JPH03116609A - Compound superconducting wire - Google Patents

Compound superconducting wire

Info

Publication number
JPH03116609A
JPH03116609A JP1254655A JP25465589A JPH03116609A JP H03116609 A JPH03116609 A JP H03116609A JP 1254655 A JP1254655 A JP 1254655A JP 25465589 A JP25465589 A JP 25465589A JP H03116609 A JPH03116609 A JP H03116609A
Authority
JP
Japan
Prior art keywords
filament
cross
rectangular
section
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254655A
Other languages
Japanese (ja)
Inventor
Katsuro Oishi
大石 勝朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1254655A priority Critical patent/JPH03116609A/en
Publication of JPH03116609A publication Critical patent/JPH03116609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase the critical current of a filament for a magnetic field generated in the longitudinal direction of the cross section of the filament by making the cross section of the filament roughly circular and that of a linear material rectangular. CONSTITUTION:A number of Nb cores are embedded in a bronze matrix 2 consisting of Cu-Sn and a barrier 3 of Nb and a copper stabilizing material 4 are disposed around the number of Nb cores and, after extrusion, wire drawing and annealing are repeated and then a straight angle cross section is obtained by machining process. A filament 1 is made roughly circular by drawing process but is not subjected to rolling process. Thus the filament would not be deteriorated in comparison with a filament flattened by rolling process and so its critical current density is enhanced. In addition, winding of the filament is easy because of its rectangular outer form and then current density as a coil would not be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物超電導線の断面形状に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the cross-sectional shape of a compound superconducting wire.

〔従来の技術〕[Conventional technology]

高磁界用マグネットにはNb、Sn或いはv、Ga等の
化合物超電導線材が用いられるが、化合物超電導体が歪
に対して弱いためコイル巻線後に超電導体を生成するた
めの熱処理を行う、いわゆるワインドアンドリアクト法
でコイル製作を行う場合が多い。
Compound superconducting wires such as Nb, Sn, V, Ga, etc. are used for high magnetic field magnets, but since compound superconductors are weak against strain, so-called wind wires are used in which heat treatment is performed to generate superconductors after coil winding. Coils are often manufactured using the Andreact method.

これに用いられる化合物系線材の断面形状としては丸形
のものと矩形のものがある。丸形導体はコイル巻線が困
難で特別の技術が必要とされ、更に大型導体の場合には
線間に生ずる無駄な空間のためコイルとしての電流密度
が低くなるという欠点がありた。
The cross-sectional shapes of the compound wire used for this include round and rectangular. Round conductors are difficult to coil and require special techniques, and in the case of large conductors, the current density as a coil is low due to wasted space between the wires.

矩形形状の導体はこの様な欠点がないので、丸形導体よ
り価格的には高いものであるが、トータル的にはかえっ
て有利となる場合が多くしばしば用いられるものである
Since rectangular conductors do not have such drawbacks, although they are more expensive than round conductors, they are often more advantageous overall and are often used.

第1図(a)、Φ)は、従来用いられているブロンズ法
による丸形及び矩形状断面を有する化合物超電導線の断
面図である。丸形導体はCu5nからなるブロンズマト
リックス(2)中に多数本のNb芯を埋め込み、その周
囲をNbやTa等のバリヤー(3)、更にその外側に銅
安定化材(4)を配置した構造となっている。これを熱
処理することによりNb芯の周囲にNb5Sn超電導体
を生成したフィラメント(1)を得ることができる。
FIG. 1(a), Φ) is a cross-sectional view of a compound superconducting wire having a round and rectangular cross section formed by a conventional bronze method. The round conductor has a structure in which a large number of Nb cores are embedded in a bronze matrix (2) made of Cu5n, a barrier (3) such as Nb or Ta is placed around it, and a copper stabilizing material (4) is placed on the outside. It becomes. By heat-treating this, a filament (1) in which an Nb5Sn superconductor is formed around the Nb core can be obtained.

矩形状導体も同一構造であるが丸形導体を圧延して製作
するため、Nbフィラメントが偏平状につぶされた形状
となっている。
The rectangular conductor has the same structure, but because it is manufactured by rolling the round conductor, the Nb filament is crushed into a flat shape.

このような矩形状導体では、断面長手方向の磁場に対し
てピンニング力が増加するため、その方向の磁場に対す
る臨界電流(I、)が増加することが期待できる。
In such a rectangular conductor, the pinning force increases with respect to the magnetic field in the longitudinal direction of the cross section, so it can be expected that the critical current (I,) with respect to the magnetic field in that direction increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ブロンズ法によるNb3Sn化合物超電導線の製造工程
は、押出、伸線および圧延、そして拡散熱処理の順にな
っている。伸線工程では、ブロンズが加工硬化し、断線
が生ずるので、焼鈍と伸線を繰返している。焼鈍温度は
Nb3Sn生成の熱処理温度よりも低く、時間も短いが
、それでも、Nbの表面にNb、Snが生成し、次の伸
線時に破壊される。この時に、Nbフィラメントの表面
状態および断面形状が悪化し、さらに、圧延工程により
強加工が加えられると、フィラメントの劣化がさらに進
む。その結果、期待に反して、矩形状導体の■。が丸形
導体の■。よりも低下するという問題があった。
The manufacturing process of Nb3Sn compound superconducting wire by the bronze method consists of extrusion, wire drawing, rolling, and diffusion heat treatment in this order. In the wire drawing process, bronze is work hardened and wire breaks occur, so annealing and wire drawing are repeated. Although the annealing temperature is lower than the heat treatment temperature for Nb3Sn generation and the time is shorter, Nb and Sn are still generated on the Nb surface and destroyed during the next wire drawing. At this time, the surface condition and cross-sectional shape of the Nb filament deteriorate, and further, when severe processing is applied in the rolling process, the deterioration of the filament further progresses. As a result, contrary to expectations, ■ of the rectangular conductor. ■ is a round conductor. There was a problem that it was lower than that.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は上記問題点を解決した化合物at導線を提供す
るもので、内部に化合物超電導体からなるフィラメント
を有し、最外周部に安定化材を有する化合物超電導線に
おいて、フィラメントの断面形状が略円形であり、線材
の断面形状が矩形であることを特徴とするものである。
The present invention provides a compound at conductive wire that solves the above problems, and is a compound superconducting wire that has a filament made of a compound superconductor inside and a stabilizing material at the outermost periphery, in which the cross-sectional shape of the filament is approximately It is characterized in that it is circular and the cross-sectional shape of the wire is rectangular.

上述の構造を有する化合物超電導線では、フィラメント
は伸線加工のみを受けて略円形をしており、圧延加工を
受けていないため、圧延加工により偏平状になったフィ
ラメントに比較して劣化せず、従って臨界電流密度も高
くなる。また、外形は矩形であるため、巻線が容易で且
つコイルとしての電流密度が低下することはない。
In compound superconducting wires with the above structure, the filaments are only drawn and have a substantially circular shape, and are not rolled, so they do not deteriorate compared to filaments that are flattened by rolling. , therefore the critical current density also increases. Further, since the outer shape is rectangular, winding is easy and the current density as a coil does not decrease.

〔実施例〕〔Example〕

本発明の実証のため、小型ビレットを製作して従来例と
の比較を行った。本発明の実施例として、Cu−3nか
ら成るブロンズマトリックス中に多数本のNb芯を埋め
込み、その周囲にNbのバリヤ及び銅安定化材を配置し
た外径45φの円筒形ビレットを用意した。これを押出
後に伸線、焼鈍を繰返して2.56φの丸線としてから
長さ約300順に切断した。この後に切削加工により2
m1X1.6−の平角断面形状とした。本切削では最外
周部の銅安定化材部分のみを切削したのでバリヤー、フ
ィラメント部、ブロンズの断面形状は切削前と変わるこ
となく丸形であった。
In order to demonstrate the present invention, a small billet was manufactured and compared with a conventional example. As an example of the present invention, a cylindrical billet with an outer diameter of 45φ was prepared, in which a large number of Nb cores were embedded in a bronze matrix made of Cu-3n, and an Nb barrier and a copper stabilizing material were arranged around the core. After extrusion, this wire was repeatedly drawn and annealed to form a round wire of 2.56φ, which was then cut into lengths of about 300 mm. After this, by cutting 2
It had a rectangular cross-sectional shape of m1×1.6-. In this cutting, only the outermost part of the copper stabilizer was cut, so the cross-sectional shape of the barrier, filament part, and bronze remained round, unchanged from before cutting.

尚、この時の銅安定化材を除いた部分の断面積は1.6
2−であった、比較例として、上述したビレットと同様
な構造の外径45φのビレットを製作した。これを押出
後、伸線、中間焼鈍を繰返して2.19φとしてからロ
ールにて圧延し、更に平角ダイスを直して2.19mX
1.46amの平角線とした。コーナーは0.2Rであ
った。従ってブロンズ、Nbフィラメント群、Nbのバ
リヤーも平角形状に変形されている。この時の銅安定化
材を除いた部分の断面積は、前記実施例と同様に1.6
2−となるようにビレット組立時に配慮した。
In addition, the cross-sectional area of the part excluding the copper stabilizing material at this time is 1.6
As a comparative example, a billet having an outer diameter of 45φ and having the same structure as the billet described above was manufactured. After extrusion, wire drawing and intermediate annealing were repeated to obtain a diameter of 2.19mm, which was then rolled with a roll.
A flat wire of 1.46 am was used. The corner was 0.2R. Therefore, the bronze, Nb filament group, and Nb barrier are also deformed into rectangular shapes. The cross-sectional area of the part excluding the copper stabilizing material at this time was 1.6 as in the previous example.
2- was taken into consideration when assembling the billet.

上記実施例および比較例のサンプル各5本を雰囲気炉中
で同時に熱処理を行い、Nb、Snを生成した。これら
のサンプルについて、10当り10μVの電圧が発生し
た時点の電流を臨界電流値(IC)として、各サンプル
の臨界電流値を4.2にで測定した結果の平均値を第1
表に示す。
Five samples each of the above examples and comparative examples were heat-treated simultaneously in an atmospheric furnace to generate Nb and Sn. For these samples, the critical current value (IC) is the current at the time when a voltage of 10 μV per 10 is generated, and the average value of the results of measuring the critical current value of each sample at 4.2 is the first value.
Shown in the table.

第  1  表 以上の結果より、本発明にかかる実施例のサンプルでは
、比較例のサンプルよりも約10%I、が増加している
ことがわかる。
From the results shown in Table 1, it can be seen that the I of the sample of the example according to the present invention is increased by about 10% compared to the sample of the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、フィラメントの断
面形状が略円形であり線材の断面形状が矩形であるため
、臨界電流が増大するという優れた効果がある。
As explained above, according to the present invention, since the cross-sectional shape of the filament is approximately circular and the cross-sectional shape of the wire is rectangular, there is an excellent effect of increasing the critical current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は化合物超電導線の断面説明図で
ある。 1・・・フィラメント、  2・・・ブロンズマトリッ
クス、 3・・・バリヤー 4・・・安定化材。
FIGS. 1(a) and 1(b) are explanatory cross-sectional views of a compound superconducting wire. 1... Filament, 2... Bronze matrix, 3... Barrier 4... Stabilizing material.

Claims (1)

【特許請求の範囲】[Claims] 内部に化合物超電導体からなるフィラメントを有し、最
外周部に安定化材を有する化合物超電導線において、フ
ィラメントの断面形状が略円形であり、線材の断面形状
が矩形であることを特徴とする化合物超電導線。
A compound superconducting wire having a filament made of a compound superconductor inside and a stabilizing material at the outermost periphery, characterized in that the cross-sectional shape of the filament is approximately circular and the cross-sectional shape of the wire is rectangular. superconducting wire.
JP1254655A 1989-09-29 1989-09-29 Compound superconducting wire Pending JPH03116609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254655A JPH03116609A (en) 1989-09-29 1989-09-29 Compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254655A JPH03116609A (en) 1989-09-29 1989-09-29 Compound superconducting wire

Publications (1)

Publication Number Publication Date
JPH03116609A true JPH03116609A (en) 1991-05-17

Family

ID=17268027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254655A Pending JPH03116609A (en) 1989-09-29 1989-09-29 Compound superconducting wire

Country Status (1)

Country Link
JP (1) JPH03116609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963854A (en) * 2021-11-30 2022-01-21 西北有色金属研究院 Kilometer-level MgB with rectangular cross section2Method for producing superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963854A (en) * 2021-11-30 2022-01-21 西北有色金属研究院 Kilometer-level MgB with rectangular cross section2Method for producing superconducting wire

Similar Documents

Publication Publication Date Title
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US4153986A (en) Method for producing composite superconductors
KR100724212B1 (en) PRECURSOR WIRE OF Nb-Sn PHASE SUPERCONDUCTING WIRE
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
JPH03116609A (en) Compound superconducting wire
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3602151B2 (en) Method for producing Nb (3) Sn compound superconducting wire
JPH04341710A (en) Manufacture of super conductive conductor
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH0554741A (en) Manufacture of compound superconducting wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH04298917A (en) Manufacture of compound superconductor
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP3031477B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JP3013253B2 (en) Oxide superconductor wire and method of making
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPH0422016A (en) Manufacture of compound superconductor
JP2001006455A (en) Ceramics compound superconducting wire
JPH0381246B2 (en)
JPH04334821A (en) Manufacture of oxide superconducting tape
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JPH05109323A (en) Superconductive assembled conductor
JPH08227621A (en) Compound superconducting wire material