US20030196511A1 - Forged article with prealloyed powder - Google Patents
Forged article with prealloyed powder Download PDFInfo
- Publication number
- US20030196511A1 US20030196511A1 US10/417,834 US41783403A US2003196511A1 US 20030196511 A1 US20030196511 A1 US 20030196511A1 US 41783403 A US41783403 A US 41783403A US 2003196511 A1 US2003196511 A1 US 2003196511A1
- Authority
- US
- United States
- Prior art keywords
- powder
- prealloyed
- copper
- forged
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000843 powder Substances 0.000 title claims abstract description 38
- 239000010949 copper Substances 0.000 claims abstract description 29
- 229910052802 copper Inorganic materials 0.000 claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 16
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 3
- 239000011572 manganese Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002923 metal particle Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C7/00—Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
- F16C7/02—Constructions of connecting-rods with constant length
- F16C7/023—Constructions of connecting-rods with constant length for piston engines, pumps or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- This invention relates to forged articles made from ferrous powder prealloyed with manganese and sulfur. More specifically, the forged articles are forged engine connecting rods.
- the connecting rod manufacturing process involves pressure molding metal particles in a closed mold under significant pressure to produce a green compact form of the rod.
- the green compact is heated in a furnace sufficiently to form a sintered preform in which metal particles are bonded.
- the sintered preform is hot forged to final rod shape which increases the rod's density and strength.
- the forged articles or connecting rods of this invention are made from ferrous based powder prealloyed with manganese and sulfur.
- the prealloyed powder then is admixed with copper at higher than normal copper contents.
- Materials considered were as follows. In a first approach, I thought that increasing Cu content from 2% to 3% or even 4% would improve the strength of connecting rods for the following reasons: Cu strengthens the ferrite, Cu hardens the ferrite, and Cu hinders grain growth after forging.
- the resulting forged connecting rods had an improvement in tensile strength and an Improvement in fatigue strength.
- FIG. 1 is a perspective view of a forged connecting rod.
- the methods for preparing the prealloyed powder may vary widely.
- the powder is prepared by atomization of a molten metal stream of iron, manganese and sulfur.
- the resulting particles usually have an irregular spherical shape.
- the atomized particles can be collected after solidification and subjected to annealing at 1700° F. for about 1-1 ⁇ 2 hours, followed by grinding to break up particle cakes, and then passed through an 80 mesh sieve.
- the prealloyed ferrous powder then is mixed with copper and graphite at room temperature.
- the copper powder generally has a purity of 99%.
- the copper powder and carbon (graphite flake powder), however, are commercial grade materials.
- the copper powder is mixed in a range of 2.0 to 5.0% by weight of the mixture.
- the graphite powder is added to yield a final carbon content in the product ranging from 0.2 to 1.0 weight percent.
- FIG. 1 illustrates forged connecting rod 10 .
- Rod 10 has an elongated configuration extending along longitudinal axis A-A.
- Rod 10 includes midportion 12 ; small end portion 14 ; and large end portion 16 .
- Bore 18 is formed through small end portion 14 adapted to receive a wrist or piston pin (not shown) as Is well known in the engine art.
- Aperture 20 is formed through large diameter end 16 and is adapted to receive a journal of a crankshaft (not shown) as is well known in the engine art.
- Large end portion 16 has a side thrust face 22 .
- Rod 10 includes large end portion 16 having a pair of oppositely facing edges or end surfaces 24 . In the particular design of the connecting rod shown in FIG.
- side thrust face 22 is in a raised plane with respect to the remaining side surface 26 .
- Side thrust face 22 also includes a pair of radially outwardly extending portions 28 , 30 located to either side of aperture 20 . Portions 28 , 30 extend radially outward from aperture 20 and terminate at end of edges 24 .
- FIG. 1 also shows a pair of slits or creases 32 , 34 formed in the side thrust face including extensions 28 , 30 .
- Each crease 32 , 34 is arranged to one side of aperture 20 and they are substantially aligned across aperture 20 .
- Creases 32 , 34 extend inwardly from surfaces 28 , 30 to a considerable depth as Is evident by examination of leftward end 24 and the cylindrical surface which forms the bore 20 .
- the manufacturing processes for making the connecting rod may vary widely.
- a green compact is made in the form of the rod by molding powder metal particles in a closed mold under great pressure, typically about 80,000 psi. This pressure molding causes the particles to mechanically interlock and form a stable, relatively weak part but strong enough for handling.
- the green compact is heated in a furnace at temperatures higher than 2000 degrees F. for a period of time sufficient to cause the metal particles to bond. After sintering, the preform has the same configuration as the green compact but is much stronger.
- the preform then is hot forged to achieve the shape and increase density and strength as required for a connecting rod. Typically, it is hot forged in a press at a pressure of about 60,000 psi and at a temperature of about 1800 degrees F.
- the mixture of this invention comprises: Component Weight Percent Cu 2.5 to 4.5 C 0.2 to 0.7 prealloyed MnS powder balance
- the mixture is: Component Weight Percent Cu 3.0 to 4.0 C 0.4 to 0.7 prealloved MnS powder balance
- the mixed powder of this invention may be used to forge articles other than connecting rods.
- Other automotive uses include piston rings and valve seats for internal combustion engines.
- Other parts include clutch races, differential gears and similar parts.
- Fatigue results for the prealloyed Mn S ferrous based powders of this invention with 3% Cu show an improvement of 19% in fatigue strength compared to standard production.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
These connecting rods are made from prealloyed manganese, sulfur, ferrous based powder. The prealloyed powder then is mixed with copper and carbon. The copper content is at higher than normal copper contents. The resulting forged connecting rods had an improvement in tensile strength and an improvement in fatigue strength.
Description
- This invention relates to forged articles made from ferrous powder prealloyed with manganese and sulfur. More specifically, the forged articles are forged engine connecting rods.
- The connecting rod manufacturing process involves pressure molding metal particles in a closed mold under significant pressure to produce a green compact form of the rod. Next, the green compact is heated in a furnace sufficiently to form a sintered preform in which metal particles are bonded. Next, the sintered preform is hot forged to final rod shape which increases the rod's density and strength.
- The automobile industry continues to challenge connecting rod manufacturers to increase the fatigue strength of these articles. As a result, higher performance materials are needed for forged connecting rods. The goal Is to engineer a powder metal blend to manufacture connecting rods with the following characteristics: high strength; good machinability; reasonable cost, good weight and dimensional control. Our research included materials considerations; metallurgical and microstructure evaluation; dimensional change measurements; tensile strength; fatigue strength and machinability tests.
- The forged articles or connecting rods of this invention are made from ferrous based powder prealloyed with manganese and sulfur. The prealloyed powder then is admixed with copper at higher than normal copper contents. Materials considered were as follows. In a first approach, I thought that increasing Cu content from 2% to 3% or even 4% would improve the strength of connecting rods for the following reasons: Cu strengthens the ferrite, Cu hardens the ferrite, and Cu hinders grain growth after forging. In a second approach I thought that using prealloyed MnS base powder, instead of admixed MnS base powder, would improve the strength of connecting rods for the following reasons: smaller inclusion (MnS) size, uniform inclusion (MnS) distribution, and higher Mn content.
- As a result, I used a commercially available prealloyed manganese, sulfur, ferrous based powder for producing the forged article. The prealloyed powder then is mixed with copper and carbon to produce a mix comprising by weight percent:
Component Weight Percent copper (Cu) <2.0 to 5.0 carbon (C) 0.2 to 1.0 prealloyed MnS powder balance - The resulting forged connecting rods had an improvement in tensile strength and an Improvement in fatigue strength.
- FIG. 1 is a perspective view of a forged connecting rod.
- The methods for preparing the prealloyed powder may vary widely. Typically, the powder is prepared by atomization of a molten metal stream of iron, manganese and sulfur. The resulting particles usually have an irregular spherical shape. To facilitate compaction, the atomized particles can be collected after solidification and subjected to annealing at 1700° F. for about 1-½ hours, followed by grinding to break up particle cakes, and then passed through an 80 mesh sieve.
- The prealloyed ferrous powder then is mixed with copper and graphite at room temperature. The copper powder generally has a purity of 99%. The copper powder and carbon (graphite flake powder), however, are commercial grade materials. The copper powder is mixed in a range of 2.0 to 5.0% by weight of the mixture. The graphite powder is added to yield a final carbon content in the product ranging from 0.2 to 1.0 weight percent.
- FIG. 1 illustrates forged connecting
rod 10.Rod 10 has an elongated configuration extending along longitudinal axis A-A.Rod 10 includesmidportion 12;small end portion 14; andlarge end portion 16.Bore 18 is formed throughsmall end portion 14 adapted to receive a wrist or piston pin (not shown) as Is well known in the engine art.Aperture 20 is formed throughlarge diameter end 16 and is adapted to receive a journal of a crankshaft (not shown) as is well known in the engine art.Large end portion 16 has aside thrust face 22.Rod 10 includeslarge end portion 16 having a pair of oppositely facing edges orend surfaces 24. In the particular design of the connecting rod shown in FIG. 1,side thrust face 22 is in a raised plane with respect to theremaining side surface 26.Side thrust face 22 also includes a pair of radially outwardly extending 28, 30 located to either side ofportions aperture 20. 28, 30 extend radially outward fromPortions aperture 20 and terminate at end ofedges 24. - FIG. 1 also shows a pair of slits or
32, 34 formed in the side thrustcreases 28, 30. Eachface including extensions 32,34 is arranged to one side ofcrease aperture 20 and they are substantially aligned acrossaperture 20. Creases 32, 34 extend inwardly from 28, 30 to a considerable depth as Is evident by examination ofsurfaces leftward end 24 and the cylindrical surface which forms thebore 20. - The manufacturing processes for making the connecting rod may vary widely. For example, a green compact is made in the form of the rod by molding powder metal particles in a closed mold under great pressure, typically about 80,000 psi. This pressure molding causes the particles to mechanically interlock and form a stable, relatively weak part but strong enough for handling. Next, the green compact is heated in a furnace at temperatures higher than 2000 degrees F. for a period of time sufficient to cause the metal particles to bond. After sintering, the preform has the same configuration as the green compact but is much stronger.
- The preform then is hot forged to achieve the shape and increase density and strength as required for a connecting rod. Typically, it is hot forged in a press at a pressure of about 60,000 psi and at a temperature of about 1800 degrees F.
- Preferably, the mixture of this invention comprises:
Component Weight Percent Cu 2.5 to 4.5 C 0.2 to 0.7 prealloyed MnS powder balance - More preferably, the mixture is:
Component Weight Percent Cu 3.0 to 4.0 C 0.4 to 0.7 prealloved MnS powder balance - The mixed powder of this invention may be used to forge articles other than connecting rods. Other automotive uses include piston rings and valve seats for internal combustion engines. Other parts Include clutch races, differential gears and similar parts.
- The following Examples further Illustrates the composition of this Invention.
- (Prior Art)
- The following shows average tensile results for standard production powders with varying amounts of copper. Results for a standard manganese sulfur admixture (rather than the prealloyed powder of this invention) also are shown. The average is based on 6 runs.
TENSILE RESULTS Commercial Grade Prealloyed Mn S Standard Production Powder Powder 2% Cu 3% Cu 4% Cu 2% Cu (psi) (psi) (psi) (psi) Avg. 124,534 144,788 145,046 120,268 StDev 3,641 2,771 3,805 1,755 - (Prior Art)
- The following shows fatigue results for standard production powders with varying amounts of copper. Results for a standard prealloyed manganese sulfur powder also are shown.
FATIGUE RESULTS Commercial Grade Preallayed Standard production powder Mn S Powder 2% Cu 3% Cu 4% Cu 2% Cu (ksi) (ksi) (ksi) (ksi) Endurance Limit @ 50% 45.21 52.63 52.64 50.77 Scatter 1.07 2.18 2.10 1.88 Standard deviation (s) 0.28 0.49 0.49 0.43 - Tensile Results for the prealloyed Mn S ferrous powder of this invention with 3% Cu show an improvement of approximately 5% in tensile strength compared to standard production.
- Fatigue results for the prealloyed Mn S ferrous based powders of this invention with 3% Cu show an improvement of 19% in fatigue strength compared to standard production.
- In addition to these embodiments, persons skilled in the art can see that numerous modifications and changes may be made to the above invention without departing from the Intended spirit and scope thereof.
Claims (6)
1. A powder useful for producing forged articles comprising a mixture of a prealloyed manganese, sulfur, ferrous based powder, copper and carbon wherein the mixture has a copper content higher than 2% by weight.
2. A powder according to claim 1 comprising:
3. A powder according to claim 1 comprising:
4. A powder according to claim 1 comprising:
5. A forged article produced from the powder mixture of claim 1 .
6. A forged connecting rod produced from the powder mixture of claim 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/417,834 US20030196511A1 (en) | 2001-07-31 | 2003-04-17 | Forged article with prealloyed powder |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/919,426 US20030033904A1 (en) | 2001-07-31 | 2001-07-31 | Forged article with prealloyed powder |
| US10/417,834 US20030196511A1 (en) | 2001-07-31 | 2003-04-17 | Forged article with prealloyed powder |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/919,426 Continuation US20030033904A1 (en) | 2001-07-31 | 2001-07-31 | Forged article with prealloyed powder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030196511A1 true US20030196511A1 (en) | 2003-10-23 |
Family
ID=25442060
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/919,426 Abandoned US20030033904A1 (en) | 2001-07-31 | 2001-07-31 | Forged article with prealloyed powder |
| US10/417,834 Abandoned US20030196511A1 (en) | 2001-07-31 | 2003-04-17 | Forged article with prealloyed powder |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/919,426 Abandoned US20030033904A1 (en) | 2001-07-31 | 2001-07-31 | Forged article with prealloyed powder |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20030033904A1 (en) |
| WO (1) | WO2003011498A1 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100278681A1 (en) * | 2007-12-27 | 2010-11-04 | Hoganas Ab | Low alloyed steel powder |
| US20100316521A1 (en) * | 2007-12-27 | 2010-12-16 | Hoganas Ab (Publ) | Low alloyed steel powder |
| CN105251982A (en) * | 2015-10-21 | 2016-01-20 | 马聪 | Anti-corrosion ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251981A (en) * | 2015-10-21 | 2016-01-20 | 马聪 | Anti-corrosion ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251983A (en) * | 2015-10-21 | 2016-01-20 | 李学峰 | High-compactness high-strength ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251980A (en) * | 2015-10-21 | 2016-01-20 | 李学峰 | High-hardness automotive connection rod forged through ferrum-based powder in metallurgical manner and manufacturing method thereof |
| CN105328198A (en) * | 2015-10-21 | 2016-02-17 | 李学峰 | High-compactness ferrum-based powder metallurgy forging automobile connecting rod and manufacturing method thereof |
| CN105328194A (en) * | 2015-10-21 | 2016-02-17 | 马聪 | High-tensile-strength ferrum-based powder metallurgy forging automobile connecting rod and manufacturing method thereof |
| US9469890B2 (en) | 2009-03-20 | 2016-10-18 | Hoganas Ab (Publ) | Iron vanadium powder alloy |
| CN106626501A (en) * | 2016-12-23 | 2017-05-10 | 重庆龙悦食品有限公司 | Dried bean curd extrusion device |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7160351B2 (en) * | 2002-10-01 | 2007-01-09 | Pmg Ohio Corp. | Powder metal clutch races for one-way clutches and method of manufacture |
| US20060086204A1 (en) * | 2004-10-18 | 2006-04-27 | Edmond Ilia | Impact of copper and carbon on mechanical properties of iron-carbon-copper alloys for powder metal forging applications |
| WO2009088771A2 (en) * | 2008-01-04 | 2009-07-16 | Gkn Sinter Metals, Llc | Prealloyed copper powder forged connecting rod |
| KR101388922B1 (en) * | 2010-07-28 | 2014-04-24 | 자동차부품연구원 | Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same |
| RU2588979C1 (en) * | 2015-03-16 | 2016-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") | Method of producing high-density powder chromium containing material based on iron |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4069044A (en) * | 1976-08-06 | 1978-01-17 | Stanislaw Mocarski | Method of producing a forged article from prealloyed-premixed water atomized ferrous alloy powder |
| US4452756A (en) * | 1982-06-21 | 1984-06-05 | Imperial Clevite Inc. | Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy |
| US5312475A (en) * | 1990-10-06 | 1994-05-17 | Brico Engineering Ltd. | Sintered material |
| US5462573A (en) * | 1987-10-10 | 1995-10-31 | Brico Engineering Limited | Valve seat inserts of sintered ferrous materials |
| US5613182A (en) * | 1996-04-02 | 1997-03-18 | Chrysler Corporation | Method of manufacturing a powder metal connecting rod with stress riser crease formed in the side face |
| US5938814A (en) * | 1997-02-25 | 1999-08-17 | Kawasaki Steel Corporation | Iron based powder mixture for powder metallurgy |
| US6076426A (en) * | 1996-08-05 | 2000-06-20 | Ascometal | Internal combustion engine connecting rod |
| US6264718B1 (en) * | 2000-05-26 | 2001-07-24 | Kobelco Metal Powder Of America, Inc. | Powder metallurgy product and method for manufacturing the same |
| US6296682B1 (en) * | 1998-12-25 | 2001-10-02 | Kawasaki Steel Corporation | Iron-based powder blend for use in powder metallurgy |
| US6391083B1 (en) * | 2000-11-09 | 2002-05-21 | Kobeico Metal Powder Of America, Inc. | Mixture for powder metallurgy product and method for producing the same |
-
2001
- 2001-07-31 US US09/919,426 patent/US20030033904A1/en not_active Abandoned
-
2002
- 2002-07-26 WO PCT/US2002/023732 patent/WO2003011498A1/en not_active Ceased
-
2003
- 2003-04-17 US US10/417,834 patent/US20030196511A1/en not_active Abandoned
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4069044A (en) * | 1976-08-06 | 1978-01-17 | Stanislaw Mocarski | Method of producing a forged article from prealloyed-premixed water atomized ferrous alloy powder |
| US4452756A (en) * | 1982-06-21 | 1984-06-05 | Imperial Clevite Inc. | Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy |
| US5462573A (en) * | 1987-10-10 | 1995-10-31 | Brico Engineering Limited | Valve seat inserts of sintered ferrous materials |
| US5312475A (en) * | 1990-10-06 | 1994-05-17 | Brico Engineering Ltd. | Sintered material |
| US5613182A (en) * | 1996-04-02 | 1997-03-18 | Chrysler Corporation | Method of manufacturing a powder metal connecting rod with stress riser crease formed in the side face |
| US6076426A (en) * | 1996-08-05 | 2000-06-20 | Ascometal | Internal combustion engine connecting rod |
| US5938814A (en) * | 1997-02-25 | 1999-08-17 | Kawasaki Steel Corporation | Iron based powder mixture for powder metallurgy |
| US6296682B1 (en) * | 1998-12-25 | 2001-10-02 | Kawasaki Steel Corporation | Iron-based powder blend for use in powder metallurgy |
| US6264718B1 (en) * | 2000-05-26 | 2001-07-24 | Kobelco Metal Powder Of America, Inc. | Powder metallurgy product and method for manufacturing the same |
| US6391083B1 (en) * | 2000-11-09 | 2002-05-21 | Kobeico Metal Powder Of America, Inc. | Mixture for powder metallurgy product and method for producing the same |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100278681A1 (en) * | 2007-12-27 | 2010-11-04 | Hoganas Ab | Low alloyed steel powder |
| US20100316521A1 (en) * | 2007-12-27 | 2010-12-16 | Hoganas Ab (Publ) | Low alloyed steel powder |
| US8398739B2 (en) | 2007-12-27 | 2013-03-19 | Hoganas Ab (Publ) | Iron-based steel powder composition, method for producing a sintered component and component |
| US9469890B2 (en) | 2009-03-20 | 2016-10-18 | Hoganas Ab (Publ) | Iron vanadium powder alloy |
| CN105251982A (en) * | 2015-10-21 | 2016-01-20 | 马聪 | Anti-corrosion ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251981A (en) * | 2015-10-21 | 2016-01-20 | 马聪 | Anti-corrosion ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251983A (en) * | 2015-10-21 | 2016-01-20 | 李学峰 | High-compactness high-strength ferrum-based powder metallurgy forging automobile connecting rod and preparation method thereof |
| CN105251980A (en) * | 2015-10-21 | 2016-01-20 | 李学峰 | High-hardness automotive connection rod forged through ferrum-based powder in metallurgical manner and manufacturing method thereof |
| CN105328198A (en) * | 2015-10-21 | 2016-02-17 | 李学峰 | High-compactness ferrum-based powder metallurgy forging automobile connecting rod and manufacturing method thereof |
| CN105328194A (en) * | 2015-10-21 | 2016-02-17 | 马聪 | High-tensile-strength ferrum-based powder metallurgy forging automobile connecting rod and manufacturing method thereof |
| CN106626501A (en) * | 2016-12-23 | 2017-05-10 | 重庆龙悦食品有限公司 | Dried bean curd extrusion device |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2003011498A1 (en) | 2003-02-13 |
| US20030033904A1 (en) | 2003-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20030196511A1 (en) | Forged article with prealloyed powder | |
| US8398739B2 (en) | Iron-based steel powder composition, method for producing a sintered component and component | |
| US6579492B2 (en) | Forged in bushing article and method of making | |
| JP5661096B2 (en) | Iron vanadium powder alloy | |
| US20100080725A1 (en) | Production method for sintered valve guide | |
| US3889350A (en) | Method of producing a forged article from prealloyed water-atomized ferrous alloy powder | |
| TWI727021B (en) | New powder | |
| US3811878A (en) | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder | |
| CA1036389A (en) | Powder mixture for the production of alloy steel articles | |
| JP2004513232A (en) | Mixture for powder metallurgy products and method for producing the same | |
| CN101925683A (en) | Low-alloy steel powder | |
| EP0200691B1 (en) | Iron-based powder mixture for a sintered alloy | |
| US20030177866A1 (en) | Agglomerated stainless steel powder compositions and methods for making same | |
| KR102533137B1 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
| JPS61238947A (en) | Manufacture of al-si alloy blank | |
| JPH05263181A (en) | Manufacture of fe base sintered alloy member having high strength and high toughness | |
| JPS6144104A (en) | Method for manufacturing sintered forged parts | |
| JPH04143233A (en) | Manufacture of al-si series alloy powder forged member excellent in toughness | |
| JPH07224362A (en) | High strength iron-based sintered alloy | |
| MXPA98000397A (en) | High density sintered alloy and method for the formation of pre-aleac powder spheres |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |