US20030218361A1 - Counterbalance for linkage assembly - Google Patents

Counterbalance for linkage assembly Download PDF

Info

Publication number
US20030218361A1
US20030218361A1 US10/143,205 US14320502A US2003218361A1 US 20030218361 A1 US20030218361 A1 US 20030218361A1 US 14320502 A US14320502 A US 14320502A US 2003218361 A1 US2003218361 A1 US 2003218361A1
Authority
US
United States
Prior art keywords
linkage assembly
assembly
linkage
storing device
energy storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/143,205
Other versions
US7032472B2 (en
Inventor
Daniel Mikrut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US10/143,205 priority Critical patent/US7032472B2/en
Assigned to CATERPILLAR, INC. reassignment CATERPILLAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIKRUT, DANIEL L.
Publication of US20030218361A1 publication Critical patent/US20030218361A1/en
Application granted granted Critical
Publication of US7032472B2 publication Critical patent/US7032472B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • E02F3/3405Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines and comprising an additional linkage mechanism
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • E02F3/342Buckets emptying overhead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19502Pivotally supported
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19535Follow-up mechanism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20006Resilient connections

Definitions

  • This invention relates generally to an apparatus and method for providing a counterbalance for a linkage assembly and, more particularly, to an apparatus and method for storing energy during motion of the linkage assembly and using the stored energy to provide a counterbalance for the linkage assembly.
  • Linkage assemblies are used in a variety of applications. For example, linkage assemblies are often used to perform work of some type. In the earthworking industry, for instance, linkage assemblies are typically mounted on machines and are used to move a work implement to perform some useful function. Wheel loaders, for example, usually have a linkage assembly which is used to move a bucket for digging, hauling and dumping purposes.
  • linkage assemblies must be large and heavy to handle heavy loads.
  • machines which use these linkage assemblies must expend great amounts of power merely to move the linkages, notwithstanding the work required to move loads.
  • Earthworking machines such as wheel loaders, excavators, tele-handlers, and the like, often are required to extend the linkages substantial distances vertically and outward from the machine, thus contributing by way of gravity to the severe load requirements of the linkages themselves.
  • the present invention is directed to overcoming one or more of the problems as set forth above.
  • an apparatus for providing a counterbalance for a linkage assembly includes a frame, at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly, means for moving the linkage assembly, and an energy storing device connected to the frame and engaged by the linkage assembly, wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
  • a method for providing a counterbalance for a linkage assembly includes the steps of moving the linkage assembly, engaging an energy storing device by the linkage assembly, storing energy in the energy storing device during engagement, and providing the stored energy to counterbalance the weight of the linkage assembly.
  • FIG. 1 is a diagrammatic illustration of a machine suited for use with the present invention
  • FIG. 2 is a diagram illustrating one embodiment of the present invention
  • FIG. 3 is a diagram illustrating a portion of the embodiment of FIG. 2;
  • FIG. 4 is a diagram illustrating another embodiment of the present invention.
  • FIG. 5 is a flow diagram illustrating a preferred method of the present invention.
  • FIG. 6 is a diagrammatic illustration of another embodiment of the present invention.
  • FIG. 7 is a diagrammatic illustration of another embodiment of the present invention.
  • FIG. 8 is a diagrammatic illustration of another embodiment of the present invention.
  • an apparatus 100 and method for providing a counterbalance for a linkage assembly is disclosed.
  • a machine 102 is shown.
  • the machine 102 is depicted for exemplary purposes as an earthworking machine 104 , more specifically a wheel loader of a unique design known as an overshot (or overhead) loader.
  • the earthworking machine 104 of FIG. 1 is particularly well suited for use with the present invention.
  • other types of earthworking machines such as excavators, tele-handlers, front shovels, conventional type wheel loaders, track loaders, and the like, may also benefit from use of the present invention.
  • other types of machines which employ a linkage assembly 108 may also be used.
  • various types of load handling machines which use a linkage assembly 108 to handle loads may benefit from use of the present invention.
  • the term machine 102 will be used in its broadest sense to depict any one of many types of applications having a linkage assembly 104 .
  • the machine 102 of FIG. 1 includes a frame 106 .
  • Typical frames include an undercarriage, chassis, support members, and the like.
  • a linkage assembly 108 is movably connected to the frame 106 .
  • the linkage assembly 108 includes at least one linkage 110 , in this example, three.
  • the loader machine illustrated includes a work implement, i.e., bucket, and two additional linkages 110 , thus having three linkages 110 making up the linkage assembly 108 .
  • any number of linkages 110 such as 1, 2 or more, may be included in the linkage assembly 108 .
  • the linkage assembly 108 pivots about the frame 106 , as shown by curved arrow A in FIG. 2.
  • the arrow A shows the linkage assembly 108 moving from right to left, it is noted that the linkage assembly 108 may move in the opposite direction, i.e., from left to right, as well.
  • Means 112 for controllably moving the linkage assembly 108 may include, as the figures illustrate, a set of cylinders, preferably hydraulically actuated. However, other means 112 for controllably moving the linkage assembly 108 may be used. For example, electrically actuated servos, pneumatic cylinders, cables and pulleys, and the like may be used to controllably move the linkage assembly 108 . It is also noted that the linkages 110 of a linkage assembly 108 preferably are configured to move relative to each other, for example by pivotal movement.
  • the present invention includes an energy storing device 114 connected to the frame 106 .
  • the energy storing device 114 is engaged by the linkage assembly 108 as the linkage assembly 108 approaches a specified position.
  • the energy storing device 114 is engaged as the linkage assembly 108 approaches a raised, e.g., substantially vertical, position.
  • the energy storing device 114 is engaged as the linkage assembly 108 approaches a lowered, e.g., substantially horizontal, position.
  • the energy storing device 114 may be configured to be engaged by the linkage assembly 108 in any number of other positions of the linkage assembly 108 as desired.
  • the energy storing device 114 includes at least one spring 116 .
  • FIG. 1 illustrates a set of four springs 116 connected to the frame 106 and operating in parallel with each other.
  • the springs 116 store energy from the linkage assembly 108 as they are compressed. The stored energy is then used to counterbalance the weight of the linkage assembly 108 , as is described in more detail below.
  • the energy storing device 114 may include some other type of components. For example, pneumatic cylinders, e.g., gas springs, or some other type of energy storing device could be used as well.
  • FIG. 3 a diagrammatic illustration of a portion of the assembly of FIGS. 1 and 2 is shown.
  • the illustration of FIG. 3 depicts a preferred embodiment of the present invention. More specifically, the embodiment of FIG. 3 illustrates use of the energy storing device 114 as the linkage assembly 108 approaches a raised position.
  • a lift position engaging assembly 202 engages the energy storing device 114 as the linkage assembly 108 approaches the raised position.
  • the linkage assembly 108 is lifting over the machine 102 during a transition from a dig operation to a dump operation.
  • the movement of the linkage assembly 108 is shown by curved arrow A.
  • the lift position engaging assembly 202 provides an interface between the linkage assembly 108 and the energy storing device 114 .
  • the lift position engaging assembly 202 includes a pivot assembly 204 .
  • the pivot assembly 204 has a first end 206 pivotally connected to the frame 106 and a second end 208 in engaged contact with the energy storing device 114 .
  • the lift position engaging assembly 202 also includes a slide bar 210 .
  • the slide bar 210 has a first end 212 connected to the linkage assembly 108 and a second end 214 slidably connected to the pivot assembly 204 .
  • the slide bar 210 In operation, as the linkage assembly 108 moves from right to left, as denoted by arrow A, the slide bar 210 also moves from right to left. At a designated position, the slide bar 210 engages the pivot assembly 204 and pulls the pivot assembly 204 from right to left, as denoted by arrow B. The first end 206 of the pivot assembly 204 pivots about its connection point to the frame 106 and the second end 208 of the pivot assembly 204 moves from right to left, thus compressing the energy storing device 114 , as denoted by arrow C. The compression of the energy storing device 114 stores energy, which acts to push back against the lift position engaging assembly 202 and subsequently the linkage assembly 108 .
  • This reaction force against the linkage assembly 108 provides a counterbalance to the weight of the linkage assembly 108 as the linkage assembly 108 is in the raised position.
  • the counterbalance serves to provide a force which helps the linkage assembly 108 return from the raised position to its original lowered position, i.e., to move from left to right.
  • FIG. 4 a further diagrammatic illustration of a portion of the assembly of FIGS. 1 and 2 is shown.
  • the illustration of FIG. 4 depicts an alternate embodiment of the present invention. More specifically, the embodiment of FIG. 4 illustrates use of the energy storing device 114 as the linkage assembly 108 approaches a lowered position.
  • a lower position engaging assembly 402 engages the energy storing device 114 as the linkage assembly 108 approaches the lowered position.
  • the linkage assembly 108 is lowering toward the ground during a transition from a dump operation to a dig operation. More specifically, the linkage assembly 108 is lowering to a substantially horizontal position near the ground in preparation for a dig function. The movement of the linkage assembly 108 is shown by curved arrow D.
  • the linkage assembly 108 As the linkage assembly 108 approaches the lowered, i.e., substantially horizontal, position, it is desired to provide a counterbalance to the weight of the linkage assembly 108 , thus reducing the power required by the machine 102 and also reducing the required mass and size of the machine 102 to accommodate the weight of the linkage assembly 108 .
  • the counterbalance in effect helps the linkage assembly 108 to “float” near the surface of the ground.
  • the lower position engaging assembly 402 provides an interface between the linkage assembly 108 and the energy storing device 114 .
  • the lower position engaging assembly 402 includes a pivot assembly 404 .
  • the pivot assembly 404 has a first end 406 pivotally connected to the frame 106 and a second end 408 in engaged contact with the energy storing device 114 .
  • the lower position engaging assembly 402 also includes a slide bar 410 .
  • the slide bar 410 has a first end 412 connected to the linkage assembly 108 and a second end 414 slidably connected to the pivot assembly 404 .
  • the slide bar 410 In operation, as the linkage assembly 108 moves from left to right, as denoted by arrow D, the slide bar 410 also moves from left to right. At a designated position, the slide bar 410 engages the pivot assembly 404 and pulls the pivot assembly 404 from left to right, as denoted by arrow E. The first end 406 of the pivot assembly 404 pivots about its connection point to the frame 106 and the second end 408 of the pivot assembly 404 moves from left to right, thus compressing the energy storing device 114 , as denoted by arrow F. The compression of the energy storing device 114 stores energy, which acts to push back against the lower position engaging assembly 402 and subsequently the linkage assembly 108 . This reaction force against the linkage assembly 108 provides a counterbalance to the weight of the linkage assembly 108 as the linkage assembly 108 is in the lowered position.
  • FIG. 5 a flow diagram illustrating a preferred method of the present invention is shown.
  • the flow diagram describes the steps performed as the linkage assembly 108 is moved.
  • the steps may also be modified and applied to the linkage assembly 108 specifically approaching either a raised or a lowered position as well, or any other position in which it may be desired to provide a counterbalance.
  • the linkage assembly 108 is controllably moved, for example by a human operator or via automation.
  • movement of the linkage assembly 108 may be controlled by electro-hydraulic actuators, which in turn control the actuation of hydraulic cylinders which move the various linkages 110 .
  • the energy storing device 114 is engaged by the linkage assembly 108 .
  • the energy storage device 114 includes one or more springs 116 which are compressed as the linkage assembly 108 is moved.
  • a third control block 506 energy is stored in the energy storage device 114 during engagement. Control then proceeds to a fourth control block 508 , in which the stored energy is provided to counterbalance the weight of the linkage assembly 108 .
  • FIGS. 6 - 8 illustrate various additional embodiments which may be used in the present invention.
  • a spring engaging assembly 602 includes a spring engaging bar 604 .
  • An engaging end 606 of the spring engaging bar 604 is connected to an inner spring rod 608 , which is positioned through the center of the spring 116 .
  • a first inner spring rod end 610 pulls the spring 116 from left to right as the spring engaging bar 604 moves from left to right.
  • a second inner spring rod end 612 pulls the spring 116 from right to left as the spring engaging bar 604 moves from right to left.
  • the spring 116 is compressed either to the left or to the right as the linkage assembly 108 correspondingly moves either to the left or to the right.
  • the linkage assembly 108 may directly engage the energy storing device 114 , thus removing the need for the spring engaging assembly 602 .
  • FIG. 7 A variation of the embodiment of FIG. 6 is shown in FIG. 7.
  • the engaging end 606 of the spring engaging bar 604 is connected to the inner spring rod 608 at some point between the first and second inner spring rod ends 610 , 612 .
  • the connection point may be at any location along the spring 116 to achieve desired compression characteristics in both directions.
  • the linkage assembly 108 may be configured to engage the spring 116 directly, thus removing the need for the spring engaging assembly 602 .
  • FIG. 8 depicts yet another embodiment in which the energy storing device 114 is located within a hollow portion 802 of the linkage assembly 108 and is connected at one end to the frame 106 .
  • the energy storing device 114 stores energy. The stored energy is then used to counterbalance the weight of the linkage assembly 108 .
  • the figures depict an earthworking machine 104 commonly known as an overshot, or overhead loader. Although these machines are not commonly used, the machine 102 shown in the figures represents an autonomous overshot loader. In principle, the machine 102 digs material at one end of the machine 102 , lifts the material via the linkage assembly 108 over the machine 102 , and dumps the material, e.g., into a truck, at the other end of the machine 102 , thus expediting the dig and dump process. It is desired to design and build the machine 102 to minimize the power required to operate. Thus, the machine 102 is designed to be fairly light in weight, yet sturdy enough for harsh work environments.
  • One method of keeping the power requirements down is to store energy expended by the movement of the linkage assembly 108 during movement between dig and dump positions, and to use the stored energy to counterbalance the weight of the linkage assembly 108 at strategic positions. For example, as the linkage assembly 108 moves toward a raised position to dump a load of material, energy may be stored in the energy storing device 114 . The stored energy may then be expended to counterbalance the weight of the raised linkage assembly 108 and help return the linkage assembly 108 to a dig position. In like manner, as the linkage assembly 108 approaches a lowered position, i.e., toward the ground for a dig operation, energy may once again be stored in the energy storing device 114 . The stored energy may then be used to counterbalance the weight of the linkage assembly 108 , in effect causing the linkage assembly 108 to “float” near the ground.
  • the present invention may also be used with other types of machines having movable linkage assemblies.
  • the present invention may also be used with other types of earthworking machines, such as wheel loaders, tele-handlers, excavators, front shovels, track shovels, and the like.

Abstract

An apparatus and method for providing a counterbalance for a linkage assembly. The apparatus and method includes a frame, at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly, means for moving the linkage assembly, and an energy storing device connected to the frame and engaged by the linkage assembly, wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.

Description

    TECHNICAL FIELD
  • This invention relates generally to an apparatus and method for providing a counterbalance for a linkage assembly and, more particularly, to an apparatus and method for storing energy during motion of the linkage assembly and using the stored energy to provide a counterbalance for the linkage assembly. [0001]
  • BACKGROUND
  • Linkage assemblies are used in a variety of applications. For example, linkage assemblies are often used to perform work of some type. In the earthworking industry, for instance, linkage assemblies are typically mounted on machines and are used to move a work implement to perform some useful function. Wheel loaders, for example, usually have a linkage assembly which is used to move a bucket for digging, hauling and dumping purposes. [0002]
  • Quite often, the linkage assemblies must be large and heavy to handle heavy loads. Thus, machines which use these linkage assemblies must expend great amounts of power merely to move the linkages, notwithstanding the work required to move loads. Earthworking machines, such as wheel loaders, excavators, tele-handlers, and the like, often are required to extend the linkages substantial distances vertically and outward from the machine, thus contributing by way of gravity to the severe load requirements of the linkages themselves. [0003]
  • The great amounts of power required just to move the linkage assemblies is considered to be wasted power. Furthermore, the machine must be designed with enough capacity to handle the required additional power outputs, thus adding to costs. In addition, the excess power required takes a toll on the machine, shortening the useful life of the machine and increasing maintenance costs. [0004]
  • The present invention is directed to overcoming one or more of the problems as set forth above. [0005]
  • SUMMARY OF THE INVENTION
  • In one aspect of the present invention an apparatus for providing a counterbalance for a linkage assembly is disclosed. The apparatus includes a frame, at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly, means for moving the linkage assembly, and an energy storing device connected to the frame and engaged by the linkage assembly, wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly. [0006]
  • In another aspect of the present invention a method for providing a counterbalance for a linkage assembly is disclosed. The method includes the steps of moving the linkage assembly, engaging an energy storing device by the linkage assembly, storing energy in the energy storing device during engagement, and providing the stored energy to counterbalance the weight of the linkage assembly.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic illustration of a machine suited for use with the present invention; [0008]
  • FIG. 2 is a diagram illustrating one embodiment of the present invention; [0009]
  • FIG. 3 is a diagram illustrating a portion of the embodiment of FIG. 2; [0010]
  • FIG. 4 is a diagram illustrating another embodiment of the present invention; [0011]
  • FIG. 5 is a flow diagram illustrating a preferred method of the present invention; [0012]
  • FIG. 6 is a diagrammatic illustration of another embodiment of the present invention; [0013]
  • FIG. 7 is a diagrammatic illustration of another embodiment of the present invention; and [0014]
  • FIG. 8 is a diagrammatic illustration of another embodiment of the present invention.[0015]
  • DETAILED DESCRIPTION
  • With reference to the drawings and the appended claims, an [0016] apparatus 100 and method for providing a counterbalance for a linkage assembly is disclosed.
  • Referring to FIG. 1, a [0017] machine 102 is shown. The machine 102 is depicted for exemplary purposes as an earthworking machine 104, more specifically a wheel loader of a unique design known as an overshot (or overhead) loader. The earthworking machine 104 of FIG. 1 is particularly well suited for use with the present invention. However, other types of earthworking machines, such as excavators, tele-handlers, front shovels, conventional type wheel loaders, track loaders, and the like, may also benefit from use of the present invention. Furthermore, other types of machines which employ a linkage assembly 108 may also be used. In particular, various types of load handling machines which use a linkage assembly 108 to handle loads may benefit from use of the present invention. Hereinafter, the term machine 102 will be used in its broadest sense to depict any one of many types of applications having a linkage assembly 104.
  • The [0018] machine 102 of FIG. 1 includes a frame 106. Typical frames include an undercarriage, chassis, support members, and the like. A linkage assembly 108 is movably connected to the frame 106. For example, as FIGS. 1 and 2 illustrate, the linkage assembly 108 includes at least one linkage 110, in this example, three. The loader machine illustrated includes a work implement, i.e., bucket, and two additional linkages 110, thus having three linkages 110 making up the linkage assembly 108. However, it is noted that any number of linkages 110, such as 1, 2 or more, may be included in the linkage assembly 108. In the example illustrated, the linkage assembly 108 pivots about the frame 106, as shown by curved arrow A in FIG. 2. Although the arrow A shows the linkage assembly 108 moving from right to left, it is noted that the linkage assembly 108 may move in the opposite direction, i.e., from left to right, as well.
  • Means [0019] 112 for controllably moving the linkage assembly 108 may include, as the figures illustrate, a set of cylinders, preferably hydraulically actuated. However, other means 112 for controllably moving the linkage assembly 108 may be used. For example, electrically actuated servos, pneumatic cylinders, cables and pulleys, and the like may be used to controllably move the linkage assembly 108. It is also noted that the linkages 110 of a linkage assembly 108 preferably are configured to move relative to each other, for example by pivotal movement.
  • The present invention includes an [0020] energy storing device 114 connected to the frame 106. In the preferred embodiment, the energy storing device 114 is engaged by the linkage assembly 108 as the linkage assembly 108 approaches a specified position. In one embodiment, the energy storing device 114 is engaged as the linkage assembly 108 approaches a raised, e.g., substantially vertical, position. In another embodiment, the energy storing device 114 is engaged as the linkage assembly 108 approaches a lowered, e.g., substantially horizontal, position. However, the energy storing device 114 may be configured to be engaged by the linkage assembly 108 in any number of other positions of the linkage assembly 108 as desired.
  • In the preferred embodiment, the [0021] energy storing device 114 includes at least one spring 116. For example, FIG. 1 illustrates a set of four springs 116 connected to the frame 106 and operating in parallel with each other. Preferably, the springs 116 store energy from the linkage assembly 108 as they are compressed. The stored energy is then used to counterbalance the weight of the linkage assembly 108, as is described in more detail below. It is noted that the energy storing device 114 may include some other type of components. For example, pneumatic cylinders, e.g., gas springs, or some other type of energy storing device could be used as well.
  • Referring to FIG. 3, a diagrammatic illustration of a portion of the assembly of FIGS. 1 and 2 is shown. The illustration of FIG. 3 depicts a preferred embodiment of the present invention. More specifically, the embodiment of FIG. 3 illustrates use of the [0022] energy storing device 114 as the linkage assembly 108 approaches a raised position.
  • A lift [0023] position engaging assembly 202 engages the energy storing device 114 as the linkage assembly 108 approaches the raised position. In the example embodied by the figures, i.e., an overshot loader, the linkage assembly 108 is lifting over the machine 102 during a transition from a dig operation to a dump operation. The movement of the linkage assembly 108 is shown by curved arrow A. As the linkage assembly 108 approaches the raised, i.e., substantially vertical, position, it is desired to provide a counterbalance to the weight of the linkage assembly 108, thus reducing the power required by the machine 102 and also reducing the required mass and size of the machine 102 to accommodate the weight of the linkage assembly 108. The lift position engaging assembly 202 provides an interface between the linkage assembly 108 and the energy storing device 114.
  • The lift [0024] position engaging assembly 202 includes a pivot assembly 204. The pivot assembly 204 has a first end 206 pivotally connected to the frame 106 and a second end 208 in engaged contact with the energy storing device 114. The lift position engaging assembly 202 also includes a slide bar 210. The slide bar 210 has a first end 212 connected to the linkage assembly 108 and a second end 214 slidably connected to the pivot assembly 204.
  • In operation, as the [0025] linkage assembly 108 moves from right to left, as denoted by arrow A, the slide bar 210 also moves from right to left. At a designated position, the slide bar 210 engages the pivot assembly 204 and pulls the pivot assembly 204 from right to left, as denoted by arrow B. The first end 206 of the pivot assembly 204 pivots about its connection point to the frame 106 and the second end 208 of the pivot assembly 204 moves from right to left, thus compressing the energy storing device 114, as denoted by arrow C. The compression of the energy storing device 114 stores energy, which acts to push back against the lift position engaging assembly 202 and subsequently the linkage assembly 108. This reaction force against the linkage assembly 108 provides a counterbalance to the weight of the linkage assembly 108 as the linkage assembly 108 is in the raised position. The counterbalance serves to provide a force which helps the linkage assembly 108 return from the raised position to its original lowered position, i.e., to move from left to right.
  • Referring to FIG. 4, a further diagrammatic illustration of a portion of the assembly of FIGS. 1 and 2 is shown. The illustration of FIG. 4 depicts an alternate embodiment of the present invention. More specifically, the embodiment of FIG. 4 illustrates use of the [0026] energy storing device 114 as the linkage assembly 108 approaches a lowered position.
  • A lower [0027] position engaging assembly 402 engages the energy storing device 114 as the linkage assembly 108 approaches the lowered position. In the example embodied by the figures, i.e., an overshot loader, the linkage assembly 108 is lowering toward the ground during a transition from a dump operation to a dig operation. More specifically, the linkage assembly 108 is lowering to a substantially horizontal position near the ground in preparation for a dig function. The movement of the linkage assembly 108 is shown by curved arrow D. As the linkage assembly 108 approaches the lowered, i.e., substantially horizontal, position, it is desired to provide a counterbalance to the weight of the linkage assembly 108, thus reducing the power required by the machine 102 and also reducing the required mass and size of the machine 102 to accommodate the weight of the linkage assembly 108. The counterbalance in effect helps the linkage assembly 108 to “float” near the surface of the ground. The lower position engaging assembly 402 provides an interface between the linkage assembly 108 and the energy storing device 114.
  • The lower [0028] position engaging assembly 402 includes a pivot assembly 404. The pivot assembly 404 has a first end 406 pivotally connected to the frame 106 and a second end 408 in engaged contact with the energy storing device 114. The lower position engaging assembly 402 also includes a slide bar 410. The slide bar 410 has a first end 412 connected to the linkage assembly 108 and a second end 414 slidably connected to the pivot assembly 404.
  • In operation, as the [0029] linkage assembly 108 moves from left to right, as denoted by arrow D, the slide bar 410 also moves from left to right. At a designated position, the slide bar 410 engages the pivot assembly 404 and pulls the pivot assembly 404 from left to right, as denoted by arrow E. The first end 406 of the pivot assembly 404 pivots about its connection point to the frame 106 and the second end 408 of the pivot assembly 404 moves from left to right, thus compressing the energy storing device 114, as denoted by arrow F. The compression of the energy storing device 114 stores energy, which acts to push back against the lower position engaging assembly 402 and subsequently the linkage assembly 108. This reaction force against the linkage assembly 108 provides a counterbalance to the weight of the linkage assembly 108 as the linkage assembly 108 is in the lowered position.
  • Referring to FIG. 5, a flow diagram illustrating a preferred method of the present invention is shown. The flow diagram describes the steps performed as the [0030] linkage assembly 108 is moved. However, the steps may also be modified and applied to the linkage assembly 108 specifically approaching either a raised or a lowered position as well, or any other position in which it may be desired to provide a counterbalance.
  • In a [0031] first control block 502, the linkage assembly 108 is controllably moved, for example by a human operator or via automation. In the example of an earthworking machine 104, movement of the linkage assembly 108 may be controlled by electro-hydraulic actuators, which in turn control the actuation of hydraulic cylinders which move the various linkages 110.
  • In a [0032] second control block 504, the energy storing device 114 is engaged by the linkage assembly 108. Preferably, the energy storage device 114 includes one or more springs 116 which are compressed as the linkage assembly 108 is moved.
  • In a [0033] third control block 506, energy is stored in the energy storage device 114 during engagement. Control then proceeds to a fourth control block 508, in which the stored energy is provided to counterbalance the weight of the linkage assembly 108.
  • FIGS. [0034] 6-8 illustrate various additional embodiments which may be used in the present invention.
  • In FIG. 6, the [0035] energy storing device 114 is positioned such that the frame 106 confines movement of the energy storing device 114 at both ends. In the embodiment shown, a spring engaging assembly 602 includes a spring engaging bar 604. An engaging end 606 of the spring engaging bar 604 is connected to an inner spring rod 608, which is positioned through the center of the spring 116. A first inner spring rod end 610 pulls the spring 116 from left to right as the spring engaging bar 604 moves from left to right. A second inner spring rod end 612 pulls the spring 116 from right to left as the spring engaging bar 604 moves from right to left. Thus, the spring 116 is compressed either to the left or to the right as the linkage assembly 108 correspondingly moves either to the left or to the right. Alternatively, the linkage assembly 108 may directly engage the energy storing device 114, thus removing the need for the spring engaging assembly 602.
  • A variation of the embodiment of FIG. 6 is shown in FIG. 7. The [0036] engaging end 606 of the spring engaging bar 604 is connected to the inner spring rod 608 at some point between the first and second inner spring rod ends 610,612. Although the engaging end 606 of the spring engaging bar 604 is shown at a point about halfway between the ends of the spring 116, the connection point may be at any location along the spring 116 to achieve desired compression characteristics in both directions. Once again, the linkage assembly 108 may be configured to engage the spring 116 directly, thus removing the need for the spring engaging assembly 602.
  • FIG. 8 depicts yet another embodiment in which the [0037] energy storing device 114 is located within a hollow portion 802 of the linkage assembly 108 and is connected at one end to the frame 106. During movement of the linkage assembly 108 relative to the frame 106, the energy storing device 114 stores energy. The stored energy is then used to counterbalance the weight of the linkage assembly 108.
  • INDUSTRIAL APPLICABILITY
  • As an example of an application of the present invention, the figures depict an [0038] earthworking machine 104 commonly known as an overshot, or overhead loader. Although these machines are not commonly used, the machine 102 shown in the figures represents an autonomous overshot loader. In principle, the machine 102 digs material at one end of the machine 102, lifts the material via the linkage assembly 108 over the machine 102, and dumps the material, e.g., into a truck, at the other end of the machine 102, thus expediting the dig and dump process. It is desired to design and build the machine 102 to minimize the power required to operate. Thus, the machine 102 is designed to be fairly light in weight, yet sturdy enough for harsh work environments.
  • One method of keeping the power requirements down is to store energy expended by the movement of the [0039] linkage assembly 108 during movement between dig and dump positions, and to use the stored energy to counterbalance the weight of the linkage assembly 108 at strategic positions. For example, as the linkage assembly 108 moves toward a raised position to dump a load of material, energy may be stored in the energy storing device 114. The stored energy may then be expended to counterbalance the weight of the raised linkage assembly 108 and help return the linkage assembly 108 to a dig position. In like manner, as the linkage assembly 108 approaches a lowered position, i.e., toward the ground for a dig operation, energy may once again be stored in the energy storing device 114. The stored energy may then be used to counterbalance the weight of the linkage assembly 108, in effect causing the linkage assembly 108 to “float” near the ground.
  • The present invention may also be used with other types of machines having movable linkage assemblies. For example, the present invention may also be used with other types of earthworking machines, such as wheel loaders, tele-handlers, excavators, front shovels, track shovels, and the like. [0040]
  • Other aspects, objects, and features of the present invention can be obtained from a study of the drawings, the disclosure, and the appended claims. [0041]

Claims (28)

What is claimed is:
1. An apparatus for providing a counterbalance for a linkage assembly, comprising:
a frame;
at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly;
means for controllably moving the linkage assembly; and
an energy storing device connected to the frame and engaged by the linkage assembly;
wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
2. An apparatus, as set forth in claim 1, wherein the energy storing device is continuously engaged by the linkage assembly.
3. An apparatus, as set forth in claim 1, wherein the energy storing device includes at least one spring.
4. An apparatus, as set forth in claim 3, wherein the at least one spring is configured to store energy during compression.
5. An apparatus, as set forth in claim 1, further including a lift position engaging assembly for engaging the energy storing device by the linkage assembly.
6. An apparatus, as set forth in claim 5, wherein the lift position engaging assembly includes:
a pivot assembly having a first end pivotally connected to the frame and a second end in engaged contact with the energy storing device; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly.
7. An apparatus, as set forth in claim 1, wherein the energy storing device is engaged by the linkage assembly as the linkage assembly approaches a raised position.
8. An apparatus, as set forth in claim 7, wherein the raised position of the linkage assembly is substantially a vertical position.
9. An apparatus, as set forth in claim 1, wherein the energy storing device is engaged by the linkage assembly as the linkage assembly approaches a lowered position;
wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
10. An apparatus, as set forth in claim 9, further including a lower position engaging assembly for engaging the energy storing device by the linkage assembly.
11. An apparatus, as set forth in claim 10, wherein the lower position engaging assembly includes:
a pivot assembly having a first end pivotally connected to the frame and a second end in engaged contact with the energy storing device; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly.
12. An apparatus, as set forth in claim 9, wherein the lowered position of the linkage assembly is substantially a horizontal position.
13. An apparatus for providing a counterbalance for a linkage assembly, comprising:
a frame;
at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly;
means for controllably moving the linkage assembly; and
at least one spring connected to the frame and compressed by the linkage assembly as the linkage assembly approaches a raised position;
wherein the at least one spring stores energy from the linkage assembly during compression and provides the stored energy to counterbalance the weight of the linkage assembly.
14. An apparatus, as set forth in claim 13, further including a lift position engaging assembly for compressing the at least one spring by the linkage assembly, the lift position engaging assembly including:
a pivot assembly having a first end pivotally connected to the frame and a second end in contact with the at least one spring; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly.
15. A method for providing a counterbalance for a linkage assembly, including the steps of:
controllably moving the linkage assembly;
engaging an energy storing device by the linkage assembly;
storing energy in the energy storing device during engagement; and
providing the stored energy to counterbalance the weight of the linkage assembly.
16. A method, as set forth in claim 15, wherein controllably moving the linkage assembly includes the step of moving the linkage assembly relative to a frame, the linkage assembly being movably connected to the frame.
17. A method, as set forth in claim 15, wherein engaging an energy storing device includes the step of compressing at least one spring.
18. A method, as set forth in claim 15, further including the step of engaging the energy storing device as the linkage assembly approaches a raised position.
19. A method, as set forth in claim 15, further including the step of engaging the energy storing device as the linkage assembly approaches a lowered position.
20. An apparatus for providing a counterbalance for a linkage assembly, comprising:
a frame;
at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly;
means for controllably moving the linkage assembly;
an energy storing device connected to the frame a nd engaged by the linkage assembly as the linkage assembly approaches a raised position; and
a lift position engaging assembly for engaging the energy storing device by the linkage assembly, the lift position engaging assembly including:
a pivot assembly having a first end pivotally connected to the frame and a second end in engaged contact with the energy storing device; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly;
wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
21. An apparatus, as set forth in claim 20, wherein the energy storing device includes at least one spring.
22. An apparatus, as set forth in claim 21, wherein the at least one spring is configured to store energy during compression.
23. An apparatus for providing a counterbalance for a linkage assembly, comprising:
a frame;
at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly;
means for controllably moving the linkage assembly;
an energy storing device connected to the frame and engaged by the linkage assembly as the linkage assembly approaches a lowered position; and
a lower position engaging assembly for engaging the energy storing device by the linkage assembly;
wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
24. An apparatus, as set forth in claim 23, wherein the lower position engaging assembly includes:
a pivot assembly having a first end pivotally connected to the frame and a second end in engaged contact with the energy storing device; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly.
25. An apparatus for providing a counterbalance for a linkage assembly located on an earthworking machine having a frame, comprising:
at least one linkage movably connected to the frame, the at least one linkage defining the linkage assembly;
means for controllably moving the linkage assembly; and
an energy storage device connected to the frame and engaged by the linkage assembly as the linkage assembly approaches at least one of a raised and a lowered position;
wherein the energy storing device stores energy from the linkage assembly during engagement and provides the stored energy to counterbalance the weight of the linkage assembly.
26. An apparatus, as set forth in claim 25, further including at least one of:
a lift position engaging assembly for engaging the energy storing device as the linkage assembly approaches a raised position; and
a lower position engaging assembly for engaging the energy storing device as the linkage assembly approaches a lowered position.
27. An apparatus, as set forth in claim 26, wherein each of the lift position engaging assembly and the lower position engaging assembly includes:
a pivot assembly having a first end pivotally connected to the frame and a second end in engaged contact with the energy storing device; and
a slide bar having a first end connected to the linkage assembly and a second end slidably connected to the pivot assembly.
28. An apparatus, as set forth in claim 25, wherein the raised position of the linkage assembly is substantially a vertical position and the lowered position of the linkage assembly is substantially a horizontal position.
US10/143,205 2002-05-10 2002-05-10 Counterbalance for linkage assembly Expired - Fee Related US7032472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/143,205 US7032472B2 (en) 2002-05-10 2002-05-10 Counterbalance for linkage assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/143,205 US7032472B2 (en) 2002-05-10 2002-05-10 Counterbalance for linkage assembly

Publications (2)

Publication Number Publication Date
US20030218361A1 true US20030218361A1 (en) 2003-11-27
US7032472B2 US7032472B2 (en) 2006-04-25

Family

ID=29548245

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/143,205 Expired - Fee Related US7032472B2 (en) 2002-05-10 2002-05-10 Counterbalance for linkage assembly

Country Status (1)

Country Link
US (1) US7032472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042112A1 (en) * 2009-08-20 2011-02-24 Schiller Grounds Care, Inc. Earthworking machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2941067B1 (en) * 2009-01-14 2011-10-28 Dxo Labs OPTICAL DEFECT CONTROL IN AN IMAGE CAPTURE SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210997A (en) * 1991-05-17 1993-05-18 Mountcastle Jr Deliston L Articulated boom tractor mounted cutter assembly
US6276424B1 (en) * 1998-08-20 2001-08-21 White Consolidated Industries, Inc. Awning extension and retraction mechanism
US20020092101A1 (en) * 2001-01-12 2002-07-18 Lounsbury Mark S. Self releasing holddown mechanism for dock leveler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068876A (en) 1976-04-08 1978-01-17 Caterpillar Tractor Co. Bumper and counterweight arrangement and method for assembling the same
US4573308A (en) 1984-04-02 1986-03-04 Deere & Company Harvesting platform with a floating cutterbar
US4878802A (en) 1988-02-26 1989-11-07 Outboard Marine Corporation Machine for collecting ground particles and the like
US6109676A (en) 1997-10-31 2000-08-29 Caterpillar Inc. Bumper corner for a wheel loader engine end frame
DE19818960B4 (en) 1998-04-28 2008-12-04 Deere & Company, Moline Suspension of an intent
US6035478A (en) 1998-06-10 2000-03-14 Clark Equipment Company Rotary broom mounting
US6341809B1 (en) 2000-12-13 2002-01-29 Delphi Technologies, Inc. Liftgate counterbalance system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210997A (en) * 1991-05-17 1993-05-18 Mountcastle Jr Deliston L Articulated boom tractor mounted cutter assembly
US6276424B1 (en) * 1998-08-20 2001-08-21 White Consolidated Industries, Inc. Awning extension and retraction mechanism
US20020092101A1 (en) * 2001-01-12 2002-07-18 Lounsbury Mark S. Self releasing holddown mechanism for dock leveler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042112A1 (en) * 2009-08-20 2011-02-24 Schiller Grounds Care, Inc. Earthworking machine
US8469113B2 (en) 2009-08-20 2013-06-25 Schiller Ground Care, Inc. Earthworking machine

Also Published As

Publication number Publication date
US7032472B2 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
AU2006246533B2 (en) Industrial vehicle having working implement
US8943714B2 (en) Shovel having a wristing dipper
US6185493B1 (en) Method and apparatus for controlling an implement of a work machine
US3862697A (en) Front loading hydraulic excavator
US9845590B2 (en) Hydraulic system for an earth moving machine
CA2523660A1 (en) Folding lift arm assembly for skid steer loader
EP2280122B1 (en) Vertical lift arm device
US20040032141A1 (en) Tailgate assembly
US5595471A (en) Linkage arrangement
JPH1046620A (en) Power shovel
US7032472B2 (en) Counterbalance for linkage assembly
EP3832025B1 (en) Bucket actuator assembly with resilient bump stop
CN112456387A (en) Loading mechanism based on forklift platform and forklift
US6497059B1 (en) Energy conservation system for earth-moving loading machines
CN1327938A (en) Loader with auxiliary part of digging shovel and chassis for said loader
US20170350092A1 (en) Snubber for a dipper door
EP1154081A2 (en) A machine having a working arm
AU2017219143B2 (en) Shovel having a wristing dipper
JPH05255946A (en) Surface excavation shovel and excavation method of surface material
AU2015200038B2 (en) Shovel having a wristing dipper
GB2368573A (en) A machine with working arm and having inclined tilt levers
WO1996033315A1 (en) Lift boom linkage system
EP0084067A2 (en) Loader/excavating vehicle
SU1105559A1 (en) Loader/excavator
RU2123593C1 (en) Loading machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIKRUT, DANIEL L.;REEL/FRAME:012895/0333

Effective date: 20020506

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100425