US20040018106A1 - Compressor and method with an improved inlet and discharge valve arrangement - Google Patents

Compressor and method with an improved inlet and discharge valve arrangement Download PDF

Info

Publication number
US20040018106A1
US20040018106A1 US10/619,831 US61983103A US2004018106A1 US 20040018106 A1 US20040018106 A1 US 20040018106A1 US 61983103 A US61983103 A US 61983103A US 2004018106 A1 US2004018106 A1 US 2004018106A1
Authority
US
United States
Prior art keywords
bore
fluid
compressor
valve
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/619,831
Inventor
Robert Bennitt
Dale George
Derek Woollatt
Tim Miller
Charles Seavey
Steve Chaykosky
Jim Crimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Rand Co
Original Assignee
Dresser Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Rand Co filed Critical Dresser Rand Co
Priority to US10/619,831 priority Critical patent/US20040018106A1/en
Publication of US20040018106A1 publication Critical patent/US20040018106A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1013Adaptations or arrangements of distribution members the members being of the poppet valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0016Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/102Adaptations or arrangements of distribution members the members being disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads

Definitions

  • This invention relates, in general, to a fluid compressor, and, more particularly, to a compressor having an improved inlet valve arrangement.
  • Most current reciprocating compressor cylinders utilize a piston that reciprocates in a compressor cylinder formed in a frame with outer heads used to close off the ends of the cylinder.
  • Inlet and discharge “check type” valves are provided for controlling the intake into, and the discharge from, the cylinder, and the reciprocating piston compresses the fluid internally within the compressor cylinder confines.
  • the valves can be mounted tangentially to the bore of the cylinder or in the heads at a variety of angles to the axis of the piston.
  • FIG. 1 is a sectional view of the housing and heads of a fluid compressor according to an embodiment of the present invention.
  • FIG. 2 is a side elevational view taken along the line 2 - 2 of FIG. 1.
  • FIG. 3 is an elevational view of an inlet valve assembly utilized in the compressor of FIG. 1.
  • FIG. 4 is a view similar to FIG. 1, but depicting inlet valve assemblies installed in the heads of FIG. 1.
  • FIGS. 5 a - 5 h are diagrammatic views depicting the operation of the compressor of FIG. 3.
  • FIG. 6 is a plan view of an alternate embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line 7 - 7 of FIG. 6;
  • the reference numeral 10 refers, in general, to a compressor for compressing a fluid, such as gas, according to an embodiment of the present invention with some of its components being omitted in the interest of clarity.
  • the compressor 10 includes a cylindrical housing 12 defining an internal cylindrical bore 14 and an outlet 15 registering with the bore.
  • An outer head 16 is formed at one end of the housing 12
  • a frame head 18 is mounted at the other end of the housing.
  • the heads 16 and 18 are connected to the housing 12 in a conventional manner, and are configured to receive other components and permit fluid flow through the heads in a manner to be described.
  • each chamber 20 , 22 , 24 , 26 , and 28 extends at an angle to the longitudinal axis of the bore 14 as shown in connection with the chambers 20 and 24 in FIG. 1. As a non-limitative example, the latter angle is approximately 45 degrees.
  • the chamber 20 extends between two openings 20 a and 20 b, with the opening 24 b being in communication with the chamber.
  • chamber 24 extends between two openings 24 a and 24 b in communication with the chamber 24 .
  • the chambers 22 , 26 and 28 are configured in a similar manner.
  • a valve assembly 30 includes a cylindrical cage 32 extending between a cylindrical cover 34 and a valve unit 36 and connected thereto in any conventional manner.
  • the cage 32 has a plurality of openings 32 a formed through its side wall, and a flange 34 a is provided on the cover 34 for engaging the outer surface of the head.
  • the valve unit 36 is conventional and can be in the form of a plate type valve, a poppet valve, a channel ring, or the like.
  • the valve unit 36 can be formed by a plurality of stacked plates as fully disclosed in U.S. Pat. Nos. 4,532,959 and 5,001,383 both of which are assigned to the assignee of the present invention.
  • the valve unit 36 functions to permit the flow of gas through the unit in a direction indicated by the solid arrow in FIG. 3 in response to a predetermined fluid pressure in the chamber 20 , but prevents flow in an opposite direction.
  • the disclosure of each of the above-identified patents is hereby incorporated by reference.
  • the valve assembly 30 is mounted in the head 16 with the cover 34 extending in the opening 20 a (identified in FIG. 1) of the chamber 20 and with its flange extending over the outer surface of the head.
  • a plurality of bolts 37 (two of which are shown) extend through corresponding openings in the flange 34 a which align with openings formed in the head 16 (FIG. 2) and surrounding the chamber 20 .
  • the cage 32 extends within the chamber 20
  • the valve unit 36 extends in the opening 20 b in communication with the bore 14 .
  • a flanged inlet conduit 38 is formed integrally with the valve head 16 and is adapted to receive a fluid, such as gas, from an external source.
  • the conduit 38 extends to an inlet passage (not shown) in the interior of the head, which inlet passage is connected to other passages formed in the interior of the head 16 that, in turn, extend to the interconnected inlet chambers 20 , 22 , 24 , 26 , and 28 , so that the gas is distributed to all of the chambers.
  • Valve assemblies identical to the valve assembly 30 are mounted in the chambers 22 , 24 , 26 , and 28 in a similar manner, with the valve assembly in the chamber 14 also being shown in FIG. 4.
  • the axis A of each valve assembly, including the valve assembly 30 extend at an angle to the axis of the bore 14 , which, as stated above for the purpose of example, is approximately forty-five degrees.
  • the head 18 is similar to the head 16 and as such, contains five chambers identical to the chambers 20 , 22 , 24 , 26 , and 28 , and five valve assemblies identical to the assembly 30 , this structure will not be described in detail. Thus, when gas is introduced into the head 18 , it is distributed to the valve assemblies for discharge into the bore, 14 in the same manner as discussed above.
  • a packing gland assembly 40 is mounted in a chamber formed in the interior of the housing 12 in a conventional manner and seals compressed gas from leaking past a drive rod 42 which is mounted for reciprocal movement in the bore 14 .
  • An end portion of the rod 42 projects from the bore and, although not shown in the drawings, it is understood that the latter end portion is connected to a conventional prime mover for reciprocating the rod in a right-to-left and in a left-to right direction as viewed in FIG. 4 and as shown by the double-headed arrow.
  • a piston/valve unit 46 is mounted to the other end of the rod 42
  • another piston/valve unit 48 is mounted to the rod 42 in a spaced relation to the unit 46 .
  • the piston/valve units 46 and 48 can be of any conventional design and function in a manner to be described to both compress the gas in the bore 14 and selectively permit the flow of the gas through the units in a manner to be described.
  • each unit 46 and 48 is formed by a plurality of stacked plates as fully disclosed in the above-mentioned U.S. Pat. Nos. 4,532,959 and 5,001,383.
  • the units 46 and 48 function as pistons to compress the gas in certain sections of the bore 14 under conditions to be described, as well as permit the flow of gas through the units in a direction indicated by the arrows in FIG. 4 in response to a predetermined gas pressure in certain sections of the bore, but prevent flow in an opposite direction, also in a manner to be described.
  • the units 46 and 48 divide the bore 14 into three sections 14 a, 14 b, and 14 c .
  • the unit 46 and the corresponding interior walls of the cylinder 12 including an end wall, define the bore section 14 a .
  • the units 46 and 48 as well as the corresponding interior wall of the housing 12 , define a bore section 14 b; and the unit 48 and the corresponding interior walls of the cylinder 12 , define a bore section 14 c .
  • the significance of these bore sections 14 a, 14 b , and 14 c will be apparent from a description of the operation of the compressor 10 which is described with reference to FIGS. 5 a - 5 h.
  • a fluid such as gas, or other product
  • a fluid is introduced into the chambers 20 , 22 , 24 , 26 , and 28 (FIGS. 1 and 2) via the inlet conduit 38 and enters the interior of the cage 32 of the valve assembly 30 and the interior of the cages of the other four valve assemblies associated with the chamber 22 , 24 , 26 , and 28 .
  • gas is also in the bore section 14 c and that the rod 42 , and therefore the units 46 and 48 , are in their extreme left position, as viewed in the FIG. 5 a as a result of a previous cycle of the operation.
  • the rod 42 and therefore the units 46 and 48 are moved in a left-to-right direction from the position of FIG. 5 a to the position of FIG. 5 b, as shown by the solid arrow, under the power of the above-mentioned prime mover.
  • This movement draws gas from the chamber 20 , though the valve unit 36 of the valve assembly 30 as described above, and into the bore section 14 a; while gas is drawn from the other four chambers 22 , 24 , 26 , and 28 through their respective units, and into the bore section 14 a, as shown by the hollow arrows.
  • This movement also causes the gas in the bore section 14 c to be compressed.
  • gas is also introduced into the above-mentioned chambers in the head 18 via the inlet conduit associated with the latter head, and enters the interiors of the valve assemblies respectively associated with the chambers, in the same manner as discussed above in connection with the valve head 16 .
  • the rod 42 and therefore the units 46 and 48 , are moved in a right-to-left direction from the position of FIG. 5 e to the position of FIG. 5 f; as shown by the solid arrow, under the power of the above-mentioned prime mover.
  • This movement draws gas from the chambers associated with the head 18 , and through their respective valve assemblies, and into the bore section 14 c, as shown by the hollow arrows.
  • This movement also causes the gas in the bore section 14 a to be compressed.
  • FIGS. 6 and 7 An alternative embodiment of the compressor is shown, in general, by the reference numeral 50 in FIGS. 6 and 7.
  • the compressor 50 includes a housing 52 defining an internal cylindrical bore 54 (FIG. 7) and an outlet (not shown) registering with the bore.
  • An outer head 56 (FIG. 6) is formed at one end of the housing 52 and a frame head 58 is mounted at the other end of the housing.
  • the heads 56 and 58 are connected to the housing 52 in a conventional manner, and are configured to receive other components and permit gas flow through the heads in a manner to be described.
  • valve assemblies 70 , 72 , 74 , and 76 are disposed in the chambers 60 , 62 , 64 , and 66 , respectively.
  • the axes of the chambers 60 , 62 , 64 , and 66 and therefore, the axes of the valve assemblies 70 , 72 , 74 , and 76 , extend perpendicularly to the bore.
  • valve assemblies 70 , 72 , 74 , and 76 will not be described in detail since they are similar to the valve assembly 30 of the previous embodiment with the exception that the axial length of their respective cages, and therefore the sizes of the openings in the cages, are smaller when compared to the valve assembly 30 .
  • the outer surface of the head 56 is provided with four angularly-spaced openings, two of which are shown by the reference numerals 56 a and 56 b, which are connected to an inlet manifold, or conduit (not shown), for distributing gas, or other product to the chambers 54 , 56 , 58 and 60 .
  • the gas thus passes into each valve assembly 70 , 72 , 74 , and 76 through the above-mentioned openings in their respective cages and thus discharges through the units of the assemblies into the bore 54 under the proper pressure conditions as in the previous embodiment.
  • the outer surface of the head 58 is provided with four angularly-spaced, openings, two of which are shown by the reference numerals 58 a and 58 b which are also connected to an inlet manifold, or conduit, for distributing gas, or other product to the chambers associated with the head 58 . Since the head 58 is identical to the head 56 , it will not be described in detail. The gas thus passes through the above-mentioned openings in the respective cages of the valve assemblies (not shown) associated with the head 58 , and is discharged into the bore 54 in a similar manner as discussed above.
  • a packing gland assembly is mounted in a chamber formed in the interior of the housing 12 in a conventional manner and supports a drive rod 78 (FIG. 7) which is mounted for reciprocal movement in the bore 54 .
  • An end portion of the rod 78 projects from the bore 54 and, although not shown in the drawings, it is understood that the latter end portion is connected to a conventional prime mover for reciprocating the rod in a right-to-left and in a left-to right direction as viewed in FIG. 6.
  • Two units (not shown) are mounted to the rod 78 in a spaced relation. Since the rod 78 and the units are identical to, and function in the same manner as, the rod 42 and the units 46 and 48 , they will not be described in further detail.
  • the operation of the compressor 50 is the same as that of the previous embodiment with the exception that the gas is introduced into the bore 54 in a radial direction via the four valve assemblies 70 , 72 , 74 , and 76 .
  • the operation of the compressor 50 is identical to that described in FIGS. 5 a - 5 h in connection with the previous embodiment.
  • FIGS. 6 and 7 thus enjoys all of the advantages of the previous embodiment with respect to horsepower output and efficiency.

Abstract

A gas compressor and method according to which a plurality of inlet valve assemblies are angularly spaced around a bore. A piston reciprocates in the bore to draw the fluid from the valve assemblies during movement of the piston unit in one direction and compress the fluid during movement of the piston unit in the other direction and the valve assemblies prevent fluid flow from the bore to the valve assemblies during the movement of the piston in the other direction. A discharge valve is associated with the piston to permit the discharge of the compressed fluid from the bore.

Description

    Background
  • This invention relates, in general, to a fluid compressor, and, more particularly, to a compressor having an improved inlet valve arrangement. [0001]
  • Most current reciprocating compressor cylinders utilize a piston that reciprocates in a compressor cylinder formed in a frame with outer heads used to close off the ends of the cylinder. Inlet and discharge “check type” valves are provided for controlling the intake into, and the discharge from, the cylinder, and the reciprocating piston compresses the fluid internally within the compressor cylinder confines. The valves can be mounted tangentially to the bore of the cylinder or in the heads at a variety of angles to the axis of the piston. [0002]
  • However half the available area is usually allocated to the inlet valves and porting, and the other half to the discharge valves and porting. Thus, only a relatively low number of inlet valves can be used at each end of the compressor. This, of course, limits the inlet valve area and therefore the compression efficiency of the compressor.[0003]
  • Brief Description of the Drawings
  • FIG. 1 is a sectional view of the housing and heads of a fluid compressor according to an embodiment of the present invention. [0004]
  • FIG. 2 is a side elevational view taken along the line [0005] 2-2 of FIG. 1.
  • FIG. 3 is an elevational view of an inlet valve assembly utilized in the compressor of FIG. 1. [0006]
  • FIG. 4 is a view similar to FIG. 1, but depicting inlet valve assemblies installed in the heads of FIG. 1. [0007]
  • FIGS. 5[0008] a-5 h are diagrammatic views depicting the operation of the compressor of FIG. 3.
  • FIG. 6 is a plan view of an alternate embodiment of the present invention. [0009]
  • FIG. 7 is a cross-sectional view taken along the line [0010] 7-7 of FIG. 6;
  • Brief Description
  • Referring to FIG. 1 of the drawings the [0011] reference numeral 10 refers, in general, to a compressor for compressing a fluid, such as gas, according to an embodiment of the present invention with some of its components being omitted in the interest of clarity. The compressor 10 includes a cylindrical housing 12 defining an internal cylindrical bore 14 and an outlet 15 registering with the bore. An outer head 16 is formed at one end of the housing 12, and a frame head 18 is mounted at the other end of the housing. The heads 16 and 18 are connected to the housing 12 in a conventional manner, and are configured to receive other components and permit fluid flow through the heads in a manner to be described.
  • As shown in FIG. 2, five angularly-spaced [0012] inlet chambers 20, 22, 24, 26, and 28 are formed in the head 16. The chambers 20, 22, 24, 26 and 28 are interconnected in the interior of the head 16 to permit fluid flow from chamber-to-chamber as will be described. The axis of each chamber 20, 22, 24, 26, and 28 extends at an angle to the longitudinal axis of the bore 14 as shown in connection with the chambers 20 and 24 in FIG. 1. As a non-limitative example, the latter angle is approximately 45 degrees.
  • As also shown in FIG. 1, the [0013] chamber 20 extends between two openings 20 a and 20 b, with the opening 24 b being in communication with the chamber. Similarly, chamber 24 extends between two openings 24 a and 24 b in communication with the chamber 24. It is understood that the chambers 22, 26 and 28 (FIG. 2) are configured in a similar manner.
  • Referring to FIG. 3, a [0014] valve assembly 30 includes a cylindrical cage 32 extending between a cylindrical cover 34 and a valve unit 36 and connected thereto in any conventional manner. The cage 32 has a plurality of openings 32 a formed through its side wall, and a flange 34 a is provided on the cover 34 for engaging the outer surface of the head.
  • The [0015] valve unit 36 is conventional and can be in the form of a plate type valve, a poppet valve, a channel ring, or the like. As a non-limitative example, the valve unit 36 can be formed by a plurality of stacked plates as fully disclosed in U.S. Pat. Nos. 4,532,959 and 5,001,383 both of which are assigned to the assignee of the present invention. As well-disclosed in these patents, the valve unit 36 functions to permit the flow of gas through the unit in a direction indicated by the solid arrow in FIG. 3 in response to a predetermined fluid pressure in the chamber 20, but prevents flow in an opposite direction. The disclosure of each of the above-identified patents is hereby incorporated by reference.
  • As shown in FIG. 4, the [0016] valve assembly 30 is mounted in the head 16 with the cover 34 extending in the opening 20 a (identified in FIG. 1) of the chamber 20 and with its flange extending over the outer surface of the head. A plurality of bolts 37 (two of which are shown) extend through corresponding openings in the flange 34 a which align with openings formed in the head 16 (FIG. 2) and surrounding the chamber 20. The cage 32 extends within the chamber 20, and the valve unit 36 extends in the opening 20 b in communication with the bore 14.
  • A flanged [0017] inlet conduit 38 is formed integrally with the valve head 16 and is adapted to receive a fluid, such as gas, from an external source. The conduit 38 extends to an inlet passage (not shown) in the interior of the head, which inlet passage is connected to other passages formed in the interior of the head 16 that, in turn, extend to the interconnected inlet chambers 20, 22, 24, 26, and 28, so that the gas is distributed to all of the chambers. Valve assemblies identical to the valve assembly 30 are mounted in the chambers 22, 24, 26, and 28 in a similar manner, with the valve assembly in the chamber 14 also being shown in FIG. 4. Thus, the axis A of each valve assembly, including the valve assembly 30, extend at an angle to the axis of the bore 14, which, as stated above for the purpose of example, is approximately forty-five degrees.
  • Thus, when the gas is introduced into the [0018] head 16 via the inlet conduit 38 the gas is distributed to all of the chambers 20, 22, 24, 26, and 28 and discharges simultaneously through the respective valve assemblies, including the valve assembly 30, associated with the chambers 22, 24, 26, and 28 under conditions to be described.
  • Since the [0019] head 18 is similar to the head 16 and as such, contains five chambers identical to the chambers 20, 22, 24, 26, and 28, and five valve assemblies identical to the assembly 30, this structure will not be described in detail. Thus, when gas is introduced into the head 18, it is distributed to the valve assemblies for discharge into the bore,14 in the same manner as discussed above.
  • A [0020] packing gland assembly 40 is mounted in a chamber formed in the interior of the housing 12 in a conventional manner and seals compressed gas from leaking past a drive rod 42 which is mounted for reciprocal movement in the bore 14. An end portion of the rod 42 projects from the bore and, although not shown in the drawings, it is understood that the latter end portion is connected to a conventional prime mover for reciprocating the rod in a right-to-left and in a left-to right direction as viewed in FIG. 4 and as shown by the double-headed arrow.
  • A piston/[0021] valve unit 46 is mounted to the other end of the rod 42, and another piston/valve unit 48 is mounted to the rod 42 in a spaced relation to the unit 46. The piston/ valve units 46 and 48 can be of any conventional design and function in a manner to be described to both compress the gas in the bore 14 and selectively permit the flow of the gas through the units in a manner to be described. As a non-limitative example, each unit 46 and 48 is formed by a plurality of stacked plates as fully disclosed in the above-mentioned U.S. Pat. Nos. 4,532,959 and 5,001,383. As well disclosed in these patents, the units 46 and 48 function as pistons to compress the gas in certain sections of the bore 14 under conditions to be described, as well as permit the flow of gas through the units in a direction indicated by the arrows in FIG. 4 in response to a predetermined gas pressure in certain sections of the bore, but prevent flow in an opposite direction, also in a manner to be described.
  • The [0022] units 46 and 48, as well as the corresponding interior walls of the cylinder 12, divide the bore 14 into three sections 14 a, 14 b, and 14 c. In particular, the unit 46 and the corresponding interior walls of the cylinder 12, including an end wall, define the bore section 14 a. Similarly, the units 46 and 48, as well as the corresponding interior wall of the housing 12, define a bore section 14 b; and the unit 48 and the corresponding interior walls of the cylinder 12, define a bore section 14 c. The significance of these bore sections 14 a, 14 b, and 14 c will be apparent from a description of the operation of the compressor 10 which is described with reference to FIGS. 5a-5 h.
  • Referring to FIG. 5[0023] a, a fluid, such as gas, or other product, is introduced into the chambers 20, 22, 24, 26, and 28 (FIGS. 1 and 2) via the inlet conduit 38 and enters the interior of the cage 32 of the valve assembly 30 and the interior of the cages of the other four valve assemblies associated with the chamber 22, 24, 26, and 28. It will be assumed that gas is also in the bore section 14 c and that the rod 42, and therefore the units 46 and 48, are in their extreme left position, as viewed in the FIG. 5a as a result of a previous cycle of the operation.
  • The [0024] rod 42, and therefore the units 46 and 48 are moved in a left-to-right direction from the position of FIG. 5a to the position of FIG. 5b, as shown by the solid arrow, under the power of the above-mentioned prime mover. This movement draws gas from the chamber 20, though the valve unit 36 of the valve assembly 30 as described above, and into the bore section 14 a; while gas is drawn from the other four chambers 22, 24, 26, and 28 through their respective units, and into the bore section 14 a, as shown by the hollow arrows. This movement also causes the gas in the bore section 14 c to be compressed.
  • Further left-to-right movement of the [0025] rod 42, and therefore the units 46 and 48, to the position of FIG. 5c causes additional gas to be drawn in the bore section 14 a in the manner discussed above, and further increases the fluid pressure in the bore section 14 c. This movement continues until the pressure in the bore section 14 c is great enough to cause movement of the compressed gas in the bore section 14 c through the unit 48 in a general right-to-left direction and into the bore section 14 b, as shown by the hollow arrows in FIG. 5c. The compressed gas in the bore section 14 b exits the body member 12 through the outlet 15 and is transferred from the compressor 10 via a pipe, or the like, connected to the outlet. In the meantime, gas continues to be drawn into the bore section 14. This movement of the rod 42, and therefore the units 46 and 48, continues until they reach their end position shown in FIG. 5d.
  • Referring to FIG. 5[0026] e, gas is also introduced into the above-mentioned chambers in the head 18 via the inlet conduit associated with the latter head, and enters the interiors of the valve assemblies respectively associated with the chambers, in the same manner as discussed above in connection with the valve head 16.
  • The [0027] rod 42, and therefore the units 46 and 48, are moved in a right-to-left direction from the position of FIG. 5e to the position of FIG. 5f; as shown by the solid arrow, under the power of the above-mentioned prime mover. This movement draws gas from the chambers associated with the head 18, and through their respective valve assemblies, and into the bore section 14 c, as shown by the hollow arrows. This movement also causes the gas in the bore section 14 a to be compressed.
  • Further right-to-left movement of the [0028] rod 42, and therefore the units 46 and 48, to the position of FIG. 5g causes additional gas to be drawn into the bore section 14 c in the manner discussed above, and further increases the fluid pressure in the bore section 14 a. This movement continues until the pressure in the bore section 14 a is great enough to cause movement of the compressed gas in the latter bore section, through the unit 46 in a general left-to-right direction and into the bore section 14 b, as shown by the hollow arrows in FIG. 5g. The compressed gas in the bore section 14 b exits the bore 14 and the body member through the outlet 15 and is transferred from the compressor 10 via the above-mentioned pipe. In the meantime, gas continues to be drawn into the bore section 14 c. This movement of the rod 42, and therefore the units 46 and 48, continues until they reach their other end position of FIG. 5h, and the cycle is then repeated.
  • It can be appreciated that the use of a plurality of inlet valves circumferentially spaced around the bore and the discharge valves in the bore area, significantly increases the available flow area for the gas being processed to enter the [0029] bore sections 14 a and 14 c thereby improving the compression efficiency.
  • Alternatives and Equivalents
  • An alternative embodiment of the compressor is shown, in general, by the [0030] reference numeral 50 in FIGS. 6 and 7. The compressor 50 includes a housing 52 defining an internal cylindrical bore 54 (FIG. 7) and an outlet (not shown) registering with the bore. An outer head 56 (FIG. 6) is formed at one end of the housing 52 and a frame head 58 is mounted at the other end of the housing. The heads 56 and 58 are connected to the housing 52 in a conventional manner, and are configured to receive other components and permit gas flow through the heads in a manner to be described.
  • As shown in FIG. 7, four angularly-spaced, interconnected, [0031] inlet chambers 60, 62, 64, and 66 are formed in the head 56 and are interconnected in the interior of the head 16 to permit gas flow from chamber to chamber as will be described. Four valve assemblies 70, 72, 74, and 76 are disposed in the chambers 60, 62, 64, and 66, respectively. The axes of the chambers 60, 62, 64, and 66, and therefore, the axes of the valve assemblies 70, 72, 74, and 76, extend perpendicularly to the bore. The valve assemblies 70, 72, 74, and 76 will not be described in detail since they are similar to the valve assembly 30 of the previous embodiment with the exception that the axial length of their respective cages, and therefore the sizes of the openings in the cages, are smaller when compared to the valve assembly 30.
  • Referring to FIG. 6, the outer surface of the [0032] head 56 is provided with four angularly-spaced openings, two of which are shown by the reference numerals 56 a and 56 b, which are connected to an inlet manifold, or conduit (not shown), for distributing gas, or other product to the chambers 54, 56, 58 and 60. The gas thus passes into each valve assembly 70, 72, 74, and 76 through the above-mentioned openings in their respective cages and thus discharges through the units of the assemblies into the bore 54 under the proper pressure conditions as in the previous embodiment.
  • Similarly, the outer surface of the [0033] head 58 is provided with four angularly-spaced, openings, two of which are shown by the reference numerals 58 a and 58 b which are also connected to an inlet manifold, or conduit, for distributing gas, or other product to the chambers associated with the head 58. Since the head 58 is identical to the head 56, it will not be described in detail. The gas thus passes through the above-mentioned openings in the respective cages of the valve assemblies (not shown) associated with the head 58, and is discharged into the bore 54 in a similar manner as discussed above.
  • Although not shown in FIGS. 6 and 7, it is understood that a packing gland assembly is mounted in a chamber formed in the interior of the [0034] housing 12 in a conventional manner and supports a drive rod 78 (FIG. 7) which is mounted for reciprocal movement in the bore 54. An end portion of the rod 78 projects from the bore 54 and, although not shown in the drawings, it is understood that the latter end portion is connected to a conventional prime mover for reciprocating the rod in a right-to-left and in a left-to right direction as viewed in FIG. 6. Two units (not shown) are mounted to the rod 78 in a spaced relation. Since the rod 78 and the units are identical to, and function in the same manner as, the rod 42 and the units 46 and 48, they will not be described in further detail.
  • The operation of the [0035] compressor 50 is the same as that of the previous embodiment with the exception that the gas is introduced into the bore 54 in a radial direction via the four valve assemblies 70, 72, 74, and 76. Thus, the operation of the compressor 50 is identical to that described in FIGS. 5a-5 h in connection with the previous embodiment.
  • The embodiment of FIGS. 6 and 7 thus enjoys all of the advantages of the previous embodiment with respect to horsepower output and efficiency. [0036]
  • It is understood that other alternates and equivalents of each of the above embodiments are within the scope of the invention. For example, the number of inlet chamber and valve assemblies in each of the above embodiments can vary. Also, the [0037] valve assembly 30 in the embodiment of FIGS. 1-5 does not have to have a cage 32.
  • Those skilled in the art will readily appreciate that many other modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. [0038]

Claims (28)

What is claimed is:
1. A fluid compressor comprising a housing defining an internal bore and an outlet registering with the bore; at least one head mounted to the housing; a plurality of angularly spaced inlet valve assemblies disposed in the at least one head for permitting the flow of the fluid from the head into the bore and for preventing the flow of the fluid from the bore to the head; and at least one piston/valve unit mounted in the bore for reciprocal movement and adapted to move in one direction to draw the fluid through the valve assemblies, and into the bore; and to move in the opposite direction to compress the fluid and allow the compressed fluid to pass to the outlet.
2. The compressor of claim 1 wherein the valve assemblies are angularly spaced around the bore.
3. The compressor of claim 1 wherein the axis of each valve assembly extends at an angle to the longitudinal axis of the bore.
4. The compressor of claim 3 wherein the angle is approximately forty-five degrees.
5. The compressor of claim 3 wherein the angle is approximately ninety degrees.
6. The compressor of claim 1 wherein a plurality of angularly-spaced inlet chambers are formed in the at least one head and adapted to receive fluid to be compressed, and wherein the inlet valve assemblies are mounted in the respective inlet chambers.
7. The compressor of claim 6 wherein the chambers are interconnected in the interior of the head permit the fluid to flow from chamber to chamber.
8. The compressor of claim 6 wherein the chambers and therefore the valve assemblies, are angularly spaced around the bore.
9. The compressor of claim 6 wherein the axis of each chamber, and therefore each valve assembly, extends at an angle to the longitudinal axis of the bore.
10. The compressor of claim 9 wherein the angle is approximately forty-five degrees.
11. The compressor of claim 9 wherein the angle is approximately ninety degrees.
12. The compressor of claim 1 wherein the compressed fluid flows through the piston/valve unit before passing to the outlet.
13. The compressor of claim 1 wherein there are two heads respectively mounted at the ends of the housing.
14. The compressor of claim 13 wherein there are two piston/valve units mounted for reciprocal movement in the bore.
15. The compressor of claim 14 wherein the piston/valve units are adapted to move in one direction whereby one piston/valve unit draws the fluid from the corresponding chambers, through its corresponding valve assemblies, and into the bore, and the other piston/valve unit compresses the fluid and allows it to pass to the outlet; and wherein the piston valve units are adapted to move in the other direction whereby the other piston/valve unit draws the fluid from its corresponding chambers, through its corresponding valve assemblies, and into the bore, and whereby the one piston/valve unit compresses the fluid and allows it to pass to the outlet.
16. The compressor of claim 14 further comprising a rod mounted for reciprocal movement in the bore and wherein the piston/valve units are attached to the rod.
17. The compressor of claim 1 wherein the valve assemblies are angularly spaced for 360 degrees around the bore.
18. The compressor of claim 17 wherein there are five valve assemblies equiangularly spaced around the bore.
19. A method of compressing fluid comprising angularly spacing a plurality of inlet valve assemblies around a bore, introducing fluid to be compressed to the valve assemblies, and reciprocating a piston unit in the bore to draw the fluid from the valve assemblies during movement of the piston unit in one direction and compress the fluid during movement of the piston unit in the other direction, the valve assemblies preventing fluid flow from the bore to the valve assemblies during the movement of the piston in the other direction.
20. The method of claim 19 wherein the valve assemblies are angularly spaced around the bore.
21. The method of claim 19 wherein the valve assemblies are angularly spaced for 360 degrees around the bore.
22. The method of claim 21 wherein there are five valve assemblies equiangularly spaced around the bore.
23. The method of claim 19 further comprising providing a head at one end of the bore, forming a plurality of angularly-spaced inlet chambers in the head, introducing the fluid into the chambers, and mounting the valve assemblies in the respective inlet chambers for receiving the fluid.
24. The method of claim 23 further comprising interconnecting the chambers to permit the fluid to flow from chamber to chamber.
25. The method of claim 19 wherein the compressed fluid flows through the piston unit and passes from the bore.
26. The method of claim 19 further comprising providing a head at each end of the bore, forming a plurality of angularly-spaced inlet chambers in each head, introducing the fluid into the chambers, and mounting the valve assemblies in the respective inlet chambers for receiving the fluid.
27. The method of claim 26 further comprising interconnecting the chambers in each head to permit the fluid to flow from chamber to chamber.
28. The method of claim 19 wherein the compressed fluid flows through the piston unit and passes from the bore.
US10/619,831 2002-01-14 2003-07-15 Compressor and method with an improved inlet and discharge valve arrangement Abandoned US20040018106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/619,831 US20040018106A1 (en) 2002-01-14 2003-07-15 Compressor and method with an improved inlet and discharge valve arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/047,385 US6655935B2 (en) 2002-01-14 2002-01-14 Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet
US10/619,831 US20040018106A1 (en) 2002-01-14 2003-07-15 Compressor and method with an improved inlet and discharge valve arrangement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/047,385 Continuation US6655935B2 (en) 2002-01-14 2002-01-14 Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet

Publications (1)

Publication Number Publication Date
US20040018106A1 true US20040018106A1 (en) 2004-01-29

Family

ID=21948652

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/047,385 Expired - Lifetime US6655935B2 (en) 2002-01-14 2002-01-14 Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet
US10/619,831 Abandoned US20040018106A1 (en) 2002-01-14 2003-07-15 Compressor and method with an improved inlet and discharge valve arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/047,385 Expired - Lifetime US6655935B2 (en) 2002-01-14 2002-01-14 Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet

Country Status (2)

Country Link
US (2) US6655935B2 (en)
CA (1) CA2416042C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180180041A1 (en) * 2014-03-26 2018-06-28 Whirlpool S.A. Reciprocating Compressor Provided with Arrangement of Suction Valves

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817846B2 (en) 2002-06-13 2004-11-16 Dresser-Rand Company Gas compressor and method with improved valve assemblies
US7721641B2 (en) 2004-05-21 2010-05-25 Us Airflow Air compression apparatus and method of use
DE102004037831A1 (en) * 2004-08-04 2006-03-16 Patentpool Innovations Management Gmbh Valve arrangement, in particular compressor valve for compressed air systems
US8657588B2 (en) * 2006-11-08 2014-02-25 Us Airflow Compression apparatus
US8186976B2 (en) 2006-11-08 2012-05-29 Us Airflow Combination compressor and vacuum pump apparatus and method of use
US8074679B2 (en) * 2006-12-21 2011-12-13 Gardner Denver, Inc. Y-type fluid end with replaceable suction module
JP5356192B2 (en) * 2009-11-26 2013-12-04 株式会社前川製作所 Reciprocating compressor
US9416789B2 (en) * 2013-12-02 2016-08-16 Dresser-Rand Company Valve cover geometry
CN110073104B (en) * 2016-12-14 2021-07-20 豪顿托马森压缩机有限责任公司 Clamping arrangement for a valve in a reciprocating compressor cylinder
US20210404454A1 (en) * 2018-09-24 2021-12-30 Burckhardt Compression Ag Labyrinth piston compressor
AT521496B1 (en) * 2019-02-06 2020-02-15 Hoerbiger Wien Gmbh Cylinder head for piston compressor
US11549500B2 (en) * 2020-11-25 2023-01-10 Gartech, Llc Double acting fluid end
US20230032921A1 (en) * 2021-07-28 2023-02-02 King Power Company, LLC Carbon Free Compressor Pump System

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US209647A (en) * 1878-11-05 Improvement in machines for measuring and marking fabrics
US351665A (en) * 1886-10-26 Cylinder for air and gas compressors
US821299A (en) * 1905-03-02 1906-05-22 Alphonse Joseph Lavoie Air-compressor and the like.
US849333A (en) * 1902-10-01 1907-04-02 John George Leyner Air-compressor and intercooler.
US851248A (en) * 1906-12-10 1907-04-23 F W Niebling Company Compression-pump.
US1479603A (en) * 1923-01-15 1924-01-01 Nicolai H Hiller Compressor
US1568776A (en) * 1918-09-28 1926-01-05 Smith David Franklin Compressor
US1602193A (en) * 1922-12-04 1926-10-05 Deming Co Pump
US2295592A (en) * 1939-11-01 1942-09-15 Bol Mac Products Company Double acting pump
US3238889A (en) * 1963-06-03 1966-03-08 Aero Spray Inc Piston drive mechanism
US4221548A (en) * 1978-03-20 1980-09-09 Child Frank W Dual action solenoid pump
US5011383A (en) * 1990-01-02 1991-04-30 Dresser-Rand Company Valve assembly, for use in combination with a straight-cylinder, gas-compression chamber, and in combination therewith
US5015158A (en) * 1989-11-08 1991-05-14 Dresser-Rand Company Gas compressor
US5051074A (en) * 1990-02-13 1991-09-24 Cowan Philip L Bi-directional reciprocating pump mechanism
US5236008A (en) * 1992-06-17 1993-08-17 Dresser-Rand Company Sealing ring carrier and valve support
US5655503A (en) * 1993-03-11 1997-08-12 Motorenfabrik Hatz Gmbh & Co., Kg. Internal combustion engine with fuel injection, particularly, a single-cylinder diesel engine
US5727930A (en) * 1996-08-01 1998-03-17 Dresser-Rand Company Valves and rod assembly
US5735675A (en) * 1995-07-25 1998-04-07 Peoples; Richard Claude Combination compressor unloader
US5958134A (en) * 1995-06-07 1999-09-28 Tokyo Electron Limited Process equipment with simultaneous or sequential deposition and etching capabilities
US6382940B1 (en) * 2000-07-18 2002-05-07 George H. Blume High pressure plunger pump housing and packing
US6464474B2 (en) * 2000-03-16 2002-10-15 Lewa Herbert Ott Gmbh + Co. Nonrespiratory diaphragm chucking
US6663361B2 (en) * 2000-04-04 2003-12-16 Baker Hughes Incorporated Subsea chemical injection pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209647A (en) * 1992-06-17 1993-05-11 Dresser-Rand Company Straight cylinder gas compressor with a reduced diameter compression chamber

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US209647A (en) * 1878-11-05 Improvement in machines for measuring and marking fabrics
US351665A (en) * 1886-10-26 Cylinder for air and gas compressors
US849333A (en) * 1902-10-01 1907-04-02 John George Leyner Air-compressor and intercooler.
US821299A (en) * 1905-03-02 1906-05-22 Alphonse Joseph Lavoie Air-compressor and the like.
US851248A (en) * 1906-12-10 1907-04-23 F W Niebling Company Compression-pump.
US1568776A (en) * 1918-09-28 1926-01-05 Smith David Franklin Compressor
US1602193A (en) * 1922-12-04 1926-10-05 Deming Co Pump
US1479603A (en) * 1923-01-15 1924-01-01 Nicolai H Hiller Compressor
US2295592A (en) * 1939-11-01 1942-09-15 Bol Mac Products Company Double acting pump
US3238889A (en) * 1963-06-03 1966-03-08 Aero Spray Inc Piston drive mechanism
US4221548A (en) * 1978-03-20 1980-09-09 Child Frank W Dual action solenoid pump
US5015158A (en) * 1989-11-08 1991-05-14 Dresser-Rand Company Gas compressor
US5011383A (en) * 1990-01-02 1991-04-30 Dresser-Rand Company Valve assembly, for use in combination with a straight-cylinder, gas-compression chamber, and in combination therewith
US5051074A (en) * 1990-02-13 1991-09-24 Cowan Philip L Bi-directional reciprocating pump mechanism
US5236008A (en) * 1992-06-17 1993-08-17 Dresser-Rand Company Sealing ring carrier and valve support
US5655503A (en) * 1993-03-11 1997-08-12 Motorenfabrik Hatz Gmbh & Co., Kg. Internal combustion engine with fuel injection, particularly, a single-cylinder diesel engine
US5958134A (en) * 1995-06-07 1999-09-28 Tokyo Electron Limited Process equipment with simultaneous or sequential deposition and etching capabilities
US5735675A (en) * 1995-07-25 1998-04-07 Peoples; Richard Claude Combination compressor unloader
US5727930A (en) * 1996-08-01 1998-03-17 Dresser-Rand Company Valves and rod assembly
US6464474B2 (en) * 2000-03-16 2002-10-15 Lewa Herbert Ott Gmbh + Co. Nonrespiratory diaphragm chucking
US6663361B2 (en) * 2000-04-04 2003-12-16 Baker Hughes Incorporated Subsea chemical injection pump
US6382940B1 (en) * 2000-07-18 2002-05-07 George H. Blume High pressure plunger pump housing and packing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180180041A1 (en) * 2014-03-26 2018-06-28 Whirlpool S.A. Reciprocating Compressor Provided with Arrangement of Suction Valves

Also Published As

Publication number Publication date
CA2416042E (en) 2003-07-14
US6655935B2 (en) 2003-12-02
CA2416042A1 (en) 2003-07-14
CA2416042C (en) 2010-06-29
US20030133813A1 (en) 2003-07-17

Similar Documents

Publication Publication Date Title
US6655935B2 (en) Gas compressor comprising a double acting piston, an elongate chamber, multiple inlets mounted within heads on both sides of the chamber, and one central outlet
US7399168B1 (en) Air driven diaphragm pump
CA2487175C (en) Gas compressor and method with improved valve assemblies
US4534710A (en) Swash-plate-type compressor having suction and discharge damping chambers
US6558135B1 (en) Two stage oil free air compressor
US20080240944A1 (en) Air-Operated Pump
US5899670A (en) Integrated muffler structure for compressors
US20060056990A1 (en) Compressor having discharge mufflers
US6402483B1 (en) Double-headed piston compressor
US3713755A (en) Pumping device
US5209647A (en) Straight cylinder gas compressor with a reduced diameter compression chamber
US4761119A (en) Compressor having pulsating reducing mechanism
US3462074A (en) Air compressor apparatus and method
KR20040074382A (en) Compressor
KR880001969B1 (en) Compressor having pulsating reducing mechanism
US4549857A (en) Hermetic motor compressor having a suction inlet and seal
US2650018A (en) Compressor
CN110905773A (en) Intercooler and oil-free piston type compressor comprising same
CN101454568A (en) Compressor
JP3094288B2 (en) Reciprocating piston type refrigerant compressor
JPS5857635B2 (en) Cylinder block type multi-stage compressor
US6908290B2 (en) Air conditioning compressor having reduced suction pulsation
US919909A (en) Compound air-compressor.
US20140271250A1 (en) Compression System and Method Having Co-Axial Flow Device
US6318967B1 (en) Gas compression kit and method with interchangeable compression cylinders

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION