US20030168246A1 - Zirconia-stabilized multi-filamentary niobium-tin superconducting wire - Google Patents

Zirconia-stabilized multi-filamentary niobium-tin superconducting wire Download PDF

Info

Publication number
US20030168246A1
US20030168246A1 US10/248,339 US24833903A US2003168246A1 US 20030168246 A1 US20030168246 A1 US 20030168246A1 US 24833903 A US24833903 A US 24833903A US 2003168246 A1 US2003168246 A1 US 2003168246A1
Authority
US
United States
Prior art keywords
niobium alloy
superconducting wire
niobium
zirconium
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/248,339
Inventor
Mark Benz
Theodore Evenden
Judson Marte
Thomas Raber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US10/248,339 priority Critical patent/US20030168246A1/en
Publication of US20030168246A1 publication Critical patent/US20030168246A1/en
Priority to US11/406,636 priority patent/US7325293B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices

Definitions

  • the invention is related to superconducting wire having at least one filament of superconducting material. More particularly, the invention relates to a multi-filament superconducting wire comprising a zirconia-stabilized, niobium tin superconductor and a matrix material, and a method of making such a multi-filament superconducting wire.
  • Nb 3 Sn niobium-based superconductors
  • magnets, motors, and transformers are used in a variety of electromagnetic applications, such as magnets, motors, and transformers.
  • the Nb 3 Sn comprising filaments within the wire must have an ultra-fine grain size of less than about 1 micron.
  • Nb 3 Sn wire One of the processes that is used to manufacture multi-filament Nb 3 Sn wire is the “bronze process,” in which ultra-fine grains of Nb 3 Sn are formed on the surface of wire-drawn niobium filaments by heat treatment for several days at relatively low temperatures.
  • the present invention meets these and other needs by providing a multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grained (also referred to hereinafter as “UFG”) Nb 3 Sn.
  • the superconducting wire is formed by deformation processing of a preform comprising a metallic matrix and at least one niobium alloy rod having precipitates of zirconia, also known as zirconium oxide and hereinafter referred to as “ZrO 2 .”
  • the ZrO 2 precipitates serve to stabilize the ultra-fine grained microstructure of the Nb 3 Sn at temperatures up to 1100° C. and allows Nb 3 Sn to maintain the ultra-fine grained microstructure when heat treated at temperatures that are greater than those previously used.
  • the time required for heat treatment can be significantly reduced.
  • one aspect of the invention is to provide a superconducting wire.
  • the superconducting wire comprises: at least one filament having a filament diameter, wherein the at least one filament is continuous and comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein, and wherein the plurality of Nb 3 Sn grains have an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the at least one filament, wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb 3 Sn.
  • a second aspect of the invention is to provide a preform for forming a superconducting wire comprising at least one filament having a filament diameter, wherein the at least one filament comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein and a metallic matrix surrounding and contacting the at least one filament.
  • the preform comprises: at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, wherein the metallic preform matrix comprises tin.
  • a third aspect of the invention is to provide a superconducting wire, formed from a preform comprising at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, wherein the metallic preform matrix comprises tin.
  • the superconducting wire comprises: a plurality of filaments, wherein each of the plurality of filaments is continuous and has a filament diameter, wherein at least one filament comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein, and wherein the plurality of Nb 3 Sn grains has an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the plurality of filaments, wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb 3 Sn.
  • a fourth aspect of the invention is to provide an electromagnetic device comprising at least one superconducting wire, wherein the superconducting wire is formed from a preform comprising at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, and wherein the metallic preform matrix comprises tin.
  • the superconducting wire comprises: a plurality of filaments, wherein each of the plurality of filaments has a filament diameter, wherein at least one filament is continuous and comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein, wherein the plurality of Nb 3 Sn grains has an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the plurality of filaments, and wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb 3 Sn.
  • a fifth aspect of the invention is to provide a method of making a superconducting wire comprising at least one filament, wherein the at least one filament is continuous and comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein and a metallic matrix surrounding and contacting the at least one filament.
  • the method comprises the steps of: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; forming a wire from the metallic matrix material and the at least one niobium alloy rod; and heat treating the wire at a predetermined temperature for a predetermined time, thereby forming the superconducting wire.
  • a sixth aspect of the invention is to provide a method of making a preform for a superconducting wire comprising at least one niobium alloy rod having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod.
  • the method comprises the steps of: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; and forming a preform by surrounding the at least one niobium alloy rod with the metallic matrix material such that the metallic matrix material contacts the at least one niobium alloy rod.
  • a seventh aspect of the invention is to provide a superconducting wire comprising: at least one filament having a filament diameter, wherein the at least one filament is continuous and comprises a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates disposed therein, wherein the plurality of Nb 3 Sn grains have an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the at least one filament, wherein the metallic matrix has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb 3 Sn, and wherein the superconducting wire is formed by: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; forming a wire from the metallic matrix material and the at least one niobi
  • FIG. 1 is a schematic representation of a cross-sectional view of the superconducting wire of the present invention.
  • FIG. 1 is a schematic representation of a cross-sectional view of the superconducting wire 100 of the present invention.
  • Superconducting wire 100 includes at least one filament 110 . Although seven such filaments 110 are represented in FIG. 1, there is no limit to the number of filaments 100 contained within superconducting wire 100 .
  • Superconducting wire 100 may, for example, comprise a monofilament.
  • Filament 110 comprises a plurality of niobium-tin (hereinafter referred to as “Nb 3 Sn”) grains that form continuous filament 110 .
  • a plurality of zirconium oxide (hereinafter referred to as “ZrO 2 ”) precipitates are present within the plurality of Nb 3 Sn grains.
  • the ZrO 2 precipitates serve to stabilize the ultra-fine grained microstructure of the Nb 3 Sn at temperatures up to 1100° C. and inhibit Nb 3 Sn grain growth, thus allowing Nb 3 Sn to maintain the ultra-fine grained microstructure when heat treated at temperatures that are greater than those previously used.
  • At least one semi-coherent ZrO 2 precipitate is present in each of the plurality of Nb 3 Sn grains to stabilize each Nb 3 Sn grain and inhibit Nb 3 Sn grain growth.
