US20030187663A1 - Broadband frequency translation for high frequency regeneration - Google Patents

Broadband frequency translation for high frequency regeneration Download PDF

Info

Publication number
US20030187663A1
US20030187663A1 US10/113,858 US11385802A US2003187663A1 US 20030187663 A1 US20030187663 A1 US 20030187663A1 US 11385802 A US11385802 A US 11385802A US 2003187663 A1 US2003187663 A1 US 2003187663A1
Authority
US
United States
Prior art keywords
signal
obtaining
domain representation
frequency
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/113,858
Other languages
English (en)
Inventor
Michael Truman
Mark Vinton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby Laboratories Licensing Corp
Original Assignee
Dolby Laboratories Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/113,858 priority Critical patent/US20030187663A1/en
Application filed by Dolby Laboratories Licensing Corp filed Critical Dolby Laboratories Licensing Corp
Assigned to DOLBY LABORATORIES LICENSING CORPORATION reassignment DOLBY LABORATORIES LICENSING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRUMAN, MICHAEL MEAD, VINTON, MARK STUART
Priority to TW092104947A priority patent/TWI319180B/zh
Priority to PCT/US2003/008895 priority patent/WO2003083834A1/fr
Priority to SG2009012824A priority patent/SG173224A1/en
Priority to KR1020047012465A priority patent/KR101005731B1/ko
Priority to CN2007101373998A priority patent/CN101093670B/zh
Priority to MXPA04009408A priority patent/MXPA04009408A/es
Priority to AT10155626T priority patent/ATE511180T1/de
Priority to SG10201710917UA priority patent/SG10201710917UA/en
Priority to PL371410A priority patent/PL208846B1/pl
Priority to SG10201710915PA priority patent/SG10201710915PA/en
Priority to SG2013057666A priority patent/SG2013057666A/en
Priority to EP03733840A priority patent/EP1488414A1/fr
Priority to SG10201710912WA priority patent/SG10201710912WA/en
Priority to JP2003581173A priority patent/JP4345890B2/ja
Priority to CA2475460A priority patent/CA2475460C/fr
Priority to SG10201710911VA priority patent/SG10201710911VA/en
Priority to CNB03805096XA priority patent/CN100338649C/zh
Priority to SG200606723-5A priority patent/SG153658A1/en
Priority to AU2003239126A priority patent/AU2003239126B2/en
Priority to SG10201710913TA priority patent/SG10201710913TA/en
Priority to EP10155626A priority patent/EP2194528B1/fr
Priority to SI200332022T priority patent/SI2194528T1/sl
Priority to MYPI20031138A priority patent/MY140567A/en
Publication of US20030187663A1 publication Critical patent/US20030187663A1/en
Priority to HK05110368A priority patent/HK1078673A1/xx
Priority to HK08103939.0A priority patent/HK1114233A1/xx
Priority to US12/391,936 priority patent/US8126709B2/en
Priority to US13/357,545 priority patent/US8285543B2/en
Priority to US13/601,182 priority patent/US8457956B2/en
Priority to US13/906,994 priority patent/US9177564B2/en
Priority to US14/709,109 priority patent/US9324328B2/en
Priority to US14/735,663 priority patent/US9343071B2/en
Priority to US15/098,472 priority patent/US9412383B1/en
Priority to US15/098,459 priority patent/US9412389B1/en
Priority to US15/133,367 priority patent/US9412388B1/en
Priority to US15/203,528 priority patent/US9466306B1/en
Priority to US15/258,415 priority patent/US9548060B1/en
Priority to US15/370,085 priority patent/US9653085B2/en
Priority to US15/425,827 priority patent/US9704496B2/en
Priority to US15/473,808 priority patent/US9767816B2/en
Priority to US15/702,451 priority patent/US9947328B2/en
Priority to US15/921,859 priority patent/US10269362B2/en
Priority to US16/268,448 priority patent/US10529347B2/en
Priority to US16/735,328 priority patent/US20200143817A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/0017Lossless audio signal coding; Perfect reconstruction of coded audio signal by transmission of coding error
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/012Comfort noise or silence coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/03Spectral prediction for preventing pre-echo; Temporary noise shaping [TNS], e.g. in MPEG2 or MPEG4
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/06Determination or coding of the spectral characteristics, e.g. of the short-term prediction coefficients
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/167Audio streaming, i.e. formatting and decoding of an encoded audio signal representation into a data stream for transmission or storage purposes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/173Transcoding, i.e. converting between two coded representations avoiding cascaded coding-decoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • G10L21/0388Details of processing therefor
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation

Definitions

  • the present invention relates generally to the transmission and recording of audio signals. More particularly, the present invention provides for a reduction of information required to transmit or store a given audio signal while maintaining a given level of perceived quality in the output signal.
  • Speech applications that emphasize intelligibility over fidelity may transmit or record only a portion of a signal, referred to herein as a “baseband signal”, which contains only the perceptually most relevant portions of the signal's frequency spectrum.
  • a receiver can regenerate the omitted portion of the voice signal from information contained within that baseband signal.
  • the regenerated signal generally is not perceptually identical to the original, but for many applications an approximate reproduction is sufficient.
  • applications designed to achieve a high degree of fidelity such as high-quality music applications, generally require a higher quality output signal. To obtain a higher quality output signal, it is generally necessary to transmit a greater amount of information or to utilize a more sophisticated method of generating the output signal.
  • HFR high frequency regeneration
  • a baseband signal containing only low-frequency components of a signal is transmitted or stored.
  • a receiver regenerates the omitted high-frequency components based on the contents of the received baseband signal and combines the baseband signal with the regenerated high-frequency components to produce an output signal.
  • the regenerated high-frequency components are generally not identical to the high-frequency components in the original signal, this technique can produce an output signal that is more satisfactory than other techniques that do not use HFR.
  • Numerous variations of this technique have been developed in the area of speech encoding and decoding.
  • Three common methods used for HFR are spectral folding, spectral translation, and rectification. A description of these techniques can be found in Makhoul and Berouti, “High-Frequency Regeneration in Speech Coding Systems”, ICASSP 1979 IEEE International Conf. on Acoust., Speech and Signal Proc., Apr. 2-4, 1979.
  • the inventors have also noted two other problems that can arise from the use of HFR techniques.
  • the first problem is related to the tone and noise characteristics of signals, and the second problem is related to the temporal shape or envelope of regenerated signals.
  • Many natural signals contain a noise component that increases in magnitude as a function of frequency.
  • Known HFR techniques regenerate high-frequency components from a baseband signal but fail to reproduce a proper mix of tone-like and noise-like components in the regenerated signal at the higher frequencies.
  • the regenerated signal often contains a distinct high-frequency “buzz” attributable to the substitution of tone-like components in the baseband for the original, more noise-like high-frequency components.
  • known HFR techniques fail to regenerate spectral components in such a way that the temporal envelope of the regenerated signal preserves or is at least similar to the temporal envelope of the original signal.
  • the present invention is particularly directed toward the reproduction of music signals, it is also applicable to a wide range of audio signals including voice.
  • an output signal is generated by obtaining a frequency-domain representation of a baseband signal having some but not all spectral components of the audio signal; obtaining an estimated spectral envelope of a residual signal having spectral components of the audio signal that are not in the baseband signal; deriving a noise-blending parameter from a measure of noise content of the residual signal; and assembling data representing the frequency-domain representation of the baseband signal, the estimated spectral envelope and the noise-blending parameter into the output signal.
  • an audio signal is reconstructed by receiving a signal containing data representing a baseband signal, an estimated spectral envelope and a noise-blending parameter; obtaining from the data a frequency-domain representation of the baseband signal; obtaining a regenerated signal comprising regenerated spectral components by translating spectral components of the baseband in frequency; adjusting phase of the regenerated spectral components to maintain phase coherency within the regenerated signal; obtaining an adjusted regenerated signal by obtaining a noise signal in response to the noise-blending parameter, modifying the regenerated signal by adjusting amplitudes of the regenerated spectral components according to the estimated spectral envelope and the noise-blending parameter, and combining the modified regenerated signal with the noise signal; and obtaining a time-domain representation of the reconstructed signal corresponding to a combination of the spectral components in the adjusted regenerated signal with spectral components in the frequency-domain representation of the baseband signal.
  • FIG. 1 illustrates major components in a communications system.
  • FIG. 2 is a block diagram of a transmitter.
  • FIGS. 3A and 3B are hypothetical graphical illustrations of an audio signal and a corresponding baseband signal.
  • FIG. 4 is a block diagram of a receiver.
  • FIGS. 5 A- 5 D are hypothetical graphical illustrations of a baseband signal and signals generated by translation of the baseband signal.
  • FIGS. 6 A- 6 G are hypothetical graphical illustrations of signals obtained by regenerating high-frequency components using both spectral translation and noise blending.
  • FIG. 6H is an illustration of the signal in FIG. 6G after gain adjustment.
  • FIG. 7 is an illustration of the baseband signal shown in FIG. 6B combined with the regenerated signal shown in FIG. 6H.
  • FIG. 8A is an illustration of a signal's temporal shape.
  • FIG. 8B shows the temporal shape of an output signal that is produced by deriving a baseband signal from the signal in FIG. 8A and regenerating the signal through a process of spectral translation.
  • FIG. 8C shows the temporal shape of the signal in FIG. 8B after temporal envelope control has been performed.
  • FIG. 9 is a block diagram of a transmitter that provides information needed for temporal envelope control using time-domain techniques.
  • FIG. 10 is a block diagram of a receiver that provides temporal envelope control using time-domain techniques.
  • FIG. 11 is a block diagram of a transmitter that provides information needed for temporal envelope control using frequency-domain techniques.
  • FIG. 10 is a block diagram of a receiver that provides temporal envelope control using frequency-domain techniques.
  • FIG. 1 illustrates major components in one example of a communications system.
  • An information source 112 generates an audio signal along path 115 that represents essentially any type of audio information such as speech or music.
  • a transmitter 136 receives the audio signal from path 115 and processes the information into a form that is suitable for transmission through the channel 140 .
  • the transmitter 136 may prepare the signal to match the physical characteristics of the channel 140 .
  • the channel 140 may be a transmission path such as electrical wires or optical fibers, or it may be a wireless communication path through space.
  • the channel 140 may also include a storage device that records the signal on a storage medium such as a magnetic tape or disk, or an optical disc for later use by a receiver 142 .
  • the receiver 142 may perform a variety of signal processing functions such as demodulation or decoding of the signal received from the channel 140 .
  • the output of the receiver 142 is passed along a path 145 to a transducer 147 , which converts it into an output signal 152 that is suitable for the user.
  • loudspeakers serve as transducers to convert electrical signals into acoustic signals.
  • HFR high-frequency regeneration
  • Only a baseband signal containing low-frequency components of a speech signal are transmitted or stored.
  • the receiver 142 regenerates the omitted high-frequency components based on the contents of the received baseband signal and combines the baseband signal with the regenerated high-frequency components to produce an output signal.
  • known HFR techniques produce regenerated high-frequency components that are easily distinguishable from the high-frequency components in the original signal.
  • the present invention provides an improved technique for spectral component regeneration that produces regenerated spectral components perceptually more similar to corresponding spectral components in the original signal than is provided by other known techniques.
  • FIG. 2 is a block diagram of the transmitter 136 according to one aspect of the present invention.
  • An input audio signal is received from path 115 and processed by an analysis filterbank 705 to obtain a frequency-domain representation of the input signal.
  • a baseband signal analyzer 710 determines which spectral components of the input signal are to be discarded.
  • a filter 715 removes the spectral components to be discarded to produce a baseband signal consisting of the remaining spectral components.
  • a spectral envelope estimator 720 obtains an estimate of the input signal's spectral envelope.
  • a spectral analyzer 722 analyzes the estimated spectral envelope to determine noise-blending parameters for the signal.
  • a signal formatter 725 combines the estimated spectral envelope information, the noise-blending parameters, and the baseband signal into an output signal having a form suitable for transmission or storage.
  • the analysis filterbank 705 may be implemented by essentially any time-domain to frequency-domain transform.
  • the transform used in a preferred implementation of the present invention is described in Princen, Johnson and Bradley, “Subband/Transform Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancellation,” ICASSP 1987 Conf. Proc., May 1987, pp. 2161-64.
  • This transform is the time-domain equivalent of an oddly-stacked critically sampled single-sideband analysis-synthesis system with time-domain aliasing cancellation and is referred to herein as “O-TDAC”.
  • an audio signal is sampled, quantized and grouped into a series of overlapped time-domain signal sample blocks. Each sample block is weighted by an analysis window function. This is equivalent to a sample-by-sample multiplication of the signal sample block.
  • the O-TDAC technique applies a modified Discrete Cosine Transform (“DCT”) to the weighted time-domain signal sample blocks to produce sets of transform coefficients, referred to herein as “transform blocks”.
  • DCT Discrete Cosine Transform
  • the O-TDAC technique can cancel the aliasing and accurately recover the input signal.
  • the length of the blocks may be varied in response to signal characteristics using techniques that are known in the art; however, care should be taken with respect to phase coherency for reasons that are discussed below. Additional details of the O-TDAC technique may be obtained by referring to U.S. Pat. No. 5,394,473.
  • the O-TDAC technique utilizes an inverse modified DCT.
  • the signal blocks produced by the inverse transform are weighted by a synthesis window function, overlapped and added to recreate the input signal.
  • the analysis and synthesis windows must be designed to meet strict criteria.
  • the spectral components obtained from the analysis filterbank 705 are divided into four subbands having ranges of frequencies as shown in Table I. TABLE I Band Frequency Range (kHz) 0 0.0 to 5.5 1 5.5 to 11.0 2 11.0 to 16.5 3 16.5 to 22.0
  • the baseband signal analyzer 710 selects which spectral components to discard and which spectral components to retain for the baseband signal. This selection can vary depending on input signal characteristics or it can remain fixed according to the needs of an application; however, the inventors have determined empirically that the perceived quality of an audio signal deteriorates if one or more of the signal's fundamental frequencies are discarded. It is therefore preferable to preserve those portions of the spectrum that contain the signal's fundamental frequencies. Because the fundamental frequencies of voice and most natural musical instruments are generally no higher than about 5 kHz, a preferred implementation of the transmitter 136 intended for music applications uses a fixed cutoff frequency at or around 5 kHz and discards all spectral components above that frequency.
  • the baseband signal analyzer need not do anything more than provide the fixed cutoff frequency to the filter 715 and the spectral analyzer 722 .
  • the baseband signal analyzer 710 is eliminated and the filter 715 and the spectral analyzer 722 operate according to the fixed cutoff frequency.
  • the spectral components in only subband 0 are retained for the baseband signal. This choice is also suitable because the human ear cannot easily distinguish differences in pitch above 5 kHz and therefore cannot easily discern inaccuracies in regenerated components above this frequency.
  • the choice of cutoff frequency affects the bandwidth of the baseband signal, which in turn influences a tradeoff between the information capacity requirements of the output signal generated by the transmitter 136 and the perceived quality of the signal reconstructed by the receiver 142 .
  • the perceived quality of the signal reconstructed by the receiver 142 is influenced by three factors that are discussed in the following paragraphs.
  • the first factor is the accuracy of the baseband signal representation that is transmitted or stored. Generally, if the bandwidth of a baseband signal is held constant, the perceived quality of a reconstructed signal will increase as the accuracy of the baseband signal representation is increased. Inaccuracies represent noise that will be audible in the reconstructed signal if the inaccuracies are large enough. The noise will degrade both the perceived quality of the baseband signal and the spectral components that are regenerated from the baseband signal.
  • the baseband signal representation is a set of frequency-domain transform coefficients. The accuracy of this representation is controlled by the number of bits that are used to express each transform coefficient. Coding techniques can be used to convey a given level of accuracy with fewer bits; however, a basic tradeoff between baseband signal accuracy and information capacity requirements exists for any given coding technique.
  • the second factor is the bandwidth of the baseband signal that is transmitted or stored.
  • the bandwidth of the baseband signal is controlled by the number of transform coefficients in the representation. Coding techniques can be used to convey a given number of coefficients with fewer bits; however, a basic tradeoff between baseband signal bandwidth and information capacity requirements exists for any given coding technique.
  • the third factor is the information capacity that is required to transmit or store the baseband signal representation. If the information capacity requirement is held constant, the baseband signal accuracy will vary inversely with the bandwidth of the baseband signal. The needs of an application will generally dictate a particular information capacity requirement for the output signal that is generated by the transmitter 136 . This capacity must be allocated to various portions of the output signal such as a baseband signal representation and an estimated spectral envelope. The allocation must balance the needs of a number of conflicting interests that are well known for communication systems. Within this allocation, the bandwidth of the baseband signal should be chosen to balance a tradeoff with coding accuracy to optimize the perceived quality of the reconstructed signal.
  • the spectral envelope estimator 720 analyzes the audio signal to extract information regarding the signal's spectral envelope. If available information capacity permits, an implementation of the transmitter 136 preferably obtains an estimate of a signal's spectral envelope by dividing the signal's spectrum into frequency bands with bandwidths approximating the human ear's critical bands, and extracting information regarding the signal magnitude in each band. In most applications having limited information capacity, however, it is preferable to divide the spectrum into a smaller number of subbands such as the arrangement shown above in Table I. Other variations may be used such as calculating a power spectral density, or extracting the average or maximum amplitude in each band. More sophisticated techniques can provide higher quality in the output signal but generally require greater computational resources. The choice of method used to obtain an estimated spectral envelope generally has practical implications because it generally affects the perceived quality of the communication system; however, the choice of method is not critical in principle. Essentially any technique may be used as desired.
  • the spectral envelope estimator 720 obtains an estimate of the spectral envelope only for subbands 0, 1 and 2. Subband 3 is excluded to reduce the amount of information required to represent the estimated spectral envelope.
  • the spectral analyzer 722 analyzes the estimated spectral envelope received from the spectral envelope estimator 720 and information from the baseband signal analyzer 710 , which identifies the spectral components to be discarded from a baseband signal, and calculates one or more noise-blending parameters to be used by the receiver 142 to generate a noise component for translated spectral components.
  • a preferred implementation minimizes data rate requirements by computing and transmitting a single noise-blending parameter to be applied by the receiver 142 to all translated components.
  • Noise-blending parameters can be calculated by any one of a number of different methods.
  • a preferred method derives a single noise-blending parameter equal to a spectral flatness measure that is calculated from the ratio of the geometric mean to the arithmetic mean of the short-time power spectrum. The ratio gives a rough indication of the flatness of the spectrum. A higher spectral flatness measure, which indicates a flatter spectrum, also indicates a higher noise-blending level is appropriate.
  • the spectral components are grouped into multiple subbands such as those shown in Table I, and the transmitter 136 transmits a noise-blending parameter for each subband. This more accurately defines the amount of noise to be mixed with the translated frequency content but it also requires a higher data rate to transmit the additional noise-blending parameters.
  • the filter 715 receives information from the baseband signal analyzer 710 , which identifies the spectral components that are selected to be discarded from a baseband signal, and eliminates the selected frequency components to obtain a frequency-domain representation of the baseband signal for transmission or storage.
  • FIGS. 3A and 3B are hypothetical graphical illustrations of an audio signal and a corresponding baseband signal.
  • FIG. 3A shows the spectral envelope of a frequency-domain representation 600 of a hypothetical audio signal.
  • FIG. 3B shows the spectral envelope of the baseband signal 610 that remains after the audio signal is processed to eliminate selected high-frequency components.
  • the filter 715 may be implemented in essentially any manner that effectively removes the frequency components that are selected for discarding.
  • the filter 715 applies a frequency-domain window function to the frequency-domain representation of the input audio signal.
  • the shape of the window function is selected to provide an appropriate trade off between frequency selectivity and attenuation against time-domain effects in the output audio signal that is ultimately generated by the receiver 142 .
  • the signal formatter 725 generates an output signal along communication channel 140 by combining the estimated spectral envelope information, the one or more noise-blending parameters, and a representation of the baseband signal into an output signal having a form suitable for transmission or storage.
  • the individual signals may be combined in essentially any manner.
  • the formatter 725 multiplexes the individual signals into a serial bit stream with appropriate synchronization patterns, error detection and correction codes, and other information that is pertinent either to transmission or storage operations or to the application in which the audio information is used.
  • the signal formatter 725 may also encode all or portions of the output signal to reduce information capacity requirements, to provide security, or to put the output signal into a form that facilitates subsequent usage.
  • FIG. 4 is a block diagram of the receiver 142 according to one aspect of the present invention.
  • a deformatter 805 receives a signal from the communication channel 140 and obtains from this signal a baseband signal, estimated spectral envelope information and one or more noise-blending parameters. These elements of information are transmitted to a signal processor 808 that comprises a spectral regenerator 810 , a phase adjuster 815 , a blending filter 818 and a gain adjuster 820 .
  • the spectral component regenerator 810 determines which spectral components are missing from the baseband signal and regenerates them by translating all or at least some spectral components of the baseband signal to the locations of the missing spectral components.
  • the translated components are passed to the phase adjuster 815 , which adjusts the phase of one or more spectral components within the combined signal to ensure phase coherency.
  • the blending filter 818 adds one or more noise components to the translated components according to the one or more noise-blending parameters received with the baseband signal.
  • the gain adjuster 820 adjusts the amplitude of spectral components in the regenerated signal according to the estimated spectral envelope information received with the baseband signal.
  • the translated and adjusted spectral components are combined with the baseband signal to produce a frequency-domain representation of the output signal.
  • a synthesis filterbank 825 processes the signal to obtain a time-domain representation of the output signal, which is passed along path 145 .
  • the deformatter 805 processes the signal received from communication channel 140 in a manner that is complementary to the formatting process provided by the signal formatter 725 .
  • the deformatter 805 receives a serial bit stream from the channel 140 , uses synchronization patterns within the bit stream to synchronize its processing, uses error correction and detection codes to identify and rectify errors that were introduced into the bit stream during transmission or storage, and operates as a demultiplexer to extract a representation of the baseband signal, the estimated spectral envelope information, one or more noise-blending parameters, and any other information that may be pertinent to the application.
  • the deformatter 805 may also decode all or portions of the serial bit stream to reverse the effects of any coding provided by the transmitter 136 .
  • a frequency-domain representation of the baseband signal is passed to the spectral component regenerator 810 , the noise-blending parameters are passed to the blending filter 818 , and the spectral envelope information is passed to the gain adjuster 820 .
  • the spectral component regenerator 810 regenerates missing spectral components by copying or translating all or at least some of the spectral components of the baseband signal to the locations of the missing components of the signal. Spectral components may be copied into more than one interval of frequencies, thereby allowing an output signal to be generated with a bandwidth greater than twice the bandwidth of the baseband signal.
  • the baseband signal contains no spectral components above a cutoff frequency at or about 5.5 kHz.
  • Spectral components of the baseband signal are copied or translated to a range of frequencies from about 5.5 kHz to about 11.0 kHz. If a 16.5 kHz bandwidth is desired, for example, the spectral components of the baseband signal can also be translated into ranges of frequencies from about 11.0 kHz to about 16.5 kHz.
  • the spectral components are translated into non-overlapping frequency ranges such that no gap exists in the spectrum including the baseband signal and all copied spectral components; however, this feature is not essential.
  • Spectral components may be translated into overlapping frequency ranges and/or into frequency ranges with gaps in the spectrum in essentially any manner as desired.
  • spectral components that are copied need not start at the lower edge of the baseband and need not end at the upper edge of the baseband.
  • the perceived quality of the signal reconstructed by the receiver 142 can sometimes be improved by excluding fundamental frequencies of voice and instruments and copying only harmonics.
  • This aspect is incorporated into one implementation by excluding from translation those baseband spectral components that are below about 1 kHz. Referring to the subband structure shown above in Table I as an example, only spectral components from about 1 kHz to about 5.5 kHz are translated.
  • the baseband spectral components may be copied in a circular manner starting with the lowest frequency component up to the highest frequency component and, if necessary, wrapping around and continuing with the lowest frequency component.
  • baseband spectral components from about 1 kHz to 5.5 kHz are copied and spectral components are to be regenerated for subbands 1 and 2 that span frequencies from about 5.5 kHz to 16.5 kHz
  • baseband spectral components from about 1 kHz to 5.5 kHz are copied to respective frequencies from about 5.5 kHz to 10 kHz
  • the same baseband spectral components from about 1 kHz to 5.5 kHz are copied again to respective frequencies from about 10 kHz to 14.5 kHz
  • the baseband spectral component from about 1 kHz to 3 kHz are copied to respective frequencies from about 14.5 kHz to 16.5 kHz.
  • this copying process can be performed for each individual subband of regenerated components by copying the lowest-frequency component of the baseband to the lower edge of the respective subband and continuing through the baseband spectral components in a circular manner as necessary to complete the translation for that subband.
  • FIGS. 5A through 5D are hypothetical graphical illustrations of the spectral envelope of a baseband signal and the spectral envelope of signals generated by translation of spectral components within the baseband signal.
  • FIG. 5A shows a hypothetical decoded baseband signal 900 .
  • FIG. 5B shows spectral components of the baseband signal 905 translated to higher frequencies.
  • FIG. 5C shows the baseband signal components 910 translated multiple times to higher frequencies.
  • FIG. 5D shows a signal resulting from the combination of the translated components 915 and the baseband signal 920 .
  • the translation of spectral components may create discontinuities in the phase of the regenerated components.
  • the O-TDAC transform implementation described above for example, as well as many other possible implementations, provides frequency-domain representations that are arranged in blocks of transform coefficients.
  • the translated spectral components are also arranged in blocks. If spectral components regenerated by translation have phase discontinuities between successive blocks, audible artifacts in the output audio signal are likely to occur.
  • the phase adjuster 815 adjusts the phase of each regenerated spectral component to maintain a consistent or coherent phase.
  • each of the regenerated spectral components is multiplied by the complex value e j ⁇ , where ⁇ represents the frequency interval each respective spectral component is translated, expressed as the number of transform coefficients that correspond to that frequency interval. For example, if a spectral component is translated to the frequency of the adjacent component, the translation interval ⁇ is equal to one.
  • Alternative implementations may require different phase adjustment techniques appropriate to the particular implementation of the synthesis filterbank 825 .
  • the translation process may be adapted to match the regenerated components with harmonics of significant spectral components within the baseband signal.
  • Two ways in which translation may be adapted is by changing either the specific spectral components that are copied, or by changing the amount of translation. If an adaptive process is used, special care should be taken with regard to phase coherency if spectral components are arranged in blocks. If the regenerated spectral components are copied from different base components from block to block or if the amount of frequency translation is changed from block to block, it is very likely the regenerated components will not be phase coherent. It is possible to adapt the translation of spectral components but care must be taken to ensure the audibility of artifacts caused by phase incoherency is not significant.
  • a system that employs either multiple-pass techniques or look-ahead techniques could identify intervals during which translation could be adapted.
  • Blocks representing intervals of an audio signal in which the regenerated spectral components are deemed to be inaudible are usually good candidates for adapting the translation process.
  • the blending filter 818 generates a noise component for the translated spectral components using the noise-blending parameters received from the deformatter 805 .
  • the blending filter 818 generates a noise signal, computes a noise-blending function using the noise-blending parameters and utilizes the noise-blending function to combine the noise signal with the translated spectral components.
  • a noise signal can be generated by any one of a variety of ways.
  • a noise signal is produced by generating a sequence of random numbers having a distribution with zero mean and variance of one.
  • the blending filter 818 adjusts the noise signal by multiplying the noise signal by the noise-blending function. If a single noise-blending parameter is used, the noise-blending function generally should adjust the noise signal to have higher amplitude at higher frequencies. This follows from the assumptions discussed above that voice and natural musical instrument signals tend to contain more noise at higher frequencies. In a preferred implementation when spectral components are translated to higher frequencies, a noise-blending function has a maximum amplitude at the highest frequency and decays smoothly to a minimum value at the lowest frequency at which noise is blended.
  • N ⁇ ( k ) max ⁇ ( k - k MIN k MAX - k MIN + B - 1 , 0 ) for ⁇ ⁇ k MIN ⁇ k ⁇ k MAX ( 1 )
  • B a noise-blending parameter based on SFM
  • k the index of regenerated spectral components
  • k MAX highest frequency for spectral component regeneration
  • k MIN lowest frequency for spectral component regeneration.
  • the value of B varies from zero to one, where one indicates a flat spectrum that is typical of a noise-like signal and zero indicates a spectral shape that is not flat and is typical of a tone-like signal.
  • the value of the quotient in equation 1 varies from zero to one as k increases from k MIN to k MAX . If B is equal to zero, the first term in the “max” function varies from negative one to zero; therefore, N(k) will be equal to zero throughout the regenerated spectrum and no noise is added to regenerated spectral components.
  • N(k) increases linearly from zero at the lowest regenerated frequency k MIN up to a value equal to one at the maximum regenerated frequency k MAX . If B has a value between zero and one, N(k) is equal to zero from k MIN up to some frequency between k MIN and k MAX , and increases linearly for the remainder of the regenerated spectrum.
  • the amplitude of the regenerated spectral components is adjusted by multiplying the regenerated components with the noise-blending function. The adjusted noise signal and the adjusted regenerated spectral components are combined.
  • FIGS. 6A through 6G are hypothetical graphical illustrations of the spectral envelopes of signals obtained by regenerating high-frequency components using both spectral translation and noise blending.
  • FIG. 6A shows a hypothetical input signal 410 to be transmitted.
  • FIG. 6B shows the baseband signal 420 produced by discarding high-frequency components.
  • FIG. 6C shows the regenerated high-frequency components 431 , 432 and 433 .
  • FIG. 6D depicts a possible noise-blending function 440 that gives greater weight to noise components at higher frequencies.
  • FIG. 6E is a schematic illustration of a noise signal 445 that has been multiplied by the noise-blending function 440 .
  • FIG. 6F shows a signal 450 generated by multiplying the regenerated high-frequency components 431 , 432 and 433 by the inverse of the noise-blending function 440 .
  • FIG. 6G is a schematic illustration of a combined signal 460 resulting from adding the adjusted noise signal 445 to the adjusted high-frequency components 450 .
  • FIG. 6G is drawn to illustrate schematically that the high-frequency portion 430 contains a mixture of the translated high-frequency components 431 , 432 and 433 and noise.
  • the gain adjuster 820 adjusts the amplitude of the regenerated signal according to the estimated spectral envelope information received from the deformatter 805 .
  • FIG. 6H is a hypothetical illustration of the spectral envelope of signal 460 shown in FIG. 6G after gain adjustment.
  • the portion 510 of the signal containing a mixture of translated spectral components and noise has been given a spectral envelope approximating that of the original signal 410 shown in FIG. 6A. Reproducing the spectral envelope on a fine scale is generally unnecessary because the regenerated spectral components do not exactly reproduce the spectral components of the original signal.
  • a translated harmonic series generally will not equal an harmonic series; therefore, it is generally impossible to ensure that the regenerated output signal is identical to the original input signal on a fine scale.
  • Coarse approximations that match the spectral energy within a few critical bands or less have been found to work well.
  • the use of a coarse estimate of spectral shape rather than a finer approximation is generally preferred because a coarse estimate imposes lower information capacity requirements upon transmission channels and storage media.
  • aural imaging may be improved by using finer approximations of spectral shape so that more precise gain adjustments can be made to ensure a proper balance between channels.
  • the gain-adjusted regenerated spectral components provided by the gain adjuster 820 are combined with the frequency-domain representation of the baseband signal received from the deformatter 805 to form a frequency-domain representation of a reconstructed signal. This may be done by adding the regenerated components to corresponding components of the baseband signal.
  • FIG. 7 shows a hypothetical reconstructed signal obtained by combining the baseband signal shown in FIG. 6B with the regenerated components shown in FIG. 6H.
  • the synthesis filterbank 825 transforms the frequency-domain representation into a time domain representation of the reconstructed signal.
  • This filterbank can be implemented in essentially any manner but it should be inverse to the filterbank 705 used in the transmitter 136 .
  • receiver 142 uses O-TDAC synthesis that applies an inverse modified DCT.
  • the width and location of the baseband signal can be established in essentially any manner and can be varied dynamically according to input signal characteristics, for example.
  • the transmitter 136 generates a baseband signal by discarding multiple bands of spectral components, thereby creating gaps in the spectrum of the baseband signal. During spectral component regeneration, portions of the baseband signal are translated to regenerate the missing spectral components.
  • the direction of translation can also be varied.
  • the transmitter 136 discards spectral components at low frequencies to produce a baseband signal located at relatively higher frequencies.
  • the receiver 142 translates portions of the high-frequency baseband signal down to lower-frequency locations to regenerate the missing spectral components.
  • FIG. 8A shows the temporal shape of an audio signal 860 .
  • FIG. 8B shows the temporal shape of a reconstructed output signal 870 produced by deriving a baseband signal from the signal 860 in FIG. 8A and regenerating discarded spectral components through a process of spectral component translation.
  • the temporal shape of the reconstructed signal 870 differs significantly from the temporal shape of the original signal 860 . Changes in the temporal shape can have a significant effect on the perceived quality of a regenerated audio signal. Two methods for preserving the temporal envelope are discussed below.
  • the transmitter 136 determines the temporal envelope of the input audio signal in the time domain and the receiver 142 restores the same or substantially the same temporal envelope to the reconstructed signal in the time domain.
  • FIG. 9 shows a block diagram of one implementation of the transmitter 136 in a communication system that provides temporal envelope control using a time-domain technique.
  • the analysis filterbank 205 receives an input signal from path 115 and divides the signal into multiple frequency subband signals. The figure illustrates only two subbands for illustrative clarity; however, the analysis filterbank 205 may divide the input signal into any integer number of subbands that is greater than one.
  • the analysis filterbank 205 may be implemented in essentially any manner such as one or more Quadrature Mirror Filters (QMF) connected in cascade or, preferably, by a pseudo-QMF technique that can divide an input signal into any integer number of subbands in one filter stage. Additional information about the pseudo-QMF technique may be obtained from Vaidyanathan, “Multirate Systems and Filter Banks,” Prentice Hall, New Jersey, 1993, pp. 354-373.
  • QMF Quadrature Mirror Filters
  • the subband signals are used to form the baseband signal.
  • the remaining subband signals contain the spectral components of the input signal that are discarded.
  • the baseband signal is formed from one subband signal representing the lowest-frequency spectral components of the input signal, but this is not necessary in principle.
  • the analysis filterbank 205 divides the input signal into four subbands having ranges of frequencies as shown above in Table I. The lowest-frequency subband is used to form the baseband signal.
  • the analysis filterbank 205 passes the lower-frequency subband signal as the baseband signal to the temporal envelope estimator 213 and the modulator 214 .
  • the temporal envelope estimator 213 provides an estimated temporal envelope of the baseband signal to the modulator 214 and to the signal formatter 225 .
  • baseband signal spectral components that are below about 500 Hz are either excluded from the process that estimates the temporal envelope or are attenuated so that they do not have any significant effect on the shape of the estimated temporal envelope. This may be accomplished by applying an appropriate high-pass filter to the signal that is analyzed by the temporal envelope estimator 213 .
  • the modulator 214 divides the amplitude of the baseband signal by the estimated temporal envelope and passes to the analysis filterbank 215 a representation of the baseband signal that is flattened temporally.
  • the analysis filterbank 215 generates a frequency-domain representation of the flattened baseband signal, which is passed to the encoder 220 for encoding.
  • the analysis filterbank 215 may be implemented by essentially any time-domain-to-frequency-domain transform; however, a transform like the O-TDAC transform that implements a critically-sampled filterbank is generally preferred.
  • the encoder 220 is optional; however, its use is preferred because encoding can generally be used to reduce the information requirements of the flattened baseband signal.
  • the flattened baseband signal is passed to the signal formatter 225 .
  • the analysis filterbank 205 passes the higher-frequency subband signal to the temporal envelope estimator 210 and the modulator 211 .
  • the temporal envelope estimator 210 provides an estimated temporal envelope of the higher-frequency subband signal to the modulator 211 and to the output signal formatter 225 .
  • the modulator 211 divides the amplitude of the higher-frequency subband signal by the estimated temporal envelope and passes to the analysis filterbank 212 a representation of the higher-frequency subband signal that is flattened temporally.
  • the analysis filterbank 212 generates a frequency-domain representation of the flattened higher-frequency subband signal.
  • the spectral envelope estimator 720 and the spectral analyzer 722 provide an estimated spectral envelope and one or more noise-blending parameters, respectively, for the higher-frequency subband signal in essentially the same manner as that described above, and pass this information to the signal formatter 225 .
  • the signal formatter 225 provides an output signal along communication channel 140 by assembling a representation of the flattened baseband signal, the estimated temporal envelopes of the baseband signal and the higher-frequency subband signal, the estimated spectral envelope, and the one or more noise-blending parameters into the output signal.
  • the individual signals and information are assembled into a signal having a form that is suitable for transmission or storage using essentially any desired formatting technique as described above for the signal formatter 725 .
  • the temporal envelope estimators 210 and 213 may be implemented in wide variety of ways. In one implementation, each of these estimators processes a subband signal that is divided into blocks of subband signal samples. These blocks of subband signal samples are also processed by either the analysis filterbank 212 or 215 . In many practical implementations, the blocks are arranged to contain a number of samples that is a power of two and is greater than 256 samples. Such a block size is generally preferred to improve the efficiency and the frequency resolution of the transforms used to implement the analysis filterbanks 212 and 215 . The length of the blocks may also be adapted in response to input signal characteristics such as the occurrence or absence of large transients. Each block is further divided into groups of 256 samples for temporal envelope estimation. The size of the groups is chosen to balance a tradeoff between the accuracy of the estimate and the amount of information required to convey the estimate in the output signal.
  • the temporal envelope estimator calculates the power of the samples in each group of subband signal samples.
  • the set of power values for the block of subband signal samples is the estimated temporal envelope for that block.
  • the temporal envelope estimator calculates the mean value of the subband signal sample magnitudes in each group.
  • the set of means for the block is the estimated temporal envelope for that block.
  • the set of values in the estimated envelope may be encoded in a variety of ways.
  • the envelope for each block is represented by an initial value for the first group of samples in the block and a set of differential values that express the relative values for subsequent groups.
  • either differential or absolute codes are used in an adaptive manner to reduce the amount of information required to convey the values.
  • FIG. 10 shows a block diagram of one implementation of the receiver 142 in a communication system that provides temporal envelope control using a time-domain technique.
  • the deformatter 265 receives a signal from communication channel 140 and obtains from this signal a representation of a flattened baseband signal, estimated temporal envelopes of the baseband signal and a higher-frequency subband signal, an estimated spectral envelope and one or more noise-blending parameters.
  • the decoder 267 is optional but should be used to reverse the effects of any encoding performed in the transmitter 136 to obtain a frequency-domain representation of the flattened baseband signal.
  • the synthesis filterbank 280 receives the frequency-domain representation of the flattened baseband signal and generates a time-domain representation using a technique that is inverse to that used by the analysis filterbank 215 in the transmitter 136 .
  • the modulator 281 receives the estimated temporal envelope of the baseband signal from the deformatter 265 , and uses this estimated envelope to modulate the flattened baseband signal received from the synthesis filterbank 280 . This modulation provides a temporal shape that is substantially the same as the temporal shape of the original baseband signal before it was flattened by the modulator 214 in the transmitter 136 .
  • the signal processor 808 receives the frequency-domain representation of the flattened baseband signal, the estimated spectral envelope and the one or more noise-blending parameters from the deformatter 265 , and regenerates spectral components in the same manner as that discussed above for the signal processor 808 shown in FIG. 4.
  • the regenerated spectral components are passed to the synthesis filterbank 283 , which generates a time-domain representation using a technique that is inverse to that used by the analysis filterbanks 212 and 215 in the transmitter 136 .
  • the modulator 284 receives the estimated temporal envelope of the higher-frequency subband signal from the deformatter 265 , and uses this estimated envelope to modulate the regenerated spectral components signal received from the synthesis filterbank 283 . This modulation provides a temporal shape that is substantially the same as the temporal shape of the original higher-frequency subband signal before it was flattened by the modulator 211 in the transmitter 136 .
  • the modulated subband signal and the modulated higher-frequency subband signal are combined to form a reconstructed signal, which is passed to the synthesis filterbank 287 .
  • the synthesis filterbank 287 uses a technique inverse to that used by the analysis filterbank 205 in the transmitter 136 to provide along path 145 an output signal that is perceptually indistinguishable or nearly indistinguishable from the original input signal received from path 115 by the transmitter 136 .
  • the transmitter 136 determines the temporal envelope of the input audio signal in the frequency domain and the receiver 142 restores the same or substantially the same temporal envelope to the reconstructed signal in the frequency domain.
  • FIG. 11 shows a block diagram of one implementation of the transmitter 136 in a communication system that provides temporal envelope control using a frequency-domain technique.
  • the implementation of this transmitter is very similar to the implementation of the transmitter shown in FIG. 2.
  • the principal difference is the temporal envelope estimator 707 .
  • the other components are not discussed here in detail because their operation is essentially the same as that described above in connection with FIG. 2.
  • the temporal envelope estimator 707 receives from the analysis filterbank 705 a frequency-domain representation of the input signal, which it analyzes to derive an estimate of the temporal envelope of the input signal.
  • spectral components that are below about 500 Hz are either excluded from the frequency-domain representation or are attenuated so that they do not have any significant effect on the process that estimates the temporal envelope.
  • the temporal envelope estimator 707 obtains a frequency-domain representation of a temporally-flattened version of the input signal by deconvolving a frequency-domain representation of the estimated temporal envelope and the frequency-domain representation of the input signal.
  • This deconvolution may be done by convolving the frequency-domain representation of the input signal with an inverse of the frequency-domain representation of the estimated temporal envelope.
  • the frequency-domain representation of a temporally-flattened version of the input signal is passed to the filter 715 , the baseband signal analyzer 710 , and the spectral envelope estimator 720 .
  • a description of the frequency-domain representation of the estimated temporal envelope is passed to the signal formatter 725 for assembly into the output signal that is passed along the communication channel 140 .
  • the temporal envelope estimator 707 may be implemented in a number of ways. The technical basis for one implementation of the temporal envelope estimator may be explained in terms of the linear system shown in equation 2:
  • y(t) a signal to be transmitted
  • h(t) the temporal envelope of the signal to be transmitted
  • x(t) a temporally-flat version of the signal y(t).
  • Equation 2 may be rewritten as:
  • Y[k] a frequency-domain representation of the input signal y(t);
  • H[k] a frequency-domain representation of h(t);
  • X[k] a frequency-domain representation of x(t).
  • the signal y(t) is the audio signal that the transmitter 136 receives from path 115 .
  • the analysis filterbank 705 provides the frequency-domain representation Y[k] of the signal y(t).
  • the temporal envelope estimator 707 obtains an estimate of the frequency-domain representation H[k] of the signal's temporal envelope h(t) by solving a set of equations derived from an autoregressive moving average (ARMA) model of Y[k] and X[k]. Additional information about the use of ARMA models may be obtained from Proakis and Manolakis, “Digital Signal Processing: Principles, Algorithms and Applications,” MacMillan Publishing Co., New York 1988. See especially pp. 818-821.
  • the filterbank 705 applies a transform to blocks of samples representing the signal y(t) to provide the frequency-domain representation Y[k] arranged in blocks of transform coefficients.
  • Each block of transform coefficients expresses a short-time spectrum of the signal of the signal y(t).
  • the frequency-domain representation X[k] is also arranged in blocks.
  • Each block of coefficients in the frequency-domain representation X[k] represents a block of samples for the temporally-flat signal x(t) that is assumed to be wide sense stationary (WSS). It is also assumed the coefficients in each block of the X[k] representation are independently distributed (ID).
  • E ⁇ ⁇ denotes the expected value function
  • L length of the autoregressive portion of the ARMA model
  • Q the length of the moving average portion of the ARMA model.
  • R YY [n] denotes the autocorrelation of Y[n]
  • R XY [k] denotes the crosscorrelation of Y[k] and X[k].
  • the temporal envelope estimator 707 receives a frequency-domain representation Y[k] of an input signal y(t) and calculates the autocorrelation sequence R XX [m] for ⁇ L ⁇ m ⁇ L. These values are used to construct the matrix shown in equation 8. The matrix is then inverted to solve for the coefficients a i . Because the matrix in equation 8 is Toeplitz, it can be inverted by the Levinson-Durbin algorithm. For information, see Proakis and Manolakis, pp. 458-462.
  • the set of normalized coefficients ⁇ 1, a 1 , . . . , a L ⁇ represents the zeroes of a flattening filter FF that can be convolved with a frequency-domain representation Y[k] of an input signal y(t) to obtain a frequency-domain representation X[k] of a temporally-flattened version x(t) of the input signal.
  • the set of normalized coefficients also represents the poles of a reconstruction filter FR that can be convolved with the frequency-domain representation X[k] of a temporally-flat signal x(t) to obtain a frequency-domain representation of that flat signal having a modified temporal shape substantially equal to the temporal envelope of the input signal y(t).
  • the temporal envelope estimator 707 convolves the flattening filter FF with the frequency-domain representation Y[k] received from the filterbank 705 and passes the temporally-flattened result to the filter 715 , the baseband signal analyzer 710 , and the spectral envelope estimator 720 .
  • a description of the coefficients in flattening filter FF is passed to the signal formatter 725 for assembly into the output signal passed along path 140 .
  • FIG. 12 shows a block diagram of one implementation of the receiver 142 in a communication system that provides temporal envelope control using a frequency-domain technique.
  • the implementation of this receiver is very similar to the implementation of the receiver shown in FIG. 4.
  • the principal difference is the temporal envelope regenerator 807 .
  • the other components are not discussed here in detail because their operation is essentially the same as that described above in connection with FIG. 4.
  • the temporal envelope regenerator 807 receives from the deformatter 805 a description of an estimated temporal envelope, which is convolved with a frequency-domain representation of a reconstructed signal.
  • the result obtained from the convolution is passed to the synthesis filterbank 825 , which provides along path 145 an output signal that is perceptually indistinguishable or nearly indistinguishable from the original input signal received from path 115 by the transmitter 136 .
  • the temporal envelope regenerator 807 may be implemented in a number of ways.
  • the deformatter 805 provides a set of coefficients that represent the poles of a reconstruction filter FR, which is convolved with the frequency-domain representation of the reconstructed signal.
  • the spectral components of the frequency-domain representation received from the filterbank 705 are grouped into frequency subbands.
  • the set of subbands shown in Table I is one suitable example.
  • a flattening filter FF is derived for each subband and convolved with the frequency-domain representation of each subband to temporally flatten it.
  • the signal formatter 725 assembles into the output signal an identification of the estimated temporal envelope for each subband.
  • the receiver 142 receives the envelope identification for each subband, obtains an appropriate regeneration filter FR for each subband, and convolves it with a frequency-domain representation of the corresponding subband in the reconstructed signal.
  • multiple sets of coefficients ⁇ C i ⁇ j are stored in a table.
  • Coefficients ⁇ 1, a 1 , . . . , a L ⁇ for flattening filter FF are calculated for an input signal, and the calculated coefficients are compared with each of the multiple sets of coefficients stored in the table.
  • the set ⁇ C i ⁇ j in the table that is deemed to be closest to the calculated coefficients is selected and used to flatten the input signal.
  • An identification of the set ⁇ C i ⁇ j that is selected from the table is passed to the signal formatter 725 to be assembled into the output signal.
  • the receiver 142 receives the identification of the set ⁇ C i ⁇ j , consults a table of stored coefficient sets to obtain the appropriate set of coefficients ⁇ C i ⁇ j , derives a regeneration filter FR that corresponds to the coefficients, and convolves the filter with a frequency-domain representation of the reconstructed signal. This alternative may also be applied to subbands as discussed above.
  • One way in which a set of coefficients in the table may be selected is to define a target point in an L-dimensional space having Euclidean coordinates equal to the calculated coefficients (a 1 , . . . , a L ) for the input signal or subband of the input signal.
  • Each of the sets stored in the table also defines a respective point in the L-dimensional space.
  • the set stored in the table whose associated point has the shortest Euclidean distance to the target point is deemed to be closest to the calculated coefficients. If the table stores 256 sets of coefficients, for example, an eight-bit number could be passed to the signal formatter 725 to identify the selected set of coefficients.
  • the present invention may be implemented in a wide variety of ways. Analog and digital technologies may be used as desired. Various aspects may be implemented by discrete electrical components, integrated circuits, programmable logic arrays, ASICs and other types of electronic components, and by devices that execute programs of instructions, for example. Programs of instructions may be conveyed by essentially any device-readable media such as magnetic and optical storage media, read-only memory and programmable memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Stereophonic System (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
US10/113,858 2002-03-28 2002-03-28 Broadband frequency translation for high frequency regeneration Abandoned US20030187663A1 (en)

Priority Applications (44)

Application Number Priority Date Filing Date Title
US10/113,858 US20030187663A1 (en) 2002-03-28 2002-03-28 Broadband frequency translation for high frequency regeneration
TW092104947A TWI319180B (en) 2002-03-28 2003-03-07 Broadband frequency translation for high frequency regeneration
SI200332022T SI2194528T1 (sl) 2002-03-28 2003-03-21 Rekonstrukcija spektruma avdiosignala z nepopolnim spektrumom temelječem na frekvenčnem prevodu
SG10201710915PA SG10201710915PA (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
SG10201710912WA SG10201710912WA (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
KR1020047012465A KR101005731B1 (ko) 2002-03-28 2003-03-21 주파수 변환에 기초한 불완전한 스펙트럼을 가진 오디오신호의 스펙트럼을 복구하기 위한 방법 및 장치
CN2007101373998A CN101093670B (zh) 2002-03-28 2003-03-21 用于产生重建信号的方法
MXPA04009408A MXPA04009408A (es) 2002-03-28 2003-03-21 Reconstruccion del espectro de una senal de audio con espectro incompleto en base a la traslacion de frecuencia.
AT10155626T ATE511180T1 (de) 2002-03-28 2003-03-21 Rekonstruktion des spektrums eines audiosignals mit unvollständigem spektrum auf grundlage von frequenzumsetzung
SG10201710917UA SG10201710917UA (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
PL371410A PL208846B1 (pl) 2002-03-28 2003-03-21 Sposób przetwarzania sygnału akustycznego w urządzeniu elektronicznym i sposób generowania odtworzonego sygnału akustycznego w urządzeniu elektronicznym
PCT/US2003/008895 WO2003083834A1 (fr) 2002-03-28 2003-03-21 Reconstitution de spectre d'un signal audio a spectre incomplet basee sur la transposition de frequence
SG2013057666A SG2013057666A (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
EP03733840A EP1488414A1 (fr) 2002-03-28 2003-03-21 Reconstitution de spectre d'un signal audio a spectre incomplet basee sur la transposition de frequence
SG2009012824A SG173224A1 (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
JP2003581173A JP4345890B2 (ja) 2002-03-28 2003-03-21 不完全なスペクトルを持つオーディオ信号の周波数変換に基づくスペクトルの再構築
CA2475460A CA2475460C (fr) 2002-03-28 2003-03-21 Reconstitution de spectre d'un signal audio a spectre incomplet basee sur la transposition de frequence
SG10201710911VA SG10201710911VA (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
CNB03805096XA CN100338649C (zh) 2002-03-28 2003-03-21 处理音频信号、生成重建的音频信号的方法、设备及媒体
SG200606723-5A SG153658A1 (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
AU2003239126A AU2003239126B2 (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
SG10201710913TA SG10201710913TA (en) 2002-03-28 2003-03-21 Reconstruction of the spectrum of an audiosignal with incomplete spectrum based on frequency translation
EP10155626A EP2194528B1 (fr) 2002-03-28 2003-03-21 Reconstruction du spectre d'un signal audio à partir d'un spectre incomplet basé sur la traduction de la fréquence
MYPI20031138A MY140567A (en) 2002-03-28 2003-03-27 Broadband frequency translation for high frequency regeneration
HK05110368A HK1078673A1 (en) 2002-03-28 2005-11-18 Method and apparatus for processing an audio signal, generating a reconstructed audio signal and medium
HK08103939.0A HK1114233A1 (en) 2002-03-28 2008-04-09 A method for generating a reconstructed signal
US12/391,936 US8126709B2 (en) 2002-03-28 2009-02-24 Broadband frequency translation for high frequency regeneration
US13/357,545 US8285543B2 (en) 2002-03-28 2012-01-24 Circular frequency translation with noise blending
US13/601,182 US8457956B2 (en) 2002-03-28 2012-08-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US13/906,994 US9177564B2 (en) 2002-03-28 2013-05-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US14/709,109 US9324328B2 (en) 2002-03-28 2015-05-11 Reconstructing an audio signal with a noise parameter
US14/735,663 US9343071B2 (en) 2002-03-28 2015-06-10 Reconstructing an audio signal with a noise parameter
US15/098,472 US9412383B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/098,459 US9412389B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/133,367 US9412388B1 (en) 2002-03-28 2016-04-20 High frequency regeneration of an audio signal with temporal shaping
US15/203,528 US9466306B1 (en) 2002-03-28 2016-07-06 High frequency regeneration of an audio signal with temporal shaping
US15/258,415 US9548060B1 (en) 2002-03-28 2016-09-07 High frequency regeneration of an audio signal with temporal shaping
US15/370,085 US9653085B2 (en) 2002-03-28 2016-12-06 Reconstructing an audio signal having a baseband and high frequency components above the baseband
US15/425,827 US9704496B2 (en) 2002-03-28 2017-02-06 High frequency regeneration of an audio signal with phase adjustment
US15/473,808 US9767816B2 (en) 2002-03-28 2017-03-30 High frequency regeneration of an audio signal with phase adjustment
US15/702,451 US9947328B2 (en) 2002-03-28 2017-09-12 Methods, apparatus and systems for determining reconstructed audio signal
US15/921,859 US10269362B2 (en) 2002-03-28 2018-03-15 Methods, apparatus and systems for determining reconstructed audio signal
US16/268,448 US10529347B2 (en) 2002-03-28 2019-02-05 Methods, apparatus and systems for determining reconstructed audio signal
US16/735,328 US20200143817A1 (en) 2002-03-28 2020-01-06 Methods, Apparatus and Systems for Determining Reconstructed Audio Signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/113,858 US20030187663A1 (en) 2002-03-28 2002-03-28 Broadband frequency translation for high frequency regeneration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/391,936 Continuation US8126709B2 (en) 2002-03-28 2009-02-24 Broadband frequency translation for high frequency regeneration

Publications (1)

Publication Number Publication Date
US20030187663A1 true US20030187663A1 (en) 2003-10-02

Family

ID=28453693

Family Applications (19)

Application Number Title Priority Date Filing Date
US10/113,858 Abandoned US20030187663A1 (en) 2002-03-28 2002-03-28 Broadband frequency translation for high frequency regeneration
US12/391,936 Expired - Fee Related US8126709B2 (en) 2002-03-28 2009-02-24 Broadband frequency translation for high frequency regeneration
US13/357,545 Expired - Lifetime US8285543B2 (en) 2002-03-28 2012-01-24 Circular frequency translation with noise blending
US13/601,182 Expired - Lifetime US8457956B2 (en) 2002-03-28 2012-08-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US13/906,994 Expired - Fee Related US9177564B2 (en) 2002-03-28 2013-05-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US14/709,109 Expired - Fee Related US9324328B2 (en) 2002-03-28 2015-05-11 Reconstructing an audio signal with a noise parameter
US14/735,663 Expired - Fee Related US9343071B2 (en) 2002-03-28 2015-06-10 Reconstructing an audio signal with a noise parameter
US15/098,472 Expired - Lifetime US9412383B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/098,459 Expired - Lifetime US9412389B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/133,367 Expired - Lifetime US9412388B1 (en) 2002-03-28 2016-04-20 High frequency regeneration of an audio signal with temporal shaping
US15/203,528 Expired - Lifetime US9466306B1 (en) 2002-03-28 2016-07-06 High frequency regeneration of an audio signal with temporal shaping
US15/258,415 Expired - Lifetime US9548060B1 (en) 2002-03-28 2016-09-07 High frequency regeneration of an audio signal with temporal shaping
US15/370,085 Expired - Lifetime US9653085B2 (en) 2002-03-28 2016-12-06 Reconstructing an audio signal having a baseband and high frequency components above the baseband
US15/425,827 Expired - Lifetime US9704496B2 (en) 2002-03-28 2017-02-06 High frequency regeneration of an audio signal with phase adjustment
US15/473,808 Expired - Lifetime US9767816B2 (en) 2002-03-28 2017-03-30 High frequency regeneration of an audio signal with phase adjustment
US15/702,451 Expired - Lifetime US9947328B2 (en) 2002-03-28 2017-09-12 Methods, apparatus and systems for determining reconstructed audio signal
US15/921,859 Expired - Fee Related US10269362B2 (en) 2002-03-28 2018-03-15 Methods, apparatus and systems for determining reconstructed audio signal
US16/268,448 Expired - Fee Related US10529347B2 (en) 2002-03-28 2019-02-05 Methods, apparatus and systems for determining reconstructed audio signal
US16/735,328 Abandoned US20200143817A1 (en) 2002-03-28 2020-01-06 Methods, Apparatus and Systems for Determining Reconstructed Audio Signal

Family Applications After (18)

Application Number Title Priority Date Filing Date
US12/391,936 Expired - Fee Related US8126709B2 (en) 2002-03-28 2009-02-24 Broadband frequency translation for high frequency regeneration
US13/357,545 Expired - Lifetime US8285543B2 (en) 2002-03-28 2012-01-24 Circular frequency translation with noise blending
US13/601,182 Expired - Lifetime US8457956B2 (en) 2002-03-28 2012-08-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US13/906,994 Expired - Fee Related US9177564B2 (en) 2002-03-28 2013-05-31 Reconstructing an audio signal by spectral component regeneration and noise blending
US14/709,109 Expired - Fee Related US9324328B2 (en) 2002-03-28 2015-05-11 Reconstructing an audio signal with a noise parameter
US14/735,663 Expired - Fee Related US9343071B2 (en) 2002-03-28 2015-06-10 Reconstructing an audio signal with a noise parameter
US15/098,472 Expired - Lifetime US9412383B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/098,459 Expired - Lifetime US9412389B1 (en) 2002-03-28 2016-04-14 High frequency regeneration of an audio signal by copying in a circular manner
US15/133,367 Expired - Lifetime US9412388B1 (en) 2002-03-28 2016-04-20 High frequency regeneration of an audio signal with temporal shaping
US15/203,528 Expired - Lifetime US9466306B1 (en) 2002-03-28 2016-07-06 High frequency regeneration of an audio signal with temporal shaping
US15/258,415 Expired - Lifetime US9548060B1 (en) 2002-03-28 2016-09-07 High frequency regeneration of an audio signal with temporal shaping
US15/370,085 Expired - Lifetime US9653085B2 (en) 2002-03-28 2016-12-06 Reconstructing an audio signal having a baseband and high frequency components above the baseband
US15/425,827 Expired - Lifetime US9704496B2 (en) 2002-03-28 2017-02-06 High frequency regeneration of an audio signal with phase adjustment
US15/473,808 Expired - Lifetime US9767816B2 (en) 2002-03-28 2017-03-30 High frequency regeneration of an audio signal with phase adjustment
US15/702,451 Expired - Lifetime US9947328B2 (en) 2002-03-28 2017-09-12 Methods, apparatus and systems for determining reconstructed audio signal
US15/921,859 Expired - Fee Related US10269362B2 (en) 2002-03-28 2018-03-15 Methods, apparatus and systems for determining reconstructed audio signal
US16/268,448 Expired - Fee Related US10529347B2 (en) 2002-03-28 2019-02-05 Methods, apparatus and systems for determining reconstructed audio signal
US16/735,328 Abandoned US20200143817A1 (en) 2002-03-28 2020-01-06 Methods, Apparatus and Systems for Determining Reconstructed Audio Signal

Country Status (16)

Country Link
US (19) US20030187663A1 (fr)
EP (2) EP1488414A1 (fr)
JP (1) JP4345890B2 (fr)
KR (1) KR101005731B1 (fr)
CN (2) CN100338649C (fr)
AT (1) ATE511180T1 (fr)
AU (1) AU2003239126B2 (fr)
CA (1) CA2475460C (fr)
HK (2) HK1078673A1 (fr)
MX (1) MXPA04009408A (fr)
MY (1) MY140567A (fr)
PL (1) PL208846B1 (fr)
SG (8) SG10201710913TA (fr)
SI (1) SI2194528T1 (fr)
TW (1) TWI319180B (fr)
WO (1) WO2003083834A1 (fr)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026441A1 (en) * 2001-05-04 2003-02-06 Christof Faller Perceptual synthesis of auditory scenes
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
US20030158726A1 (en) * 2000-04-18 2003-08-21 Pierrick Philippe Spectral enhancing method and device
US20030236583A1 (en) * 2002-06-24 2003-12-25 Frank Baumgarte Hybrid multi-channel/cue coding/decoding of audio signals
US20040138876A1 (en) * 2003-01-10 2004-07-15 Nokia Corporation Method and apparatus for artificial bandwidth expansion in speech processing
EP1482482A1 (fr) * 2003-05-27 2004-12-01 Siemens Aktiengesellschaft Elargissement en frequence pour synthetiseur
US20050004793A1 (en) * 2003-07-03 2005-01-06 Pasi Ojala Signal adaptation for higher band coding in a codec utilizing band split coding
US20050058304A1 (en) * 2001-05-04 2005-03-17 Frank Baumgarte Cue-based audio coding/decoding
US20050180579A1 (en) * 2004-02-12 2005-08-18 Frank Baumgarte Late reverberation-based synthesis of auditory scenes
US20050195981A1 (en) * 2004-03-04 2005-09-08 Christof Faller Frequency-based coding of channels in parametric multi-channel coding systems
US20050256723A1 (en) * 2004-05-14 2005-11-17 Mansour Mohamed F Efficient filter bank computation for audio coding
WO2006003550A1 (fr) * 2004-06-28 2006-01-12 Koninklijke Philips Electronics N.V. Audio sans fil
WO2006018748A1 (fr) * 2004-08-17 2006-02-23 Koninklijke Philips Electronics N.V. Codage audio echelonnable
US20060083385A1 (en) * 2004-10-20 2006-04-20 Eric Allamanche Individual channel shaping for BCC schemes and the like
US20060085200A1 (en) * 2004-10-20 2006-04-20 Eric Allamanche Diffuse sound shaping for BCC schemes and the like
US20060115100A1 (en) * 2004-11-30 2006-06-01 Christof Faller Parametric coding of spatial audio with cues based on transmitted channels
US20060153408A1 (en) * 2005-01-10 2006-07-13 Christof Faller Compact side information for parametric coding of spatial audio
WO2006108543A1 (fr) * 2005-04-15 2006-10-19 Coding Technologies Ab Mise en forme de l'enveloppe temporaire d'un signal decorrele
US20060293016A1 (en) * 2005-06-28 2006-12-28 Harman Becker Automotive Systems, Wavemakers, Inc. Frequency extension of harmonic signals
US20070094015A1 (en) * 2005-09-22 2007-04-26 Georges Samake Audio codec using the Fast Fourier Transform, the partial overlap and a decomposition in two plans based on the energy.
US20070129036A1 (en) * 2005-11-28 2007-06-07 Samsung Electronics Co., Ltd. Method and apparatus to reconstruct a high frequency component
WO2007107670A2 (fr) * 2006-03-20 2007-09-27 France Telecom Procede de post-traitement d'un signal dans un decodeur audio
US20080027733A1 (en) * 2004-05-14 2008-01-31 Matsushita Electric Industrial Co., Ltd. Encoding Device, Decoding Device, and Method Thereof
US20080033731A1 (en) * 2004-08-25 2008-02-07 Dolby Laboratories Licensing Corporation Temporal envelope shaping for spatial audio coding using frequency domain wiener filtering
US20080076374A1 (en) * 2006-09-25 2008-03-27 Avraham Grenader System and method for filtering of angle modulated signals
US20080120095A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Method and apparatus to encode and/or decode audio and/or speech signal
US20080126102A1 (en) * 2006-11-24 2008-05-29 Fujitsu Limited Decoding apparatus and decoding method
US20080126104A1 (en) * 2004-08-25 2008-05-29 Dolby Laboratories Licensing Corporation Multichannel Decorrelation In Spatial Audio Coding
EP1947644A1 (fr) * 2007-01-18 2008-07-23 Harman Becker Automotive Systems GmbH Procédé et appareil fournissant un signal acoustique avec une largeur de bande étendue
US20080281588A1 (en) * 2005-03-01 2008-11-13 Japan Advanced Institute Of Science And Technology Speech processing method and apparatus, storage medium, and speech system
US20080288262A1 (en) * 2006-11-24 2008-11-20 Fujitsu Limited Decoding apparatus and decoding method
US7461003B1 (en) * 2003-10-22 2008-12-02 Tellabs Operations, Inc. Methods and apparatus for improving the quality of speech signals
US20090129503A1 (en) * 2005-06-29 2009-05-21 Kyocera Corporation Communication Device, Communication System, and Modulation Method
US20090144062A1 (en) * 2007-11-29 2009-06-04 Motorola, Inc. Method and Apparatus to Facilitate Provision and Use of an Energy Value to Determine a Spectral Envelope Shape for Out-of-Signal Bandwidth Content
US20090150161A1 (en) * 2004-11-30 2009-06-11 Agere Systems Inc. Synchronizing parametric coding of spatial audio with externally provided downmix
US20090157411A1 (en) * 2006-09-29 2009-06-18 Dong Soo Kim Methods and apparatuses for encoding and decoding object-based audio signals
US20090198498A1 (en) * 2008-02-01 2009-08-06 Motorola, Inc. Method and Apparatus for Estimating High-Band Energy in a Bandwidth Extension System
US7636659B1 (en) 2003-12-01 2009-12-22 The Trustees Of Columbia University In The City Of New York Computer-implemented methods and systems for modeling and recognition of speech
US20100049342A1 (en) * 2008-08-21 2010-02-25 Motorola, Inc. Method and Apparatus to Facilitate Determining Signal Bounding Frequencies
US7685218B2 (en) 2001-04-10 2010-03-23 Dolby Laboratories Licensing Corporation High frequency signal construction method and apparatus
US20100094638A1 (en) * 2007-11-21 2010-04-15 Tae-Jin Lee Apparatus and method for deciding adaptive noise level for bandwidth extension
EP2186089A1 (fr) * 2007-08-27 2010-05-19 Telefonaktiebolaget L M Ericsson (PUBL) Procédé et dispositif de remplissage avec du bruit
EP2207170A1 (fr) 2002-06-17 2010-07-14 Dolby Laboratories Licensing Corporation Dispositif pour le décodage audio avec remplissage de trous spectraux
US20100198587A1 (en) * 2009-02-04 2010-08-05 Motorola, Inc. Bandwidth Extension Method and Apparatus for a Modified Discrete Cosine Transform Audio Coder
CN101237317B (zh) * 2006-11-27 2010-09-29 华为技术有限公司 确定发送频谱的方法和装置
US20100250261A1 (en) * 2007-11-06 2010-09-30 Lasse Laaksonen Encoder
US20100274555A1 (en) * 2007-11-06 2010-10-28 Lasse Laaksonen Audio Coding Apparatus and Method Thereof
WO2010136459A1 (fr) * 2009-05-27 2010-12-02 Dolby International Ab Transposition combinée efficace d'harmoniques
WO2011047887A1 (fr) * 2009-10-21 2011-04-28 Dolby International Ab Suréchantillonnage dans un banc de filtres de transposeur combiné
US20110112844A1 (en) * 2008-02-07 2011-05-12 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
WO2011110499A1 (fr) * 2010-03-09 2011-09-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Appareil et procédé permettant de traiter un signal audio à l'aide d'un alignement de limiteur de correctif
US20110261908A1 (en) * 2010-04-27 2011-10-27 Industrial Technology Research Institute Soft demapping method and apparatus and communication system thereof
EP1921610A3 (fr) * 2006-11-09 2011-11-30 Sony Corporation Appareil d'extension de bande de fréquence, procédé d'extension de bande de fréquence, procédé de lecture de l'appareil de lecture et support de programme et d'enregistrement
US20110320211A1 (en) * 2008-12-31 2011-12-29 Liu Zexin Method and apparatus for processing signal
WO2012095700A1 (fr) * 2011-01-12 2012-07-19 Nokia Corporation Appareil d'encodage/de décodage audio
US8340306B2 (en) 2004-11-30 2012-12-25 Agere Systems Llc Parametric coding of spatial audio with object-based side information
EP2555193A1 (fr) * 2010-03-31 2013-02-06 Sony Corporation Appareil de décodage, procédé de décodage, appareil d'encodage, procédé d'encodage, et programme
US20130041673A1 (en) * 2010-04-16 2013-02-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for generating a wideband signal using guided bandwidth extension and blind bandwidth extension
US20130124214A1 (en) * 2010-08-03 2013-05-16 Yuki Yamamoto Signal processing apparatus and method, and program
WO2013066238A3 (fr) * 2011-11-02 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Génération d'une extension à bande haute d'un signal audio à bande passante étendue
EP2631906A1 (fr) * 2012-02-27 2013-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Commande à cohérence de phase pour signaux harmoniques dans des codecs audio perceptuels
US8655649B2 (en) 2009-04-03 2014-02-18 Ntt Docomo, Inc. Speech encoding/decoding device
US20150012282A1 (en) * 2013-07-03 2015-01-08 Ear Machine LLC Processing Multichannel Audio Signals
CN104318930A (zh) * 2010-01-19 2015-01-28 杜比国际公司 子带处理单元以及生成合成子带信号的方法
US20150051904A1 (en) * 2012-04-27 2015-02-19 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US20150194157A1 (en) * 2014-01-06 2015-07-09 Nvidia Corporation System, method, and computer program product for artifact reduction in high-frequency regeneration audio signals
US9203367B2 (en) 2010-02-26 2015-12-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for modifying an audio signal using harmonic locking
US9240196B2 (en) 2010-03-09 2016-01-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for handling transient sound events in audio signals when changing the replay speed or pitch
CN105340010A (zh) * 2013-06-10 2016-02-17 弗朗霍夫应用科学研究促进协会 用于通过应用分布量化和编码分裂音频信号包络的音频信号包络编码、处理和解码的装置和方法
US20160055854A1 (en) * 2013-03-29 2016-02-25 Dolby Laboratories Licensing Corporation Methods and Apparatuses for Generating and Using Low-Resolution Preview Tracks with High-Quality Encoded Object and Multichannel Audio Signals
US9318127B2 (en) 2010-03-09 2016-04-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for improved magnitude response and temporal alignment in a phase vocoder based bandwidth extension method for audio signals
US9390717B2 (en) 2011-08-24 2016-07-12 Sony Corporation Encoding device and method, decoding device and method, and program
US9406312B2 (en) 2010-04-13 2016-08-02 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9659573B2 (en) 2010-04-13 2017-05-23 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
US20170330584A1 (en) * 2016-05-10 2017-11-16 JVC Kenwood Corporation Encoding device, decoding device, and communication system for extending voice band
CN107545900A (zh) * 2017-08-16 2018-01-05 广州广晟数码技术有限公司 带宽扩展编码和解码中高频弦信号生成的方法和装置
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
EP2923355B1 (fr) * 2012-11-26 2018-07-04 Harman International Industries, Inc. Système, support d'enregistrement lisible par ordinateur et procédé de réparation des signaux audio comprimés
US10157624B2 (en) 2013-08-23 2018-12-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an audio signal using a combination in an overlap range
WO2019081089A1 (fr) * 2017-10-27 2019-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Atténuation de bruit au niveau d'un décodeur
US10283122B2 (en) 2010-07-19 2019-05-07 Dolby International Ab Processing of audio signals during high frequency reconstruction
CN110299147A (zh) * 2013-06-21 2019-10-01 弗朗霍夫应用科学研究促进协会 针对切换式音频编码系统在错误隐藏过程中的改善信号衰落的装置及方法
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
US10734008B2 (en) 2013-06-10 2020-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for audio signal envelope encoding, processing, and decoding by modelling a cumulative sum representation employing distribution quantization and coding
CN111554310A (zh) * 2013-07-22 2020-08-18 弗劳恩霍夫应用研究促进协会 用频谱域智能间隙填充编码或解码音频信号的设备及方法
USRE48210E1 (en) * 2004-01-27 2020-09-15 Dolby Laboratories Licensing Corporation Coding techniques using estimated spectral magnitude and phase derived from MDCT coefficients
US20210110836A1 (en) * 2007-08-27 2021-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive transition frequency between noise fill and bandwidth extension
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
US12002476B2 (en) 2010-07-19 2024-06-04 Dolby International Ab Processing of audio signals during high frequency reconstruction

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030187663A1 (en) 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
KR101058062B1 (ko) 2003-06-30 2011-08-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 잡음 부가에 의한 디코딩된 오디오의 품질 개선
DE102004021403A1 (de) * 2004-04-30 2005-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Informationssignalverarbeitung durch Modifikation in der Spektral-/Modulationsspektralbereichsdarstellung
MY149811A (en) 2004-08-30 2013-10-14 Qualcomm Inc Method and apparatus for an adaptive de-jitter buffer
US8085678B2 (en) 2004-10-13 2011-12-27 Qualcomm Incorporated Media (voice) playback (de-jitter) buffer adjustments based on air interface
US8355907B2 (en) * 2005-03-11 2013-01-15 Qualcomm Incorporated Method and apparatus for phase matching frames in vocoders
US8155965B2 (en) 2005-03-11 2012-04-10 Qualcomm Incorporated Time warping frames inside the vocoder by modifying the residual
DE102005032724B4 (de) 2005-07-13 2009-10-08 Siemens Ag Verfahren und Vorrichtung zur künstlichen Erweiterung der Bandbreite von Sprachsignalen
JP5034228B2 (ja) * 2005-11-30 2012-09-26 株式会社Jvcケンウッド 補間装置、音再生装置、補間方法および補間プログラム
US8126706B2 (en) * 2005-12-09 2012-02-28 Acoustic Technologies, Inc. Music detector for echo cancellation and noise reduction
EP3712888B1 (fr) * 2007-03-30 2024-05-08 Electronics and Telecommunications Research Institute Appareil et procédé de codage et de décodage de signal audio à plusieurs objets avec de multiples canaux
KR20090110244A (ko) * 2008-04-17 2009-10-21 삼성전자주식회사 오디오 시맨틱 정보를 이용한 오디오 신호의 부호화/복호화 방법 및 그 장치
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
USRE47180E1 (en) * 2008-07-11 2018-12-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating a bandwidth extended signal
CN101727906B (zh) * 2008-10-29 2012-02-01 华为技术有限公司 高频带信号的编解码方法及装置
JP5387076B2 (ja) * 2009-03-17 2014-01-15 ヤマハ株式会社 音処理装置およびプログラム
RU2452044C1 (ru) 2009-04-02 2012-05-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Устройство, способ и носитель с программным кодом для генерирования представления сигнала с расширенным диапазоном частот на основе представления входного сигнала с использованием сочетания гармонического расширения диапазона частот и негармонического расширения диапазона частот
EP2239732A1 (fr) 2009-04-09 2010-10-13 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Appareil et procédé pour générer un signal audio de synthèse et pour encoder un signal audio
AU2012204068B2 (en) * 2009-04-03 2013-12-19 Ntt Docomo, Inc. Speech encoding device, speech decoding device, speech encoding method, speech decoding method, speech encoding program, and speech decoding program
JP4921611B2 (ja) * 2009-04-03 2012-04-25 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
TWI401923B (zh) * 2009-06-06 2013-07-11 Generalplus Technology Inc 適應性時脈重建方法與裝置以及進行音頻解碼方法
US8699727B2 (en) 2010-01-15 2014-04-15 Apple Inc. Visually-assisted mixing of audio using a spectral analyzer
TWI443646B (zh) 2010-02-18 2014-07-01 Dolby Lab Licensing Corp 音訊解碼器及使用有效降混之解碼方法
JP6103324B2 (ja) * 2010-04-13 2017-03-29 ソニー株式会社 信号処理装置および方法、並びにプログラム
CN103069484B (zh) * 2010-04-14 2014-10-08 华为技术有限公司 时/频二维后处理
US9443534B2 (en) 2010-04-14 2016-09-13 Huawei Technologies Co., Ltd. Bandwidth extension system and approach
CN102237954A (zh) * 2010-04-30 2011-11-09 财团法人工业技术研究院 软性解映射方法及其装置与其通讯系统
EP2581905B1 (fr) * 2010-06-09 2016-01-06 Panasonic Intellectual Property Corporation of America Procédé d'amélioration de bande, appareil d'amélioration de bande, circuit intégré et décodeur audio
US8762158B2 (en) * 2010-08-06 2014-06-24 Samsung Electronics Co., Ltd. Decoding method and decoding apparatus therefor
US8759661B2 (en) 2010-08-31 2014-06-24 Sonivox, L.P. System and method for audio synthesizer utilizing frequency aperture arrays
US8649388B2 (en) 2010-09-02 2014-02-11 Integrated Device Technology, Inc. Transmission of multiprotocol data in a distributed antenna system
US8989088B2 (en) * 2011-01-07 2015-03-24 Integrated Device Technology Inc. OFDM signal processing in a base transceiver system
US9059778B2 (en) * 2011-01-07 2015-06-16 Integrated Device Technology Inc. Frequency domain compression in a base transceiver system
CA2827482C (fr) * 2011-02-18 2018-01-02 Ntt Docomo, Inc. Decodeur de la parole, codeur de la parole, procede de decodage de la parole, procede de codage de la parole, programme de decodage de la parole et programme de codage de la parol e
US8653354B1 (en) * 2011-08-02 2014-02-18 Sonivoz, L.P. Audio synthesizing systems and methods
CN103368682B (zh) 2012-03-29 2016-12-07 华为技术有限公司 信号编码和解码的方法和设备
US9369149B1 (en) 2012-05-03 2016-06-14 Integrated Device Technology, Inc. Method and apparatus for efficient baseband unit processing in a communication system
US9313453B2 (en) * 2012-08-20 2016-04-12 Mitel Networks Corporation Localization algorithm for conferencing
US9640190B2 (en) * 2012-08-29 2017-05-02 Nippon Telegraph And Telephone Corporation Decoding method, decoding apparatus, program, and recording medium therefor
CN103971693B (zh) 2013-01-29 2017-02-22 华为技术有限公司 高频带信号的预测方法、编/解码设备
US8804971B1 (en) 2013-04-30 2014-08-12 Dolby International Ab Hybrid encoding of higher frequency and downmixed low frequency content of multichannel audio
US9203933B1 (en) 2013-08-28 2015-12-01 Integrated Device Technology, Inc. Method and apparatus for efficient data compression in a communication system
US9553954B1 (en) 2013-10-01 2017-01-24 Integrated Device Technology, Inc. Method and apparatus utilizing packet segment compression parameters for compression in a communication system
US9398489B1 (en) 2013-10-09 2016-07-19 Integrated Device Technology Method and apparatus for context based data compression in a communication system
US8989257B1 (en) 2013-10-09 2015-03-24 Integrated Device Technology Inc. Method and apparatus for providing near-zero jitter real-time compression in a communication system
US9485688B1 (en) 2013-10-09 2016-11-01 Integrated Device Technology, Inc. Method and apparatus for controlling error and identifying bursts in a data compression system
US9313300B2 (en) 2013-11-07 2016-04-12 Integrated Device Technology, Inc. Methods and apparatuses for a unified compression framework of baseband signals
KR20160087827A (ko) * 2013-11-22 2016-07-22 퀄컴 인코포레이티드 고대역 코딩에서의 선택적 위상 보상
FR3017484A1 (fr) * 2014-02-07 2015-08-14 Orange Extension amelioree de bande de frequence dans un decodeur de signaux audiofrequences
US9542955B2 (en) 2014-03-31 2017-01-10 Qualcomm Incorporated High-band signal coding using multiple sub-bands
KR101861787B1 (ko) * 2014-05-01 2018-05-28 니폰 덴신 덴와 가부시끼가이샤 부호화 장치, 복호 장치, 부호화 방법, 복호 방법, 부호화 프로그램, 복호 프로그램, 기록매체
WO2015189533A1 (fr) * 2014-06-10 2015-12-17 Meridian Audio Limited Encapsulation numérique de signaux audio
WO2016066217A1 (fr) * 2014-10-31 2016-05-06 Telefonaktiebolaget L M Ericsson (Publ) Récepteur radio, procédé de détection d'un signal indésirable dans le récepteur radio, et programme d'ordinateur
CN107210029B (zh) * 2014-12-11 2020-07-17 优博肖德Ug公司 用于处理一连串信号以进行复调音符辨识的方法和装置
KR20180056032A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 신호 처리 프로세서 및 신호 처리 프로세서의 제어 방법
US11176958B2 (en) * 2017-04-28 2021-11-16 Hewlett-Packard Development Company, L.P. Loudness enhancement based on multiband range compression
KR102468799B1 (ko) 2017-08-11 2022-11-18 삼성전자 주식회사 전자장치, 그 제어방법 및 그 컴퓨터프로그램제품
EP3483886A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sélection de délai tonal
WO2019091576A1 (fr) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Codeurs audio, décodeurs audio, procédés et programmes informatiques adaptant un codage et un décodage de bits les moins significatifs
EP3483884A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Filtrage de signal
EP3483878A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Décodeur audio supportant un ensemble de différents outils de dissimulation de pertes
EP3483880A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mise en forme de bruit temporel
WO2019091573A1 (fr) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Appareil et procédé de codage et de décodage d'un signal audio utilisant un sous-échantillonnage ou une interpolation de paramètres d'échelle
EP3483882A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Contrôle de la bande passante dans des codeurs et/ou des décodeurs
EP3483879A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Fonction de fenêtrage d'analyse/de synthèse pour une transformation chevauchante modulée
EP3483883A1 (fr) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Codage et décodage de signaux audio avec postfiltrage séléctif
US10714098B2 (en) 2017-12-21 2020-07-14 Dolby Laboratories Licensing Corporation Selective forward error correction for spatial audio codecs
TWI834582B (zh) 2018-01-26 2024-03-01 瑞典商都比國際公司 用於執行一音訊信號之高頻重建之方法、音訊處理單元及非暫時性電腦可讀媒體
CN112154502B (zh) 2018-04-05 2024-03-01 瑞典爱立信有限公司 支持生成舒适噪声
CN109036457B (zh) 2018-09-10 2021-10-08 广州酷狗计算机科技有限公司 恢复音频信号的方法和装置
CN115318605B (zh) * 2022-07-22 2023-09-08 东北大学 变频超声换能器自动匹配方法

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684838A (en) * 1968-06-26 1972-08-15 Kahn Res Lab Single channel audio signal transmission system
US3995115A (en) * 1967-08-25 1976-11-30 Bell Telephone Laboratories, Incorporated Speech privacy system
US4610022A (en) * 1981-12-15 1986-09-02 Kokusai Denshin Denwa Co., Ltd. Voice encoding and decoding device
US4667340A (en) * 1983-04-13 1987-05-19 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
US4757517A (en) * 1986-04-04 1988-07-12 Kokusai Denshin Denwa Kabushiki Kaisha System for transmitting voice signal
US4776014A (en) * 1986-09-02 1988-10-04 General Electric Company Method for pitch-aligned high-frequency regeneration in RELP vocoders
US4790016A (en) * 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
US4866777A (en) * 1984-11-09 1989-09-12 Alcatel Usa Corporation Apparatus for extracting features from a speech signal
US4885790A (en) * 1985-03-18 1989-12-05 Massachusetts Institute Of Technology Processing of acoustic waveforms
US4914701A (en) * 1984-12-20 1990-04-03 Gte Laboratories Incorporated Method and apparatus for encoding speech
US4935963A (en) * 1986-01-24 1990-06-19 Racal Data Communications Inc. Method and apparatus for processing speech signals
US5001758A (en) * 1986-04-30 1991-03-19 International Business Machines Corporation Voice coding process and device for implementing said process
US5054075A (en) * 1989-09-05 1991-10-01 Motorola, Inc. Subband decoding method and apparatus
US5054072A (en) * 1987-04-02 1991-10-01 Massachusetts Institute Of Technology Coding of acoustic waveforms
US5109417A (en) * 1989-01-27 1992-04-28 Dolby Laboratories Licensing Corporation Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio
US5127054A (en) * 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
US5394473A (en) * 1990-04-12 1995-02-28 Dolby Laboratories Licensing Corporation Adaptive-block-length, adaptive-transforn, and adaptive-window transform coder, decoder, and encoder/decoder for high-quality audio
US5583962A (en) * 1991-01-08 1996-12-10 Dolby Laboratories Licensing Corporation Encoder/decoder for multidimensional sound fields
US5587998A (en) * 1995-03-03 1996-12-24 At&T Method and apparatus for reducing residual far-end echo in voice communication networks
US5623577A (en) * 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
US5636324A (en) * 1992-03-30 1997-06-03 Matsushita Electric Industrial Co., Ltd. Apparatus and method for stereo audio encoding of digital audio signal data
US5744739A (en) * 1996-09-13 1998-04-28 Crystal Semiconductor Wavetable synthesizer and operating method using a variable sampling rate approximation
US5937378A (en) * 1996-06-21 1999-08-10 Nec Corporation Wideband speech coder and decoder that band divides an input speech signal and performs analysis on the band-divided speech signal
US5950156A (en) * 1995-10-04 1999-09-07 Sony Corporation High efficient signal coding method and apparatus therefor
US5953697A (en) * 1996-12-19 1999-09-14 Holtek Semiconductor, Inc. Gain estimation scheme for LPC vocoders with a shape index based on signal envelopes
US6019607A (en) * 1997-12-17 2000-02-01 Jenkins; William M. Method and apparatus for training of sensory and perceptual systems in LLI systems
US6104996A (en) * 1996-10-01 2000-08-15 Nokia Mobile Phones Limited Audio coding with low-order adaptive prediction of transients
US6336092B1 (en) * 1997-04-28 2002-01-01 Ivl Technologies Ltd Targeted vocal transformation
US6341165B1 (en) * 1996-07-12 2002-01-22 Fraunhofer-Gesellschaft zur Förderdung der Angewandten Forschung E.V. Coding and decoding of audio signals by using intensity stereo and prediction processes
US6424939B1 (en) * 1997-07-14 2002-07-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for coding an audio signal
US6487535B1 (en) * 1995-12-01 2002-11-26 Digital Theater Systems, Inc. Multi-channel audio encoder
US6675144B1 (en) * 1997-05-15 2004-01-06 Hewlett-Packard Development Company, L.P. Audio coding systems and methods
US6680972B1 (en) * 1997-06-10 2004-01-20 Coding Technologies Sweden Ab Source coding enhancement using spectral-band replication
US20040131203A1 (en) * 2000-05-23 2004-07-08 Lars Liljeryd Spectral translation/ folding in the subband domain
US7219065B1 (en) * 1999-10-26 2007-05-15 Vandali Andrew E Emphasis of short-duration transient speech features

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051331A (en) * 1976-03-29 1977-09-27 Brigham Young University Speech coding hearing aid system utilizing formant frequency transformation
US4232194A (en) * 1979-03-16 1980-11-04 Ocean Technology, Inc. Voice encryption system
NL7908213A (nl) * 1979-11-09 1981-06-01 Philips Nv Spraaksynthese inrichting met tenminste twee vervormingsketens.
US4419544A (en) * 1982-04-26 1983-12-06 Adelman Roger A Signal processing apparatus
DE3785189T2 (de) * 1987-04-22 1993-10-07 Ibm Verfahren und Einrichtung zur Veränderung von Sprachgeschwindigkeit.
US4964166A (en) * 1988-05-26 1990-10-16 Pacific Communication Science, Inc. Adaptive transform coder having minimal bit allocation processing
US5327457A (en) * 1991-09-13 1994-07-05 Motorola, Inc. Operation indicative background noise in a digital receiver
US5455888A (en) * 1992-12-04 1995-10-03 Northern Telecom Limited Speech bandwidth extension method and apparatus
EP0653846B1 (fr) * 1993-05-31 2001-12-19 Sony Corporation Appareil et procede de codage ou decodage de signaux, et support d'enregistrement
CN1045852C (zh) * 1993-10-08 1999-10-20 索尼公司 数字信号处理装置和数字信号处理方法
JPH07160299A (ja) * 1993-12-06 1995-06-23 Hitachi Denshi Ltd 音声信号帯域圧縮伸張装置並びに音声信号の帯域圧縮伝送方式及び再生方式
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US6169813B1 (en) * 1994-03-16 2001-01-02 Hearing Innovations Incorporated Frequency transpositional hearing aid with single sideband modulation
US6173062B1 (en) * 1994-03-16 2001-01-09 Hearing Innovations Incorporated Frequency transpositional hearing aid with digital and single sideband modulation
EP0775409A4 (fr) * 1994-08-12 2000-03-22 Neosoft Ag Systeme de telecommunication numerique non lineaire
DE69619284T3 (de) * 1995-03-13 2006-04-27 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zur Erweiterung der Sprachbandbreite
DE19509149A1 (de) 1995-03-14 1996-09-19 Donald Dipl Ing Schulz Codierverfahren
JPH08328599A (ja) 1995-06-01 1996-12-13 Mitsubishi Electric Corp Mpegオーディオ復号器
US6098038A (en) * 1996-09-27 2000-08-01 Oregon Graduate Institute Of Science & Technology Method and system for adaptive speech enhancement using frequency specific signal-to-noise ratio estimates
JPH10124088A (ja) * 1996-10-24 1998-05-15 Sony Corp 音声帯域幅拡張装置及び方法
US6167375A (en) * 1997-03-17 2000-12-26 Kabushiki Kaisha Toshiba Method for encoding and decoding a speech signal including background noise
JPH10341256A (ja) * 1997-06-10 1998-12-22 Logic Corp 音声から有音を抽出し、抽出有音から音声を再生する方法および装置
US6035048A (en) * 1997-06-18 2000-03-07 Lucent Technologies Inc. Method and apparatus for reducing noise in speech and audio signals
US5899969A (en) 1997-10-17 1999-05-04 Dolby Laboratories Licensing Corporation Frame-based audio coding with gain-control words
US6159014A (en) * 1997-12-17 2000-12-12 Scientific Learning Corp. Method and apparatus for training of cognitive and memory systems in humans
JP3473828B2 (ja) 1998-06-26 2003-12-08 株式会社東芝 オーディオ用光ディスク及び情報再生方法及び再生装置
SE9903553D0 (sv) * 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
EP1126620B1 (fr) * 1999-05-14 2005-12-21 Matsushita Electric Industrial Co., Ltd. Procede et appareil d'elargissement de la bande d'un signal audio
US6226616B1 (en) * 1999-06-21 2001-05-01 Digital Theater Systems, Inc. Sound quality of established low bit-rate audio coding systems without loss of decoder compatibility
GB2351889B (en) * 1999-07-06 2003-12-17 Ericsson Telefon Ab L M Speech band expansion
US6978236B1 (en) * 1999-10-01 2005-12-20 Coding Technologies Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
US7058572B1 (en) * 2000-01-28 2006-06-06 Nortel Networks Limited Reducing acoustic noise in wireless and landline based telephony
US6704711B2 (en) * 2000-01-28 2004-03-09 Telefonaktiebolaget Lm Ericsson (Publ) System and method for modifying speech signals
FR2807897B1 (fr) * 2000-04-18 2003-07-18 France Telecom Methode et dispositif d'enrichissement spectral
US7742927B2 (en) * 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
EP1158800A1 (fr) 2000-05-18 2001-11-28 Deutsche Thomson-Brandt Gmbh Procédé et récepteur permettant de fournir des données de sous-titre en plusieurs langues à la demande
EP1158799A1 (fr) 2000-05-18 2001-11-28 Deutsche Thomson-Brandt Gmbh Procédé et récepteur permettant de fournir des données de sous-titre en plusieurs langues à la demande
US7330814B2 (en) * 2000-05-22 2008-02-12 Texas Instruments Incorporated Wideband speech coding with modulated noise highband excitation system and method
CN1381040A (zh) * 2000-05-26 2002-11-20 皇家菲利浦电子有限公司 发送以窄带编码信号的发射机和在接收端扩展信号频带的接收机
US20020016698A1 (en) * 2000-06-26 2002-02-07 Toshimichi Tokuda Device and method for audio frequency range expansion
SE0004163D0 (sv) * 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
SE0004187D0 (sv) * 2000-11-15 2000-11-15 Coding Technologies Sweden Ab Enhancing the performance of coding systems that use high frequency reconstruction methods
US7236929B2 (en) * 2001-05-09 2007-06-26 Plantronics, Inc. Echo suppression and speech detection techniques for telephony applications
US6941263B2 (en) * 2001-06-29 2005-09-06 Microsoft Corporation Frequency domain postfiltering for quality enhancement of coded speech
WO2003044777A1 (fr) * 2001-11-23 2003-05-30 Koninklijke Philips Electronics N.V. Extension de largeur de bande de signal audio
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
US7502743B2 (en) * 2002-09-04 2009-03-10 Microsoft Corporation Multi-channel audio encoding and decoding with multi-channel transform selection
WO2004084182A1 (fr) * 2003-03-15 2004-09-30 Mindspeed Technologies, Inc. Decomposition de la voix parlee destinee au codage de la parole celp
EP1638083B1 (fr) * 2004-09-17 2009-04-22 Harman Becker Automotive Systems GmbH Extension de la largeur de bande de signaux audio à bande limitée
US8086451B2 (en) * 2005-04-20 2011-12-27 Qnx Software Systems Co. System for improving speech intelligibility through high frequency compression
US7831434B2 (en) * 2006-01-20 2010-11-09 Microsoft Corporation Complex-transform channel coding with extended-band frequency coding
US8015368B2 (en) * 2007-04-20 2011-09-06 Siport, Inc. Processor extensions for accelerating spectral band replication

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995115A (en) * 1967-08-25 1976-11-30 Bell Telephone Laboratories, Incorporated Speech privacy system
US3684838A (en) * 1968-06-26 1972-08-15 Kahn Res Lab Single channel audio signal transmission system
US4610022A (en) * 1981-12-15 1986-09-02 Kokusai Denshin Denwa Co., Ltd. Voice encoding and decoding device
US4667340A (en) * 1983-04-13 1987-05-19 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
US4866777A (en) * 1984-11-09 1989-09-12 Alcatel Usa Corporation Apparatus for extracting features from a speech signal
US4914701A (en) * 1984-12-20 1990-04-03 Gte Laboratories Incorporated Method and apparatus for encoding speech
USRE36478E (en) * 1985-03-18 1999-12-28 Massachusetts Institute Of Technology Processing of acoustic waveforms
US4885790A (en) * 1985-03-18 1989-12-05 Massachusetts Institute Of Technology Processing of acoustic waveforms
US4790016A (en) * 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
US4935963A (en) * 1986-01-24 1990-06-19 Racal Data Communications Inc. Method and apparatus for processing speech signals
US4757517A (en) * 1986-04-04 1988-07-12 Kokusai Denshin Denwa Kabushiki Kaisha System for transmitting voice signal
US5001758A (en) * 1986-04-30 1991-03-19 International Business Machines Corporation Voice coding process and device for implementing said process
US4776014A (en) * 1986-09-02 1988-10-04 General Electric Company Method for pitch-aligned high-frequency regeneration in RELP vocoders
US5054072A (en) * 1987-04-02 1991-10-01 Massachusetts Institute Of Technology Coding of acoustic waveforms
US5127054A (en) * 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
US5109417A (en) * 1989-01-27 1992-04-28 Dolby Laboratories Licensing Corporation Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio
US5054075A (en) * 1989-09-05 1991-10-01 Motorola, Inc. Subband decoding method and apparatus
US5394473A (en) * 1990-04-12 1995-02-28 Dolby Laboratories Licensing Corporation Adaptive-block-length, adaptive-transforn, and adaptive-window transform coder, decoder, and encoder/decoder for high-quality audio
US5583962A (en) * 1991-01-08 1996-12-10 Dolby Laboratories Licensing Corporation Encoder/decoder for multidimensional sound fields
US5636324A (en) * 1992-03-30 1997-06-03 Matsushita Electric Industrial Co., Ltd. Apparatus and method for stereo audio encoding of digital audio signal data
US5623577A (en) * 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
US5587998A (en) * 1995-03-03 1996-12-24 At&T Method and apparatus for reducing residual far-end echo in voice communication networks
US5950156A (en) * 1995-10-04 1999-09-07 Sony Corporation High efficient signal coding method and apparatus therefor
US6487535B1 (en) * 1995-12-01 2002-11-26 Digital Theater Systems, Inc. Multi-channel audio encoder
US5937378A (en) * 1996-06-21 1999-08-10 Nec Corporation Wideband speech coder and decoder that band divides an input speech signal and performs analysis on the band-divided speech signal
US6341165B1 (en) * 1996-07-12 2002-01-22 Fraunhofer-Gesellschaft zur Förderdung der Angewandten Forschung E.V. Coding and decoding of audio signals by using intensity stereo and prediction processes
US5744739A (en) * 1996-09-13 1998-04-28 Crystal Semiconductor Wavetable synthesizer and operating method using a variable sampling rate approximation
US6104996A (en) * 1996-10-01 2000-08-15 Nokia Mobile Phones Limited Audio coding with low-order adaptive prediction of transients
US5953697A (en) * 1996-12-19 1999-09-14 Holtek Semiconductor, Inc. Gain estimation scheme for LPC vocoders with a shape index based on signal envelopes
US6336092B1 (en) * 1997-04-28 2002-01-01 Ivl Technologies Ltd Targeted vocal transformation
US6675144B1 (en) * 1997-05-15 2004-01-06 Hewlett-Packard Development Company, L.P. Audio coding systems and methods
US6680972B1 (en) * 1997-06-10 2004-01-20 Coding Technologies Sweden Ab Source coding enhancement using spectral-band replication
US6424939B1 (en) * 1997-07-14 2002-07-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for coding an audio signal
US6019607A (en) * 1997-12-17 2000-02-01 Jenkins; William M. Method and apparatus for training of sensory and perceptual systems in LLI systems
US7219065B1 (en) * 1999-10-26 2007-05-15 Vandali Andrew E Emphasis of short-duration transient speech features
US20040131203A1 (en) * 2000-05-23 2004-07-08 Lars Liljeryd Spectral translation/ folding in the subband domain

Cited By (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8239208B2 (en) 2000-04-18 2012-08-07 France Telecom Sa Spectral enhancing method and device
US20030158726A1 (en) * 2000-04-18 2003-08-21 Pierrick Philippe Spectral enhancing method and device
US20100250264A1 (en) * 2000-04-18 2010-09-30 France Telecom Sa Spectral enhancing method and device
US7742927B2 (en) * 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
US7685218B2 (en) 2001-04-10 2010-03-23 Dolby Laboratories Licensing Corporation High frequency signal construction method and apparatus
US20050058304A1 (en) * 2001-05-04 2005-03-17 Frank Baumgarte Cue-based audio coding/decoding
US7693721B2 (en) 2001-05-04 2010-04-06 Agere Systems Inc. Hybrid multi-channel/cue coding/decoding of audio signals
US7644003B2 (en) 2001-05-04 2010-01-05 Agere Systems Inc. Cue-based audio coding/decoding
US8200500B2 (en) 2001-05-04 2012-06-12 Agere Systems Inc. Cue-based audio coding/decoding
US20030026441A1 (en) * 2001-05-04 2003-02-06 Christof Faller Perceptual synthesis of auditory scenes
US20090319281A1 (en) * 2001-05-04 2009-12-24 Agere Systems Inc. Cue-based audio coding/decoding
US7941320B2 (en) 2001-05-04 2011-05-10 Agere Systems, Inc. Cue-based audio coding/decoding
US20070003069A1 (en) * 2001-05-04 2007-01-04 Christof Faller Perceptual synthesis of auditory scenes
US20110164756A1 (en) * 2001-05-04 2011-07-07 Agere Systems Inc. Cue-Based Audio Coding/Decoding
US7116787B2 (en) 2001-05-04 2006-10-03 Agere Systems Inc. Perceptual synthesis of auditory scenes
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
EP2207170A1 (fr) 2002-06-17 2010-07-14 Dolby Laboratories Licensing Corporation Dispositif pour le décodage audio avec remplissage de trous spectraux
EP2207169A1 (fr) 2002-06-17 2010-07-14 Dolby Laboratories Licensing Corporation Dispositif pour le codage audio avec remplissement de trous spectraux
US20030236583A1 (en) * 2002-06-24 2003-12-25 Frank Baumgarte Hybrid multi-channel/cue coding/decoding of audio signals
US7292901B2 (en) 2002-06-24 2007-11-06 Agere Systems Inc. Hybrid multi-channel/cue coding/decoding of audio signals
US20040138876A1 (en) * 2003-01-10 2004-07-15 Nokia Corporation Method and apparatus for artificial bandwidth expansion in speech processing
EP1482482A1 (fr) * 2003-05-27 2004-12-01 Siemens Aktiengesellschaft Elargissement en frequence pour synthetiseur
US7630780B2 (en) 2003-05-27 2009-12-08 Palm, Inc. Frequency expansion for synthesizer
US20040259601A1 (en) * 2003-05-27 2004-12-23 Ihle Marc Frequency expansion for synthesizer
US20050004793A1 (en) * 2003-07-03 2005-01-06 Pasi Ojala Signal adaptation for higher band coding in a codec utilizing band split coding
US20090132260A1 (en) * 2003-10-22 2009-05-21 Tellabs Operations, Inc. Method and Apparatus for Improving the Quality of Speech Signals
US8095374B2 (en) 2003-10-22 2012-01-10 Tellabs Operations, Inc. Method and apparatus for improving the quality of speech signals
US7461003B1 (en) * 2003-10-22 2008-12-02 Tellabs Operations, Inc. Methods and apparatus for improving the quality of speech signals
US7636659B1 (en) 2003-12-01 2009-12-22 The Trustees Of Columbia University In The City Of New York Computer-implemented methods and systems for modeling and recognition of speech
US7672838B1 (en) * 2003-12-01 2010-03-02 The Trustees Of Columbia University In The City Of New York Systems and methods for speech recognition using frequency domain linear prediction polynomials to form temporal and spectral envelopes from frequency domain representations of signals
USRE48210E1 (en) * 2004-01-27 2020-09-15 Dolby Laboratories Licensing Corporation Coding techniques using estimated spectral magnitude and phase derived from MDCT coefficients
USRE48271E1 (en) * 2004-01-27 2020-10-20 Dolby Laboratories Licensing Corporation Coding techniques using estimated spectral magnitude and phase derived from MDCT coefficients
US20050180579A1 (en) * 2004-02-12 2005-08-18 Frank Baumgarte Late reverberation-based synthesis of auditory scenes
US7583805B2 (en) 2004-02-12 2009-09-01 Agere Systems Inc. Late reverberation-based synthesis of auditory scenes
US7805313B2 (en) 2004-03-04 2010-09-28 Agere Systems Inc. Frequency-based coding of channels in parametric multi-channel coding systems
US20050195981A1 (en) * 2004-03-04 2005-09-08 Christof Faller Frequency-based coding of channels in parametric multi-channel coding systems
US20050256723A1 (en) * 2004-05-14 2005-11-17 Mansour Mohamed F Efficient filter bank computation for audio coding
US8417515B2 (en) * 2004-05-14 2013-04-09 Panasonic Corporation Encoding device, decoding device, and method thereof
US7512536B2 (en) * 2004-05-14 2009-03-31 Texas Instruments Incorporated Efficient filter bank computation for audio coding
US20080027733A1 (en) * 2004-05-14 2008-01-31 Matsushita Electric Industrial Co., Ltd. Encoding Device, Decoding Device, and Method Thereof
WO2006003550A1 (fr) * 2004-06-28 2006-01-12 Koninklijke Philips Electronics N.V. Audio sans fil
JP2008504566A (ja) * 2004-06-28 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 音響送信装置、音響受信装置、周波数範囲適応装置、音響信号送信方法
US7921007B2 (en) 2004-08-17 2011-04-05 Koninklijke Philips Electronics N.V. Scalable audio coding
US20070198274A1 (en) * 2004-08-17 2007-08-23 Koninklijke Philips Electronics, N.V. Scalable audio coding
WO2006018748A1 (fr) * 2004-08-17 2006-02-23 Koninklijke Philips Electronics N.V. Codage audio echelonnable
JP2008510197A (ja) * 2004-08-17 2008-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スケーラブルなオーディオ符号化
US20080040103A1 (en) * 2004-08-25 2008-02-14 Dolby Laboratories Licensing Corporation Temporal envelope shaping for spatial audio coding using frequency domain wiener filtering
US8015018B2 (en) 2004-08-25 2011-09-06 Dolby Laboratories Licensing Corporation Multichannel decorrelation in spatial audio coding
EP4036914A1 (fr) 2004-08-25 2022-08-03 Dolby Laboratories Licensing Corporation Configuration d'enveloppe temporelle pour codage audio spatial par filtrage de wiener du domaine de fréquence
EP3279893A1 (fr) 2004-08-25 2018-02-07 Dolby Laboratories Licensing Corporation Configuration d'enveloppe temporelle pour codage audio spatial par filtrage de wiener du domaine de frequence
US20080126104A1 (en) * 2004-08-25 2008-05-29 Dolby Laboratories Licensing Corporation Multichannel Decorrelation In Spatial Audio Coding
US7945449B2 (en) 2004-08-25 2011-05-17 Dolby Laboratories Licensing Corporation Temporal envelope shaping for spatial audio coding using frequency domain wiener filtering
US8255211B2 (en) 2004-08-25 2012-08-28 Dolby Laboratories Licensing Corporation Temporal envelope shaping for spatial audio coding using frequency domain wiener filtering
EP3940697A1 (fr) 2004-08-25 2022-01-19 Dolby Laboratories Licensing Corp. Configuration d'enveloppe temporelle pour codage audio spatial par filtrage de wiener du domaine de fréquence
US20080033731A1 (en) * 2004-08-25 2008-02-07 Dolby Laboratories Licensing Corporation Temporal envelope shaping for spatial audio coding using frequency domain wiener filtering
US8238562B2 (en) 2004-10-20 2012-08-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Diffuse sound shaping for BCC schemes and the like
CN101044551B (zh) * 2004-10-20 2012-02-08 弗劳恩霍夫应用研究促进协会 用于双声道提示编码方案和类似方案的单通道整形
US20060085200A1 (en) * 2004-10-20 2006-04-20 Eric Allamanche Diffuse sound shaping for BCC schemes and the like
AU2005299068B2 (en) * 2004-10-20 2008-10-30 Dolby Laboratories Licensing Corporation Individual channel temporal envelope shaping for binaural cue coding schemes and the like
US20090319282A1 (en) * 2004-10-20 2009-12-24 Agere Systems Inc. Diffuse sound shaping for bcc schemes and the like
WO2006045371A1 (fr) * 2004-10-20 2006-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mise en forme de l'enveloppe temporelle de canaux individuels pour des schemas de codage repere biauriculaire analogues
KR100924576B1 (ko) 2004-10-20 2009-11-02 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 바이노럴 큐 코딩 방법 등을 위한 개별 채널 시간 엔벌로프정형
US8204261B2 (en) 2004-10-20 2012-06-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Diffuse sound shaping for BCC schemes and the like
US20060083385A1 (en) * 2004-10-20 2006-04-20 Eric Allamanche Individual channel shaping for BCC schemes and the like
US7720230B2 (en) 2004-10-20 2010-05-18 Agere Systems, Inc. Individual channel shaping for BCC schemes and the like
US20060115100A1 (en) * 2004-11-30 2006-06-01 Christof Faller Parametric coding of spatial audio with cues based on transmitted channels
US7761304B2 (en) 2004-11-30 2010-07-20 Agere Systems Inc. Synchronizing parametric coding of spatial audio with externally provided downmix
US8340306B2 (en) 2004-11-30 2012-12-25 Agere Systems Llc Parametric coding of spatial audio with object-based side information
US7787631B2 (en) 2004-11-30 2010-08-31 Agere Systems Inc. Parametric coding of spatial audio with cues based on transmitted channels
US20090150161A1 (en) * 2004-11-30 2009-06-11 Agere Systems Inc. Synchronizing parametric coding of spatial audio with externally provided downmix
US20060153408A1 (en) * 2005-01-10 2006-07-13 Christof Faller Compact side information for parametric coding of spatial audio
US7903824B2 (en) 2005-01-10 2011-03-08 Agere Systems Inc. Compact side information for parametric coding of spatial audio
US8065138B2 (en) * 2005-03-01 2011-11-22 Japan Advanced Institute Of Science And Technology Speech processing method and apparatus, storage medium, and speech system
US20080281588A1 (en) * 2005-03-01 2008-11-13 Japan Advanced Institute Of Science And Technology Speech processing method and apparatus, storage medium, and speech system
WO2006108543A1 (fr) * 2005-04-15 2006-10-19 Coding Technologies Ab Mise en forme de l'enveloppe temporaire d'un signal decorrele
KR100933548B1 (ko) 2005-04-15 2009-12-23 돌비 스웨덴 에이비 비상관 신호의 시간적 엔벨로프 정형화
US8311840B2 (en) * 2005-06-28 2012-11-13 Qnx Software Systems Limited Frequency extension of harmonic signals
US20060293016A1 (en) * 2005-06-28 2006-12-28 Harman Becker Automotive Systems, Wavemakers, Inc. Frequency extension of harmonic signals
US20090129503A1 (en) * 2005-06-29 2009-05-21 Kyocera Corporation Communication Device, Communication System, and Modulation Method
US20070094015A1 (en) * 2005-09-22 2007-04-26 Georges Samake Audio codec using the Fast Fourier Transform, the partial overlap and a decomposition in two plans based on the energy.
US20070129036A1 (en) * 2005-11-28 2007-06-07 Samsung Electronics Co., Ltd. Method and apparatus to reconstruct a high frequency component
WO2007107670A2 (fr) * 2006-03-20 2007-09-27 France Telecom Procede de post-traitement d'un signal dans un decodeur audio
US20090299755A1 (en) * 2006-03-20 2009-12-03 France Telecom Method for Post-Processing a Signal in an Audio Decoder
WO2007107670A3 (fr) * 2006-03-20 2007-11-08 France Telecom Procede de post-traitement d'un signal dans un decodeur audio
US20080076374A1 (en) * 2006-09-25 2008-03-27 Avraham Grenader System and method for filtering of angle modulated signals
US20090157411A1 (en) * 2006-09-29 2009-06-18 Dong Soo Kim Methods and apparatuses for encoding and decoding object-based audio signals
US8504376B2 (en) 2006-09-29 2013-08-06 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US8625808B2 (en) 2006-09-29 2014-01-07 Lg Elecronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US20090164221A1 (en) * 2006-09-29 2009-06-25 Dong Soo Kim Methods and apparatuses for encoding and decoding object-based audio signals
US20110196685A1 (en) * 2006-09-29 2011-08-11 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US8762157B2 (en) * 2006-09-29 2014-06-24 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US9792918B2 (en) 2006-09-29 2017-10-17 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US9384742B2 (en) 2006-09-29 2016-07-05 Lg Electronics Inc. Methods and apparatuses for encoding and decoding object-based audio signals
US20130058500A1 (en) * 2006-11-09 2013-03-07 Sony Corporation Frequency band extending apparatus, frequency band extending method, player apparatus, playing method, program and recording medium
EP1921610A3 (fr) * 2006-11-09 2011-11-30 Sony Corporation Appareil d'extension de bande de fréquence, procédé d'extension de bande de fréquence, procédé de lecture de l'appareil de lecture et support de programme et d'enregistrement
US20080120095A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Method and apparatus to encode and/or decode audio and/or speech signal
US20080126102A1 (en) * 2006-11-24 2008-05-29 Fujitsu Limited Decoding apparatus and decoding method
US20080288262A1 (en) * 2006-11-24 2008-11-20 Fujitsu Limited Decoding apparatus and decoding method
US8788275B2 (en) * 2006-11-24 2014-07-22 Fujitsu Limited Decoding method and apparatus for an audio signal through high frequency compensation
US8249882B2 (en) * 2006-11-24 2012-08-21 Fujitsu Limited Decoding apparatus and decoding method
CN101237317B (zh) * 2006-11-27 2010-09-29 华为技术有限公司 确定发送频谱的方法和装置
US8160889B2 (en) 2007-01-18 2012-04-17 Nuance Communications, Inc. System for providing an acoustic signal with extended bandwidth
EP1947644A1 (fr) * 2007-01-18 2008-07-23 Harman Becker Automotive Systems GmbH Procédé et appareil fournissant un signal acoustique avec une largeur de bande étendue
US20080195392A1 (en) * 2007-01-18 2008-08-14 Bernd Iser System for providing an acoustic signal with extended bandwidth
EP2186089A4 (fr) * 2007-08-27 2011-12-28 Ericsson Telefon Ab L M Procédé et dispositif de remplissage avec du bruit
US9111532B2 (en) 2007-08-27 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and systems for perceptual spectral decoding
EP2186089A1 (fr) * 2007-08-27 2010-05-19 Telefonaktiebolaget L M Ericsson (PUBL) Procédé et dispositif de remplissage avec du bruit
US20210110836A1 (en) * 2007-08-27 2021-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive transition frequency between noise fill and bandwidth extension
US8370133B2 (en) 2007-08-27 2013-02-05 Telefonaktiebolaget L M Ericsson (Publ) Method and device for noise filling
EP3591650A1 (fr) 2007-08-27 2020-01-08 Telefonaktiebolaget LM Ericsson (publ) Procédé et dispositif de remplissage de bruit
EP3401907A1 (fr) 2007-08-27 2018-11-14 Telefonaktiebolaget LM Ericsson (publ) Procédé et dispositif de décodage perceptuelle spectrale d'un signal audio comprenant un remplissage de trous spectraux
US11990147B2 (en) * 2007-08-27 2024-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive transition frequency between noise fill and bandwidth extension
US20100241437A1 (en) * 2007-08-27 2010-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for noise filling
US20100274555A1 (en) * 2007-11-06 2010-10-28 Lasse Laaksonen Audio Coding Apparatus and Method Thereof
US20100250261A1 (en) * 2007-11-06 2010-09-30 Lasse Laaksonen Encoder
US9082397B2 (en) 2007-11-06 2015-07-14 Nokia Technologies Oy Encoder
US8296157B2 (en) * 2007-11-21 2012-10-23 Electronics And Telecommunications Research Institute Apparatus and method for deciding adaptive noise level for bandwidth extension
US20100094638A1 (en) * 2007-11-21 2010-04-15 Tae-Jin Lee Apparatus and method for deciding adaptive noise level for bandwidth extension
US20090144062A1 (en) * 2007-11-29 2009-06-04 Motorola, Inc. Method and Apparatus to Facilitate Provision and Use of an Energy Value to Determine a Spectral Envelope Shape for Out-of-Signal Bandwidth Content
US8688441B2 (en) 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
US20090198498A1 (en) * 2008-02-01 2009-08-06 Motorola, Inc. Method and Apparatus for Estimating High-Band Energy in a Bandwidth Extension System
US8433582B2 (en) 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20110112844A1 (en) * 2008-02-07 2011-05-12 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
US8527283B2 (en) 2008-02-07 2013-09-03 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20100049342A1 (en) * 2008-08-21 2010-02-25 Motorola, Inc. Method and Apparatus to Facilitate Determining Signal Bounding Frequencies
US8463412B2 (en) 2008-08-21 2013-06-11 Motorola Mobility Llc Method and apparatus to facilitate determining signal bounding frequencies
US8468025B2 (en) * 2008-12-31 2013-06-18 Huawei Technologies Co., Ltd. Method and apparatus for processing signal
US20110320211A1 (en) * 2008-12-31 2011-12-29 Liu Zexin Method and apparatus for processing signal
US20100198587A1 (en) * 2009-02-04 2010-08-05 Motorola, Inc. Bandwidth Extension Method and Apparatus for a Modified Discrete Cosine Transform Audio Coder
US8463599B2 (en) 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
WO2010091013A1 (fr) * 2009-02-04 2010-08-12 Motorola, Inc. Procédé d'extension de bande passante et appareil destiné à un encodeur audio à transformée en cosinus discret modifié
US8655649B2 (en) 2009-04-03 2014-02-18 Ntt Docomo, Inc. Speech encoding/decoding device
US9779744B2 (en) 2009-04-03 2017-10-03 Ntt Docomo, Inc. Speech decoder with high-band generation and temporal envelope shaping
US9460734B2 (en) * 2009-04-03 2016-10-04 Ntt Docomo, Inc. Speech decoder with high-band generation and temporal envelope shaping
US10366696B2 (en) 2009-04-03 2019-07-30 Ntt Docomo, Inc. Speech decoder with high-band generation and temporal envelope shaping
US9064500B2 (en) 2009-04-03 2015-06-23 Ntt Docomo, Inc. Speech decoding system with temporal envelop shaping and high-band generation
US20140163972A1 (en) * 2009-04-03 2014-06-12 Ntt Docomo, Inc. Speech encoding/decoding device
EP3742442A1 (fr) * 2009-05-27 2020-11-25 Dolby International AB Transposition harmonique combinée efficace
US11935508B2 (en) 2009-05-27 2024-03-19 Dolby International Ab Efficient combined harmonic transposition
CN103971699A (zh) * 2009-05-27 2014-08-06 杜比国际公司 高效组合谐波转置
US9881597B2 (en) 2009-05-27 2018-01-30 Dolby International Ab Efficient combined harmonic transposition
EP2800093A1 (fr) * 2009-05-27 2014-11-05 Dolby International AB Transposition harmonique combinée efficace
EP3324408A1 (fr) * 2009-05-27 2018-05-23 Dolby International AB Transposition harmonique combinée efficace
WO2010136459A1 (fr) * 2009-05-27 2010-12-02 Dolby International Ab Transposition combinée efficace d'harmoniques
US11200874B2 (en) 2009-05-27 2021-12-14 Dolby International Ab Efficient combined harmonic transposition
TWI556227B (zh) * 2009-05-27 2016-11-01 杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
EP4293669A3 (fr) * 2009-05-27 2024-01-17 Dolby International AB Transposition combinée efficace d'harmoniques
US8983852B2 (en) 2009-05-27 2015-03-17 Dolby International Ab Efficient combined harmonic transposition
TWI484481B (zh) * 2009-05-27 2015-05-11 杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
US10304431B2 (en) 2009-05-27 2019-05-28 Dolby International Ab Efficient combined harmonic transposition
EP3989223A1 (fr) * 2009-05-27 2022-04-27 Dolby International AB Transposition harmonique combinée efficace
KR101303776B1 (ko) * 2009-05-27 2013-09-04 돌비 인터네셔널 에이비 효율적인 조합 고조파 변조 방법
EP4152319A1 (fr) * 2009-05-27 2023-03-22 Dolby International AB Transposition combinée efficace d'harmoniques
US9190067B2 (en) 2009-05-27 2015-11-17 Dolby International Ab Efficient combined harmonic transposition
US10657937B2 (en) 2009-05-27 2020-05-19 Dolby International Ab Efficient combined harmonic transposition
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US10186280B2 (en) 2009-10-21 2019-01-22 Dolby International Ab Oversampling in a combined transposer filterbank
US10947594B2 (en) 2009-10-21 2021-03-16 Dolby International Ab Oversampling in a combined transposer filter bank
US9830928B2 (en) 2009-10-21 2017-11-28 Dolby International Ab Oversampling in a combined transposer filterbank
EP3723090A1 (fr) * 2009-10-21 2020-10-14 Dolby International AB Suréchantillonnage dans un banc de filtres de transposition combiné
CN102576541A (zh) * 2009-10-21 2012-07-11 杜比国际公司 组合换位滤波器组的过采样
CN103559889A (zh) * 2009-10-21 2014-02-05 杜比国际公司 组合换位滤波器组的过采样
EP4152320A1 (fr) * 2009-10-21 2023-03-22 Dolby International AB Suréchantillonnage dans un banc de filtres de transposeur combiné
US9384750B2 (en) 2009-10-21 2016-07-05 Dolby International Ab Oversampling in a combined transposer filterbank
US10584386B2 (en) 2009-10-21 2020-03-10 Dolby International Ab Oversampling in a combined transposer filterbank
CN103559890A (zh) * 2009-10-21 2014-02-05 杜比国际公司 组合换位滤波器组的过采样
EP3998606A1 (fr) * 2009-10-21 2022-05-18 Dolby International AB Suréchantillonnage dans un banc de filtres de transposition combinés
US11591657B2 (en) * 2009-10-21 2023-02-28 Dolby International Ab Oversampling in a combined transposer filter bank
RU2494478C1 (ru) * 2009-10-21 2013-09-27 Долби Интернешнл Аб Передискретизация в комбинированном банке фильтров транспозитора
WO2011047887A1 (fr) * 2009-10-21 2011-04-28 Dolby International Ab Suréchantillonnage dans un banc de filtres de transposeur combiné
US20210269880A1 (en) * 2009-10-21 2021-09-02 Dolby International Ab Oversampling in a Combined Transposer Filter Bank
EP4276823A3 (fr) * 2009-10-21 2023-12-20 Dolby International AB Suréchantillonnage dans un banc de filtres de transposeur combiné
US8886346B2 (en) 2009-10-21 2014-11-11 Dolby International Ab Oversampling in a combined transposer filter bank
EP3291231A1 (fr) * 2009-10-21 2018-03-07 Dolby International AB Suréchantillonnage dans un banc de filtres de transposition combiné
EP2800094A1 (fr) * 2009-10-21 2014-11-05 Dolby International AB Suréchantillonnage dans un banc de filtres de transposition combinés
US11993817B2 (en) 2009-10-21 2024-05-28 Dolby International Ab Oversampling in a combined transposer filterbank
US9741362B2 (en) 2010-01-19 2017-08-22 Dolby International Ab Subband block based harmonic transposition
CN104318930A (zh) * 2010-01-19 2015-01-28 杜比国际公司 子带处理单元以及生成合成子带信号的方法
CN104318928A (zh) * 2010-01-19 2015-01-28 杜比国际公司 子带处理单元以及生成合成子带信号的方法
US11341984B2 (en) 2010-01-19 2022-05-24 Dolby International Ab Subband block based harmonic transposition
US11935555B2 (en) 2010-01-19 2024-03-19 Dolby International Ab Subband block based harmonic transposition
US10109296B2 (en) 2010-01-19 2018-10-23 Dolby International Ab Subband block based harmonic transposition
US9858945B2 (en) 2010-01-19 2018-01-02 Dolby International Ab Subband block based harmonic transposition
US11646047B2 (en) 2010-01-19 2023-05-09 Dolby International Ab Subband block based harmonic transposition
US10699728B2 (en) 2010-01-19 2020-06-30 Dolby International Ab Subband block based harmonic transposition
US9203367B2 (en) 2010-02-26 2015-12-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for modifying an audio signal using harmonic locking
US9264003B2 (en) 2010-02-26 2016-02-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for modifying an audio signal using envelope shaping
CN103038819A (zh) * 2010-03-09 2013-04-10 弗兰霍菲尔运输应用研究公司 用以使用补丁边界对准处理输入音频信号的装置及方法
US10032458B2 (en) 2010-03-09 2018-07-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
US11495236B2 (en) 2010-03-09 2022-11-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
US9305557B2 (en) 2010-03-09 2016-04-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an audio signal using patch border alignment
US10770079B2 (en) 2010-03-09 2020-09-08 Franhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
US9318127B2 (en) 2010-03-09 2016-04-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for improved magnitude response and temporal alignment in a phase vocoder based bandwidth extension method for audio signals
US9905235B2 (en) 2010-03-09 2018-02-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for improved magnitude response and temporal alignment in a phase vocoder based bandwidth extension method for audio signals
US11894002B2 (en) 2010-03-09 2024-02-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Apparatus and method for processing an input audio signal using cascaded filterbanks
US9240196B2 (en) 2010-03-09 2016-01-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for handling transient sound events in audio signals when changing the replay speed or pitch
WO2011110499A1 (fr) * 2010-03-09 2011-09-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Appareil et procédé permettant de traiter un signal audio à l'aide d'un alignement de limiteur de correctif
US9792915B2 (en) 2010-03-09 2017-10-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
EP2555193A4 (fr) * 2010-03-31 2014-04-30 Sony Corp Appareil de décodage, procédé de décodage, appareil d'encodage, procédé d'encodage, et programme
EP3096320A1 (fr) * 2010-03-31 2016-11-23 Sony Corporation Appareil et procédé de décodage, appareil et procédé de codage et programme
EP2555193A1 (fr) * 2010-03-31 2013-02-06 Sony Corporation Appareil de décodage, procédé de décodage, appareil d'encodage, procédé d'encodage, et programme
US9406312B2 (en) 2010-04-13 2016-08-02 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10297270B2 (en) 2010-04-13 2019-05-21 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10224054B2 (en) 2010-04-13 2019-03-05 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10381018B2 (en) 2010-04-13 2019-08-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9659573B2 (en) 2010-04-13 2017-05-23 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10546594B2 (en) 2010-04-13 2020-01-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9805735B2 (en) * 2010-04-16 2017-10-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for generating a wideband signal using guided bandwidth extension and blind bandwidth extension
US20130041673A1 (en) * 2010-04-16 2013-02-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for generating a wideband signal using guided bandwidth extension and blind bandwidth extension
US20110261908A1 (en) * 2010-04-27 2011-10-27 Industrial Technology Research Institute Soft demapping method and apparatus and communication system thereof
US10283122B2 (en) 2010-07-19 2019-05-07 Dolby International Ab Processing of audio signals during high frequency reconstruction
US11568880B2 (en) 2010-07-19 2023-01-31 Dolby International Ab Processing of audio signals during high frequency reconstruction
US11031019B2 (en) 2010-07-19 2021-06-08 Dolby International Ab Processing of audio signals during high frequency reconstruction
US12002476B2 (en) 2010-07-19 2024-06-04 Dolby International Ab Processing of audio signals during high frequency reconstruction
US9406306B2 (en) * 2010-08-03 2016-08-02 Sony Corporation Signal processing apparatus and method, and program
US10229690B2 (en) 2010-08-03 2019-03-12 Sony Corporation Signal processing apparatus and method, and program
US20130124214A1 (en) * 2010-08-03 2013-05-16 Yuki Yamamoto Signal processing apparatus and method, and program
US9767814B2 (en) 2010-08-03 2017-09-19 Sony Corporation Signal processing apparatus and method, and program
US11011179B2 (en) 2010-08-03 2021-05-18 Sony Corporation Signal processing apparatus and method, and program
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
US10236015B2 (en) 2010-10-15 2019-03-19 Sony Corporation Encoding device and method, decoding device and method, and program
WO2012095700A1 (fr) * 2011-01-12 2012-07-19 Nokia Corporation Appareil d'encodage/de décodage audio
US20130346073A1 (en) * 2011-01-12 2013-12-26 Nokia Corporation Audio encoder/decoder apparatus
US9390717B2 (en) 2011-08-24 2016-07-12 Sony Corporation Encoding device and method, decoding device and method, and program
US9251800B2 (en) 2011-11-02 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) Generation of a high band extension of a bandwidth extended audio signal
WO2013066238A3 (fr) * 2011-11-02 2013-08-01 Telefonaktiebolaget L M Ericsson (Publ) Génération d'une extension à bande haute d'un signal audio à bande passante étendue
EP2631906A1 (fr) * 2012-02-27 2013-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Commande à cohérence de phase pour signaux harmoniques dans des codecs audio perceptuels
AU2013225076B2 (en) * 2012-02-27 2016-04-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Phase coherence control for harmonic signals in perceptual audio codecs
RU2612584C2 (ru) * 2012-02-27 2017-03-09 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Управление фазовой когерентностью для гармонических сигналов в перцепционных аудиокодеках
WO2013127801A1 (fr) * 2012-02-27 2013-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Commande de cohérence de phase pour signaux harmoniques dans des codec audio perceptuels
US10818304B2 (en) 2012-02-27 2020-10-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Phase coherence control for harmonic signals in perceptual audio codecs
US20180336909A1 (en) * 2012-04-27 2018-11-22 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US9761240B2 (en) * 2012-04-27 2017-09-12 Ntt Docomo, Inc Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US20150051904A1 (en) * 2012-04-27 2015-02-19 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US10714113B2 (en) * 2012-04-27 2020-07-14 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US11562760B2 (en) 2012-04-27 2023-01-24 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US20170301363A1 (en) * 2012-04-27 2017-10-19 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
US10068584B2 (en) * 2012-04-27 2018-09-04 Ntt Docomo, Inc. Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program
EP2923355B1 (fr) * 2012-11-26 2018-07-04 Harman International Industries, Inc. Système, support d'enregistrement lisible par ordinateur et procédé de réparation des signaux audio comprimés
US20160055854A1 (en) * 2013-03-29 2016-02-25 Dolby Laboratories Licensing Corporation Methods and Apparatuses for Generating and Using Low-Resolution Preview Tracks with High-Quality Encoded Object and Multichannel Audio Signals
US9786286B2 (en) * 2013-03-29 2017-10-10 Dolby Laboratories Licensing Corporation Methods and apparatuses for generating and using low-resolution preview tracks with high-quality encoded object and multichannel audio signals
US10734008B2 (en) 2013-06-10 2020-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for audio signal envelope encoding, processing, and decoding by modelling a cumulative sum representation employing distribution quantization and coding
US10115406B2 (en) 2013-06-10 2018-10-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V Apparatus and method for audio signal envelope encoding, processing, and decoding by splitting the audio signal envelope employing distribution quantization and coding
CN105340010B (zh) * 2013-06-10 2019-06-04 弗朗霍夫应用科学研究促进协会 用于通过应用分布量化和编码分裂音频信号包络的音频信号包络编码、处理和解码的装置和方法
CN105340010A (zh) * 2013-06-10 2016-02-17 弗朗霍夫应用科学研究促进协会 用于通过应用分布量化和编码分裂音频信号包络的音频信号包络编码、处理和解码的装置和方法
US11776551B2 (en) 2013-06-21 2023-10-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out in different domains during error concealment
CN110299147A (zh) * 2013-06-21 2019-10-01 弗朗霍夫应用科学研究促进协会 针对切换式音频编码系统在错误隐藏过程中的改善信号衰落的装置及方法
US11869514B2 (en) 2013-06-21 2024-01-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for improved signal fade out for switched audio coding systems during error concealment
US20150012282A1 (en) * 2013-07-03 2015-01-08 Ear Machine LLC Processing Multichannel Audio Signals
US9454970B2 (en) * 2013-07-03 2016-09-27 Bose Corporation Processing multichannel audio signals
US11922956B2 (en) 2013-07-22 2024-03-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
US11735192B2 (en) 2013-07-22 2023-08-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US11769512B2 (en) 2013-07-22 2023-09-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
US11769513B2 (en) 2013-07-22 2023-09-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding or encoding an audio signal using energy information values for a reconstruction band
US11996106B2 (en) 2013-07-22 2024-05-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
CN111554310A (zh) * 2013-07-22 2020-08-18 弗劳恩霍夫应用研究促进协会 用频谱域智能间隙填充编码或解码音频信号的设备及方法
US10210879B2 (en) 2013-08-23 2019-02-19 Fraunhofer-Gesellschaft Zur Foerderung Der Andewandten Forschung E.V. Apparatus and method for processing an audio signal using an aliasing error signal
US10157624B2 (en) 2013-08-23 2018-12-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an audio signal using a combination in an overlap range
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
US11705140B2 (en) 2013-12-27 2023-07-18 Sony Corporation Decoding apparatus and method, and program
US20150194157A1 (en) * 2014-01-06 2015-07-09 Nvidia Corporation System, method, and computer program product for artifact reduction in high-frequency regeneration audio signals
US10056093B2 (en) * 2016-05-10 2018-08-21 JVC Kenwood Corporation Encoding device, decoding device, and communication system for extending voice band
US20170330584A1 (en) * 2016-05-10 2017-11-16 JVC Kenwood Corporation Encoding device, decoding device, and communication system for extending voice band
CN107545900A (zh) * 2017-08-16 2018-01-05 广州广晟数码技术有限公司 带宽扩展编码和解码中高频弦信号生成的方法和装置
US11114110B2 (en) 2017-10-27 2021-09-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Noise attenuation at a decoder
WO2019081089A1 (fr) * 2017-10-27 2019-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Atténuation de bruit au niveau d'un décodeur

Also Published As

Publication number Publication date
US20200143817A1 (en) 2020-05-07
US20170084281A1 (en) 2017-03-23
PL371410A1 (en) 2005-06-13
CN100338649C (zh) 2007-09-19
SG10201710913TA (en) 2018-02-27
US9324328B2 (en) 2016-04-26
PL208846B1 (pl) 2011-06-30
US9412389B1 (en) 2016-08-09
US20160379655A1 (en) 2016-12-29
KR20040101227A (ko) 2004-12-02
US8457956B2 (en) 2013-06-04
AU2003239126A1 (en) 2003-10-13
MXPA04009408A (es) 2005-01-25
US20090192806A1 (en) 2009-07-30
US20150243295A1 (en) 2015-08-27
US9343071B2 (en) 2016-05-17
US9653085B2 (en) 2017-05-16
US20160232904A1 (en) 2016-08-11
US8285543B2 (en) 2012-10-09
CN101093670B (zh) 2010-06-02
SG10201710915PA (en) 2018-02-27
US9466306B1 (en) 2016-10-11
US20180204581A1 (en) 2018-07-19
EP2194528B1 (fr) 2011-05-25
US20120328121A1 (en) 2012-12-27
US10529347B2 (en) 2020-01-07
US9947328B2 (en) 2018-04-17
SG10201710917UA (en) 2018-02-27
WO2003083834A1 (fr) 2003-10-09
TW200305855A (en) 2003-11-01
US9704496B2 (en) 2017-07-11
US8126709B2 (en) 2012-02-28
CA2475460A1 (fr) 2003-10-09
HK1078673A1 (en) 2006-03-17
SG2013057666A (en) 2015-12-30
US20170206909A1 (en) 2017-07-20
US9412388B1 (en) 2016-08-09
US20160232905A1 (en) 2016-08-11
EP2194528A1 (fr) 2010-06-09
US9177564B2 (en) 2015-11-03
US20180005639A1 (en) 2018-01-04
JP2005521907A (ja) 2005-07-21
KR101005731B1 (ko) 2011-01-06
SG173224A1 (en) 2011-08-29
US20190172472A1 (en) 2019-06-06
SG153658A1 (en) 2009-07-29
HK1114233A1 (en) 2008-10-24
SG10201710911VA (en) 2018-02-27
CN101093670A (zh) 2007-12-26
US20170148454A1 (en) 2017-05-25
US9412383B1 (en) 2016-08-09
AU2003239126B2 (en) 2009-06-04
US9548060B1 (en) 2017-01-17
ATE511180T1 (de) 2011-06-15
TWI319180B (en) 2010-01-01
US20160232911A1 (en) 2016-08-11
SG10201710912WA (en) 2018-02-27
US9767816B2 (en) 2017-09-19
CN1639770A (zh) 2005-07-13
SI2194528T1 (sl) 2012-03-30
JP4345890B2 (ja) 2009-10-14
US20160314796A1 (en) 2016-10-27
EP1488414A1 (fr) 2004-12-22
US20150279379A1 (en) 2015-10-01
US10269362B2 (en) 2019-04-23
MY140567A (en) 2009-12-31
US20140161283A1 (en) 2014-06-12
US20120128177A1 (en) 2012-05-24
CA2475460C (fr) 2012-02-28

Similar Documents

Publication Publication Date Title
US10529347B2 (en) Methods, apparatus and systems for determining reconstructed audio signal

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOLBY LABORATORIES LICENSING CORPORATION, CALIFORN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRUMAN, MICHAEL MEAD;VINTON, MARK STUART;REEL/FRAME:013025/0745

Effective date: 20020528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION