US20030197907A1 - Hologram print system and holographic stereogram - Google Patents
Hologram print system and holographic stereogram Download PDFInfo
- Publication number
- US20030197907A1 US20030197907A1 US10/437,400 US43740003A US2003197907A1 US 20030197907 A1 US20030197907 A1 US 20030197907A1 US 43740003 A US43740003 A US 43740003A US 2003197907 A1 US2003197907 A1 US 2003197907A1
- Authority
- US
- United States
- Prior art keywords
- image
- file
- management information
- information file
- hologram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012545 processing Methods 0.000 claims abstract description 43
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000007726 management method Methods 0.000 description 69
- 238000000034 method Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 4
- 238000004091 panning Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001093 holography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2249—Holobject properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/28—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H1/024—Hologram nature or properties
- G03H1/0248—Volume holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/268—Holographic stereogram
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/2645—Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
- G03H1/265—Angle multiplexing; Multichannel holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H1/0011—Adaptation of holography to specific applications for security or authentication
- G03H2001/0016—Covert holograms or holobjects requiring additional knowledge to be perceived, e.g. holobject reconstructed only under IR illumination
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H2001/0204—Object characteristics
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/268—Holographic stereogram
- G03H2001/2695—Dedicated printer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/50—Nature of the object
- G03H2210/52—Alphanumerical
Definitions
- the present invention relates to a hologram print system for printing a holographic stereogram based on image information and to a holographic stereogram printed out from this hologram print system.
- a subject is photographed from different observation points to generate many images as original pictures. These images are sequentially recorded as strip or dot element holograms on a single holographic recording medium.
- FIG. 1 illustrates how to create a holographic stereogram having parallax information in a cross direction only.
- a subject 100 is sequentially photographed crosswise from different observation points to generate a parallax image sequence 101 comprising a plurality of images having the crosswise parallax information.
- Each image 102 constituting the parallax image sequence 101 is sequentially recorded as a strip element hologram on a holographic recording medium 103 so that the images continue crosswise. This provides a holographic stereogram having the crosswise parallax information.
- this holographic stereogram information about a plurality of images 102 is obtained by sequentially photographing from different observation points along a cross direction and is sequentially recorded crosswise as element holograms in strips.
- an observer views this holographic stereogram with both eyes, right and left eyes accept slightly different 2-D images respectively. This causes the observer to feel parallax, reproducing a 3-D image.
- a transparent film is used as a recording material for the hologram printer, making it impossible to place additional information on the rear of the material.
- an appropriate function needs to be added to the hologram print system, resulting in an ineffective solution.
- the present invention has been made in consideration of the foregoing. It is therefore an object of the present invention to provide a hologram print system for easily managing printout holograms and a holographic stereogram created by this hologram print system.
- the image processing means generates a composite image file by overlaying management information according to the management information file on the image information file in such a manner as to display the management information only within a specified range from a periphery of a vision for the holographic stereogram.
- the above-mentioned hologram print system records information in the periphery of the angle of field in a hologram. Namely, the content of a management information file cannot be recognized in most part of the hologram vision. Image processing is used for compositing the content of an image information file and the content of the management information file so that the content of the management information file is visible in the hologram only when viewed from the extreme periphery.
- a holographic stereogram according to the present invention is printed in a hologram print system based on image information and is characterized by displaying management information about a hologram-oriented image information file stored in a management information file by overlaying on part of a hologram generated according to the image information file.
- This holographic stereogram also displays the above-mentioned management information only within a specified range from the periphery of the vision.
- the present invention composites an image information file and an associated management information file. This can provide a holographic stereogram which makes the content of the management information file visible only when viewed from an edge of the angle of field. Accordingly, it is possible to easily manage a printout holographic stereogram.
- FIG. 1 explains a conventional system for creating a holographic stereogram
- FIG. 2 is a block diagram showing a configuration of a hologram print system according to an embodiment of the present invention
- FIG. 3 shows a format of a management information file
- FIG. 4 illustrates a method of compositing images in an image processing section constituting the above-mentioned hologram print system
- FIG. 5 shows relationship between an angle of field for a holographic stereogram generated in the above-mentioned hologram print system and a visible range of management information
- FIG. 6 shows visible states of a holographic stereogram viewed from directions (A), (B), (C), and (D) in FIG. 5;
- FIG. 7 shows a configuration of a hologram printer
- FIG. 8 is a block diagram showing a configuration of a hologram print system according to another embodiment of the present invention.
- the hologram print system 1 photographs an original image for a hologram and provides an image information file Fp.
- the system comprises a photographic subsystem 2 , an image processing section 4 and a hologram printer 5 .
- the photographic subsystem 2 is means for providing a management information file Fm which stores management information about the image information file Fp.
- the image processing section generates a composite image file Fs by applying image processing to the image information file Fp provided from the photographic subsystem 2 via a transmission system 3 a and the management information in the management information file Fm.
- the hologram printer 5 receives the composite image file Fs generated in the image processing section 4 via a transmission path 3 b and prints out a holographic stereogram based on this composite image file Fs.
- the photographic subsystem 2 is capable of, say, photographing a subject by using a camera linearly moving on a photography track, alternatively, in a rotational or panning state.
- a camera 2 b is directed to a subject M and is fixed along a specified direction. The camera is moved parallel on a photographic track 2 a for photographing many frames of the subject M from different positions to produce original images.
- the photographic subsystem 2 is controlled by a photographic subsystem control section 2 c corresponding to a user's operation.
- a image information file for the original image is provided with the management information file Fm generated in the photographic subsystem control section 2 c .
- the management information file Fm contains various management information about original images. This information chiefly comprises identification numbers and the like. As will be described later in detail, this file stores photographic conditions and information when the photographic subsystem 2 photographs an original image, information about the image information attributes, indexes specified for the photography, and additional information about the image information.
- the photographic subsystem control section 2 c includes ail operation section. This control section controls operations and the like of the camera 2 b according to intended selections by the user such as selecting a photographic method, an image size, and a photographic layout.
- the control section also generates a management information file about the original image based on the control information. The following describes examples of the management information included in this management information file with reference to FIG. 3 and Table 1 to be described later.
- the management information comprises an image data identification ID (4 bytes), photographic information (42 bytes), application (APL) information (33 bytes), composite image information (2 bytes), character information (130 bytes), and print count information (2 bytes).
- the image data identification ID is normally a sequence number used for identifying image data photographed by the camera 2 b in the photographic subsystem, 2 .
- the photographic information concerns a condition and the like about the photographic subsystem 2 when the camera 2 b photographs the subject M, for example. More specifically, as shown in Table 1 above, the photographic information includes the photographic time, the photographic distance the photographic method, the photographic angle, the photographic track length, the photographic image size, the photographic image resolution, the photographic date, the photographic layout, the photographic source, and the photographic shutter speed.
- the photographic time uses 2 bytes: the first byte for a 2-digit integer-part and the second byte for a 2-digit fractional part. For example, 0725 h means 7.25 seconds of the photographic time.
- the photographic distance is represented by a 4-bye integer (mm).
- the photographic method distinguishes among recentering, rotational, panning, and straight-track states for photographing through the use of the camera 2 b .
- the photographic angle is a 2-byte integer indicating an angle of the camera 2 b against the subject M.
- the photographic track length is a 4-byte integer.
- the photographic image size uses eight bytes: the four high-order bytes indicating a horizontal size (mm) of a photographic region and the four low-order bytes indicating a vertical size (mm) thereof
- the photographic image resolution uses eight bytes: the four high-order bytes indicating a horizontal resolution (pixels) and the four low-order bytes indicating a vertical resolution (pixels).
- the photographic date uses eight bytes, including a 1-byte dummy, to indicate a year, a month, a day, an hour, a minute, and a second.
- the photographic layout uses one byte to indicate a vertical or horizontal rotation angle.
- the 2-byte photographic source uses the one high-order byte to indicate a manufacturer ID and the one low-order byte to indicate a model ID of the camera 2 b .
- the photographic shutter speed is assigned two bytes.
- the application information comprises the application ID and the application file name.
- the user uses the operation section of the photographic subsystem control section 2 c to specify types of images printed on a holographic stereogram.
- the photographic subsystem control section 2 c determines whether the user specifies 3-D printing, motion picture printing, still picture album printing, or special-effect printing such as morphing.
- the application software for the corresponding image processing is selected from a software storage section and is read into RAM for execution.
- the 1-byte application ID is appended to the selected application.
- the application file name is expressed with up to 32 ASCII-code characters.
- the application file name indicates the name of a file which stores information needed for printing corresponding to the application specified by the application ID. In the case of still picture printing, for example, the file specified with the application file name specifies the number of still pictures to be printed and file names for respective still pictures.
- the composite image information is associated with an image to be composited with an original image photographed by the photographic subsystem 2 .
- the one byte indicates an image number to be composited to the foreground or background of the original image data.
- the character information comprises the foreground character code ID, the background character code ID, the foreground character information, and the background character information.
- One byte is assigned to each of the foreground character code ID and the background character code ID.
- the two low-order bits specify a character code such as ASCII, SJIS, Unicode, and the like.
- the six high-order bits specify 64 font types.
- the foreground character information and the background character information each use 64 bytes to express character information identified by the character code ID and use a Null character as a terminator.
- the print count information uses two bytes to indicate the number of holographic stereograms to be printed on the hologram printer 5 .
- the transmission path 3 a transmits the image information file Fp and the management information file Fm from the photographic subsystem 2 to the image processing section 4 .
- the transmission path 3 b transmits the composite image file Fs generated in the image processing section 4 to the hologram printer 5 .
- the image processing section 4 composites the image information file Fp and the management information file Fm. The section then applies necessary image processing such, as the viewpoint conversion and the Keystone distortion correction to output the composite image file Fs.
- image processing called the slice and dice method is applied to a holographic stereogram for correcting display positions of a 3-D image.
- the slice and dice method is detailed in “Instant holographic portrait printing system” (A. Shirakura; N. Kihara. S. Baba: Proc. SPIE Vol. 3293, p. 246-253, Practical Holography XII). It is possible to composite the image information file Fp and the management information file Fin before or after the slice and dice image processing. The following describes the composition before the slice and dice image processing.
- the image composition method performed in the image processing section 4 is described with reference to FIG. 4.
- the subject M is photographed by moving a camera C from the left (L) to the right (R) between t 1 and t 150 , say, for five seconds as shown in FIG. 4( a ).
- the parallax images are recorded as frames fr 1 to fr 150 from the right to the left of the subject M in the image information file Fp as shown in FIG. 4( b ).
- management information generated from the management information file Fm is composited to the latter half of the image information file Fp, namely 25 frames from fr 126 to fr 150 , for the thus recorded subject M.
- the example in FIG. 4 shows compositing the photographic time “14:30” and the sequence number “01011”.
- Composition of the image information file Fp and the management information file Fin follows a widely known method such as the chroma key composition which uses a blue background for the management information in the management information file Fm.
- the composited result is provided as the composite information file Fs.
- the slice and dice image processing is applied to the composited composite image file Fs (FIG. 4( d )) as an original image.
- the processed file is passed to the hologram printer 5 via the transmission path 3 b .
- the hologram printer 5 records the thus processed composite image file Fs on a holographic recording medium as will be described later to generate a holographic stereogram.
- FIG. 4 provides a holographic stereogram which allows observation of the management information generated from the management information file Fm only when viewed from a specific angle at the right end of the angle of field.
- the angle of field is 90 degrees between directions (A) and (D) when viewed from the horizontal direction of the holographic stereogram. It is possible to determine a viewable range of the management information generated from the management information file Fm so that observation of the image information file Fp is not hindered and an image generated from the information file is visible only when needed. For example, this range can be determined within 15 degrees ( ⁇ ) from the direction (D) at the light end of the angle of field. This angle, 15 degrees, is equivalent to 25 frames since 150 frames correspond to 90 degrees of the angle of field for five seconds of photographing.
- the management information is visible when viewed from the direction (C) within 15 degrees ( ⁇ ) from the direction (D) at the right end of the angle of field.
- FIG. 6 shows visible states of a holographic stereogram viewed from directions (A), (B), (C), and (D) in FIG. 5.
- the direction (A) shows only the left side of the subject M.
- the direction (B) shows only the front of the subject M.
- the direction (A) within the angle ⁇ shows the subject M and the management information such as the photographic time “14:30” and the sequence number “01011” in this case.
- the direction (D) corresponding to 90 degrees of the angle of field also shows the subject M and this management information.
- FIG. 7 (A) is a top view of an entire optical system for the hologram printer 5 .
- FIG. 7(B) is a side view of part of this optical system.
- the hologram printer 5 comprises a laser beam source 31 , an exposure shutter 32 , and a half mirror 33 .
- the laser beam source 31 irradiates a laser beam with a specified wavelength.
- the exposure shutter 32 is arranged on an optical axis of a laser beam L 1 from the laser beam source 31 .
- the exposure shutter 32 is closed when a holographic recording medium 30 is not exposed. This shutter is opened when the holographic recording medium 30 is exposed.
- the half mirror 33 separates a laser beam L 2 passing through the exposure shutter 32 into a reference beam and an object beam. Light L 3 reflected on the half mirror 33 becomes the reference beam. Light L 4 passing through the half mirror 33 becomes the object beam.
- a cylindrical lens 34 As an optical system for the reference beam, there are arranged a cylindrical lens 34 a collimator lens 35 , and a total reflection mirror 36 in this order along an optical axis for the light L 3 reflected on the half mirror 33 .
- the collimator lens 35 converts the reference beam into a parallel beam.
- the total reflection mirror 36 reflects the parallel beam from the collimator lens 35 .
- the light reflected on the half mirror 33 first passes through the cylindrical lens 34 to become divergent light and then passes through the collimator lens 35 to become parallel light. The parallel light is then reflected on the total reflection mirror 36 and enters the holographic recording medium 30 .
- the total reflection mirror 38 reflects transmitted light from the half mirror 33 .
- the spatial filter 39 comprises a combination of a convex lens and a pinhole.
- the collimator lens 40 converts the object beam into a parallel beam.
- the display apparatus 41 displays an image to be recorded.
- the cylindrical lens 42 converges the object beam onto the holographic recording medium 30 .
- the light L 4 passing through the half minor 33 is reflected on the total reflection mirror 38 and then passes though the spatial filter 39 to become diffuse light from a point light source.
- the light L 4 passes through the collimator lens 40 to become parallel light and then enters the display apparatus 41 .
- the display apparatus 41 is a transmission-type image display apparatus using, say, a liquid crystal panel for displaying an image based on the image data transmitted from the photographic subsystem 2 . After passing through the display apparatus 41 , the light is modulated according to an image displayed on the display apparatus 41 and then enters the cylindrical lens 42 .
- the cylindrical lens 42 horizontally converges the light passing through the display apparatus 41 .
- This converged light works as the object beam and enters the holographic recording medium 30 .
- the projected light from the display apparatus 41 is transformed into a strip-shaped object beam and enters the holographic recording medium 30 .
- the reference beam enters one principal plane of the holographic recording medium 30 .
- the object beam enters the other principal plane thereof.
- the reference beam enters one principal plane of the holographic recording medium 30 at a specified incident angle.
- the object beam enters the other principal plane thereof so that the optical axis becomes almost perpendicular to the holographic recording medium 30 .
- This causes an interference between the reference beam and the object beam on the holographic recording medium 30 .
- the interference generates an interference pattern which is recorded as a refractive index change on the holographic recording medium 30 .
- the hologram printer 5 is provided with a recording medium feed mechanism 43 which can incrementally feed the holographic recording medium 30 .
- the holographic recording medium 30 is mounted on the recording medium feed mechanism 43 with a specified state.
- the recording medium feed mechanism 43 incrementally feeds the mounted holographic recording medium for one element hologram each time one image is recorded as one element image based on the original image data. This operation sequentially records images based on the original image data as element images on the holographic recording medium 30 so that the images continue in the horizontal direction.
- the hologram printer 5 uses the display apparatus 41 to display an exposure image based on the image data.
- the holographic recording medium 30 is exposed by opening the exposure shutter 32 for a specified time.
- the laser beam L 2 is irradiated from the laser beam source 31 and passes through the exposure shutter 32 .
- This laser beam is reflected on the half mirror 33 to become the light L 3 and enters the holographic recording medium 30 as the reference beam.
- the laser beam passes through the half mirror 33 to become the light L 4 .
- This is projected light where the image displayed on the display apparatus 41 is projected.
- the projected light enters the holographic recording medium 30 as the object beam.
- the recording medium feed mechanism 43 feeds the holographic recording medium 30 for one element hologram.
- the hologram printer 5 receives the composite image file Fs which is composited in the image processing section 4 and is processed with the specified image processing.
- the hologram printer prints out a holographic stereogram in such a manner as to overlap the management information based on the management information file Fm with part of the hologram based on the image information file Fp.
- the management information is visible only when viewed from the right end. It may be preferable to let the management information be visible only when viewed from the left end.
- the management information can be provided by compositing 25 frames from fr 1 to f 125 in FIG. 4 with the image information file.
- the above-mentioned embodiment describes the case where the management information file is provided as still pictures. It is also possible to vary some of information depending on angles. In this case, different management information is composited with the image information file every five frames.
- five frames from the frame 126 record the photographic time and the sequence number.
- Five frames from the frame 130 record the number of the photographic apparatus used for photographing and the number of prints.
- Five frames from the frame 135 record the photographic distance and method.
- Five frames from the frame 140 record the photographic shutter speed or the like.
- the image processing section 4 composites the image information file Fp and the management information file Fm before the slice and dice image processing. It may be preferable to independently composite the image information file Fp and the management information file Fm after the slice and dice image processing.
- the management information file does not necessarily need to be generated in the computer such as the photographic subsystem control section 2 c . It may be preferable to use text or other data recorded on a voice track of video tape recording the image information file. It may be also preferable to use a time code in video tape as a management information file attached to the image.
- the hologram print system uses a plurality of photographic subsystems and external data acceptance sections to acquire images.
- the system uses a plurality of hologram printers via a network to store these images for holographic stereogram printout.
- a hologram print system 10 comprises n photographic subsystems 11 l to 11 n , m external data acceptance sections 15 l to 15 m , x hologram printers 18 l to 18 X , a hologram printer control section 19 , and an image processing section 20 . They are all connected to a network 17 .
- the photographic subsystem 11 l is equivalent to the photographic subsystem 2 in FIG. 2. Namely, this configuration is capable of photographing a subject M l by using a camera 13 l moving on a photographic track 12 l or by using the rotational or panning method.
- This photographic subsystem 11 l is controlled by a photographic subsystem control section 14 l according to user operations.
- An original image is provided with a management information file generated in photographic subsystem control section 14 l .
- Each of the photographic subsystem control sections 14 l to 14 n generates a management information file according to FIG. 3 and Table 1. The description thereof is omitted here.
- the external data acceptance section 15 l captures a movie or a plurality of still pictures directly from a digital still camera, a digital video camera, an analog video apparatus, and the like via various external networks 16 and the like.
- the external data acceptance section 15 m captures a movie or a plurality of still pictures from various removable media such as an FD, CD-ROM, DVD, semiconductor memory card, and the like via various external networks 16 and the like.
- the hologram printer 18 l has tile same configuration as shown in FIG. 7. The description thereof is omitted here.
- the hologram printer control section 19 controls operations of x hologram printers 18 l to 18 X .
- the image processing section 20 applies specified image processing to various data from the photographic subsystems and external data acceptance sections.
- the hologram printer control section 19 and the image processing section 20 comprise server computers.
- n photographic subsystems and m external data acceptance sections it is assumed that one photographic subsystem captures an image.
- This photographic subsystem exchanges signals with the server computer.
- the image processing, section 20 in the server computer becomes ready to accept images the photographic subsystem transfers the captured image to the server computer's image processing section 20 .
- the photographic subsystem's photographic subsystem control section creates the management information file and sends it to the server computer along with an image information file.
- the management information file is used for adding photographic apparatus numbers and sequence numbers for identifying a plurality of input systems as well as the above-mentioned information to the information needed for identifying images.
- the contents of the management information file may be fully dependent on the photographic subsystem or the external data acceptance section.
- This file can include identification numbers specified by the server computer.
- the server computer's image processing section 20 composites the image information file Fp and the management information file Fm like the image processing section 4 in FIG. 2.
- the image processing section 20 then outputs the composite image file Fs by performing specified image processing called the slice and dice method such as the viewpoint conversion and the Keystone distortion correction.
- the server computer's hologram printer control section 19 searches x hologram printers for a hologram printer ready for printing and sends the composite image file Fs to this printer. Obviously, it is possible to flexibly determine which printer to be used for the transferred image by changing the server computer settings.
- the hologram printer specified by the server computer's hologram printer control section 19 prints a holographic stereogram based on the transferred composite image file Fs.
- merging the management information file with the image information file is effective for a system comprising a plurality of photographic subsystems, printers, and the like.
- the management information may be visible only when viewed from the left end as well as only when viewed from the right end.
- the image processing section 20 composites the image information file Fp and the management information file Fm before the slice and dice image processing. It may be preferable to independently composite the image information file Fp and the management information file Fm after the slice and dice image processing.
- the management information file does not necessarily need to be generated in the computer such as the photographic subsystem control section. It may be preferable to use text or other data recorded on a voice track of video tape recording the image information file. It may be also preferable to use a time code in video tape as a management information file attached to the image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
A single photographic subsystem 2 photographs an original image for a hologram and provides an image information file Fp. In addition, this subsystem provides a management information file Fm for storing management information about the image information file Fp. An image processing section 4 generates a composite image file Fs by applying specified image processing to the image information file Fp and the management information about the management information file Fm provided from the single photographic subsystem 2 via a transmission system 3 a. A hologram printer 5 receives the composite image file Fs generated in the image processing section 4 and prints a holographic stereogram based on this composite image file Fs.
Description
- 1. Technical Field
- The present invention relates to a hologram print system for printing a holographic stereogram based on image information and to a holographic stereogram printed out from this hologram print system.
- 2. Prior Art
- To create a holographic stereogram, for example, a subject is photographed from different observation points to generate many images as original pictures. These images are sequentially recorded as strip or dot element holograms on a single holographic recording medium.
- For example, FIG. 1 illustrates how to create a holographic stereogram having parallax information in a cross direction only. First, a
subject 100 is sequentially photographed crosswise from different observation points to generate aparallax image sequence 101 comprising a plurality of images having the crosswise parallax information. Eachimage 102 constituting theparallax image sequence 101 is sequentially recorded as a strip element hologram on aholographic recording medium 103 so that the images continue crosswise. This provides a holographic stereogram having the crosswise parallax information. - In this holographic stereogram, information about a plurality of
images 102 is obtained by sequentially photographing from different observation points along a cross direction and is sequentially recorded crosswise as element holograms in strips. When an observer views this holographic stereogram with both eyes, right and left eyes accept slightly different 2-D images respectively. This causes the observer to feel parallax, reproducing a 3-D image. - Moreover, there have been reported many techniques for displaying 3-D images using holographic stereograms. There has been also reported a printer system and the like for creating holographic stereograms (A. Shirakura; N. Kihara; S. Baba: “Instant holographic portrait printing system”, Proc. SPIE Vol. 3293, p. 246-253, Practical Holography XII).
- As an application of such a holographic stereogram printing system, it may be preferable to place only photographic systems at various locations. In this case, the photographic system transfers just data to a centrally installed printer for printout.
- Whether the photographic apparatus and the printer are available at the same location or different locations, a critical factor in operations is exact correspondence between photographed image data and an printout hologram.
- For example, there can be a service for photographing image data at a remote location and mailing a corresponding hologram later on. In this case, it is necessary to send not only customer's image data, but also customer information such as delivery destination. Further, it is desirable to determine correspondence between a printout hologram and a customer.
- In many cases, a transparent film is used as a recording material for the hologram printer, making it impossible to place additional information on the rear of the material. As an alternative, it is possible to record information using optical means or ink on a portion which is void of a hologram film image. However, an appropriate function needs to be added to the hologram print system, resulting in an ineffective solution.
- The present invention has been made in consideration of the foregoing. It is therefore an object of the present invention to provide a hologram print system for easily managing printout holograms and a holographic stereogram created by this hologram print system.
- For solving the above-mentioned problems, a hologram print system according to the present invention for printing: a holographic stereogram based on image information comprises information file provision means for providing an image information file to be holographed and a management information file storing management information about the image information file; image processing means for generating a composite image file by overlaying management information according to the management information file on part of a hologram according to the image information file provided from the information file provision means; and printout means for printing a holographic stereogram according to a composite image file generated from the image processing means.
- In this hologram print system, the image processing means generates a composite image file by overlaying management information according to the management information file on the image information file in such a manner as to display the management information only within a specified range from a periphery of a vision for the holographic stereogram.
- The above-mentioned hologram print system records information in the periphery of the angle of field in a hologram. Namely, the content of a management information file cannot be recognized in most part of the hologram vision. Image processing is used for compositing the content of an image information file and the content of the management information file so that the content of the management information file is visible in the hologram only when viewed from the extreme periphery.
- For solving the above-mentioned problems, a holographic stereogram according to the present invention is printed in a hologram print system based on image information and is characterized by displaying management information about a hologram-oriented image information file stored in a management information file by overlaying on part of a hologram generated according to the image information file.
- This holographic stereogram also displays the above-mentioned management information only within a specified range from the periphery of the vision.
- The present invention composites an image information file and an associated management information file. This can provide a holographic stereogram which makes the content of the management information file visible only when viewed from an edge of the angle of field. Accordingly, it is possible to easily manage a printout holographic stereogram.
- FIG. 1 explains a conventional system for creating a holographic stereogram;
- FIG. 2 is a block diagram showing a configuration of a hologram print system according to an embodiment of the present invention;
- FIG. 3 shows a format of a management information file;
- FIG. 4 illustrates a method of compositing images in an image processing section constituting the above-mentioned hologram print system;
- FIG. 5 shows relationship between an angle of field for a holographic stereogram generated in the above-mentioned hologram print system and a visible range of management information;
- FIG. 6 shows visible states of a holographic stereogram viewed from directions (A), (B), (C), and (D) in FIG. 5;
- FIG. 7 shows a configuration of a hologram printer; and
- FIG. 8 is a block diagram showing a configuration of a hologram print system according to another embodiment of the present invention.
- Embodiments of the present invention will be described in further detail with reference to the accompanying drawings. The present invention is not limited to the following examples. It is further understood by those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope thereof.
- The following describes a
hologram print system 1 in FIG. 2. The hologramprint system 1 photographs an original image for a hologram and provides an image information file Fp. The system comprises aphotographic subsystem 2, animage processing section 4 and ahologram printer 5. Thephotographic subsystem 2 is means for providing a management information file Fm which stores management information about the image information file Fp. The image processing section generates a composite image file Fs by applying image processing to the image information file Fp provided from thephotographic subsystem 2 via atransmission system 3 a and the management information in the management information file Fm. Thehologram printer 5 receives the composite image file Fs generated in theimage processing section 4 via atransmission path 3 b and prints out a holographic stereogram based on this composite image file Fs. - The
photographic subsystem 2 is capable of, say, photographing a subject by using a camera linearly moving on a photography track, alternatively, in a rotational or panning state. In thisphotographic subsystem 2, as shown in FIG. 2, acamera 2 b is directed to a subject M and is fixed along a specified direction. The camera is moved parallel on aphotographic track 2 a for photographing many frames of the subject M from different positions to produce original images. Thephotographic subsystem 2 is controlled by a photographicsubsystem control section 2 c corresponding to a user's operation. A image information file for the original image is provided with the management information file Fm generated in the photographicsubsystem control section 2 c. The management information file Fm contains various management information about original images. This information chiefly comprises identification numbers and the like. As will be described later in detail, this file stores photographic conditions and information when thephotographic subsystem 2 photographs an original image, information about the image information attributes, indexes specified for the photography, and additional information about the image information. - The following describes a detail about the management information file Fin generated with the image information file Fp by the photographic
subsystem control section 2 c in thephotographic subsystem 2. The photographicsubsystem control section 2 c includes ail operation section. This control section controls operations and the like of thecamera 2 b according to intended selections by the user such as selecting a photographic method, an image size, and a photographic layout. The control section also generates a management information file about the original image based on the control information. The following describes examples of the management information included in this management information file with reference to FIG. 3 and Table 1 to be described later. - The management information comprises an image data identification ID (4 bytes), photographic information (42 bytes), application (APL) information (33 bytes), composite image information (2 bytes), character information (130 bytes), and print count information (2 bytes).
TABLE 1 Field name Bytes Data format Image data identification ID 4 B Photographic time 2 B Photographic distance 4 B Photographic method 1 B Photographic angle 2 B Photographic track length 4 B Photographic image size 8 B Photographic image resolution 8 B Photographic date 8 B Photographic layout 1 B Photographic source 2 B Photographic shutter speed 2 B Application ID 1 B Application file name 32 A Foreground image ID 1 B Background image ID 1 B Foreground character code ID 1 B Foreground character information 64 A Background character code ID 1 B Background character information 64 A Print count 2 B Reserved 43 B - The image data identification ID is normally a sequence number used for identifying image data photographed by the
camera 2 b in the photographic subsystem, 2. - The photographic information concerns a condition and the like about the
photographic subsystem 2 when thecamera 2 b photographs the subject M, for example. More specifically, as shown in Table 1 above, the photographic information includes the photographic time, the photographic distance the photographic method, the photographic angle, the photographic track length, the photographic image size, the photographic image resolution, the photographic date, the photographic layout, the photographic source, and the photographic shutter speed. The photographic time uses 2 bytes: the first byte for a 2-digit integer-part and the second byte for a 2-digit fractional part. For example, 0725 h means 7.25 seconds of the photographic time. The photographic distance is represented by a 4-bye integer (mm). The photographic method distinguishes among recentering, rotational, panning, and straight-track states for photographing through the use of thecamera 2 b. The photographic angle is a 2-byte integer indicating an angle of thecamera 2 b against the subject M. The photographic track length is a 4-byte integer. The photographic image size uses eight bytes: the four high-order bytes indicating a horizontal size (mm) of a photographic region and the four low-order bytes indicating a vertical size (mm) thereof The photographic image resolution uses eight bytes: the four high-order bytes indicating a horizontal resolution (pixels) and the four low-order bytes indicating a vertical resolution (pixels). The photographic date uses eight bytes, including a 1-byte dummy, to indicate a year, a month, a day, an hour, a minute, and a second. The photographic layout uses one byte to indicate a vertical or horizontal rotation angle. The 2-byte photographic source uses the one high-order byte to indicate a manufacturer ID and the one low-order byte to indicate a model ID of thecamera 2 b. The photographic shutter speed is assigned two bytes. - The application information comprises the application ID and the application file name. The user uses the operation section of the photographic
subsystem control section 2 c to specify types of images printed on a holographic stereogram. The photographicsubsystem control section 2 c determines whether the user specifies 3-D printing, motion picture printing, still picture album printing, or special-effect printing such as morphing. The application software for the corresponding image processing is selected from a software storage section and is read into RAM for execution. The 1-byte application ID is appended to the selected application. The application file name is expressed with up to 32 ASCII-code characters. The application file name indicates the name of a file which stores information needed for printing corresponding to the application specified by the application ID. In the case of still picture printing, for example, the file specified with the application file name specifies the number of still pictures to be printed and file names for respective still pictures. - The composite image information is associated with an image to be composited with an original image photographed by the
photographic subsystem 2. The one byte indicates an image number to be composited to the foreground or background of the original image data. - The character information comprises the foreground character code ID, the background character code ID, the foreground character information, and the background character information. One byte is assigned to each of the foreground character code ID and the background character code ID. The two low-order bits specify a character code such as ASCII, SJIS, Unicode, and the like. The six high-order bits specify 64 font types. The foreground character information and the background character information each use 64 bytes to express character information identified by the character code ID and use a Null character as a terminator.
- The print count information uses two bytes to indicate the number of holographic stereograms to be printed on the
hologram printer 5. - The
transmission path 3 a transmits the image information file Fp and the management information file Fm from thephotographic subsystem 2 to theimage processing section 4. Thetransmission path 3 b transmits the composite image file Fs generated in theimage processing section 4 to thehologram printer 5. - The
image processing section 4 composites the image information file Fp and the management information file Fm. The section then applies necessary image processing such, as the viewpoint conversion and the Keystone distortion correction to output the composite image file Fs. - Generally, image processing called the slice and dice method is applied to a holographic stereogram for correcting display positions of a 3-D image. The slice and dice method is detailed in “Instant holographic portrait printing system” (A. Shirakura; N. Kihara. S. Baba: Proc. SPIE Vol. 3293, p. 246-253, Practical Holography XII). It is possible to composite the image information file Fp and the management information file Fin before or after the slice and dice image processing. The following describes the composition before the slice and dice image processing. The image composition method performed in the
image processing section 4 is described with reference to FIG. 4. It is assumed that the subject M is photographed by moving a camera C from the left (L) to the right (R) between t1 and t150, say, for five seconds as shown in FIG. 4(a). In this case, the parallax images are recorded as frames fr1 to fr150 from the right to the left of the subject M in the image information file Fp as shown in FIG. 4(b). - As shown in FIG. 4, (c), management information generated from the management information file Fm is composited to the latter half of the image information file Fp, namely 25 frames from fr126 to fr150, for the thus recorded subject M. The example in FIG. 4 shows compositing the photographic time “14:30” and the sequence number “01011”. Composition of the image information file Fp and the management information file Fin follows a widely known method such as the chroma key composition which uses a blue background for the management information in the management information file Fm. The composited result is provided as the composite information file Fs.
- The slice and dice image processing is applied to the composited composite image file Fs (FIG. 4(d)) as an original image. The processed file is passed to the
hologram printer 5 via thetransmission path 3 b. Thehologram printer 5 records the thus processed composite image file Fs on a holographic recording medium as will be described later to generate a holographic stereogram. - The example in FIG. 4 provides a holographic stereogram which allows observation of the management information generated from the management information file Fm only when viewed from a specific angle at the right end of the angle of field.
- As shown in FIG. 5, it is assumed that the angle of field is 90 degrees between directions (A) and (D) when viewed from the horizontal direction of the holographic stereogram. It is possible to determine a viewable range of the management information generated from the management information file Fm so that observation of the image information file Fp is not hindered and an image generated from the information file is visible only when needed. For example, this range can be determined within 15 degrees (θ) from the direction (D) at the light end of the angle of field. This angle, 15 degrees, is equivalent to 25 frames since 150 frames correspond to 90 degrees of the angle of field for five seconds of photographing. The management information is visible when viewed from the direction (C) within 15 degrees (θ) from the direction (D) at the right end of the angle of field.
- FIG. 6 shows visible states of a holographic stereogram viewed from directions (A), (B), (C), and (D) in FIG. 5. The direction (A) shows only the left side of the subject M. The direction (B) shows only the front of the subject M. The direction (A) within the angle θ shows the subject M and the management information such as the photographic time “14:30” and the sequence number “01011” in this case. The direction (D) corresponding to 90 degrees of the angle of field also shows the subject M and this management information.
- The
hologram printer 5 is described in detail with reference to FIG. 7. FIG. 7 (A) is a top view of an entire optical system for thehologram printer 5. FIG. 7(B) is a side view of part of this optical system. - As shown in FIG. 7 (A), the
hologram printer 5 comprises alaser beam source 31, anexposure shutter 32, and ahalf mirror 33. Thelaser beam source 31 irradiates a laser beam with a specified wavelength. Theexposure shutter 32 is arranged on an optical axis of a laser beam L1 from thelaser beam source 31. - The
exposure shutter 32 is closed when aholographic recording medium 30 is not exposed. This shutter is opened when theholographic recording medium 30 is exposed. Thehalf mirror 33 separates a laser beam L2 passing through theexposure shutter 32 into a reference beam and an object beam. Light L3 reflected on thehalf mirror 33 becomes the reference beam. Light L4 passing through thehalf mirror 33 becomes the object beam. - As an optical system for the reference beam, there are arranged a cylindrical lens34 a
collimator lens 35, and atotal reflection mirror 36 in this order along an optical axis for the light L3 reflected on thehalf mirror 33. Thecollimator lens 35 converts the reference beam into a parallel beam. Thetotal reflection mirror 36 reflects the parallel beam from thecollimator lens 35. - The light reflected on the
half mirror 33 first passes through thecylindrical lens 34 to become divergent light and then passes through thecollimator lens 35 to become parallel light. The parallel light is then reflected on thetotal reflection mirror 36 and enters theholographic recording medium 30. - As an optical system for the object beam; there are arranged a
total reflection mirror 38, aspatial filter 39, acollimator lens 40, adisplay apparatus 41, and acylindrical lens 42 in this order along an optical axis for the light L4 passing through thehalf mirror 33 as shown in FIGS. 7(A) and 7 (B). Thetotal reflection mirror 38 reflects transmitted light from thehalf mirror 33. Thespatial filter 39 comprises a combination of a convex lens and a pinhole. Thecollimator lens 40 converts the object beam into a parallel beam. Thedisplay apparatus 41 displays an image to be recorded. Thecylindrical lens 42 converges the object beam onto theholographic recording medium 30. - The light L4 passing through the half minor 33 is reflected on the
total reflection mirror 38 and then passes though thespatial filter 39 to become diffuse light from a point light source. The light L4 passes through thecollimator lens 40 to become parallel light and then enters thedisplay apparatus 41. Thedisplay apparatus 41 is a transmission-type image display apparatus using, say, a liquid crystal panel for displaying an image based on the image data transmitted from thephotographic subsystem 2. After passing through thedisplay apparatus 41, the light is modulated according to an image displayed on thedisplay apparatus 41 and then enters thecylindrical lens 42. - The
cylindrical lens 42 horizontally converges the light passing through thedisplay apparatus 41. This converged light works as the object beam and enters theholographic recording medium 30. Namely, the projected light from thedisplay apparatus 41 is transformed into a strip-shaped object beam and enters theholographic recording medium 30. - Here, the reference beam enters one principal plane of the
holographic recording medium 30. The object beam enters the other principal plane thereof. Namely, the reference beam enters one principal plane of theholographic recording medium 30 at a specified incident angle. The object beam enters the other principal plane thereof so that the optical axis becomes almost perpendicular to theholographic recording medium 30. This causes an interference between the reference beam and the object beam on theholographic recording medium 30. The interference generates an interference pattern which is recorded as a refractive index change on theholographic recording medium 30. - The
hologram printer 5 is provided with a recordingmedium feed mechanism 43 which can incrementally feed theholographic recording medium 30. Theholographic recording medium 30 is mounted on the recordingmedium feed mechanism 43 with a specified state. The recordingmedium feed mechanism 43 incrementally feeds the mounted holographic recording medium for one element hologram each time one image is recorded as one element image based on the original image data. This operation sequentially records images based on the original image data as element images on theholographic recording medium 30 so that the images continue in the horizontal direction. - The
hologram printer 5 uses thedisplay apparatus 41 to display an exposure image based on the image data. Theholographic recording medium 30 is exposed by opening theexposure shutter 32 for a specified time. - At this time, the laser beam L2 is irradiated from the
laser beam source 31 and passes through theexposure shutter 32. This laser beam is reflected on thehalf mirror 33 to become the light L3 and enters theholographic recording medium 30 as the reference beam. The laser beam passes through thehalf mirror 33 to become the light L4. This is projected light where the image displayed on thedisplay apparatus 41 is projected. The projected light enters theholographic recording medium 30 as the object beam. This records the exposure image displayed on thedisplay apparatus 41 as a strip-shaped element image onto theholographic recording medium 30. - When one image has been recorded on the
holographic recording medium 30, the recordingmedium feed mechanism 43 feeds theholographic recording medium 30 for one element hologram. - The above-mentioned operations are repeated by sequentially changing exposure images to be displayed on the
display apparatus 41 according to the parallax image sequence. Consequently, exposure images based on the original image data are sequentially recorded as strip-shaped element images on theholographic recording medium 30. - Via the
transmission path 3 b, thehologram printer 5 receives the composite image file Fs which is composited in theimage processing section 4 and is processed with the specified image processing. The hologram printer prints out a holographic stereogram in such a manner as to overlap the management information based on the management information file Fm with part of the hologram based on the image information file Fp. - Accordingly, it is possible to provide reliable correspondence between the printed holographic stereogram and the photographed image data, making the management easy.
- In the above-mentioned embodiment, the management information is visible only when viewed from the right end. It may be preferable to let the management information be visible only when viewed from the left end. In this case, the management information can be provided by compositing 25 frames from fr1 to f125 in FIG. 4 with the image information file.
- The above-mentioned embodiment describes the case where the management information file is provided as still pictures. It is also possible to vary some of information depending on angles. In this case, different management information is composited with the image information file every five frames. In FIG. 4, for example, five frames from the frame126 record the photographic time and the sequence number. Five frames from the
frame 130 record the number of the photographic apparatus used for photographing and the number of prints. Five frames from the frame 135 record the photographic distance and method. Five frames from the frame 140 record the photographic shutter speed or the like. - In the above-mentioned embodiment, the
image processing section 4 composites the image information file Fp and the management information file Fm before the slice and dice image processing. It may be preferable to independently composite the image information file Fp and the management information file Fm after the slice and dice image processing. - The management information file does not necessarily need to be generated in the computer such as the photographic
subsystem control section 2 c. It may be preferable to use text or other data recorded on a voice track of video tape recording the image information file. It may be also preferable to use a time code in video tape as a management information file attached to the image. - Another embodiment of the present invention is described with reference to FIG. 8. According to this embodiment, the hologram print system uses a plurality of photographic subsystems and external data acceptance sections to acquire images. The system uses a plurality of hologram printers via a network to store these images for holographic stereogram printout.
- A
hologram print system 10 comprises n photographic subsystems 11 l to 11 n, m externaldata acceptance sections 15 l to 15 m, x hologram printers 18 l to 18 X, a hologramprinter control section 19, and animage processing section 20. They are all connected to anetwork 17. - Of n photographic subsystems11 l to 11 n, say, the photographic subsystem 11 l is equivalent to the
photographic subsystem 2 in FIG. 2. Namely, this configuration is capable of photographing a subject Ml by using a camera 13 l moving on a photographic track 12 l or by using the rotational or panning method. This photographic subsystem 11 l is controlled by a photographic subsystem control section 14 l according to user operations. An original image is provided with a management information file generated in photographic subsystem control section 14 l. - Each of the photographic subsystem control sections14 l to 14 n generates a management information file according to FIG. 3 and Table 1. The description thereof is omitted here.
- The external
data acceptance section 15 l captures a movie or a plurality of still pictures directly from a digital still camera, a digital video camera, an analog video apparatus, and the like via variousexternal networks 16 and the like. - The external
data acceptance section 15 m captures a movie or a plurality of still pictures from various removable media such as an FD, CD-ROM, DVD, semiconductor memory card, and the like via variousexternal networks 16 and the like. - Of x hologram printers18 l to 18 X, say, the hologram printer 18 l has tile same configuration as shown in FIG. 7. The description thereof is omitted here.
- The hologram
printer control section 19 controls operations of x hologram printers 18 l to 18 X. Theimage processing section 20 applies specified image processing to various data from the photographic subsystems and external data acceptance sections. The hologramprinter control section 19 and theimage processing section 20 comprise server computers. - The following describes operations of the
hologram print system 10. When there are provided n photographic subsystems and m external data acceptance sections, it is assumed that one photographic subsystem captures an image. This photographic subsystem exchanges signals with the server computer. When the image processing,section 20 in the server computer becomes ready to accept images the photographic subsystem transfers the captured image to the server computer'simage processing section 20. At this time, the photographic subsystem's photographic subsystem control section creates the management information file and sends it to the server computer along with an image information file. The management information file is used for adding photographic apparatus numbers and sequence numbers for identifying a plurality of input systems as well as the above-mentioned information to the information needed for identifying images. - The contents of the management information file may be fully dependent on the photographic subsystem or the external data acceptance section. This file can include identification numbers specified by the server computer.
- When receiving the image, the server computer's
image processing section 20 composites the image information file Fp and the management information file Fm like theimage processing section 4 in FIG. 2. Theimage processing section 20 then outputs the composite image file Fs by performing specified image processing called the slice and dice method such as the viewpoint conversion and the Keystone distortion correction. - The server computer's hologram
printer control section 19 searches x hologram printers for a hologram printer ready for printing and sends the composite image file Fs to this printer. Obviously, it is possible to flexibly determine which printer to be used for the transferred image by changing the server computer settings. - The hologram printer specified by the server computer's hologram
printer control section 19 prints a holographic stereogram based on the transferred composite image file Fs. - Especially, merging the management information file with the image information file is effective for a system comprising a plurality of photographic subsystems, printers, and the like.
- Also in the
hologram print system 10 of this embodiment, as mentioned above, it may be preferable to design the management information to be visible only when viewed from the left end as well as only when viewed from the right end. - The above-mentioned embodiment describes the case where the management information file is provided as still pictures. It is also possible to vary some of information depending on angles.
- In the above-mentioned example, the
image processing section 20 composites the image information file Fp and the management information file Fm before the slice and dice image processing. It may be preferable to independently composite the image information file Fp and the management information file Fm after the slice and dice image processing. - The management information file does not necessarily need to be generated in the computer such as the photographic subsystem control section. It may be preferable to use text or other data recorded on a voice track of video tape recording the image information file. It may be also preferable to use a time code in video tape as a management information file attached to the image.
Claims (7)
1. A hologram print system for printing a holographic stereogram based on image information, comprising:
information file provision means for providing an image information file to be holographed and a management information file storing management information about the image information file;
image processing means for generating a composite image file by overlaying management information according to said management information file on part of a hologram according to said image information file provided from said information file provision means; and
printout means for printing a holographic stereogram according to a composite image file generated from said image processing means.
2. The hologram print system according to claim 1 , wherein said image processing means generates a composite image file by overlaying management information according to said management information file on said image information file in such a manner as to display said management information only within a specified range from a periphery of a vision for said holographic stereogram.
3. The hologram print system according to claim 2 , wherein said specified range is within an angle of 15 degrees from the periphery of the vision.
4. The hologram print system according to claim 1 , wherein said management information file includes any of a photographic condition and information when an original image for said image information is photographed, information about attributes of said image information, an index specified during photographing, and additional information for said image information.
5. A holographic stereogram printed in a hologram print system based on image information,
wherein a management information about a hologram-oriented image information file stored in a management information file is displayed by overlaying on part of a hologram generated according to said image information file.
6. The holographic stereogram according to claim 5 , wherein said management information is displayed only within a specified range from a periphery of a vision for said holographic stereogram.
7. The holographic stereogram according to claim 6 , wherein said specified range is within an angle of 15 degrees from the periphery of the vision.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/437,400 US20030197907A1 (en) | 2000-05-29 | 2003-05-14 | Hologram print system and holographic stereogram |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPP2000-159266 | 2000-05-29 | ||
JP2000159266A JP4501228B2 (en) | 2000-05-29 | 2000-05-29 | Hologram printing system and holographic stereogram |
US09/860,517 US6600580B2 (en) | 2000-05-29 | 2001-05-21 | Hologram print system and holographic stereogram |
US10/437,400 US20030197907A1 (en) | 2000-05-29 | 2003-05-14 | Hologram print system and holographic stereogram |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/860,517 Continuation US6600580B2 (en) | 2000-05-29 | 2001-05-21 | Hologram print system and holographic stereogram |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030197907A1 true US20030197907A1 (en) | 2003-10-23 |
Family
ID=18663609
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/860,517 Expired - Fee Related US6600580B2 (en) | 2000-05-29 | 2001-05-21 | Hologram print system and holographic stereogram |
US10/437,400 Abandoned US20030197907A1 (en) | 2000-05-29 | 2003-05-14 | Hologram print system and holographic stereogram |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/860,517 Expired - Fee Related US6600580B2 (en) | 2000-05-29 | 2001-05-21 | Hologram print system and holographic stereogram |
Country Status (6)
Country | Link |
---|---|
US (2) | US6600580B2 (en) |
EP (1) | EP1160636B1 (en) |
JP (1) | JP4501228B2 (en) |
KR (1) | KR100836695B1 (en) |
CN (1) | CN1204468C (en) |
DE (1) | DE60143144D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050243367A1 (en) * | 2000-02-04 | 2005-11-03 | Zebra Imaging, Inc. | Distributed system for producing holographic stereograms on-demand from various types of source material |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001249606A (en) * | 2000-03-02 | 2001-09-14 | Sony Corp | Hologram print system, hologram printing method and photographing device |
JP4501228B2 (en) * | 2000-05-29 | 2010-07-14 | ソニー株式会社 | Hologram printing system and holographic stereogram |
JP3744442B2 (en) * | 2002-03-04 | 2006-02-08 | ソニー株式会社 | Authentication system, authentication method, authentication medium manufacturing apparatus, and authentication terminal apparatus |
JP4075418B2 (en) | 2002-03-15 | 2008-04-16 | ソニー株式会社 | Image processing apparatus, image processing method, printed material manufacturing apparatus, printed material manufacturing method, and printed material manufacturing system |
CN1326029C (en) * | 2003-07-10 | 2007-07-11 | 富士施乐株式会社 | Print processing system, print processing method, print processing program, printer device, printing instruction device |
JP4315033B2 (en) * | 2004-03-23 | 2009-08-19 | 富士ゼロックス株式会社 | Image forming apparatus and image forming method |
JP2006195009A (en) * | 2005-01-11 | 2006-07-27 | Fuji Photo Film Co Ltd | Hologram recording method, hologram recording device and hologram recording medium |
US20110249307A1 (en) * | 2009-10-16 | 2011-10-13 | E. I. Du Pont De Nemours And Company | Hologram and associated methods of fabrication thereof and use in security/authentication applications |
JP2012018324A (en) * | 2010-07-08 | 2012-01-26 | Sony Corp | Multi-viewpoint image recording medium and authenticity determination method |
WO2016167173A1 (en) | 2015-04-11 | 2016-10-20 | 株式会社アーティエンス・ラボ | Image recognition system, image recognition method, hologram recording medium, hologram playback device, and image capture device |
CN108037651B (en) * | 2017-12-26 | 2021-03-23 | 中国人民解放军陆军装甲兵学院 | Holographic stereogram printing system using converging lens in combination with holographic diffuser film |
CN109884868B (en) * | 2019-01-18 | 2020-12-25 | 中国人民解放军陆军装甲兵学院 | Printing method and system of full-parallax holographic stereogram |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330088B1 (en) * | 1998-02-27 | 2001-12-11 | Zebra Imaging, Inc. | Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms |
US6559983B2 (en) * | 2000-03-02 | 2003-05-06 | Sony Corporation | Holographic stereogram printing system, holographic stereogram printing method and holographing device |
US6600580B2 (en) * | 2000-05-29 | 2003-07-29 | Sony Corporation | Hologram print system and holographic stereogram |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4834473A (en) * | 1986-03-26 | 1989-05-30 | The Babcock & Wilcox Company | Holographic operator display for control systems |
JPH06301326A (en) * | 1993-04-12 | 1994-10-28 | Toppan Printing Co Ltd | Machine read information-containing holographic stereogram and articles having the same as well as its formation and information reading method |
FR2730571B1 (en) | 1995-02-10 | 1997-04-04 | Controle Dimensionnel Optique | METHOD AND DEVICE FOR MEASURING THE DISTRIBUTION OF THE MOBILITY OF PARTICULAR ELEMENTS IN A MEDIUM |
JPH1020755A (en) * | 1996-06-28 | 1998-01-23 | Sony Corp | Image data converting method |
US6108440A (en) * | 1996-06-28 | 2000-08-22 | Sony Corporation | Image data converting method |
JP3596174B2 (en) * | 1996-06-28 | 2004-12-02 | ソニー株式会社 | Image data generation method |
KR19990053070A (en) * | 1997-12-23 | 1999-07-15 | 정선종 | How to Implement Photo-Image Sequences into Virtual Holograms |
JP4288728B2 (en) * | 1998-01-06 | 2009-07-01 | ソニー株式会社 | Holographic stereogram creation device |
JPH11344918A (en) * | 1998-06-01 | 1999-12-14 | Sony Corp | Hologram recording medium, recorder, recording method, reproducing device and reproducing method |
JP2000078451A (en) * | 1998-09-02 | 2000-03-14 | Sony Corp | Recorder and reproducing device for image |
US6101009A (en) * | 1998-09-28 | 2000-08-08 | Nec Research Institute, Inc. | Holographic data storage and/or retrieval apparatus having a spherical recording medium |
US6292277B1 (en) | 1998-10-16 | 2001-09-18 | Lextron Systems, Inc. | Method and apparatus for creating a white-light interference hologram from PC input photographic data |
JP3339426B2 (en) * | 1998-10-23 | 2002-10-28 | ダックエンジニアリング株式会社 | Quality inspection equipment |
-
2000
- 2000-05-29 JP JP2000159266A patent/JP4501228B2/en not_active Expired - Fee Related
-
2001
- 2001-05-21 US US09/860,517 patent/US6600580B2/en not_active Expired - Fee Related
- 2001-05-24 KR KR1020010028749A patent/KR100836695B1/en not_active IP Right Cessation
- 2001-05-29 EP EP01401392A patent/EP1160636B1/en not_active Expired - Lifetime
- 2001-05-29 CN CNB011231041A patent/CN1204468C/en not_active Expired - Fee Related
- 2001-05-29 DE DE60143144T patent/DE60143144D1/en not_active Expired - Lifetime
-
2003
- 2003-05-14 US US10/437,400 patent/US20030197907A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330088B1 (en) * | 1998-02-27 | 2001-12-11 | Zebra Imaging, Inc. | Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms |
US6559983B2 (en) * | 2000-03-02 | 2003-05-06 | Sony Corporation | Holographic stereogram printing system, holographic stereogram printing method and holographing device |
US6600580B2 (en) * | 2000-05-29 | 2003-07-29 | Sony Corporation | Hologram print system and holographic stereogram |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050243367A1 (en) * | 2000-02-04 | 2005-11-03 | Zebra Imaging, Inc. | Distributed system for producing holographic stereograms on-demand from various types of source material |
US7436537B2 (en) * | 2000-02-04 | 2008-10-14 | Zebra Imaging, Inc. | Distributed system for producing holographic stereograms on-demand from various types of source material |
Also Published As
Publication number | Publication date |
---|---|
DE60143144D1 (en) | 2010-11-11 |
EP1160636A2 (en) | 2001-12-05 |
KR100836695B1 (en) | 2008-06-10 |
US6600580B2 (en) | 2003-07-29 |
JP2001337588A (en) | 2001-12-07 |
EP1160636A3 (en) | 2008-10-22 |
KR20010110107A (en) | 2001-12-12 |
CN1204468C (en) | 2005-06-01 |
US20020030863A1 (en) | 2002-03-14 |
CN1333485A (en) | 2002-01-30 |
EP1160636B1 (en) | 2010-09-29 |
JP4501228B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6600580B2 (en) | Hologram print system and holographic stereogram | |
US5218455A (en) | Multiresolution digital imagery photofinishing system | |
US4689696A (en) | Hybrid image recording and reproduction system | |
JP3659509B2 (en) | Lab system | |
KR930001002A (en) | Electronically corrected integrated photography system | |
US4841359A (en) | Photographic apparatus for making simultaneous exposures | |
US8723927B2 (en) | Subtitling stereographic imagery | |
EP0136045A2 (en) | A method and system for producing and reproducing images | |
ES2181847T3 (en) | CAMERA OF MULTIPLE FORMAT THAT RECORDES INFORMATION ON PICTURE SIZE IN THE FILM, PHOTOGRAPHIC QUALITY PRINTER AND DEVICE TO CONVERT PHOTOGRAPHIC IMAGES IN VIDEO IMAGES. | |
US5963214A (en) | Method of combining two digital images | |
US5231506A (en) | Generation of hard copy color photo reproductions from digitally created internegative | |
US4067650A (en) | Data recording microform camera | |
US6559983B2 (en) | Holographic stereogram printing system, holographic stereogram printing method and holographing device | |
KR20020062758A (en) | Holographic stereogram printing apparatus and a method therefor | |
KR100310371B1 (en) | Photographic System | |
JP4671257B2 (en) | Recording medium writing device | |
US20020004184A1 (en) | Method for reproducing images | |
JP3104940B2 (en) | How to create index photos | |
JP2706091B2 (en) | Image processing method and image processing system | |
JPH0567111B2 (en) | ||
JPH1078742A (en) | Parallactic picture line generating method | |
JP2002118740A (en) | Label image data generator and label image data generating program and storage medium | |
Ratcliffe et al. | Evolution of automated turn-key systems for the production of rainbow and reflection hologram runs by pulsed laser | |
JP2002372904A (en) | Printed matter producing device and printed matter producing method | |
Ratcliffe et al. | Evolution of Automated Turn-Key System for the Production of Rainbow and Reflection Holograms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |