US20040016255A1 - Built-in refrigerator - Google Patents

Built-in refrigerator Download PDF

Info

Publication number
US20040016255A1
US20040016255A1 US10/309,161 US30916102A US2004016255A1 US 20040016255 A1 US20040016255 A1 US 20040016255A1 US 30916102 A US30916102 A US 30916102A US 2004016255 A1 US2004016255 A1 US 2004016255A1
Authority
US
United States
Prior art keywords
machine room
refrigerator
built
main body
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/309,161
Other versions
US6688126B1 (en
Inventor
Kyung Kim
Tae Lee
Yang Kim
Eui Chung
Se Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUNG, EUI YEOP, KIM, KYUNG SIK, KIM, SE YOUNG, KIM, YANG GYU, LEE, TAE HEE
Publication of US20040016255A1 publication Critical patent/US20040016255A1/en
Application granted granted Critical
Publication of US6688126B1 publication Critical patent/US6688126B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0022Details for cooling refrigerating machinery using multiple air flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00274Details for cooling refrigerating machinery characterised by the out-flowing air from the front bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/08Refrigerator tables

Definitions

  • the present invention relates to a built-in refrigerator.
  • the refrigerator is an apparatus used for taking storage of foods freshly for a long-term period, and is generally divided into the main body with the food storage room and the machine room for taking storage of foods in frozen and cold storage states, and a cooling cycle for cooling the food storage room.
  • the main component of the cooling cycle includes the compressor, the condenser, the evaporator and the expansion valve.
  • the compressor and the condenser are installed within the machine room equipped at the rear lower side of the main body, and the evaporator and the expansion valve are installed adjacent to the food storage room.
  • the food storage room of the main body is cooled through the following sequence.
  • the compressor is driven by the electromotor to compress coolant in gas state and to transfer the compressed coolant to the condenser, and the coolant of the condenser is liquefied by blowing air using the cooling fan.
  • the flow rate of the coolant in liquid state is adjusted at the expansion valve and thus the coolant rapidly expands and is evaporated with being injected into the evaporator.
  • the coolant absorbs heat from the periphery of the evaporator to thereby cool the food storage room.
  • the coolant in gas state returns to the compressor, is compressed at the compressor to be converted into the liquid state, and again repeats the aforementioned condensation, expansion, evaporation, and compression cycles.
  • the present invention is directed to a built-in refrigerator that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a built-in refrigerator, which can be installed at a sink to enhance practical space use of a kitchen or a living room and to enhance the beauty on appearance.
  • Another object of the present invention is to provide a built-in refrigerator with a superior radiation performance of the machine room.
  • a further object of the present invention is to provide a built-in refrigerator in which there is no need of installation of a hot line for eliminating condensed water forming on the periphery of the door and thus fabrication costs are very low.
  • a built-in refrigerator includes: a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof; condenser and compressor respectively installed in the machine room; a cooling fan installed in the machine room, for cooling the condenser and the compressor; and a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room.
  • the condenser and the compressor are respectively installed at both sides of the machine room, and the cooling fan is one pair installed at a center of the machine room to face with each other.
  • the respective cooling fans may be axially coupled to different motors, or be axially coupled to both sides of a single motor.
  • the radiation passage is formed by securing a spacing between a lower side of the main body and an indoor bottom face
  • the built-in refrigerator further includes a dividing strip which divides the radiation passage into an inflow passage through which external air is introduced and an outflow passage through which internal air is discharged.
  • the dividing trip is installed such that the inflow passage is formed at a center of the radiation passage and the outflow passage is formed at both sides of the inflow passage.
  • the dividing strip is installed such that the inflow passage is located between introducing sides of the cooling fan and the outflow passage is located at a discharging side of the cooling fan.
  • the outflow passage is formed extending to a lower side of a periphery of the door of the main body.
  • the built-in refrigerator further includes a floorcloth stay on the bottom of the indoor room located at a front lower side of the main body.
  • a predetermined spacing secured between an upper side of the floorcloth stay and the lower side of the main body forms a part of the radiation passage, and the floorcloth stay is formed integrally to be connected with a floorcloth stay of other portion of the sink
  • FIG. 1 is a perspective view of a built-in refrigerator installed in a sink according to the present invention
  • FIG. 2 is a sectional view taken along the line I-I of FIG. 1 and illustrates the radiation passage of the built-in refrigerator;
  • FIG. 3 is a front view of a built-in refrigerator according to the present invention.
  • FIG. 4A is a sectional view taken along the line II-II of FIG. 2 according to one embodiment of the present invention.
  • FIG. 4B is a sectional view taken along the line II-II of FIG. 2 according to another embodiment of the present invention.
  • a built-in refrigerator includes a main body 10 , a condenser 30 , a compressor 40 , a cooling fan 50 and a radiation passage 60 .
  • a door 12 is installed at the front of the main body 10 , and a machine room 11 is formed at a rear lower side of the main body 10 .
  • the condenser 30 and the compressor 40 are installed within the machine room 11 , and are preferably installed at both sides of the machine room 11 .
  • the cooling fan 50 for cooling the condenser 30 and the compressor 40 is also installed within the machine room 11 , and is preferably one pair installed at the center of the machine room 11 to face with the condenser 30 and the compressor 40 respectively.
  • the radiation passage 60 is formed to allow an outside of the front side of the main body 10 to communicate with the machine room 11 , and to thus introduce external air into the machine room 11 and discharge internal air of the machine room 11 .
  • the radiation passage 60 secures a spacing between the lower side of the main body 10 and the bottom of the indoor room, so that preferably one side of the radiation passage 60 communicates with the outside of the front side of the main body 10 and the other side communicates with the machine room 11 .
  • a dividing strip 80 for dividing the radiation passage 60 into an inflow passage 61 and an outflow passage 62 is preferably installed on the radiation passage 60 such that cool air introduced through the radiation passage 60 is not mixed with hot air of the machine room 11 discharged through the radiation passage 60 .
  • the dividing strip 80 is preferably formed such that the inflow passage 61 is located at the center of the radiation passage 60 and the outflow passage 62 is located at both sides of the inflow passage 61 , respectively. Further, the dividing strip, as shown in FIGS. 4A and 4B, is more preferably installed such that the inflow passage 61 is located between introducing sides (where external air is introduced) of the cooling fans 50 a and 50 b and the outflow passages 62 a and 62 b are respectively located at discharging sides (where external air is discharged) of the cooling fans 50 a and 50 b.
  • the outflow passages 62 a and 62 b of the radiation passage 60 are preferably formed extending to the lower side of the periphery of the door 12 of the main body 10 . This is to allow natural convective heat to effectively evaporate and eliminate water condensed at both peripheries of the door 12 of the main body 10 while hot internal air is discharged into the outside as shown in FIG. 3.
  • the cooling fans 50 a and 50 b may be respectively axially coupled to different motors (not shown) as shown in FIG. 4A, or may be respectively axially coupled to both axes of a single motor 90 as shown in FIG. 4B.
  • FIG. 4A a cooling fan system in accordance with one embodiment of the present invention is described with reference to FIG. 4A.
  • the respective cooling fans 50 a and 50 b are axially coupled to different motors, it becomes possible to drive the respective cooling fans 50 a and 50 b at different RPMs, thereby more effectively cooling the compressor 40 and the condenser 30 .
  • the second cooling fan 50 b provided toward the compressor 40 at an RPM higher than the first cooling fan 50 a provided toward the condenser 30 , so that the driving method in which the cooling fans 50 a and 50 b are driven at different RPMs allows the efficiency of the apparatus to be enhanced more highly than the driving method in which the cooling fans 50 a and 50 b are driven at the same RPM.
  • FIGS. 3 and 4B a cooling fan system according to another embodiment of the present invention is concretely described.
  • a floorcloth stay 20 on the bottom of the indoor room located at the front lower side of the main body 10 is preferably further installed a floorcloth stay 20 .
  • the floorcloth stay 20 is selected as one of the elements of the refrigerator is to shield a complicated space located at the lower side of the sink 1 considering its appearance, which is a peculiar role of the floorcloth stay 20 , and to prevent peripheral garbage during its cleaning from being introduced into the lower space of the sink- 1 .
  • the floorcloth stay 20 is preferably secured a predetermined spacing between the upper side of the floorcloth stay 20 and the lower side of the main body 10 to form a part of the radiation passage 60 .
  • the floorcloth stay 20 is preferably formed integrally to be connected with floorcloth stay line of other portion of the sink 1 , which is to enhance appearance beauty of the refrigerator.
  • the cool external air introduced into the machine room 11 through the inflow passage 61 is blown to the condenser 30 located between the first cooling fan 50 a and the first outflow passage 62 a and the compressor 40 located between the second cooling fan 50 b and the second outflow passage 62 b while being discharged by the first and second cooling fans 50 a and 50 b.
  • the condenser 30 and the compressor 40 radiate heat with being continuously supplied with the cool external air, and the hot internal air of the machine room 11 heated by the heat radiated from the condenser 30 and the compressor 40 is discharged to the outside through the first and second outflow passages 62 a and 62 b located at both sides of the radiation passage 60 .
  • the hot internal air discharged through the first and second outflow passages 62 a and 62 b , as shown in FIG. 3, is elevated by natural convection, thereby evaporating and eliminating condensed water forming on the periphery of the door 12 .
  • the built-in refrigerator of the present invention does not need to install a separate hot line for eliminating the condensed water forming on the periphery of the door.
  • the built-in refrigerator of the present invention provides the following useful effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

A built-in refrigerator is disclosed. The built-in refrigerator includes: a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof; condenser and compressor respectively installed in the machine room; a cooling fan installed in the machine room, for cooling the condenser and the compressor; and a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room.

Description

  • This application claims the benefit of the Korean Application No. P2002-43603 filed on Jul. 24, 2002, which is hereby incorporated by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a built-in refrigerator. [0003]
  • 2. Discussion of the Related Art [0004]
  • Generally, the refrigerator is an apparatus used for taking storage of foods freshly for a long-term period, and is generally divided into the main body with the food storage room and the machine room for taking storage of foods in frozen and cold storage states, and a cooling cycle for cooling the food storage room. [0005]
  • Here, the main component of the cooling cycle includes the compressor, the condenser, the evaporator and the expansion valve. Generally, the compressor and the condenser are installed within the machine room equipped at the rear lower side of the main body, and the evaporator and the expansion valve are installed adjacent to the food storage room. The food storage room of the main body is cooled through the following sequence. [0006]
  • First, the compressor is driven by the electromotor to compress coolant in gas state and to transfer the compressed coolant to the condenser, and the coolant of the condenser is liquefied by blowing air using the cooling fan. The flow rate of the coolant in liquid state is adjusted at the expansion valve and thus the coolant rapidly expands and is evaporated with being injected into the evaporator. At this time, the coolant absorbs heat from the periphery of the evaporator to thereby cool the food storage room. The coolant in gas state returns to the compressor, is compressed at the compressor to be converted into the liquid state, and again repeats the aforementioned condensation, expansion, evaporation, and compression cycles. [0007]
  • Meanwhile, since the above-constituted refrigerator is generally installed at one sidewall of kitchen or living room, it is protruded by its size from the wall to badly affect on beauty on appearance, and there is also caused a drawback in that practical space use is lowered. [0008]
  • To this end, in these days, there is being requested the development of the built-in refrigerator which a part of the body thereof enters into the wall in or can be installed at the sink. Among these built-in refrigerators, there is being more strongly requested the built-in refrigerator which is installed at the sink which provides a convenience of use upon cooking of foods and is the most preferred space by housewives. [0009]
  • Then, in case a refrigerator is installed in the sink, air flow is blocked owing to the characteristic of the built-in refrigerator, so that there is focused a radiation technology for effectively radiating the heat generated from the condenser and the compressor installed within the machine room provided at the rear lower side of the main body. [0010]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a built-in refrigerator that substantially obviates one or more problems due to limitations and disadvantages of the related art. [0011]
  • An object of the present invention is to provide a built-in refrigerator, which can be installed at a sink to enhance practical space use of a kitchen or a living room and to enhance the beauty on appearance. [0012]
  • Another object of the present invention is to provide a built-in refrigerator with a superior radiation performance of the machine room. [0013]
  • A further object of the present invention is to provide a built-in refrigerator in which there is no need of installation of a hot line for eliminating condensed water forming on the periphery of the door and thus fabrication costs are very low. [0014]
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. [0015]
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a built-in refrigerator includes: a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof; condenser and compressor respectively installed in the machine room; a cooling fan installed in the machine room, for cooling the condenser and the compressor; and a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room. [0016]
  • Here, it is preferable that the condenser and the compressor are respectively installed at both sides of the machine room, and the cooling fan is one pair installed at a center of the machine room to face with each other. The respective cooling fans may be axially coupled to different motors, or be axially coupled to both sides of a single motor. [0017]
  • It is preferable that the radiation passage is formed by securing a spacing between a lower side of the main body and an indoor bottom face, and the built-in refrigerator further includes a dividing strip which divides the radiation passage into an inflow passage through which external air is introduced and an outflow passage through which internal air is discharged. Here, the dividing trip is installed such that the inflow passage is formed at a center of the radiation passage and the outflow passage is formed at both sides of the inflow passage. More preferably, the dividing strip is installed such that the inflow passage is located between introducing sides of the cooling fan and the outflow passage is located at a discharging side of the cooling fan. Further, the outflow passage is formed extending to a lower side of a periphery of the door of the main body. [0018]
  • Also, the built-in refrigerator further includes a floorcloth stay on the bottom of the indoor room located at a front lower side of the main body. Here, it is preferable that a predetermined spacing secured between an upper side of the floorcloth stay and the lower side of the main body forms a part of the radiation passage, and the floorcloth stay is formed integrally to be connected with a floorcloth stay of other portion of the sink [0019]
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings: [0021]
  • FIG. 1 is a perspective view of a built-in refrigerator installed in a sink according to the present invention; [0022]
  • FIG. 2 is a sectional view taken along the line I-I of FIG. 1 and illustrates the radiation passage of the built-in refrigerator; [0023]
  • FIG. 3 is a front view of a built-in refrigerator according to the present invention; [0024]
  • FIG. 4A is a sectional view taken along the line II-II of FIG. 2 according to one embodiment of the present invention; and [0025]
  • FIG. 4B is a sectional view taken along the line II-II of FIG. 2 according to another embodiment of the present invention.[0026]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. [0027]
  • As shown in FIGS. [0028] 1 to 4B, a built-in refrigerator according to one embodiment of the present invention includes a main body 10, a condenser 30, a compressor 40, a cooling fan 50 and a radiation passage 60.
  • Herein, a [0029] door 12 is installed at the front of the main body 10, and a machine room 11 is formed at a rear lower side of the main body 10. The condenser 30 and the compressor 40 are installed within the machine room 11, and are preferably installed at both sides of the machine room 11. The cooling fan 50 for cooling the condenser 30 and the compressor 40 is also installed within the machine room 11, and is preferably one pair installed at the center of the machine room 11 to face with the condenser 30 and the compressor 40 respectively. Also, the radiation passage 60 is formed to allow an outside of the front side of the main body 10 to communicate with the machine room 11, and to thus introduce external air into the machine room 11 and discharge internal air of the machine room 11.
  • Meanwhile, the [0030] radiation passage 60, as shown in FIG. 2, secures a spacing between the lower side of the main body 10 and the bottom of the indoor room, so that preferably one side of the radiation passage 60 communicates with the outside of the front side of the main body 10 and the other side communicates with the machine room 11.
  • In addition, as shown in FIGS. 4A and 4B, a [0031] dividing strip 80 for dividing the radiation passage 60 into an inflow passage 61 and an outflow passage 62 is preferably installed on the radiation passage 60 such that cool air introduced through the radiation passage 60 is not mixed with hot air of the machine room 11 discharged through the radiation passage 60.
  • Here, the [0032] dividing strip 80 is preferably formed such that the inflow passage 61 is located at the center of the radiation passage 60 and the outflow passage 62 is located at both sides of the inflow passage 61, respectively. Further, the dividing strip, as shown in FIGS. 4A and 4B, is more preferably installed such that the inflow passage 61 is located between introducing sides (where external air is introduced) of the cooling fans 50 a and 50 b and the outflow passages 62 a and 62 b are respectively located at discharging sides (where external air is discharged) of the cooling fans 50 a and 50 b.
  • Also, in the present invention, the [0033] outflow passages 62 a and 62 b of the radiation passage 60 are preferably formed extending to the lower side of the periphery of the door 12 of the main body 10. This is to allow natural convective heat to effectively evaporate and eliminate water condensed at both peripheries of the door 12 of the main body 10 while hot internal air is discharged into the outside as shown in FIG. 3.
  • Meanwhile, in the present invention, the [0034] cooling fans 50 a and 50 b may be respectively axially coupled to different motors (not shown) as shown in FIG. 4A, or may be respectively axially coupled to both axes of a single motor 90 as shown in FIG. 4B.
  • Here, a cooling fan system in accordance with one embodiment of the present invention is described with reference to FIG. 4A. [0035]
  • If the [0036] respective cooling fans 50 a and 50 b are axially coupled to different motors, it becomes possible to drive the respective cooling fans 50 a and 50 b at different RPMs, thereby more effectively cooling the compressor 40 and the condenser 30. In other words, upon considering that the heating temperature of the compressor 40 is greater than that of the condenser 30, it becomes possible to drive the second cooling fan 50 b provided toward the compressor 40 at an RPM higher than the first cooling fan 50 a provided toward the condenser 30, so that the driving method in which the cooling fans 50 a and 50 b are driven at different RPMs allows the efficiency of the apparatus to be enhanced more highly than the driving method in which the cooling fans 50 a and 50 b are driven at the same RPM.
  • Referring to FIGS. 3 and 4B, a cooling fan system according to another embodiment of the present invention is concretely described. [0037]
  • In case the [0038] respective cooling fans 50 a and 50 b are axially coupled to both sides of the single motor 90, costs for the elements of the refrigerator are saved, and as shown in FIG. 3, since hot internal air is naturally circulated while uniformly discharged through the outflow passages 62 a and 62 b, the condensed water forming on the periphery of the door 12 can be more effectively eliminated.
  • Also, since the adiabatic loads of the left and right sides of the [0039] door 12 are symmetric with each other, it becomes possible to maintain the temperature distributions of the left and right sides of the refrigerator at a uniform state.
  • Meanwhile, on the bottom of the indoor room located at the front lower side of the [0040] main body 10 is preferably further installed a floorcloth stay 20. Here, why the floorcloth stay 20 is selected as one of the elements of the refrigerator is to shield a complicated space located at the lower side of the sink 1 considering its appearance, which is a peculiar role of the floorcloth stay 20, and to prevent peripheral garbage during its cleaning from being introduced into the lower space of the sink-1. Thus, for the refrigerator to meet the peculiar role of the floorcloth stay 20 and to have the aforementioned radiation structure, as shown in FIG. 2, there is preferably secured a predetermined spacing between the upper side of the floorcloth stay 20 and the lower side of the main body 10 to form a part of the radiation passage 60. Also, the floorcloth stay 20, as shown in FIG. 1, is preferably formed integrally to be connected with floorcloth stay line of other portion of the sink 1, which is to enhance appearance beauty of the refrigerator.
  • Hereinbelow, there will be apparent concrete features and advantages of the present invention by reviewing air flow in more detail upon radiation process of the [0041] machine room 11 of the built-in refrigerator according to the present invention with reference to FIGS. 4A and 4B.
  • First, as the first and [0042] second cooling fans 50 a and 50 b equipped in the machine room 11 are driven, cool external air is introduced into the machine room 11 along the inflow passage 61 located at the center of the radiation passage 60.
  • The cool external air introduced into the [0043] machine room 11 through the inflow passage 61 is blown to the condenser 30 located between the first cooling fan 50 a and the first outflow passage 62 a and the compressor 40 located between the second cooling fan 50 b and the second outflow passage 62 b while being discharged by the first and second cooling fans 50 a and 50 b.
  • Then, the [0044] condenser 30 and the compressor 40 radiate heat with being continuously supplied with the cool external air, and the hot internal air of the machine room 11 heated by the heat radiated from the condenser 30 and the compressor 40 is discharged to the outside through the first and second outflow passages 62 a and 62 b located at both sides of the radiation passage 60.
  • Then, the hot internal air discharged through the first and [0045] second outflow passages 62 a and 62 b, as shown in FIG. 3, is elevated by natural convection, thereby evaporating and eliminating condensed water forming on the periphery of the door 12. Thus, the built-in refrigerator of the present invention does not need to install a separate hot line for eliminating the condensed water forming on the periphery of the door.
  • As described previously, the built-in refrigerator of the present invention provides the following useful effects. [0046]
  • First, it becomes possible to effectively radiate the condenser and the compressor provided in the [0047] machine room 11 of the refrigerator.
  • Secondly, since the superior radiation performance of the machine room allows the refrigerator to be installed at the sink, practical space use of the kitchen or the living room is enhanced and beauty on appearance becomes better. [0048]
  • Thirdly, since the heat discharged from the machine room evaporates the condensed water forming on the periphery of the door during natural convection thereof, there is no need of installation of hot line for eliminating the condensed water, so that production costs of the refrigerator are saved. [0049]
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. [0050]

Claims (15)

What is claimed is:
1. A built-in refrigerator comprising:
a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof;
condenser and compressor respectively installed in the machine room;
a cooling fan installed in the machine room, for cooling the condenser and the compressor; and
a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room.
2. The built-in refrigerator of claim 1, wherein the condenser and the compressor are respectively installed at both sides of the machine room.
3. The built-in refrigerator of claim 2, wherein the cooling fan is one pair installed at a center of the machine room to face with each other.
4. The built-in refrigerator of claim 3, wherein the radiation passage is formed by securing a spacing between a lower side of the main body and an indoor bottom face.
5. The built-in refrigerator of claim 4, further comprising a dividing strip which divides the radiation passage into an inflow passage through which external air is introduced and an outflow passage through which internal air is discharged.
6. The built-in refrigerator of claim 5, wherein the dividing strip is installed such that the inflow passage is formed at a center of the radiation passage and the outflow passage is formed at both sides of the inflow passage.
7. The built-in refrigerator of claim 6, wherein the dividing strip is installed such that the inflow passage is located between introducing sides of the cooling fan and the outflow passage is located at a discharging side of the cooling fan.
8. The built-in refrigerator of claim 7, wherein the outflow passage is formed extending to a lower side of a periphery of the door of the main body.
9. The built-in refrigerator of claim 3, wherein the respective cooling fans are axially coupled to different motors.
10. The built-in refrigerator of claim 3, wherein the respective cooling fans are axially coupled to both sides of a single motor.
11. The built-in refrigerator of claim 4, further comprising a floorcloth stay on the bottom of the indoor room located at a front lower side of the main body.
12. The built-in refrigerator of claim 11, wherein a predetermined spacing secured between an upper side of the floorcloth stay and the lower side of the main body forms a part of the radiation passage.
13. The built-in refrigerator of claim 12, wherein the floorcloth stay is formed integrally to be connected with a floorcloth stay of other portion of the sink.
14. A built-in refrigerator comprising:
a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof;
condenser and compressor respectively installed in the machine room;
a pair of cooling fans installed in the machine room to face the condenser and the compressor respectively, for cooling the condenser and the compressor; and
a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room.
15. A built-in refrigerator comprising:
a main body installed in a sink and having a door at a front side thereof and a machine room at a rear lower side thereof;
condenser and compressor respectively installed in the machine room;
a cooling fan installed in the machine room, for cooling the condenser and the compressor;
a radiation passage allowing an outside of a front side of the main body to communicate with the machine room to introduce external air into the machine room and discharge internal air of the machine room; and
a dividing strip for dividing the radiation passage into an inflow passage through which the external air is introduced and an outflow passage through which the internal air is discharged.
US10/309,161 2002-07-24 2002-12-04 Built-in refrigerator Expired - Lifetime US6688126B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KRP2002-43603 2002-07-24
KR10-2002-0043603A KR100539528B1 (en) 2002-07-24 2002-07-24 built-in type refrigerator

Publications (2)

Publication Number Publication Date
US20040016255A1 true US20040016255A1 (en) 2004-01-29
US6688126B1 US6688126B1 (en) 2004-02-10

Family

ID=29997537

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/309,161 Expired - Lifetime US6688126B1 (en) 2002-07-24 2002-12-04 Built-in refrigerator

Country Status (5)

Country Link
US (1) US6688126B1 (en)
EP (1) EP1384963B1 (en)
KR (1) KR100539528B1 (en)
CN (1) CN1246660C (en)
DE (1) DE60238046D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272140A1 (en) * 2006-04-05 2009-11-05 Bsh Bosch Und Siemens Hausgerate Gmbh Built-in refrigerator
US20100236762A1 (en) * 2009-02-27 2010-09-23 Electrolux Home Products, Inc. Condenser assembly for an appliance
US20150059370A1 (en) * 2013-09-05 2015-03-05 Lg Electronics Inc. Refrigerator and method of controlling a refrigerator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519357B1 (en) * 2002-07-24 2005-10-07 엘지전자 주식회사 built-in type refrigerator
KR100481719B1 (en) * 2002-10-21 2005-04-11 주식회사 성철사 Drain apparatus for a refrigerator specialized for side dishes
DE10336831A1 (en) * 2003-08-11 2005-03-10 Bsh Bosch Siemens Hausgeraete Two-piece refrigeration unit
JP2006010250A (en) * 2004-06-28 2006-01-12 Toshiba Corp Built-in refrigerator
DE102004058196A1 (en) * 2004-12-02 2006-06-08 BSH Bosch und Siemens Hausgeräte GmbH Installation The refrigerator
DE202008000634U1 (en) 2008-01-16 2009-05-28 Liebherr-Hausgeräte Lienz Gmbh Fridge and / or freezer
DE102009060077A1 (en) * 2009-11-18 2011-05-19 Liebherr-Hausgeräte Lienz Gmbh Subassembly element for a refrigerator and / or freezer and refrigerator and / or freezer
CN102494469B (en) * 2011-12-06 2014-02-26 合肥美的电冰箱有限公司 Refrigerating system for ice chest and ice chest comprising refrigerating system
US9750355B1 (en) * 2016-03-02 2017-09-05 Pepsico, Inc. Refrigerated merchandise display system
CN108444168A (en) * 2018-01-22 2018-08-24 青岛海尔股份有限公司 Built-in refrigerator

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708350A (en) * 1951-12-04 1955-05-17 Guyon L C Earle Air circulation system for kitchen unit
US3462966A (en) * 1967-12-05 1969-08-26 Beverage Air Co Condensation removing means for refrigerated cabinets
US3650122A (en) * 1970-01-15 1972-03-21 Computed Living Space Inc Modular refrigeration unit
US3651660A (en) * 1970-05-06 1972-03-28 Vincente Rodriguez Quiros Condensate discarding device for air conditioner
US3736768A (en) * 1971-06-29 1973-06-05 Westinghouse Electric Corp Machine compartment arrangement for a refrigerating device
US3926486A (en) * 1972-01-27 1975-12-16 Gen Electric Modular furnishings
US4424686A (en) * 1981-03-09 1984-01-10 The Laitram Corporation Floor mounted air conditioner
DE3503511A1 (en) * 1985-02-02 1986-08-07 Bauknecht Hausgeräte GmbH, 7000 Stuttgart BASE FOR A BUILT-IN FRIDGE
IT8534028V0 (en) * 1985-04-05 1985-04-05 Zanussi Elettrodomestici DOMESTIC REFRIGERATOR FOR MODULAR KITCHENS.
US4723631A (en) * 1986-09-17 1988-02-09 Raymond Tremblay Foldable ladder
US4907419A (en) * 1988-07-12 1990-03-13 Whirlpool Corporation Modular mechanical refrigeration unit
IT1232577B (en) * 1989-02-13 1992-02-26 Merloni Elettrodomestici Spa BUILT-IN DOMESTIC REFRIGERATOR
DE9002083U1 (en) * 1990-02-22 1990-04-19 Gaggenau-Werke Haus- Und Lufttechnik Gmbh, 7560 Gaggenau Refrigerator or freezer
US5152689A (en) * 1990-04-17 1992-10-06 Triangle Pacific Corp. System of furniture merchandising and selection
JP2682254B2 (en) * 1991-04-19 1997-11-26 三菱電機株式会社 System kitchen with information processing device
JPH0646281U (en) * 1992-11-19 1994-06-24 松下冷機株式会社 Refrigerator refrigerator
GB2338287B (en) * 1996-02-07 2000-08-16 Electrolux Zanussi Elettrodome Refrigerating appliance provided with an improved base
US5918474A (en) * 1996-07-30 1999-07-06 Whirlpool Corporation Fan motor on/off control system for a refrigeration appliance
KR0139230Y1 (en) * 1996-09-04 1999-05-15 삼성전자주식회사 A refrigerator
DE19746962A1 (en) * 1997-10-24 1999-04-29 Aeg Hausgeraete Gmbh Cooling or freezing apparatus
DE19907077A1 (en) * 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Refrigerator for installation into furniture niche of kitchen fittings along one wall of room, or similar has discharge air opening(s) on rear region of apparatus base facing away from door, sitting on wall of apparatus base.
US6282914B1 (en) * 1999-05-28 2001-09-04 Spx Corporation Under counter refrigeration unit
KR100370005B1 (en) * 2000-04-08 2003-02-05 엘지전자 주식회사 Heat Radiating mechanism for Refrigerator of machine room
KR20010098288A (en) * 2000-04-29 2001-11-08 구자홍 Machine room suction and discharge channel formation structure for refrigerator
KR100334649B1 (en) * 2000-05-30 2002-04-27 윤종용 Refrigerator for kimchi

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272140A1 (en) * 2006-04-05 2009-11-05 Bsh Bosch Und Siemens Hausgerate Gmbh Built-in refrigerator
US8161764B2 (en) 2006-04-05 2012-04-24 Bsh Bosch Und Siemens Hausgeraete Gmbh Built-in refrigerator
US20100236762A1 (en) * 2009-02-27 2010-09-23 Electrolux Home Products, Inc. Condenser assembly for an appliance
US8590337B2 (en) * 2009-02-27 2013-11-26 Eletrolux Home Products, Inc. Condenser assembly for an appliance
US20150059370A1 (en) * 2013-09-05 2015-03-05 Lg Electronics Inc. Refrigerator and method of controlling a refrigerator
US9841220B2 (en) * 2013-09-05 2017-12-12 Lg Electronics Inc. Refrigerator and method of controlling a refrigerator

Also Published As

Publication number Publication date
CN1470832A (en) 2004-01-28
KR20040009601A (en) 2004-01-31
EP1384963A1 (en) 2004-01-28
KR100539528B1 (en) 2005-12-30
EP1384963B1 (en) 2010-10-20
US6688126B1 (en) 2004-02-10
DE60238046D1 (en) 2010-12-02
CN1246660C (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US6688126B1 (en) Built-in refrigerator
CN103528304B (en) Refrigerator
US6776000B2 (en) Built-in refrigerator
US20100251735A1 (en) Refrigerator, and method for controlling operation of the same
JPH1123135A (en) Refrigerator having defrosting device
JP3497759B2 (en) refrigerator
JP2000274913A (en) Storage chamber
KR20060026758A (en) Portable air-conditioner having function refrigerator or heating cabinet
EP1800076A1 (en) Refrigerator
KR100556390B1 (en) radiant heat-structure of refrigerator machine room
JP4513707B2 (en) vending machine
KR100484661B1 (en) Refrigerator increased with inner space
KR0139230Y1 (en) A refrigerator
KR0176950B1 (en) Defrosting device in ref.
KR0117027Y1 (en) Separate type refrigerator
KR100512245B1 (en) Multi path structure for heat transfer of condensor
KR200249922Y1 (en) Built-in type grocery refrigerator
KR100219395B1 (en) Refrigerator anti-fog apparatus using heat siphon
KR19990012383U (en) Machine room radiator of refrigerator
KR100546675B1 (en) radiant heat-structure of direct cooling type refrigerator
KR20000011240U (en) Refrigeration air control device
JP3035165U (en) Household refrigerator
KR20030028951A (en) apparatus room separate type refrigerator
KR19990005549A (en) Defroster for refrigerator
JPH0712450A (en) Cooling device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, KYUNG SIK;LEE, TAE HEE;KIM, YANG GYU;AND OTHERS;REEL/FRAME:013551/0694

Effective date: 20021127

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12