques, a substrate carrier or polishing head is mounted on a carrier assembly and positioned in contact with a polishing pad in a CMP apparatus. The carrier assembly provides a controllable pressure to the substrate, urging the substrate against the polishing pad. The pad is moved relative to the substrate by an external driving force. The relative movement of the pad and substrate serves to abrade the surface of the substrate to remove a portion of the material from the substrate surface, thereby polishing the substrate. The polishing of the substrate by the relative movement of the pad and the substrate typically is further aided by the chemical activity of the polishing composition and/or the mechanical activity of an abrasive suspended in the polishing composition.
  • As the demand for ever smaller storage devices capable of storing ever larger amounts of information increases, electronics manufacturers have begun to manufacture increasingly complicated integrated circuits utilizing exotic materials. For example, the use of noble metals in DRAMs (dynamic random access memory) and FeRAMs (ferroelectric random access memory) is becoming increasingly popular. While the use of noble metals can provide increased performance in such devices, the use of noble metals can—and often does—present unique manufacturing challenges. In particular, noble metals are mechanically hard and chemically resistant. Indeed, the term noble metal was adopted to describe the metals' superior resistance to corrosion and oxidation. This mechanical hardness and relative chemical resistance make noble metals much more difficult to efficiently polish using conventional chemical-mechanical polishing compositions and techniques.
  • Notwithstanding the difficulties presented by the chemical-mechanical polishing of noble metals, their potential benefits have driven their use in the manufacture of integrated circuits, and several attempts have been made to develop chemical-mechanical polishing compositions and techniques aimed at aiding their integration into integrated circuit manufacture and the realization of the full potential that can result from their use. For example, U.S. Pat. No. 5,691,219 discloses a polishing composition comprising a halo-compound that is purportedly useful in the polishing of noble metals. Similarly, U.S. Pat. No. 6,290,736 discloses a chemically active polishing composition for noble metals comprising an abrasive and a halogen in basic aqueous solution. WO 01/44396 A1 discloses a polishing composition for noble metals comprising sulfur-containing compounds, abrasive particles, and water-soluble organic additives which purportedly improve the dispersion of the abrasive particles and enhance metal removal rates and selectivity.
  • While each of the aforementioned chemical-mechanical polishing compositions might be capable of polishing noble metals more efficiently than conventional chemical-mechanical polishing compositions, the compositions also can produce defects on the surface of the substrate that can negatively impact the performance of any integrated circuit later manufactured from the substrate. Furthermore, the halogen- and sulfur-containing compounds utilized in the aforementioned polishing compositions can be highly toxic (which can complicate the polishing process by requiring specialized handling equipment and/or procedures), expensive to produce, and/or expensive to properly dispose of in accordance with environmental regulations.
  • A need therefore remains for a chemical-mechanical polishing composition that is capable of polishing noble metal containing substrates more efficiently than conventional chemical-mechanical polishing compositions without the need for using specialized oxidizers or chemical etchants. The invention provides such a chemical-mechanical polishing composition and related method of using the same to polish a substrate. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention provides a chemical-mechanical polishing composition comprising: (a) an abrasive comprising α-alumina, (b) about 0.05 to about 50 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water.
  • The invention also provides a chemical-mechanical polishing composition comprising: (a) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (b) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water.
  • The invention further provides a method of polishing a substrate comprising the steps of: (a) providing a substrate, (b) providing a chemical-mechanical polishing composition comprising: (i) an abrasive comprising α-alumina, (ii) about 0.05 to about 50 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (iii) a liquid carrier comprising water, (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  • The invention additionally provides a method of polishing a substrate comprising the steps of: (a) providing a substrate, (b) providing a chemical-mechanical polishing composition comprising: (i) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (ii) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (iii) a liquid carrier comprising water, (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides a chemical-mechanical polishing composition comprising (a) an abrasive, (b) ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, and (c) a liquid carrier comprising water. In one embodiment, the chemical-mechanical polishing composition comprises (a) an abrasive comprising α-alumina, (b) about 0.05 to about 50 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. In another embodiment, the chemical-mechanical polishing composition comprises (a) an abrasive comprising α-alumina, (b) about 0.05 to about 3.5 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. In yet another embodiment, the chemical-mechanical polishing composition comprises (a) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (b) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. Aside from the abrasive and the identity and concentration of the metal ions present in the embodiments of the chemical-mechanical polishing composition of the invention, the other characteristics of the chemical-mechanical polishing composition of the invention (e.g., the amount of abrasive, the liquid carrier, the pH, and other suitable additives) can be the same.
  • The polishing composition comprises an abrasive, and, in certain embodiments, the abrasive comprises α-alumina. As known to those of ordinary skill in the art, alumina (i.e., aluminum oxide) exists is several different crystalline phases, which include α-alumina, γ-alumina, δ-alumina, θ-alumina, κ-alumina, η-alumina, χ-alumina, and ρ-alumina. The α-alumina, when present in the abrasive, can be present in any suitable form. More specifically, the α-alumina can be present in the form of distinct abrasive particles consisting essentially of, or consisting of, α-alumina, or the α-alumina can be present in abrasive particles comprising α-alumina and other suitable abrasive components (e.g., a metal oxide, such as fumed alumina). When the abrasive comprises α-alumina, the abrasive preferably comprises about 10 wt. % or more, more preferably about 20 wt. % or more, still more preferably about 30 wt. % or more, even more preferably about 40 wt. % or more, and most preferably about 50 wt. % or more (e.g., about 55 wt. % or more, or about 60 wt. % or more) α-alumina based on the total weight of the abrasive.
  • As noted above, the invention also provides a chemical-mechanical polishing composition comprising an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof. In such an embodiment, the abrasive preferably is selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, silicon carbide, titanium nitride, and mixtures thereof. More preferably, the abrasive is selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, silicon carbide, and mixtures thereof. Most preferably, the abrasive is selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, and mixtures thereof.
  • In addition to the aforementioned abrasive components, the abrasive of the polishing composition can further comprise other suitable abrasive components. Suitable additional abrasive components include, but are not limited to, metal oxide abrasives, such as other forms of alumina (e.g., fumed alumina), silica (e.g., colloidally dispersed condensation-polymerized silica, fumed or pyrogenic silica, and precipitated silica), ceria, titania, zirconia, chromia, iron oxide, germania, magnesia, co-formed products thereof, and combinations thereof.
  • The abrasive can be present in the polishing composition in any suitable amount. Typically, the abrasive is present in the polishing composition in an amount of about 0.01 wt. % or more, preferably about 0.05 wt. % or more, more preferably about 0.1 wt. % or more, still more preferably about 0.5 wt. % or more, and most preferably about 1 wt. % or more, based on the total weight of the polishing composition. The abrasive typically is present in the polishing composition in an amount of about 25 wt. % or less, preferably about 20 wt. % or less, more preferably about 15 wt. % or less, still more preferably about 10 wt. % or less, and most preferably about 5 wt. % or less, based on the total weight of the polishing composition.
  • In one embodiment, the polishing composition comprises ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof. In a second embodiment, the polishing composition comprises ions of at least one metal selected from the group consisting of magnesium, zinc, and mixtures thereof. In a third embodiment, the polishing composition comprises ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof. The ions of the metal(s) contained in the polishing composition can be derived from any suitable source. Preferably, the ions of the metal(s) contained in the polishing composition are derived from at least one water-soluble metal salt.
  • The ions of the metal can be present in the polishing composition in any suitable amount. Generally, the ions of the metal are present in the polishing composition in an amount of about 0.05 millimoles per kilogram (mmol/kg) or more, preferably about 0.06 mmol/kg or more, more preferably about 0.07 mmol/kg or more, and most preferably about 1 mmol/kg or more, based on the total weight of the polishing composition. The ions of the metal generally are present in the polishing composition in an amount of about 50 mmol/kg or less, preferably about 40 mmol/kg or less, more preferably about 30 mmol/kg or less, and most preferably about 20 mmol/kg or less (e.g., about 10 mmol/kg or less, about 5 mmol/kg or less, or about 3.5 mmol/kg or less), based on the total weight of the polishing composition. In certain embodiments, such as when the polishing composition comprises ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, the ions of the metal preferably are present in the polishing composition in an amount of about 0.05 to about 50 millimoles per kilogram (mmol/kg), more preferably about 0.05 to about 40 mmol/kg (e.g., about 0.05 to about 30 mmol/kg, about 0.05 to about 25 mmol/kg, about 0.05 to about 20 mmol/kg, or about 0.05 to about 15 mmol/kg), still more preferably about 0.05 to about 10 mmol/kg, and most preferably about 0.05 to about 5 mmol/kg, based on the total weight of the polishing composition. When the polishing composition comprises ions of at least one metal selected from the group consisting of magnesium, zinc, and mixtures thereof, or the polishing composition comprises an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, the ions of the metal preferably are present in the polishing composition in an amount of about 0.05 to about 3.5 millimoles per kilogram (mmol/kg), more preferably about 0.05 to about 3.4 mmol/kg (e.g., about 0.05 to about 3.3 mmol/kg, about 0.05 to about 3.25 mmol/kg, about 0.05 to about 3.2 mmol/kg, or about 0.05 to about 3.1 mmol/kg), and most preferably about 0.05 to about 3 mmol/kg, based on the total weight of the polishing composition.
  • A liquid carrier is used to facilitate the application of the abrasive, metal ions, and any other additives to the surface of a suitable substrate to be polished or planarized. The liquid carrier can be any suitable liquid carrier. As noted above, the liquid carrier comprises water. Preferably, the water is deionized water. The liquid carrier can further comprise a suitable water-miscible solvent. However, in certain preferred embodiments the liquid carrier consists essentially of, or consists of, water, more preferably deionized water.
  • The polishing composition can have any suitable pH (e.g., about 1 to about 13). Preferably, the polishing composition has a pH of about 1 to about 7, more preferably about 2 to about 5. The pH of the chemical-mechanical polishing system can be achieved and/or maintained by any suitable means. More specifically, the polishing composition can further comprise a pH adjustor, a pH buffering agent, or a combination thereof. The pH adjustor can be any suitable pH-adjusting compound. For example, the pH adjustor can be potassium hydroxide, sodium hydroxide, ammonium hydroxide, or a combination thereof. The pH buffering agent can be any suitable buffering agent, for example, phosphates, acetates, borates, ammonium salts, and the like. The chemical-mechanical polishing system can comprise any suitable amount of a pH adjustor and/or a pH buffering agent, provided such amount is sufficient to achieve and/or maintain the pH of the polishing system within the ranges set forth herein.
  • The polishing composition can further comprise an acid. The acid can be any suitable acid, such as an inorganic or an organic acid, or a combination thereof. For example, the polishing composition can comprise an inorganic acid selected from the group consisting of nitric acid, phosphoric acid, sulfuric acid, salts thereof, and combinations thereof. The polishing composition can comprise (alternatively or in addition to the inorganic acid) an organic acid selected from the group consisting of oxalic acid, malic acid, malonic acid, tartaric acid, acetic acid, lactic acid, propionic acid, phthalic acid, benzoic acid, citric acid, succinic acid, salts thereof, and combinations thereof. When present, the acid(s) can be present in the polishing composition in any suitable amount(s).
  • The polishing composition also can comprise a corrosion inhibitor (i.e., a film-forming agent). The corrosion inhibitor can be any suitable corrosion inhibitor. Typically, the corrosion inhibitor is an organic compound containing a heteroatom-containing functional group. For example, the corrosion inhibitor can be a heterocyclic organic compound with at least one 5- or 6-member heterocyclic ring as the active functional group, wherein the heterocyclic ring contains at least one nitrogen atom, for example, an azole compound. Preferably, the corrosion inhibitor contains at least one azole group. More preferably, the corrosion inhibitor is selected from the group consisting of 1,2,3-triazole, 1,2,4-triazole, benzotriazole, benzimidazole, benzothiazole, and mixtures thereof. The amount of corrosion inhibitor used in the polishing system typically is about 0.0001 wt. % to about 3 wt. % (preferably about 0.001 wt. % to about 2 wt. %) based on the total weight of the polishing composition.
  • The polishing composition optionally further comprises a chelating or complexing agent. The complexing agent is any suitable chemical additive that enhances the removal rate of the substrate layer being removed. Suitable chelating or complexing agents can include, for example, carbonyl compounds (e.g., acetylacetonates, and the like), simple carboxylates (e.g., acetates, aryl carboxylates, and the like), carboxylates containing one or more hydroxyl groups (e.g., glycolates, lactates, gluconates, gallic acid and salts thereof, and the like), di-, tri-, and poly-carboxylates (e.g., oxalates, phthalates, citrates, succinates, tartrates, malates, edetates (e.g., dipotassium EDTA), mixtures thereof, and the like), carboxylates containing one or more sulfonic and/or phosphonic groups, and the like. Suitable chelating or complexing agents also can include, for example, di-, tri-, or polyalcohols (e.g., ethylene glycol, pyrocatechol, pyrogallol, tannic acid, and the like) and amine-containing compounds (e.g., ammonia, amino acids, amino alcohols, di-, tri-, and polyamines, and the like). The choice of chelating or complexing agent will depend on the type of substrate layer being removed.
  • It will be appreciated that many of the aforementioned compounds can exist in the form of a salt (e.g., a metal salt, an ammonium salt, or the like), an acid, or as a partial salt. For example, citrates include citric acid, as well as mono-, di-, and tri-salts thereof; phthalates include phthalic acid, as well as mono-salts (e.g., potassium hydrogen phthalate) and di-salts thereof; perchlorates include the corresponding acid (i.e., perchloric acid), as well as salts thereof. Furthermore, certain compounds or reagents may perform more than one function. For example, some compounds can function both as a chelating agent and an oxidizing agent (e.g., certain ferric nitrates and the like).
  • The polishing composition can further comprise a surfactant. Suitable surfactants can include, for example, cationic surfactants, anionic surfactants, nonionic surfactants, amphoteric surfactants, mixtures thereof, and the like. Preferably, the polishing composition comprises a nonionic surfactant. One example of a suitable nonionic surfactant is an ethylenediamine polyoxyethylene surfactant. The amount of surfactant typically is about 0.0001 wt. % to about 1 wt. % (preferably about 0.001 wt. % to about 0.1 wt. %, and more preferably about 0.005 wt. % to about 0.05 wt. %) based on the total weight of the polishing composition.
  • The polishing composition can further comprise an antifoaming agent. The anti-foaming agent can be any suitable anti-foaming agent. Suitable antifoaming agents include, but are not limited to, silicon-based and acetylenic diol-based antifoaming agents. The amount of anti-foaming agent present in the polishing composition typically is about 10 ppm to about 140 ppm.
  • The polishing composition can also comprise a biocide. The biocide can be any suitable biocide, for example an isothiazolinone biocide. The amount of biocide used in the polishing composition typically is about 1 to about 50 ppm, preferably about 10 to about 20 ppm.
  • The polishing composition preferably is colloidally stable. The term colloid refers to the suspension of the abrasive (e.g., abrasive particles) in the liquid carrier. Colloidal stability refers to the maintenance of that suspension through time. A polishing composition is considered colloidally stable if, when the polishing composition is placed into a 100 ml graduated cylinder and allowed to stand unagitated for a time of 2 hours, the difference between the concentration of abrasive (e.g., abrasive particles) in the bottom 50 ml of the graduated cylinder ([B] in terms of g/ml) and the concentration of abrasive (e.g., abrasive particles) in the top 50 ml of the graduated cylinder ([T] in terms of g/ml) divided by the initial concentration of abrasive (e.g., abrasive particles) in the polishing composition ([C] in terms of g/ml) is less than or equal to 0.5 (i.e., {[B]−[T]}/[C]≦0.5). Preferably, the value of [B]−[T]/[C] is less than or equal to 0.3, more preferably is less than or equal to 0.1, even more preferably is less than or equal to 0.05, and most preferably is less than or equal to 0.01.
  • The average particle size of the polishing composition preferably remains essentially unchanged throughout the useful life of the polishing composition. In particular, the average particle size of the polishing composition preferably increases by less than about 40% (e.g., less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, or less than about 10%) throughout the useful life of the polishing composition (e.g., about 90 days or more, about 180 days or more, or about 365 days or more).
  • The invention further provides methods of polishing a substrate with the polishing compositions as described herein. The methods generally comprise the steps of (i) providing a substrate, (ii) providing a polishing composition as described herein, (iii) applying the polishing composition to a portion of the substrate, and (iv) abrading a portion of the substrate to polish the substrate.
  • In one embodiment of such a method, the method of polishing a substrate comprises the steps of: (a) providing a substrate, (b) providing a chemical-mechanical polishing composition comprising: (i) an abrasive comprising α-alumina, (ii) about 0.05 to about 50 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (iii) a liquid carrier comprising water, (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  • The polishing composition utilized in this method embodiment of the invention comprises: (a) an abrasive comprising α-alumina, (b) about 0.05 to about 50 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. The other characteristics of the chemical-mechanical polishing composition utilized in this method embodiment of the invention (e.g., the amount of abrasive, the liquid carrier, the pH, and other suitable additives) can be the same as set forth above for the chemical-mechanical polishing composition of the invention.
  • In another embodiment, the method of polishing a substrate comprises the steps of: (a) providing a substrate, (b) providing a chemical-mechanical polishing composition comprising: (i) an abrasive comprising α-alumina, (ii) about 0.05 to about 3.5 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (iii) a liquid carrier comprising water, (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  • The polishing composition utilized in this method embodiment of the invention comprises: (a) an abrasive comprising α-alumina, (b) about 0.05 to about 3.5 millimoles per kilogram (mmol/kg) of ions of at least one metal selected from the group consisting of magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. The other characteristics of the chemical-mechanical polishing composition utilized in this method embodiment of the invention (e.g., the amount of abrasive, the liquid carrier, the pH, and other suitable additives) can be the same as set forth above for the chemical-mechanical polishing composition of the invention.
  • In a third embodiment, the method of polishing a substrate comprises the steps of: (a) providing a substrate, (b) providing a chemical-mechanical polishing composition comprising: (i) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (ii) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (iii) a liquid carrier comprising water, (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  • The polishing composition utilized in this method embodiment of the invention comprises: (a) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof, (b) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and (c) a liquid carrier comprising water. The other characteristics of the chemical-mechanical polishing composition utilized in this method embodiment of the invention (e.g., the amount of abrasive, the liquid carrier, the pH, and other suitable additives) can be the same as set forth above for the chemical-mechanical polishing composition of the invention.
  • The substrate to be polished using the methods of the invention can be any suitable substrate. Suitable substrates include, but are not limited to, integrated circuits, memory or rigid disks, metals, interlayer dielectric (ILD) devices, semiconductors, micro-electro-mechanical systems, ferroelectrics, and magnetic heads. The metal layer can comprise any suitable metal. For example, the metal layer can comprise copper, tantalum (e.g., tantalum nitride), titanium, aluminum, nickel, platinum, ruthenium, iridium, or rhodium. The substrate can further comprise at least one insulating layer. The insulating layer can be a metal oxide, porous metal oxide, glass, organic polymer, fluorinated organic polymer, or any other suitable high or low-κ insulating layer. Preferably, the substrate comprises a noble metal, and at least a portion of the noble metal is abraded with the polishing composition to polish the substrate. Suitable noble metal include, but are not limited to, platinum, iridium, ruthenium, rhodium, palladium, silver, osmium, gold, and combinations thereof. Preferably, the substrate comprises platinum, and at least a portion of the platinum is abraded with the polishing composition to polish the substrate.
  • The polishing methods of the invention are particularly suited for use in conjunction with a chemical-mechanical polishing (CMP) apparatus. Typically, the apparatus comprises a platen, which, when in use, is in motion and has a velocity that results from orbital, linear, or circular motion, a polishing pad in contact with the platen and moving with the platen when in motion, and a carrier that holds a substrate to be polished by contacting and moving relative to the surface of the polishing pad. The polishing of the substrate takes place by the substrate being placed in contact with the polishing pad and the polishing composition of the invention and then the polishing pad moving relative to the substrate, so as to abrade at least a portion of the substrate to polish the substrate.
  • Desirably, the CMP apparatus further comprises an in situ polishing endpoint detection system, many of which are known in the art. Techniques for inspecting and monitoring the polishing process by analyzing light or other radiation reflected from a surface of the substrate are known in the art. Desirably, the inspection or monitoring of the progress of the polishing process with respect to a substrate being polished enables the determination of the polishing end-point, i.e., the determination of when to terminate the polishing process with respect to a particular substrate.
  • The CMP apparatus can further comprise a means for oxidizing the substrate. In electrochemical polishing systems, the means for oxidizing the substrate preferably comprises a device for applying a time-varying potential (e.g., anodic potential) to the substrate (e.g., electronic potentiostat). The device for applying time-varying potential to the substrate can be any suitable such device. The means for oxidizing the substrate preferably comprises a device for applying a first potential (e.g., a more oxidizing potential) during an initial stage of the polishing and applying a second potential (e.g., a less oxidizing potential) at or during a later stage of polishing, or a device for changing the first potential to the second potential during an intermediate stage of polishing, e.g., continuously reducing the potential during the intermediate stage or rapidly reducing the potential from a first, higher oxidizing potential to a second, lower oxidizing potential after a predetermined interval at the first, higher oxidizing potential. For example, during the initial stage(s) of the polishing, a relatively high oxidizing potential is applied to the substrate to promote a relatively high rate of oxidation/dissolution/removal of the substrate. When polishing is at a later stage, e.g., when approaching an underlying barrier layer, the applied potential is reduced to a level producing a substantially lower or negligible rate of oxidation/dissolution/removal of the substrate, thereby eliminating or substantially reducing dishing, corrosion, and erosion. The time-varying electrochemical potential is preferably applied using a controllably variable DC power supply, e.g., an electronic potentiostat. U.S. Pat. No. 6,379,223 further describes a means for oxidizing a substrate by applying a potential.
  • The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
  • EXAMPLE 1
  • This example demonstrates the enhanced polishing rate exhibited by the polishing composition of the invention. Similar substrates comprising platinum were polished using four different polishing compositions (Polishing Compositions 1A, 1B, 1C, and 1D). Polishing Composition 1A (comparative) did not comprise an appreciable amount of metals ions. Polishing Composition 1B (invention) comprised about 0.38 mmol/kg (approximately 15 ppm) of calcium (as calcium chloride). Polishing Composition 1C (invention) comprised about 0.38 mmol/kg (approximately 33 ppm) of strontium (as strontium chloride). Polishing Composition 1D (invention) comprised about 0.37 mmol/kg (approximately 51 ppm) of barium (as barium chloride). Each of the aforementioned polishing compositions also comprised about 3 wt. % of an abrasive comprising, based on the total weight of the abrasive, approximately 60 wt. % α-alumina and approximately 40 wt. % fumed alumina, and had a pH of about 3. The values for the platinum removal rate (in angstroms per minute) were measured for each of the polishing compositions. The results are summarized in Table 1.
    TABLE 1
    Platinum removal rates.
    Polishing Concentration Platinum Removal
    Composition Metal (mmol/kg) Rate (Å/min)
    1A (comparative) 496
    1B (invention) Ca 0.38 1450
    1C (invention) Sr 0.38 1551
    1D (invention) Ba 0.37 1636
  • These results demonstrate that the polishing composition of the invention exhibits a high platinum removal rate as compared to similar polishing compositions comprising no appreciable amount of metal ions. In particular, Polishing Compositions 1B-1D (invention), which comprised approximately 0.37 to 0.38 mmol/kg of ions of a metal selected from the group consisting of calcium, strontium, and barium, each exhibited a platinum removal rate that was approximately 200% or more higher that the platinum removal rate for Polishing Composition 1A (comparative), which did not contain an appreciable amount of ions of calcium, strontium, or barium.
  • EXAMPLE 2
  • This example demonstrates the enhanced polishing rate exhibited by the polishing composition of the invention. Similar substrates comprising platinum were polished using three different polishing compositions (Polishing Compositions 2A, 2B, and 2C). Polishing Composition 2A (comparative) did not comprise an appreciable amount of metals ions. Polishing Composition 2B (invention) comprised about 0.4 mmol/kg (approximately 9 ppm) of magnesium (as magnesium chloride). Polishing Composition 2C (invention) comprised about 0.74 mmol/kg (approximately 18 ppm) of magnesium (as magnesium chloride). Each of the aforementioned polishing compositions also comprised about 3 wt. % of an abrasive comprising, based on the total weight of the abrasive, approximately 60 wt. % α-alumina and approximately 40 wt. % fumed alumina, and had a pH of about 3. The values for the platinum removal rate (in angstroms per minute) were measured for each of the polishing compositions. The results are summarized in Table 2.
    TABLE 2
    Platinum removal rates.
    Polishing Concentration Platinum Removal
    Composition Metal (mmol/kg) Rate (Å/min)
    2A (comparative) 1263
    2B (invention) Mg 0.4 1645
    2C (invention) Mg 0.74 2246
  • These results demonstrate that the polishing composition of the invention exhibits a high platinum removal rate as compared to similar polishing compositions comprising no appreciable amount of metal ions. In particular, Polishing Compositions 2B and 2C (invention), which comprised approximately 0.4 and 0.74 mmol/kg of ions of magnesium, each exhibited a platinum removal rate that was approximately 30% and 75%, respectively, greater that the platinum removal rate for Polishing Composition 2A (comparative), which did not contain an appreciable amount of magnesium ions.
  • EXAMPLE 3
  • This example demonstrates the enhanced polishing rate exhibited by the polishing composition of the invention. Similar substrates comprising platinum were polished using six different polishing compositions (Polishing Compositions 3A, 3B, 3C, 3D, 3E, and 3F). Polishing Composition 3A (comparative) did not comprise an appreciable amount of metals ions. Polishing Composition 3B (comparative) comprised about 0.74 mmol/kg of aluminum (as aluminum nitrate). Polishing Composition 3C (comparative) comprised about 3.0 mmol/kg of aluminum (as aluminum nitrate). Polishing Composition 3D (invention) comprised about 0.74 mmol/kg (approximately 18 ppm) of magnesium (as magnesium chloride). Polishing Composition 3E (invention) comprised about 0.75 mmol/kg (approximately 49 ppm) of zinc (as zinc chloride). Polishing Composition 3F (invention) comprised about 1.5 mmol/kg (approximately 96 ppm) of zinc (as zinc chloride). Each of the aforementioned polishing compositions also comprised about 3 wt. % of an abrasive comprising, based on the total weight of the abrasive, approximately 60 wt. % α-alumina and approximately 40 wt. % fumed alumina, and had a pH of about 3. The values for the platinum removal rate (in angstroms per minute) were measured for each of the polishing compositions. The results are summarized in Table 3.
    TABLE 3
    Platinum removal rates.
    Polishing Concentration Platinum Removal
    Composition Metal (mmol/kg) Rate (Å/min)
    3A (comparative) 455
    3B (comparative) Al 0.74 452
    3C (comparative) Al 3.0 476
    3D (invention) Mg 0.74 942
    3E (invention) Zn 0.75 920
    3F (invention) Zn 1.5 839
  • These results demonstrate that the polishing composition of the invention exhibits a high platinum removal rate as compared to similar polishing compositions comprising no appreciable amount of metal ions or a similar amount of different metal ions. In particular, Polishing Compositions 3D-3F (invention), which comprised approximately 0.74 to 1.5 mmol/kg of ions of a metal selected from the group consisting of magnesium and zinc, each exhibited a platinum removal rate that was approximately 80% or more higher that the platinum removal rate for Polishing Compositions 3A-3C (comparative), which did not contain an appreciable amount of ions of magnesium or zinc.
  • EXAMPLE 4
  • This example demonstrates the enhanced polishing rate exhibited by the polishing composition of the invention. Similar substrates comprising platinum (from a different lot than those used in Examples 1, 2, 3, and 5) were polished using seven different polishing compositions (Polishing Compositions 4A, 4B, 4C, 4D, 4E, 4F, and 4G). Polishing Composition 4A (comparative) did not comprise an appreciable amount of metals ions. Polishing Composition 4B (comparative) comprised about 0.74 mmol/kg (approximately 29 ppm) of potassium (as potassium chloride). Polishing Composition 4C (comparative) comprised about 0.74 mmol/kg (approximately 29 ppm) of potassium (as potassium sulfate). Polishing Composition 4D (invention) comprised about 0.74 mmol/kg (approximately 18 ppm) of magnesium (as magnesium chloride). Polishing Composition 4E (invention) comprised about 1.5 mmol/kg (approximately 36 ppm) of magnesium (as magnesium chloride). Polishing Composition 4F (invention) comprised about 3.0 mmol/kg (approximately 72 ppm) of magnesium (as magnesium chloride). Polishing Composition 4G (invention) comprised about 5.9 mmol/kg (approximately 144 ppm) of magnesium (as magnesium chloride). Each of the aforementioned polishing compositions also comprised about 3 wt. % of an abrasive comprising, based on the total weight of the abrasive, approximately 60 wt. % α-alumina and approximately 40 wt. % fumed alumina, and had a pH of about 3. The values for the platinum removal rate (in angstroms per minute) were measured for each of the polishing compositions. The results are summarized in Table 4.
    TABLE 4
    Platinum removal rates.
    Polishing Concentration Platinum Removal
    Composition Metal (mmol/kg) Rate (Å/min)
    4A (comparative) 2540
    4B (comparative) K 0.74 2335
    4C (comparative) K 0.74 2054
    4D (invention) Mg 0.74 ≧4000
    4E (invention) Mg 1.5 ≧4000
    4F (invention) Mg 3.0 ≧4000
    4G (invention) Mg 5.9 ≧4000
  • These results demonstrate that the polishing composition of the invention exhibits a high platinum removal rate as compared to similar polishing compositions comprising no appreciable amount of metal ions or a similar amount of different metal ions. In particular, Polishing Compositions 4D-4G (invention), which comprised approximately 0.74 to 5.9 mmol/kg of magnesium, each exhibited a platinum removal rate that was greater than or equal to 4000 Å/min. Such a removal rate was significantly greater than that observed for Polishing Compositions 4A-4C (comparative), which did not contain appreciable amounts of magnesium. The platinum removal rates for each of Polishing Compositions 4D-4G (invention) could only be reported as a minimum value because the entire 4000 Å thickness of the platinum layer on each substrate was removed within the 1 minute polishing run.
  • EXAMPLE 5
  • This example demonstrates the enhanced polishing rate exhibited by the polishing composition of the invention. Similar substrates comprising platinum were polished using four different polishing compositions (Polishing Compositions 5A, 5B, 5C, and 5D). Polishing Composition 5A (comparative) did not comprise an appreciable amount of metals ions. Polishing Composition 5B (invention) comprised about 0.19 mmol/kg (approximately 26 ppm) of barium (as barium chloride). Polishing Composition 5C (invention) comprised about 0.37 mmol/kg (approximately 51 ppm) of barium (as barium chloride). Polishing Composition 5D (invention) comprised about 0.743 mmol/kg (approximately 102 ppm) of barium (as barium chloride). Each of the aforementioned polishing compositions also comprised about 3 wt. % of an abrasive comprising, based on the total weight of the abrasive, approximately 60 wt. % α-alumina and approximately 40 wt. % fumed alumina, and had a pH of about 3. The values for the platinum removal rate (in angstroms per minute) were measured for each of the polishing compositions. The results are summarized in Table 5.
    TABLE 5
    Platinum removal rates.
    Polishing Concentration Platinum Removal
    Composition Metal (mmol/kg) Rate (Å/min)
    5A (comparative) 388
    5B (invention) Ba 0.19 1314
    5C (invention) Ba 0.37 1408
    5D (invention) Ba 0.743 1707
  • These results demonstrate that the polishing composition of the invention exhibits a high platinum removal rate as compared to similar polishing compositions comprising no appreciable amount of metal ions. In particular, Polishing Compositions 5B-5D (invention), which comprised approximately 0.19 to 0.743 mmol/kg of barium ions, each exhibited a platinum removal rate that was approximately 240% or more higher that the platinum removal rate for Polishing Composition 1A (comparative), which did not contain an appreciable amount of barium ions.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in-the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (36)

  1. 1. A chemical-mechanical polishing composition comprising:
    (a) an abrasive comprising α-alumina,
    (b) about 0.05 to about 50 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and
    (c) a liquid carrier comprising water.
  2. 2. The chemical-mechanical polishing composition of claim 1, wherein the ions of the metal are present in an amount of about 0.05 to about 10 mmol/kg.
  3. 3. The chemical-mechanical polishing composition of claim 2, wherein the ions of the metal are present in an amount of about 0.05 to about 5 mmol/kg.
  4. 4. The chemical-mechanical polishing composition of claim 1, wherein the abrasive further comprises fumed alumina.
  5. 5. The chemical-mechanical polishing composition of claim 4, wherein the abrasive comprises about 10 wt. % or more α-alumina.
  6. 6. The chemical-mechanical polishing composition of claim 1, wherein the abrasive is present in the polishing composition in an amount of about 0.1 to about 10 wt. % based on the total weight of the polishing composition.
  7. 7. The chemical-mechanical polishing composition of claim 6, wherein the abrasive is present in the polishing composition in an amount of about 1 to about 5 wt. % based on the total weight of the polishing composition.
  8. 8. The chemical-mechanical polishing composition of claim 1, wherein the polishing composition has a pH of about 1 to about 7.
  9. 9. The chemical-mechanical polishing composition of claim 8, wherein the polishing composition has a pH of about 2 to about 5.
  10. 10. A chemical-mechanical polishing composition comprising:
    (a) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof,
    (b) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and
    (c) a liquid carrier comprising water.
  11. 11. The chemical-mechanical polishing composition of claim 10, wherein the abrasive further comprises fumed alumina.
  12. 12. The chemical-mechanical polishing composition of claim 11, wherein the abrasive comprises about 10 wt. % or more α-alumina.
  13. 13. The chemical-mechanical polishing composition of claim 10, wherein the abrasive is present in the polishing composition in an amount of about 0.1 to about 10 wt. % based on the total weight of the polishing composition.
  14. 14. The chemical-mechanical polishing composition of claim 13, wherein the abrasive is present in the polishing composition in an amount of about 1 to about 5 wt. % based on the total weight of the polishing composition.
  15. 15. The chemical-mechanical polishing composition of claim 10, wherein the polishing composition has a pH of about 1 to about 7.
  16. 16. The chemical-mechanical polishing composition of claim 15, wherein the polishing composition has a pH of about 2 to about 5.
  17. 17. A method of polishing a substrate comprising the steps of:
    (a) providing a substrate,
    (b) providing a chemical-mechanical polishing composition comprising:
    (i) an abrasive comprising α-alumina,
    (ii) about 0.05 to about 50 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, and mixtures thereof, based on the total weight of the polishing composition, and
    (iii) a liquid carrier comprising water,
    (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and
    (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  18. 18. The method of claim 17, wherein the ions of the metal are present in the chemical-mechanical polishing composition in an amount of about 0.05 to about 10 mmol/kg.
  19. 19. The method of claim 18, wherein the ions of the metal are present in the chemical-mechanical polishing composition in an amount of about 0.05 to about 5 mmol/kg.
  20. 20. The method of claim 17, wherein the substrate comprises a noble metal selected from the group consisting of platinum, iridium, ruthenium, rhodium, palladium, silver, osmium, gold, and combinations thereof, and at least a portion of the noble metal is abraded with the polishing composition to polish the substrate.
  21. 21. The method of claim 20, wherein the substrate comprises platinum, and at least a portion of the platinum is abraded with the polishing composition to polish the substrate.
  22. 22. The method of claim 17, wherein the abrasive further comprises fumed alumina.
  23. 23. The method of claim 22, wherein the abrasive comprises about 10 wt. % or more α-alumina.
  24. 24. The method of claim 17, wherein the abrasive is present in the polishing composition in an amount of about 0.1 to about 10 wt. % based on the total weight of the polishing composition.
  25. 25. The method of claim 24, wherein the abrasive is present in the polishing composition in an amount of about 1 to about 5 wt. % based on the total weight of the polishing composition.
  26. 26. The method of claim 17, wherein the polishing composition has a pH of about 1 to about 7.
  27. 27. The method of claim 26, wherein the polishing composition has a pH of about 2 to about 5.
  28. 28. A method of polishing a substrate comprising the steps of:
    (a) providing a substrate,
    (b) providing a chemical-mechanical polishing composition comprising:
    (i) an abrasive selected from the group consisting of α-alumina, γ-alumina, δ-alumina, θ-alumina, diamond, boron carbide, silicon carbide, tungsten carbide, titanium nitride, and mixtures thereof,
    (ii) about 0.05 to about 3.5 mmol/kg of ions of at least one metal selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and mixtures thereof, based on the total weight of the polishing composition, and
    (iii) a liquid carrier comprising water,
    (c) applying the chemical-mechanical polishing composition to at least a portion of the substrate, and
    (d) abrading at least a portion of the substrate with the polishing composition to polish the substrate.
  29. 29. The method of claim 28, wherein the substrate comprises a noble metal selected from the group consisting of platinum, iridium, ruthenium, rhodium, palladium, silver, osmium, gold, and combinations thereof, and at least a portion of the noble metal is abraded with the polishing composition to polish the substrate.
  30. 30. The method of claim 29, wherein the substrate comprises platinum, and at least a portion of the platinum is abraded with the polishing composition to polish the substrate.
  31. 31. The method of claim 28, wherein the abrasive further comprises fumed alumina.
  32. 32. The method of claim 31, wherein the abrasive comprises about 10 wt. % or more α-alumina.
  33. 33. The method of claim 28, wherein the abrasive is present in the polishing composition in an amount of about 0.1 to about 10 wt. % based on the total weight of the polishing composition.
  34. 34. The method of claim 33, wherein the abrasive is present in the polishing composition in an amount of about 1 to about 5 wt. % based on the total weight of the polishing composition.
  35. 35. The method of claim 28, wherein the polishing composition has a pH of about 1 to about 7.
  36. 36. The method of claim 35, wherein the polishing composition has a pH of about 2 to about 5.
US10807944 2004-03-24 2004-03-24 Chemical-mechanical polishing composition and method for using the same Abandoned US20050211950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10807944 US20050211950A1 (en) 2004-03-24 2004-03-24 Chemical-mechanical polishing composition and method for using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US10807944 US20050211950A1 (en) 2004-03-24 2004-03-24 Chemical-mechanical polishing composition and method for using the same
PCT/US2005/008411 WO2005100496A3 (en) 2004-03-24 2005-03-14 Chemical-mechanical polishing composition and method for using the same
EP20050725517 EP1730246B1 (en) 2004-03-24 2005-03-14 Chemical-mechanical polishing composition and method for using the same
CN 200580009637 CN1938392B (en) 2004-03-24 2005-03-14 Chemical-mechanical polishing composition and method for using the same
KR20067019562A KR20060134996A (en) 2004-03-24 2005-03-14 Chemical-mechanical polishing composition and method for using the same
JP2007505001A JP2007531274A (en) 2004-03-24 2005-03-14 The chemical mechanical polishing compositions and methods of use thereof
US12393489 US8101093B2 (en) 2004-03-24 2009-02-26 Chemical-mechanical polishing composition and method for using the same
JP2011264253A JP5781906B2 (en) 2004-03-24 2011-12-02 The chemical mechanical polishing compositions and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12393489 Division US8101093B2 (en) 2004-03-24 2009-02-26 Chemical-mechanical polishing composition and method for using the same

Publications (1)

Publication Number Publication Date
US20050211950A1 true true US20050211950A1 (en) 2005-09-29

Family

ID=34962673

Family Applications (2)

Application Number Title Priority Date Filing Date
US10807944 Abandoned US20050211950A1 (en) 2004-03-24 2004-03-24 Chemical-mechanical polishing composition and method for using the same
US12393489 Active 2025-04-03 US8101093B2 (en) 2004-03-24 2009-02-26 Chemical-mechanical polishing composition and method for using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12393489 Active 2025-04-03 US8101093B2 (en) 2004-03-24 2009-02-26 Chemical-mechanical polishing composition and method for using the same

Country Status (6)

Country Link
US (2) US20050211950A1 (en)
EP (1) EP1730246B1 (en)
JP (2) JP2007531274A (en)
KR (1) KR20060134996A (en)
CN (1) CN1938392B (en)
WO (1) WO2005100496A3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282391A1 (en) * 2004-06-16 2005-12-22 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US20060108325A1 (en) * 2004-11-19 2006-05-25 Everson William J Polishing process for producing damage free surfaces on semi-insulating silicon carbide wafers
US20070075040A1 (en) * 2005-09-30 2007-04-05 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US20090236559A1 (en) * 2008-03-21 2009-09-24 Cabot Microelectronics Corporation Compositions for polishing aluminum/copper and titanium in damascene structures
US20110177690A1 (en) * 2008-08-06 2011-07-21 Hitachi Ltd. Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
US20120100718A1 (en) * 2009-07-16 2012-04-26 Hitachi Chemical Company, Ltd. CMP Fluid and Method for Polishing Palladium
US20120238094A1 (en) * 2010-02-15 2012-09-20 Hitachi Chemical Company, Ltd. Cmp polishing solution and polishing method
CN102699811A (en) * 2012-05-29 2012-10-03 上海瑞钼特金属新材料有限公司 Infusible metal alloy foil part with high surface smoothness and preparation method thereof
CN103254799A (en) * 2013-05-29 2013-08-21 陈玉祥 Hydrophilic diamond-suspended grinding and polishing solution and preparation method thereof
CN104592935A (en) * 2015-01-04 2015-05-06 江苏中晶科技有限公司 Accelerator used in grinding hard material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814502B2 (en) * 2004-09-09 2011-11-16 株式会社フジミインコーポレーテッド Polishing composition and a polishing method using the same
US7998866B2 (en) * 2006-09-05 2011-08-16 Cabot Microelectronics Corporation Silicon carbide polishing method utilizing water-soluble oxidizers
US20080105652A1 (en) * 2006-11-02 2008-05-08 Cabot Microelectronics Corporation CMP of copper/ruthenium/tantalum substrates
US8372305B2 (en) 2007-05-24 2013-02-12 Basf Se Chemical-mechanical polishing composition comprising metal-organic framework materials
KR101492969B1 (en) * 2008-11-14 2015-02-16 일진다이아몬드(주) High hardness coated powder and method of manufacturing the same
CN102212334B (en) * 2011-04-19 2013-06-26 浙江露笑光电有限公司 Coarse grinding fluid for sapphire substrate and preparation method thereof
US9011207B2 (en) 2012-10-29 2015-04-21 Wayne O. Duescher Flexible diaphragm combination floating and rigid abrading workholder
US8998677B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Bellows driven floatation-type abrading workholder
US9039488B2 (en) 2012-10-29 2015-05-26 Wayne O. Duescher Pin driven flexible chamber abrading workholder
US9233452B2 (en) 2012-10-29 2016-01-12 Wayne O. Duescher Vacuum-grooved membrane abrasive polishing wafer workholder
US9199354B2 (en) 2012-10-29 2015-12-01 Wayne O. Duescher Flexible diaphragm post-type floating and rigid abrading workholder
US8998678B2 (en) 2012-10-29 2015-04-07 Wayne O. Duescher Spider arm driven flexible chamber abrading workholder
US9604339B2 (en) 2012-10-29 2017-03-28 Wayne O. Duescher Vacuum-grooved membrane wafer polishing workholder
US8845394B2 (en) 2012-10-29 2014-09-30 Wayne O. Duescher Bellows driven air floatation abrading workholder
WO2015057433A1 (en) * 2013-10-18 2015-04-23 Cabot Microelectronics Corporation Polishing composition and method for nickel-phosphorous coated memory disks

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432828B1 (en) *
US4929257A (en) * 1988-04-08 1990-05-29 Showa Denko Kabushiki Kaisha Abrasive composition and process for polishing
US4959113A (en) * 1989-07-31 1990-09-25 Rodel, Inc. Method and composition for polishing metal surfaces
US6099604A (en) * 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
US6110396A (en) * 1996-11-27 2000-08-29 International Business Machines Corporation Dual-valent rare earth additives to polishing slurries
US20010006224A1 (en) * 1999-12-28 2001-07-05 Yasuaki Tsuchiya Slurry for chemical mechanical polishing
US20020039839A1 (en) * 1999-12-14 2002-04-04 Thomas Terence M. Polishing compositions for noble metals
US20020068456A1 (en) * 2000-09-29 2002-06-06 Basol Bulent M. Method and system to provide material removal and planarization employing a reactive pad
US6432828B2 (en) * 1998-03-18 2002-08-13 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US20020122339A1 (en) * 2000-11-21 2002-09-05 Hiroaki Takano Magnetic recording medium
US20020139055A1 (en) * 2001-01-31 2002-10-03 Fujimi Incorporated Polishing composition and polishing method employing it
US6468913B1 (en) * 2000-07-08 2002-10-22 Arch Specialty Chemicals, Inc. Ready-to-use stable chemical-mechanical polishing slurries
US20030006396A1 (en) * 1999-12-14 2003-01-09 Hongyu Wang Polishing composition for CMP having abrasive particles
US20030077221A1 (en) * 2001-10-01 2003-04-24 Shivkumar Chiruvolu Aluminum oxide powders
US6607424B1 (en) * 1999-08-24 2003-08-19 Rodel Holdings, Inc. Compositions for insulator and metal CMP and methods relating thereto
US20030162398A1 (en) * 2002-02-11 2003-08-28 Small Robert J. Catalytic composition for chemical-mechanical polishing, method of using same, and substrate treated with same
US20040029494A1 (en) * 2002-08-09 2004-02-12 Souvik Banerjee Post-CMP cleaning of semiconductor wafer surfaces using a combination of aqueous and CO2 based cryogenic cleaning techniques
US6812193B2 (en) * 2001-08-31 2004-11-02 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
JPH1180708A (en) * 1997-09-09 1999-03-26 Fujimi Inkooporeetetsudo:Kk Composition for polishing
JP2000212776A (en) * 1999-01-18 2000-08-02 Jsr Corp Aqueous dispersion for mechanochemical polishing
US6379406B1 (en) * 1999-12-14 2002-04-30 Rodel Holdings, Inc. Polishing compositions for semiconductor substrates
JP2001210640A (en) * 2000-01-27 2001-08-03 Inst Of Physical & Chemical Res Method for forming protective film of semiconductor
JP2001308042A (en) * 2000-04-26 2001-11-02 Okamoto Machine Tool Works Ltd Polishing agent slurry for substrate
DE10048477B4 (en) 2000-09-29 2008-07-03 Qimonda Ag A method for chemical mechanical polishing of layers of metals of the platinum group
EP1211024A3 (en) * 2000-11-30 2004-01-02 JSR Corporation Polishing method
WO2002061810A1 (en) * 2001-01-16 2002-08-08 Cabot Microelectronics Corporation Ammonium oxalate-containing polishing system and method
US6730592B2 (en) 2001-12-21 2004-05-04 Micron Technology, Inc. Methods for planarization of metal-containing surfaces using halogens and halide salts
US6884723B2 (en) 2001-12-21 2005-04-26 Micron Technology, Inc. Methods for planarization of group VIII metal-containing surfaces using complexing agents
KR20040000009A (en) 2002-06-19 2004-01-03 주식회사 하이닉스반도체 Solution for Platinum-Chemical Mechanical Planarization
US7968465B2 (en) * 2003-08-14 2011-06-28 Dupont Air Products Nanomaterials Llc Periodic acid compositions for polishing ruthenium/low K substrates

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432828B1 (en) *
US4929257A (en) * 1988-04-08 1990-05-29 Showa Denko Kabushiki Kaisha Abrasive composition and process for polishing
US4959113A (en) * 1989-07-31 1990-09-25 Rodel, Inc. Method and composition for polishing metal surfaces
US4959113C1 (en) * 1989-07-31 2001-03-13 Rodel Inc Method and composition for polishing metal surfaces
US6110396A (en) * 1996-11-27 2000-08-29 International Business Machines Corporation Dual-valent rare earth additives to polishing slurries
US6099604A (en) * 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
US6432828B2 (en) * 1998-03-18 2002-08-13 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6607424B1 (en) * 1999-08-24 2003-08-19 Rodel Holdings, Inc. Compositions for insulator and metal CMP and methods relating thereto
US20030006396A1 (en) * 1999-12-14 2003-01-09 Hongyu Wang Polishing composition for CMP having abrasive particles
US20020039839A1 (en) * 1999-12-14 2002-04-04 Thomas Terence M. Polishing compositions for noble metals
US20010006224A1 (en) * 1999-12-28 2001-07-05 Yasuaki Tsuchiya Slurry for chemical mechanical polishing
US6468913B1 (en) * 2000-07-08 2002-10-22 Arch Specialty Chemicals, Inc. Ready-to-use stable chemical-mechanical polishing slurries
US20020068456A1 (en) * 2000-09-29 2002-06-06 Basol Bulent M. Method and system to provide material removal and planarization employing a reactive pad
US20020122339A1 (en) * 2000-11-21 2002-09-05 Hiroaki Takano Magnetic recording medium
US20020139055A1 (en) * 2001-01-31 2002-10-03 Fujimi Incorporated Polishing composition and polishing method employing it
US6812193B2 (en) * 2001-08-31 2004-11-02 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof
US20030077221A1 (en) * 2001-10-01 2003-04-24 Shivkumar Chiruvolu Aluminum oxide powders
US20030162398A1 (en) * 2002-02-11 2003-08-28 Small Robert J. Catalytic composition for chemical-mechanical polishing, method of using same, and substrate treated with same
US7014669B2 (en) * 2002-02-11 2006-03-21 Dupont Air Products Nanomaterials Llc Catalytic composition for chemical-mechanical polishing, method of using same, and substrate treated with same
US20040029494A1 (en) * 2002-08-09 2004-02-12 Souvik Banerjee Post-CMP cleaning of semiconductor wafer surfaces using a combination of aqueous and CO2 based cryogenic cleaning techniques

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247567B2 (en) * 2004-06-16 2007-07-24 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US20050282391A1 (en) * 2004-06-16 2005-12-22 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US20060108325A1 (en) * 2004-11-19 2006-05-25 Everson William J Polishing process for producing damage free surfaces on semi-insulating silicon carbide wafers
US20090215268A1 (en) * 2004-11-19 2009-08-27 Everson William J Polishing process for producing damage free surfaces on semi-insulating silicon carbide wafers
US8277671B2 (en) 2004-11-19 2012-10-02 The Penn State Research Foundation Polishing process for producing damage free surfaces on semi-insulating silicon carbide wafers
WO2007041004A3 (en) * 2005-09-30 2007-06-21 Cabot Microelectronics Corp Composition and method for planarizing surfaces
WO2007041004A2 (en) * 2005-09-30 2007-04-12 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US7955519B2 (en) 2005-09-30 2011-06-07 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US20070075040A1 (en) * 2005-09-30 2007-04-05 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
US20090236559A1 (en) * 2008-03-21 2009-09-24 Cabot Microelectronics Corporation Compositions for polishing aluminum/copper and titanium in damascene structures
US8425797B2 (en) * 2008-03-21 2013-04-23 Cabot Microelectronics Corporation Compositions for polishing aluminum/copper and titanium in damascene structures
US20110177690A1 (en) * 2008-08-06 2011-07-21 Hitachi Ltd. Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
US8900473B2 (en) * 2008-08-06 2014-12-02 Hitachi Chemical Company, Ltd. Polishing solution for CMP, and method for polishing substrate using the polishing solution for CMP
US20120100718A1 (en) * 2009-07-16 2012-04-26 Hitachi Chemical Company, Ltd. CMP Fluid and Method for Polishing Palladium
US20120238094A1 (en) * 2010-02-15 2012-09-20 Hitachi Chemical Company, Ltd. Cmp polishing solution and polishing method
US9799532B2 (en) * 2010-02-15 2017-10-24 Hitachi Chemical Company, Ltd. CMP polishing solution and polishing method
CN102699811A (en) * 2012-05-29 2012-10-03 上海瑞钼特金属新材料有限公司 Infusible metal alloy foil part with high surface smoothness and preparation method thereof
CN103254799A (en) * 2013-05-29 2013-08-21 陈玉祥 Hydrophilic diamond-suspended grinding and polishing solution and preparation method thereof
CN104592935A (en) * 2015-01-04 2015-05-06 江苏中晶科技有限公司 Accelerator used in grinding hard material
CN104592935B (en) * 2015-01-04 2016-04-27 江苏中晶科技有限公司 Polishing accelerator hard material

Also Published As

Publication number Publication date Type
JP2012049570A (en) 2012-03-08 application
CN1938392A (en) 2007-03-28 application
US20090152240A1 (en) 2009-06-18 application
CN1938392B (en) 2010-09-01 grant
WO2005100496A2 (en) 2005-10-27 application
EP1730246B1 (en) 2012-01-04 grant
WO2005100496A3 (en) 2005-12-29 application
JP5781906B2 (en) 2015-09-24 grant
KR20060134996A (en) 2006-12-28 application
US8101093B2 (en) 2012-01-24 grant
JP2007531274A (en) 2007-11-01 application
EP1730246A2 (en) 2006-12-13 application

Similar Documents

Publication Publication Date Title
US6620037B2 (en) Chemical mechanical polishing slurry useful for copper substrates
US6776810B1 (en) Anionic abrasive particles treated with positively charged polyelectrolytes for CMP
US20040077295A1 (en) Process for reducing dishing and erosion during chemical mechanical planarization
US6447371B2 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6679929B2 (en) Polishing composition and polishing method employing it
US6524167B1 (en) Method and composition for the selective removal of residual materials and barrier materials during substrate planarization
US6063306A (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
US20090081927A1 (en) Polishing composition and method utilizing abrasive particles treated with an aminosilane
US20050076580A1 (en) Polishing composition and use thereof
US6589100B2 (en) Rare earth salt/oxidizer-based CMP method
US7419911B2 (en) Compositions and methods for rapidly removing overfilled substrates
US7022255B2 (en) Chemical-mechanical planarization composition with nitrogen containing polymer and method for use
US6251150B1 (en) Slurry composition and method of chemical mechanical polishing using same
US6705926B2 (en) Boron-containing polishing system and method
US6936543B2 (en) CMP method utilizing amphiphilic nonionic surfactants
US20050079803A1 (en) Chemical-mechanical planarization composition having PVNO and associated method for use
US20050076578A1 (en) Tunable composition and method for chemical-mechanical planarization with aspartic acid/tolyltriazole
US20020111024A1 (en) Chemical mechanical polishing compositions
US7044836B2 (en) Coated metal oxide particles for CMP
US20040157535A1 (en) Mixed-abrasive polishing composition and method for using the same
EP0896042A1 (en) A polishing composition including an inhibitor of tungsten etching
US20090057834A1 (en) Method for Chemical Mechanical Planarization of Chalcogenide Materials
US20090057661A1 (en) Method for Chemical Mechanical Planarization of Chalcogenide Materials
US20100081279A1 (en) Method for Forming Through-base Wafer Vias in Fabrication of Stacked Devices
US20060037251A1 (en) Polishing medium for chemical-mechanical polishing, and method of polishing substrate member

Legal Events

Date Code Title Description
AS Assignment

Owner name: CABOT MICROELECTRONICS CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE REGE THESAURO, FRANCESCO;MOEGGENBORG, KEVIN J.;BRUSIC, VLASTA;AND OTHERS;REEL/FRAME:014513/0658

Effective date: 20040323