  • the plurality of Nb 3 Sn grains are ultrafine grains (also referred to hereinafter as “UFG”) having an average grain size that is less than about 10 percent of the diameter of filament 110 .
  • the diameter of filament 110 is less than about 10 microns; thicker filaments tend to fracture more easily when wire 100 is bent or wound, as is common in applications for which wire 100 is intended.
  • filament 110 has a diameter of less than about 2 microns, and, preferably, between about 1 micron and about 2 microns.
  • larger Nb 3 Sn grain sizes impede the ability of filament 110 to bend.
  • the average grain size of the plurality of Nb 3 Sn grains is less than about 1 micron, and, preferably, less than about 200 nanometers.
  • wire 100 further includes at least one filament 110 that comprises another superconducting material, such as, but not limited to, elemental niobium, niobium zirconium alloy, and combinations thereof.
  • another superconducting material such as, but not limited to, elemental niobium, niobium zirconium alloy, and combinations thereof.
  • the at least one filament 110 is surrounded by a metallic matrix 120 , which surrounds and contacts the at least one filament 110 .
  • Metallic matrix material 120 is electrically conductive at cryogenic temperatures (i.e., below about 77 K).
  • metallic matrix has a coefficient of thermal expansion that is compatible with that of the plurality of Nb 3 Sn grains that form the at least one filament 110 .
  • Nb 3 Sn has a coefficient of thermal expansion ( ⁇ L/L O ) of 0.282%.
  • metallic matrix 120 When metallic matrix 120 has a coefficient of thermal expansion that is greater than that of Nb 3 Sn, a compressive stress—which tends to increase the critical current of the at least one filament 110 and superconducting wire 100 —is imparted to the at least one filament 110 . If metallic matrix 120 has a coefficient of thermal expansion that is less than that of Nb 3 Sn, a tensile strain—which tends to decrease the critical current of the at least one filament 110 and superconducting wire 100 —is imparted to the at least one filament 110 . Thus, metallic matrix 120 should have a coefficient of thermal expansion that is substantially the same as or greater than that of Nb 3 Sn.
  • Metallic matrix 120 is formed from a metallic preform matrix that comprises tin.
  • the metallic preform matrix is a copper-tin bronze.
  • the metallic preform matrix preferably comprises between about 5 atomic percent and about 13 atomic percent tin.
  • the superconducting wire 100 of the present invention is formed by first providing a niobium alloy comprising niobium, zirconium, and oxygen, wherein zirconium and oxygen are present in a ratio of about 1:2 (i.e., Zr:O is approximately 1:2).
  • the niobium alloy is prepared by first melting, preferably by vacuum arc melting, an alloy of elemental niobium and niobium oxide (hereinafter referred to as “Nb 2 O 5 ”) to decompose the Nb 2 O 5 and produce an ingot of elemental niobium in which between about 1 and about 3 atomic percent oxygen are dissolved.
  • Zirconium is then provided to the niobium ingot.
  • a sufficient amount of zirconium is provided such that zirconium and oxygen are present in a ratio of about 1:2.
  • Zirconium may comprise up to about 8 atomic percent of the niobium ingot.
  • an amount of zirconium that is sufficient to comprise about one atomic percent of the niobium alloy is provided.
  • the niobium ingot and zirconium are then melted, preferably by vacuum arc re-melting, to form a niobium alloy in which zirconium and oxygen are present in solid solution in an atomic ratio of about 1:2 within the re-melted ingot.
  • the re-melted niobium alloy ingot which now contains oxygen and zirconium in solid solution, is heat treated at a temperature between about 500° C. and about 900° C. to homogenize the re-melted niobium alloy ingot.
  • the at least one niobium alloy rod may be formed by a variety of processes.
  • the at least one niobium alloy rod is electron discharge milled from the re-melted ingot.
  • the at least one niobium alloy rod may be formed by other techniques, such as, but not limited to, casting at least one niobium alloy rod from the re-melted niobium alloy ingot, drawing at least one niobium alloy rod form the re-melted niobium alloy ingot, and extruding at east one niobium alloy rod from the re-melted niobium alloy ingot.
  • the mechanical workability of the at least one niobium alloy rod may be further increased by cold-working the at least one niobium alloy rod. Cold-working methods that may be used include, but are not limited to, swaging, extrusion, wire drawing, and the like.
  • a metallic matrix material is then provided to the at least one niobium alloy rod such that the metallic matrix material surrounds and contacts the at least one niobium alloy rod.
  • the metallic matrix material is provided to the at least one niobium alloy rod to form a preform in which the metallic matrix material surrounds and contacts the at least one niobium alloy rod.
  • the metallic matrix material comprises between about 5 weight percent and about 13 weight percent tin.
  • the metallic matrix material is a copper-tin bronze.
  • the preform may be formed by wrapping a sheet of the metallic matrix material around the at least one niobium alloy rod. Alternatively, the preform may be formed by providing the metallic matrix material in a solid form through which holes are drilled and into which the at least one niobium alloy rod is inserted.
  • the metallic matrix material and the at least one niobium alloy rod are then formed into a wire by first extruding the preform, followed by either wire-drawing or swaging the extruded preform. Once drawn or swaged, the preform may be re-stacked by repeating the extrusion step, followed by the drawing or swaging steps, to achieve the desired wire diameter. The re-stacking step may be repeated as many times as necessary until the desired wire diameter is obtained.
  • the resulting wire comprises at least one filament surrounded by the metallic matrix material, wherein the at least one filament comprises a niobium alloy having oxygen and zirconium in solid solution in an atomic ratio of about 1:2.
  • the wire is heat treated at a predetermined temperature for a predetermined time, to form a superconducting wire 100 comprising filaments formed from a plurality of Nb 3 Sn grains having a plurality of ZrO 2 precipitates.
  • the drawn or swaged wire is heat treated for up to 48 hours at a temperature of between about 700° C. and about 1100° C.
  • tin diffuses from the bronze metallic matrix material into the at least one filament and reacts with the elemental niobium therein to form grains of Nb 3 Sn in the filament.
  • the Nb 3 Sn grains generally contain ZrO 2 precipitates.
  • the at least one filament 110 may comprise a reaction layer of Nb 3 Sn grains surrounding a core comprising elemental niobium.
  • the at least one filament 110 of superconducting wire 100 may be subject to breakage when superconducting wire 100 is, for example, wound with other wires to form a cable or wound around a magnet or motor armature. This difficulty may be overcome by winding the drawn or swaged wire prior to heat treatment.
  • Superconducting wire 100 may be formed into similar electrically conducting structures, including, but not limited to, flattened tapes, laminated wires formed from multiple wires, and wound multi-wire cables.
  • Applications for superconducting wire 100 are found in electromagnetic devices such as, but not limited to: superconducting magnets, such as that described in U.S. Pat. No. 6,172,588, entitled “Apparatus and Method for a Superconductive Magnet with Pole Piece,” by Evangelos Trifon Laskaris and Michael Anthony Palmo, issued on Jan. 9, 2001, which is incorporated herein by reference in its entirety; motors; transformers; and generators.
  • Such electromagnetic devices may in turn be incorporated into larger systems, such as, for example, a magnetic resonance imaging system.

Abstract

A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.

Description

    BACKGROUND OF INVENTION
  • The invention is related to superconducting wire having at least one filament of superconducting material. More particularly, the invention relates to a multi-filament superconducting wire comprising a zirconia-stabilized, niobium tin superconductor and a matrix material, and a method of making such a multi-filament superconducting wire. [0001]
  • Superconducting wires comprising multiple filaments of niobium-based superconductors, such as niobium tin (hereinafter referred to as “Nb[0002] 3Sn”), are used in a variety of electromagnetic applications, such as magnets, motors, and transformers. To maintain sufficient critical current density in the superconducting wire during operation at cryogenic temperatures of less than 17.5 K, the Nb3Sn comprising filaments within the wire must have an ultra-fine grain size of less than about 1 micron. One of the processes that is used to manufacture multi-filament Nb3Sn wire is the “bronze process,” in which ultra-fine grains of Nb3Sn are formed on the surface of wire-drawn niobium filaments by heat treatment for several days at relatively low temperatures.
  • The length of the heat treatment required to produce ultra-fine grain Nb[0003] 3Sn is exceedingly time-intensive and uneconomical. Therefore, what is needed is a superconducting wire comprising ultra-fine grain Nb3Sn that is formed by a more rapid process. What is also needed is a method of more rapidly making a multi-filament superconducting wire comprising ultra-fine grained Nb3Sn.
  • SUMMARY OF INVENTION
  • The present invention meets these and other needs by providing a multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grained (also referred to hereinafter as “UFG”) Nb[0004] 3Sn. The superconducting wire is formed by deformation processing of a preform comprising a metallic matrix and at least one niobium alloy rod having precipitates of zirconia, also known as zirconium oxide and hereinafter referred to as “ZrO2.” The ZrO2 precipitates serve to stabilize the ultra-fine grained microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grained microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
  • Accordingly, one aspect of the invention is to provide a superconducting wire. The superconducting wire comprises: at least one filament having a filament diameter, wherein the at least one filament is continuous and comprises a plurality of Nb[0005] 3Sn grains having a plurality of ZrO2 precipitates disposed therein, and wherein the plurality of Nb3Sn grains have an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the at least one filament, wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
  • A second aspect of the invention is to provide a preform for forming a superconducting wire comprising at least one filament having a filament diameter, wherein the at least one filament comprises a plurality of Nb[0006] 3Sn grains having a plurality of ZrO2 precipitates disposed therein and a metallic matrix surrounding and contacting the at least one filament. The preform comprises: at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, wherein the metallic preform matrix comprises tin.
  • A third aspect of the invention is to provide a superconducting wire, formed from a preform comprising at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, wherein the metallic preform matrix comprises tin. The superconducting wire comprises: a plurality of filaments, wherein each of the plurality of filaments is continuous and has a filament diameter, wherein at least one filament comprises a plurality of Nb[0007] 3Sn grains having a plurality of ZrO2 precipitates disposed therein, and wherein the plurality of Nb3Sn grains has an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the plurality of filaments, wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
  • A fourth aspect of the invention is to provide an electromagnetic device comprising at least one superconducting wire, wherein the superconducting wire is formed from a preform comprising at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod, and wherein the metallic preform matrix comprises tin. The superconducting wire comprises: a plurality of filaments, wherein each of the plurality of filaments has a filament diameter, wherein at least one filament is continuous and comprises a plurality of Nb[0008] 3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein the plurality of Nb3Sn grains has an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the plurality of filaments, and wherein the metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
  • A fifth aspect of the invention is to provide a method of making a superconducting wire comprising at least one filament, wherein the at least one filament is continuous and comprises a plurality of Nb[0009] 3Sn grains having a plurality of ZrO2 precipitates disposed therein and a metallic matrix surrounding and contacting the at least one filament. The method comprises the steps of: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; forming a wire from the metallic matrix material and the at least one niobium alloy rod; and heat treating the wire at a predetermined temperature for a predetermined time, thereby forming the superconducting wire.
  • A sixth aspect of the invention is to provide a method of making a preform for a superconducting wire comprising at least one niobium alloy rod having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting the at least one niobium alloy rod. The method comprises the steps of: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; and forming a preform by surrounding the at least one niobium alloy rod with the metallic matrix material such that the metallic matrix material contacts the at least one niobium alloy rod. [0010]
  • A seventh aspect of the invention is to provide a superconducting wire comprising: at least one filament having a filament diameter, wherein the at least one filament is continuous and comprises a plurality of Nb[0011] 3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein the plurality of Nb3Sn grains have an average grain size of less than about 10 percent of the filament diameter; and a metallic matrix surrounding and contacting the at least one filament, wherein the metallic matrix has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn, and wherein the superconducting wire is formed by: providing a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; forming a wire from the metallic matrix material and the at least one niobium alloy rod; and heat treating the wire at a predetermined temperature for a predetermined time to form the superconducting wire.
  • These and other aspects, advantages, and salient features of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.[0012]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic representation of a cross-sectional view of the superconducting wire of the present invention.[0013]
  • DETAILED DESCRIPTION
  • In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that terms such as “top,” “bottom,” “outward,” “inward,” and the like are words of convenience and are not to be construed as limiting terms. [0014]
  • Referring to the drawings in general and to FIG. 1 in particular, it will be understood that the illustrations are for the purpose of describing one embodiment of the invention and are not intended to limit the invention thereto. [0015]
  • FIG. 1 is a schematic representation of a cross-sectional view of the [0016] superconducting wire 100 of the present invention. Superconducting wire 100 includes at least one filament 110. Although seven such filaments 110 are represented in FIG. 1, there is no limit to the number of filaments 100 contained within superconducting wire 100. Superconducting wire 100 may, for example, comprise a monofilament.
  • [0017] Filament 110 comprises a plurality of niobium-tin (hereinafter referred to as “Nb3Sn”) grains that form continuous filament 110. A plurality of zirconium oxide (hereinafter referred to as “ZrO2”) precipitates are present within the plurality of Nb3Sn grains. The ZrO2 precipitates serve to stabilize the ultra-fine grained microstructure of the Nb3Sn at temperatures up to 1100° C. and inhibit Nb3Sn grain growth, thus allowing Nb3Sn to maintain the ultra-fine grained microstructure when heat treated at temperatures that are greater than those previously used. At least one semi-coherent ZrO2 precipitate is present in each of the plurality of Nb3Sn grains to stabilize each Nb3Sn grain and inhibit Nb3Sn grain growth.
  • Superconducting Nb[0018] 3Sn having ZrO2 precipitates has been previously described in: U.S. Pat. No. 5,505,790, entitled “Method for Enhancing Critical Current in Triniobium Tin” by Mark G. Benz, Howard R. Hart, Jr., Melissa L. Murray, Robert L. Zabala, Bruce A. Knudsen, and Thomas R. Raber, issued on Apr. 9, 1999; U.S. Pat. No. 5,522,945, entitled “Method for Forming Triniobium Tin Superconductor with Bismuth,” by Melissa L. Murray, Mark G. Benz, and Bruce A. Knudsen, issued on Jun. 4, 1996; U.S. Pat. No. 5,522,945, entitled “Method for Forming Triniobium Tin Superconductor,” by Neil A. Johnson, Melissa L. Murray, Thomas R. Raber, and Mark G. Benz, issued on Jul. 30, 1996; and U.S. Pat. No. 5,472,936, entitled “Method for Making Triniobium Tin Semiconductor,” by Mark G. Benz, Neil A. Johnson, Melissa L. Murray, Robert J. Zabala, Louis E. Hibbs, Jr., and Bruce A. Knudsen, issued on Dec. 5, 1995, which are incorporated herein by reference in their entirety.
  • The plurality of Nb[0019] 3Sn grains are ultrafine grains (also referred to hereinafter as “UFG”) having an average grain size that is less than about 10 percent of the diameter of filament 110. The diameter of filament 110 is less than about 10 microns; thicker filaments tend to fracture more easily when wire 100 is bent or wound, as is common in applications for which wire 100 is intended. In one embodiment, filament 110 has a diameter of less than about 2 microns, and, preferably, between about 1 micron and about 2 microns. Likewise, larger Nb3Sn grain sizes impede the ability of filament 110 to bend. The average grain size of the plurality of Nb3Sn grains is less than about 1 micron, and, preferably, less than about 200 nanometers.
  • In one embodiment, [0020] wire 100 further includes at least one filament 110 that comprises another superconducting material, such as, but not limited to, elemental niobium, niobium zirconium alloy, and combinations thereof.
  • The at least one [0021] filament 110 is surrounded by a metallic matrix 120, which surrounds and contacts the at least one filament 110. Metallic matrix material 120 is electrically conductive at cryogenic temperatures (i.e., below about 77 K). In order to prevent breakage of wire 100 during cycling between room temperature and cryogenic temperatures, metallic matrix has a coefficient of thermal expansion that is compatible with that of the plurality of Nb3Sn grains that form the at least one filament 110. In the temperature range 4.2 K to 456 K, Nb3Sn has a coefficient of thermal expansion (ΔL/LO) of 0.282%. When metallic matrix 120 has a coefficient of thermal expansion that is substantially the same as that of Nb3Sn, zero strain is imparted to the at least one filament 110. When metallic matrix 120 has a coefficient of thermal expansion that is greater than that of Nb3Sn, a compressive stress—which tends to increase the critical current of the at least one filament 110 and superconducting wire 100—is imparted to the at least one filament 110. If metallic matrix 120 has a coefficient of thermal expansion that is less than that of Nb3Sn, a tensile strain—which tends to decrease the critical current of the at least one filament 110 and superconducting wire 100—is imparted to the at least one filament 110. Thus, metallic matrix 120 should have a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
  • [0022] Metallic matrix 120 is formed from a metallic preform matrix that comprises tin. In one embodiment, the metallic preform matrix is a copper-tin bronze. The metallic preform matrix preferably comprises between about 5 atomic percent and about 13 atomic percent tin.
  • The [0023] superconducting wire 100 of the present invention is formed by first providing a niobium alloy comprising niobium, zirconium, and oxygen, wherein zirconium and oxygen are present in a ratio of about 1:2 (i.e., Zr:O is approximately 1:2). In one embodiment of the invention, the niobium alloy is prepared by first melting, preferably by vacuum arc melting, an alloy of elemental niobium and niobium oxide (hereinafter referred to as “Nb2O5”) to decompose the Nb2O5 and produce an ingot of elemental niobium in which between about 1 and about 3 atomic percent oxygen are dissolved. Zirconium is then provided to the niobium ingot. A sufficient amount of zirconium is provided such that zirconium and oxygen are present in a ratio of about 1:2. Zirconium may comprise up to about 8 atomic percent of the niobium ingot. In one embodiment, an amount of zirconium that is sufficient to comprise about one atomic percent of the niobium alloy is provided. The niobium ingot and zirconium are then melted, preferably by vacuum arc re-melting, to form a niobium alloy in which zirconium and oxygen are present in solid solution in an atomic ratio of about 1:2 within the re-melted ingot. In one embodiment, the re-melted niobium alloy ingot, which now contains oxygen and zirconium in solid solution, is heat treated at a temperature between about 500° C. and about 900° C. to homogenize the re-melted niobium alloy ingot.
  • The re-melted niobium alloy ingot, now containing a solid solution of zirconium and oxygen, is next formed into at least one niobium alloy rod. The at least one niobium alloy rod may be formed by a variety of processes. In one embodiment, the at least one niobium alloy rod is electron discharge milled from the re-melted ingot. Alternatively, the at least one niobium alloy rod may be formed by other techniques, such as, but not limited to, casting at least one niobium alloy rod from the re-melted niobium alloy ingot, drawing at least one niobium alloy rod form the re-melted niobium alloy ingot, and extruding at east one niobium alloy rod from the re-melted niobium alloy ingot. Once formed, the mechanical workability of the at least one niobium alloy rod may be further increased by cold-working the at least one niobium alloy rod. Cold-working methods that may be used include, but are not limited to, swaging, extrusion, wire drawing, and the like. [0024]
  • A metallic matrix material is then provided to the at least one niobium alloy rod such that the metallic matrix material surrounds and contacts the at least one niobium alloy rod. In one embodiment, the metallic matrix material is provided to the at least one niobium alloy rod to form a preform in which the metallic matrix material surrounds and contacts the at least one niobium alloy rod. The metallic matrix material comprises between about 5 weight percent and about 13 weight percent tin. In one embodiment, the metallic matrix material is a copper-tin bronze. The preform may be formed by wrapping a sheet of the metallic matrix material around the at least one niobium alloy rod. Alternatively, the preform may be formed by providing the metallic matrix material in a solid form through which holes are drilled and into which the at least one niobium alloy rod is inserted. [0025]
  • The metallic matrix material and the at least one niobium alloy rod are then formed into a wire by first extruding the preform, followed by either wire-drawing or swaging the extruded preform. Once drawn or swaged, the preform may be re-stacked by repeating the extrusion step, followed by the drawing or swaging steps, to achieve the desired wire diameter. The re-stacking step may be repeated as many times as necessary until the desired wire diameter is obtained. The resulting wire comprises at least one filament surrounded by the metallic matrix material, wherein the at least one filament comprises a niobium alloy having oxygen and zirconium in solid solution in an atomic ratio of about 1:2. [0026]
  • After the wire is formed, it is heat treated at a predetermined temperature for a predetermined time, to form a [0027] superconducting wire 100 comprising filaments formed from a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates. In one embodiment, the drawn or swaged wire is heat treated for up to 48 hours at a temperature of between about 700° C. and about 1100° C. During the heat treatment, tin diffuses from the bronze metallic matrix material into the at least one filament and reacts with the elemental niobium therein to form grains of Nb3Sn in the filament. The Nb3Sn grains generally contain ZrO2 precipitates.
  • In some instances, tin does not completely diffuse into the at least one [0028] filament 110. Consequently, the at least one filament 110 may comprise a reaction layer of Nb3Sn grains surrounding a core comprising elemental niobium.
  • Because Nb[0029] 3Sn is a brittle material, the at least one filament 110 of superconducting wire 100 may be subject to breakage when superconducting wire 100 is, for example, wound with other wires to form a cable or wound around a magnet or motor armature. This difficulty may be overcome by winding the drawn or swaged wire prior to heat treatment.
  • [0030] Superconducting wire 100 may be formed into similar electrically conducting structures, including, but not limited to, flattened tapes, laminated wires formed from multiple wires, and wound multi-wire cables. Applications for superconducting wire 100 are found in electromagnetic devices such as, but not limited to: superconducting magnets, such as that described in U.S. Pat. No. 6,172,588, entitled “Apparatus and Method for a Superconductive Magnet with Pole Piece,” by Evangelos Trifon Laskaris and Michael Anthony Palmo, issued on Jan. 9, 2001, which is incorporated herein by reference in its entirety; motors; transformers; and generators. Such electromagnetic devices may in turn be incorporated into larger systems, such as, for example, a magnetic resonance imaging system.
  • While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the invention. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of the present invention. [0031]

Claims (69)

1. A superconducting wire, said superconducting wire comprising:
a) at least one filament having a filament diameter, wherein said at least one filament is continuous and comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein said plurality of Nb3Sn grains has an average grain size of less than about 10 percent of said filament diameter; and
b) a metallic matrix surrounding and contacting said at least one filament, wherein said metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
2. The superconducting wire according to claim 1, wherein said superconducting wire comprises a plurality of filaments.
3. The superconducting wire according to claim 2, wherein said plurality of filaments includes at least one filament comprising one of elemental niobium, niobium zirconium alloy, and combinations thereof.
4. The superconducting wire according to claim 1, wherein said filament diameter is less than about 10 microns.
5. The superconducting wire according to claim 4, wherein said filament diameter is less than about 2 microns.
6. The superconducting wire according to claim 5, wherein said filament diameter is between about 2 microns and about 1 micron.
7. The superconducting wire according to claim 1, wherein said plurality of Nb3Sn grains has an average grain size of less than about 1 micron.
8. The superconducting wire according to claim 7, wherein said plurality of Nb3Sn grains has an average grain size of less than about 200 nanometers.
9. The superconducting wire according to claim 1, wherein said at least one filament comprises an outer layer of Nb3Sn surrounding a core of elemental niobium.
10. The superconducting wire according to claim 1, wherein said metallic matrix imparts a compressive strain to said at least one filament.
11. The superconducting wire according to claim 1, wherein said metallic matrix imparts zero strain to said at least one filament.
12. The superconducting wire according to claim 1, wherein said plurality of ZrO2 precipitates stabilizes said plurality of Nb3Sn grains up to about 1100° C.
13. The superconducting wire according to claim 1, wherein said superconducting wire is formed from a preform, said preform comprising:
a) at least one niobium alloy rod, said at least one niobium alloy rod comprising a niobium alloy having oxygen and zirconium in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; and
b) a metallic preform matrix surrounding and contacting said at least one niobium alloy rod, wherein said metallic preform matrix comprises tin.
14. The superconducting wire according to claim 13, wherein said metallic preform matrix is a copper-tin bronze.
15. The superconducting wire according to claim 13, wherein said metallic preform matrix comprises between about 5 weight percent and about 13 weight percent tin.
16. The superconducting wire according to claim 1, wherein said superconducting wire is joined to a second superconducting wire to form a laminate wire.
17. The superconducting wire according to claim 1, wherein said superconducting wire is wound with a second superconducting wire to form a cable.
18. The superconducting wire according to claim 1, wherein said superconducting wire is flattened to form a tape.
19. A preform for forming a superconducting wire, wherein the superconducting wire comprises at least one filament, wherein said at least one filament comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein and a metallic matrix surrounding and contacting said at least one filament, said preform comprising:
a) at least one niobium alloy rod, said at least one niobium alloy rod comprising a niobium alloy having zirconium and oxygen in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2; and
b) a metallic preform matrix surrounding and contacting said at least one niobium alloy rod, wherein said metallic preform matrix comprises tin.
20. The preform according to claim 19, wherein said metallic preform matrix comprises between about 5 weight percent and about 16 weight percent tin.
21. The preform according to claim 19, wherein said metallic preform matrix is a copper-tin bronze.
22. The preform according to claim 19, wherein zirconium comprises up to about 8 atomic percent of said niobium alloy.
23. The preform according to claim 22, wherein zirconium comprises up to about 1 atomic percent of said niobium alloy.
24. A superconducting wire, wherein said superconducting wire is formed from a preform comprising at least one niobium alloy rod, said at least one niobium alloy rod comprising a niobium alloy having zirconium and oxygen in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting said at least one niobium alloy rod, wherein said metallic preform matrix comprises tin, said superconducting wire comprising:
a) a plurality of filaments, wherein each of said plurality of filaments has a filament diameter, wherein at least one of said plurality of filaments is continuous and comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein said plurality of Nb3Sn grains has an average grain size of less than about 10 percent of said filament diameter; and
b) a metallic matrix surrounding and contacting said plurality of filaments, wherein said metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
25. The superconducting wire according to claim 24, wherein said plurality of filaments includes at least one filament comprising one of elemental niobium, niobium zirconium alloy, and combinations thereof.
26. The superconducting wire according to claim 24, wherein said filament diameter is less than about 10 microns.
27. The superconducting wire according to claim 26, wherein said filament diameter is less than about 2 microns.
28. The superconducting wire according to claim 27, wherein said filament diameter is between about 2 microns and about 1 micron.
29. The superconducting wire according to claim 24, wherein said plurality of Nb3Sn grains has an average grain size of less than about 1 micron.
30. The superconducting wire according to claim 29, wherein said plurality of Nb3Sn grains has an average grain size of less than about 200 nanometers.
31. The superconducting wire according to claim 24, wherein at least one of said plurality of filaments comprises an outer layer of Nb3Sn surrounding a core of elemental niobium.
32. The superconducting wire according to claim 24, wherein said metallic matrix imparts a compressive strain to said plurality of filaments.
33. The superconducting wire according to claim 24, wherein said metallic matrix imparts zero strain to said plurality of filaments.
34. The superconducting wire according to claim 24, wherein said plurality of ZrO2 precipitates stabilizes said plurality of Nb3Sn grains up to about 100° C.
35. The superconducting wire according to claim 24, wherein said metallic preform matrix is a copper-tin bronze.
36. The superconducting wire according to claim 24, wherein said metallic preform matrix comprises between about 5 weight percent and about 13 weight percent tin.
37. The superconducting wire according to claim 24, wherein said superconducting wire is joined to a second superconducting wire to form a laminate wire.
38. The superconducting wire according to claim 24, wherein said superconducting wire is wound with a second superconducting wire to form a cable.
39. The superconducting wire according to claim 24, wherein said superconducting wire is flattened to form a tape.
40. An electromagnetic device comprising at least one superconducting wire, wherein said superconducting wire is formed from a preform comprising at least one niobium alloy rod, said at least one niobium alloy rod comprising a niobium alloy having zirconium and oxygen in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2, and a metallic preform matrix surrounding and contacting said at least one niobium alloy rod, wherein said metallic preform matrix comprises tin, said superconducting wire comprising:
a) a plurality of filaments, wherein each of said plurality of filaments has a filament diameter, wherein said at least one of said plurality of filaments is continuous and comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein said plurality of Nb3Sn grains has an average grain size of less than about 10 percent of said filament diameter;
b) and a metallic matrix surrounding and contacting said plurality of filaments, wherein said metallic matrix is electrically conductive at temperatures below about 77 K and has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn.
41. The electromagnetic device according to claim 40, wherein said metallic preform matrix is a copper-tin bronze.
42. The electromagnetic device according to claim 40, wherein said metallic preform matrix comprises between about 5 atomic percent and about 13 atomic percent tin.
43. The electromagnetic device according to claim 40, wherein said electromagnetic device is one of a superconducting magnet, a motor, a transformer, and a generator.
44. The electromagnetic device according to claim 43, wherein said electromagnetic device is a superconducting magnet, and wherein said superconducting magnet is incorporated into a magnetic resonance imaging system.
45. A method of making a superconducting wire, the superconducting wire comprising at least one filament, wherein said at least one filament is continuous and comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein and a metallic matrix surrounding and contacting said at least one filament, the method comprising the steps of:
a) providing a niobium alloy having zirconium and oxygen in solid solution, wherein zirconium and oxygen are present in an atomic ratio of about 1:2;
b) forming at least one niobium alloy rod from the niobium alloy;
c) providing a metallic matrix material to the at least one niobium alloy rod;
d) forming a wire from the metallic matrix material and the at least one niobium alloy rod; and
e) heat treating the wire at a predetermined temperature for a predetermined time, thereby forming the superconducting wire.
46. The method according to claim 45, wherein the step of providing a niobium alloy having zirconium and oxygen in solid solution comprises:
a) providing an alloy comprising elemental niobium and Nb2O5;
b) decomposing the niobium alloy to form elemental niobium having oxygen dissolved therein;
c) providing zirconium to the elemental niobium having oxygen dissolved therein, wherein zirconium and oxygen are present in a ratio of about 1:2; and
d) forming a niobium alloy having zirconium and oxygen in solid solution.
47. The method according to claim 46, wherein the step of decomposing the niobium alloy to form elemental niobium having oxygen dissolved therein comprises vacuum arc melting the alloy to form elemental niobium having oxygen dissolved therein.
48. The method according to claim 46, wherein the step of forming a niobium alloy comprising a niobium alloy having zirconium and oxygen in solid solution comprises vacuum arc remelting the zirconium and the elemental niobium having oxygen dissolved therein to form a niobium alloy having zirconium and oxygen in solid solution.
49. The method according to claim 48, further including the step of homogenizing the niobium alloy.
50. The method according to claim 49, wherein the step of homogenizing the niobium alloy comprises heat treating the niobium alloy at a predetermined temperature for a predetermined time.
51. The method according to claim 45, wherein the step of forming at least one niobium alloy rod from the niobium alloy comprises one of electron discharge milling the niobium alloy to form at least one niobium alloy rod therefrom, casting at least one niobium alloy rod from the niobium alloy, extruding at least one rod from the niobium alloy, and drawing at least one niobium alloy rod from the niobium alloy.
52. The method according to claim 51, further including the step of cold-working the at least one niobium alloy rod.
53. The method according to claim 52, wherein the step of cold-working the at least one niobium alloy rod comprises at least one of swaging, extruding, and wire-drawing the at least one niobium alloy rod.
54. The method according to claim 45, wherein the step of forming a wire from the metallic matrix material and the at least one niobium alloy rod comprises:
a) forming a preform by surrounding the at least one niobium alloy rod with the metallic matrix material such that the metallic matrix material contacts the at least one niobium alloy rod; and
b) forming a wire from the preform.
55. The method according to claim 54, wherein the step of forming a wire from the preform comprises extruding the wire followed by one of drawing the wire and swaging the wire.
56. The method according to claim 55, further comprising the step of re-stacking the wire following one of drawing the wire and swaging the wire, wherein the step of re-stacking the wire comprises extruding the wire followed by one of drawing the wire and swaging the wire.
57. The method according to claim 56, wherein the step of re-stacking is repeated at least once.
58. The method according to claim 45, wherein the step of heat treating the wire at a predetermined temperature for a predetermined time comprises heat treating the wire at a temperature of between about 700° C. and about 1100° C. for a time of up to about 48 hours.
59. The method according to claim 45, wherein the step of heat treating the wire at a predetermined temperature for a predetermined time comprises winding the wire and heat treating the wire at a predetermined temperature for a predetermined time after winding the wire.
60. A method of making a preform for a superconducting wire, wherein the preform comprises at least one niobium alloy rod, the at least one niobium alloy rod comprising a niobium alloy having zirconium and oxygen in solid solution, and a metallic preform matrix surrounding and contacting said at least one niobium alloy rod, the method comprising the steps of:
a) providing a niobium alloy having zirconium and oxygen in solid solution wherein zirconium and oxygen are present in an atomic ratio of about 1:2;
b) forming at least one niobium alloy rod from the niobium alloy;
c) providing a metallic matrix material to the at least one niobium alloy rod; and
d) forming a preform by surrounding the at least one niobium alloy rod with the metallic matrix material such that the metallic matrix material contacts the at least one niobium alloy rod.
61. The method according to claim 60, wherein the step of providing a niobium alloy having zirconium and oxygen in solid solution comprises:
a) providing an alloy comprising elemental niobium and Nb2O5;
b) decomposing the niobium alloy to form elemental niobium having oxygen dissolved therein;
c) providing zirconium to the elemental niobium having oxygen dissolved therein, wherein zirconium and oxygen are present in a ratio of about 1:2; and
d) forming a niobium alloy having zirconium and oxygen in solid solution.
62. The method according to claim 61, wherein the step of decomposing the niobium alloy to form elemental niobium having oxygen dissolved therein comprises vacuum arc melting the alloy to form elemental niobium having oxygen dissolved therein.
63. The method according to claim 62, wherein the step of forming a niobium alloy having zirconium and oxygen in solid solution comprises vacuum arc remelting the zirconium and the elemental niobium having oxygen dissolved therein to form a niobium alloy comprising a niobium alloy having zirconium and oxygen in solid solution.
64. The method according to claim 63, further including the step of homogenizing the niobium alloy.
65. The method according to claim 64, wherein the step of homogenizing the niobium alloy comprises heat treating the niobium alloy at a predetermined temperature for a predetermined time.
66. The method according to claim 60, wherein the step of forming at least one niobium alloy rod from the niobium alloy comprises one of electron discharge milling the niobium alloy to form at least one niobium alloy rod therefrom, casting at least one niobium alloy rod from the niobium alloy, extruding at least one rod from the niobium alloy, and drawing at least one niobium alloy rod from the niobium alloy.
67. The method according to claim 60, further including the step of cold-working the at least one niobium alloy rod.
68. The method according to claim 67, wherein the step of cold-working the at least one niobium alloy rod comprises at least one of swaging, extruding, and wire-drawing the at least one niobium alloy rod.
69. A superconducting wire, said superconducting wire comprising:
a) at least one filament having a filament diameter, wherein said at least one filament is continuous and comprises a plurality of Nb3Sn grains having a plurality of ZrO2 precipitates disposed therein, wherein said plurality of Nb3Sn grains has an average grain size of less than about 10 percent of said filament diameter; and
b) a metallic matrix surrounding and contacting said at least one filament, wherein said metallic matrix has a coefficient of thermal expansion that is substantially the same as or greater than that of Nb3Sn,
wherein said superconducting wire is formed by: providing a niobium alloy having zirconium and oxygen in solid solution, wherein zirconium and oxygen are present in an atomic ratio of 2:1; forming at least one niobium alloy rod from the niobium alloy; providing a metallic matrix material to the at least one niobium alloy rod; forming a wire from the metallic matrix material and the at least one niobium alloy rod; and heat treating the wire at a predetermined temperature for a predetermined time to form said superconducting wire.
US10/248,339 2001-11-05 2003-01-10 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire Abandoned US20030168246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/248,339 US20030168246A1 (en) 2001-11-05 2003-01-10 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US11/406,636 US7325293B2 (en) 2003-01-10 2006-04-19 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/682,972 US6583362B2 (en) 2001-11-05 2001-11-05 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US10/248,339 US20030168246A1 (en) 2001-11-05 2003-01-10 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/682,972 Division US6583362B2 (en) 2001-11-05 2001-11-05 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/406,636 Division US7325293B2 (en) 2003-01-10 2006-04-19 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Publications (1)

Publication Number Publication Date
US20030168246A1 true US20030168246A1 (en) 2003-09-11

Family

ID=24742016

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/682,972 Expired - Fee Related US6583362B2 (en) 2001-11-05 2001-11-05 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US10/248,339 Abandoned US20030168246A1 (en) 2001-11-05 2003-01-10 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/682,972 Expired - Fee Related US6583362B2 (en) 2001-11-05 2001-11-05 Zirconia-stabilized multi-filamentary niobium-tin superconducting wire

Country Status (5)

Country Link
US (2) US6583362B2 (en)
EP (1) EP1449266A2 (en)
JP (1) JP4676699B2 (en)
CN (2) CN101702344B (en)
WO (1) WO2003058727A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175064A3 (en) * 2014-02-18 2016-01-07 The Ohio State University Superconducting wires and methods of making thereof
CN110957081A (en) * 2019-12-24 2020-04-03 南通远景电工器材有限公司 Extrusion process for manufacturing enameled wire
WO2021133193A1 (en) 2019-12-26 2021-07-01 Акционерное Общество "Твэл" Blank for producing a long nb3sn-based superconducting wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
US7226894B2 (en) * 2003-10-22 2007-06-05 General Electric Company Superconducting wire, method of manufacture thereof and the articles derived therefrom
JP4034802B2 (en) * 2005-11-22 2008-01-16 株式会社神戸製鋼所 Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
US7851985B2 (en) * 2006-03-31 2010-12-14 General Electric Company Article incorporating a high temperature ceramic composite for selective emission
CN105855316B (en) * 2016-05-30 2018-01-19 西北有色金属研究院 A kind of preparation method of Nb Zr alloys/Cu Multicore composite materials
CN111262051B (en) * 2020-03-13 2021-01-29 中国科学院电工研究所 Nb of internal tin process3Sn superconducting wire joint and preparation method thereof
CN114649115B (en) * 2022-05-23 2022-09-09 西部超导材料科技股份有限公司 Preparation method of double-Sn-source type Nb3Sn superconducting wire
CN117253670B (en) * 2023-11-20 2024-02-20 西安聚能超导线材科技有限公司 Oxygen permeation Nb 3 Sn superconducting wire and preparation method and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728165A (en) * 1969-10-27 1973-04-17 Atomic Energy Authority Uk Method of fabricating a composite superconductor
US3838503A (en) * 1972-07-12 1974-10-01 Atomic Energy Commission Method of fabricating a composite multifilament intermetallic type superconducting wire
US3910802A (en) * 1974-02-07 1975-10-07 Supercon Inc Stabilized superconductors
US4324842A (en) * 1978-12-05 1982-04-13 The United States Of America As Represented By The United States Department Of Energy Superconducting wire with improved strain characteristics
US4581289A (en) * 1982-07-31 1986-04-08 Brown, Boveri & Cie Ag Superconducting fiber bundle
US4652697A (en) * 1983-08-15 1987-03-24 Hitachi, Ltd. Aluminum-stabilized superconducting wire
US4863804A (en) * 1985-11-29 1989-09-05 Westinghouse Electric Corporation Superconductor wire and methods of constructing same
US4973527A (en) * 1989-09-25 1990-11-27 Teledyne Industries, Inc. Process for making filamentary superconductors using tin-magnesium eutectics
US4990491A (en) * 1988-06-29 1991-02-05 Westinghouse Electric Corp. Insulation for superconductors
US5082164A (en) * 1990-08-01 1992-01-21 General Electric Company Method of forming superconducting joint between superconducting tapes
US5472936A (en) * 1994-07-05 1995-12-05 General Electric Company Method for making triniobium tin semiconductor
US5505790A (en) * 1994-09-09 1996-04-09 General Electric Company Method for enhancing critical current of triniobium tin
US5522945A (en) * 1994-07-01 1996-06-04 General Electric Company Method for forming triniobium tin superconductor with bismuth
US5540787A (en) * 1995-06-14 1996-07-30 General Electric Company Method of forming triniobium tin superconductor
US6172588B1 (en) * 1999-04-23 2001-01-09 General Electric Company Apparatus and method for a superconductive magnet with pole piece

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE683279A (en) * 1965-06-28 1966-12-01
CA2054882A1 (en) * 1990-11-07 1992-05-08 Yasuzo Tanaka Compound superconductive wires and a method for producing the same
CA2048781A1 (en) * 1990-11-19 1992-05-20 Lee E. Rumaner Niobium-tin superconductor with hafnium oxide particles
JP2727874B2 (en) * 1992-06-30 1998-03-18 株式会社日立製作所 Superconducting wire and composite superconducting conductor
JPH06168635A (en) * 1992-11-27 1994-06-14 Hitachi Ltd Compound superconducting wire material and manufacture thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728165A (en) * 1969-10-27 1973-04-17 Atomic Energy Authority Uk Method of fabricating a composite superconductor
US3838503A (en) * 1972-07-12 1974-10-01 Atomic Energy Commission Method of fabricating a composite multifilament intermetallic type superconducting wire
US3910802A (en) * 1974-02-07 1975-10-07 Supercon Inc Stabilized superconductors
US4324842A (en) * 1978-12-05 1982-04-13 The United States Of America As Represented By The United States Department Of Energy Superconducting wire with improved strain characteristics
US4581289A (en) * 1982-07-31 1986-04-08 Brown, Boveri & Cie Ag Superconducting fiber bundle
US4652697A (en) * 1983-08-15 1987-03-24 Hitachi, Ltd. Aluminum-stabilized superconducting wire
US4863804A (en) * 1985-11-29 1989-09-05 Westinghouse Electric Corporation Superconductor wire and methods of constructing same
US4990491A (en) * 1988-06-29 1991-02-05 Westinghouse Electric Corp. Insulation for superconductors
US4973527A (en) * 1989-09-25 1990-11-27 Teledyne Industries, Inc. Process for making filamentary superconductors using tin-magnesium eutectics
US5082164A (en) * 1990-08-01 1992-01-21 General Electric Company Method of forming superconducting joint between superconducting tapes
US5522945A (en) * 1994-07-01 1996-06-04 General Electric Company Method for forming triniobium tin superconductor with bismuth
US5472936A (en) * 1994-07-05 1995-12-05 General Electric Company Method for making triniobium tin semiconductor
US5505790A (en) * 1994-09-09 1996-04-09 General Electric Company Method for enhancing critical current of triniobium tin
US5540787A (en) * 1995-06-14 1996-07-30 General Electric Company Method of forming triniobium tin superconductor
US6172588B1 (en) * 1999-04-23 2001-01-09 General Electric Company Apparatus and method for a superconductive magnet with pole piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175064A3 (en) * 2014-02-18 2016-01-07 The Ohio State University Superconducting wires and methods of making thereof
US9916919B2 (en) 2014-02-18 2018-03-13 Ohio State Innovation Foundation Superconducting wires and methods of making thereof
EP3107879B1 (en) 2014-02-18 2020-04-22 The Ohio State University Superconducting wires and methods of making thereof
CN110957081A (en) * 2019-12-24 2020-04-03 南通远景电工器材有限公司 Extrusion process for manufacturing enameled wire
WO2021133193A1 (en) 2019-12-26 2021-07-01 Акционерное Общество "Твэл" Blank for producing a long nb3sn-based superconducting wire

Also Published As

Publication number Publication date
CN101702344B (en) 2013-03-13
CN100578832C (en) 2010-01-06
JP4676699B2 (en) 2011-04-27
CN1605131A (en) 2005-04-06
EP1449266A2 (en) 2004-08-25
JP2005514743A (en) 2005-05-19
US6583362B2 (en) 2003-06-24
US20030085053A1 (en) 2003-05-08
CN101702344A (en) 2010-05-05
WO2003058727A2 (en) 2003-07-17
WO2003058727A3 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
EP1993153A1 (en) Nb3Sn superconducting wire, precursor of same, and method for producing precursor
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
EP0613192B1 (en) Wire for NB3X superconducting wire
US4094059A (en) Method for producing composite superconductors
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JP2006260854A (en) Manufacturing method of superconductive wire rod
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
EP0609804A1 (en) Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP2003045247A (en) Superconductive cable
JPH11111081A (en) Oxide superconducting wire
JP2004152677A (en) High-strength superconducting wire rod
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH04298914A (en) Compound superconductor
JPH05135636A (en) Manufacture of compound superconductive wire
JP2006100150A (en) Manufacturing method for multi-core wire of hard-to-process superconducting alloy
JP2004241254A (en) Method of manufacturing superconducting oxide wire
JPH0831244A (en) Superconducting wire and its manufacture
JPH04298917A (en) Manufacture of compound superconductor
JPH03116609A (en) Compound superconducting wire

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION